Chapter 5

Call by Reference, Aliasing Issues

The goal of this chapter is to address the so-called aliasing phenomenon in programming and the issues
it raises when proving a program. Section focuses on the case of call by reference. Section
introduces the possibility of making side effects inside expressions, and discusses issues regarding the
order of evaluation.

5.1 Call by Reference

In the previous chapter, values were passed to procedures using parameters that are similar to immutable
variables. This is the so-called call by value semantics. The call by reference semantics sees parameters
as mutable variables instead. If such a parameter is assigned inside the body of the procedure, then the
global variable passed as an argument during the call is modified too.

The need to add call by reference to the language of the previous chapter is motivated by the need of
more genericity in the programs. An example to illustrate this is as follows, where the goal is to define
a module implementing stacks of integers.

type stack = list int
val s:ref stack

procedure push(x:int):
writes s
ensures s = Cons(x,s@0Id)
body ...

The procedure push puts the given value X on top of the stack S. But in the case we need to program
some other procedure that needs two stacks, it would be a major burden if we need to copy the procedure,
to make it operate on another stack. From the point of view of proofs, it is even worse because we should
prove the correctness of this copy.

In other words, if we want to provide a module for stacks that is naturally reusable, we should be
able to parameterize the procedure push by the stack it operates on. A syntax for that is as follows.

type stack = list int
procedure push(s:ref stack,x:int):

writes s
ensures s = Cons(x,s@0lId)

51

where the stack S is now a reference parameter of push. A program that uses two stacks can now be
easily written, e.g.

val s1,s2: ref stack

procedure test():
ensures head(s1) = 13 A head(s2) = 42
body push(s1,13); push(s2,42)

Historically, call by reference is present in older programming languages like PASCAL (parameters
annotated with keyword VAR), Ada (parameters annotated with out or inout), Fortran, etc. For more
modern languages like C or Java, such a feature is not present since the ability to pass a pointer or an
object (i.e. internally a memory address in both cases) as argument can be used to modify mutable data,
and thus simulates call by reference. In functional languages like OCaml, mutable data are explicitly
typed using ref, hence call by reference is explicitly visible in the types of parameters.

Notice that modern versions of Ada also provide pointers and objects, however when Ada is used for
developing critical software, only the subset Spark is recommended, that allows out or inout parameters
but no pointers. The ultimate reason, as we will see in this chapter, is that call by reference is significantly
easier to handle than general pointers when one wants to prove a program.

5.1.1 Syntax

A procedure declaration now allows both value parameters and reference parameters. For the sake of
simplicity, we assume that reference parameters are given first, although in practice they can come in
any order. The shape of a procedure declaration is thus as follows.

procedure p(yy :ref i, ..., yk ref g, ey 7, .. @ 0 7))

where the y; are the reference parameters and the x; are the parameters passed by value.

It should be noted that when calling such a procedure, it is not possible to pass any expression for
the effective arguments of the y;: since y; is intended to be assigned, the corresponding argument has to
be a mutable variable itself. The general shape of a call is thus

p(21,. . s 26, €1, .., €n)

where each z; must be a mutable variable.

5.1.2 Operational Semantics

Defining the operational semantics of call by reference is not a trivial matter. There is a kind of “in-
tuitive” semantics, that expresses what we informally expect from a call by reference, which can be
formalized by a syntactic substitution in the body:

II' = {x; + [ei]lsn} [prelsr holds Body' = Bodyly; + z;]
S 0L p(z1, 0y 2k, €1, -0y ep) ~ X1, (01d - Body'; return(post, I1))

This rule is the same rule for the procedure call in previous chapter (regarding the parameters passed by
value) but we replace each occurrence of reference parameters by the corresponding reference argument
in the body of the executed procedure.

This semantics captures the informal idea of calling by reference, but it is not used in practice when
interpreting or compiling a program, because there is no simple way to make a “copy” of the body of a
procedure each time it is called.

52

Historically, there have been several variants proposed to implement call by reference. One of
the older techniques is the semantics called copy/restore. There are reserved memory locations for
the reference parameters, the values of the effective arguments are copied there when the procedure is
called, and then the final values are copied back to the variables given as arguments. Such a semantics
is formalized by the following rules. In the rule for call below, the reference parameters are added into
the current state.

Y = E[y] — E(Zj)] I = {.TZ — [[61']]2’1‘[} [[pre]];;’H/ holds
S0 p(z1, .0y 28, €1, -0y ep) ~ X1 (01d - Body; return(post, 1))

In the rule for the dummy statement return below, the state is updated, to formalize the “restore” step.

[post]s v holds Y =3z + X(y;)]
3,11, return(post, II) ~ 3/ 11, skip

The important point to notice here is that it is not equivalent to the intuitive semantics above. Differ-
ences may appear in presence of aliasing, that is if two different variable names indeed denote the same
variable. An example is as follows.

val g : ref int

procedure p(x:ref int):
body x :=1; X ;=g + X;

procedure test():
body g := 0; p(g);
In the intuitive semantics, executing p(g) means executing the body of p where X is replaced by g, that
is

g:=1,0:=0+0;
and thus g =2 at the end. With the copy/restore semantics, executing p(g) means executing
X = 1; X := g + X in a state where X has value 0 (the current value of g), which results in a state where
g = 0 and x = 1, and the value of X is copied back to g thus g=1.

Such a difference in the two semantics comes from the aliasing between g and X when calling p(gQ):
g and X are different names for the same memory location.

In a context where we want to prove programs, this difference of semantics is of course an issue. On
the example above, one would naturally specify the procedure p as follows:

procedure p(x:ref int):
writes x
ensures x = g+1
body x :=1;x =9 + X;

The postcondition is proved valid with either Hoare logic or Weakest Precondition calculus. However,
for the test code g := 0; p(Q), if we use the rules of the previous chapter as they are we could prove both

e g=0, because the contract of p says that g is not changed by the procedure ;
e g=1 because the postcondition of p says that g = g@old+1.
This happens for several reasons:

e The post-condition of p is proved under an implicit assumption that X and g are not alias;

53

e The writes clause says that a call to p cannot modify anything but X, but it is not enough to say
that the name g is different from the name X to ensure that g and X do not denote the same variable.

This clearly shows that the rules of Hoare logic and WP cannot be use in presence of call by reference
without any precautions.
The program below illustrates another aliasing issue.

procedure p(x:ref int, y:ref int):
writes x y
ensuresx=1Ay=2
body x :=1;y =2

The post-condition is natural for the given code, and indeed can be proved valid if we use the rules we
know about Hoare logic and weakest preconditions. However in the following context:

val g : ref int
procedure test():
body p(g.9);

one could derive g = 1 A g = 2 which is inconsistent. This time, this is because two reference parame-
ters are alias.
Another example is as follows.

val g1 : ref int
val g2 : ref int

procedure p(x:ref int):
writes g1 x
ensuresgl =1 Ax=2
body g1 :=1;x:=2

procedure test():
body
p(g2); assert gl =1 A g2 =2; (x OK x)
p(g1); assertgl =1 A gl =2; (x ?77x%)

The first call p(g2) is OK, but the second one p(g1) is not, one could derive g1 = 1 A g1 = 2 which is
inconsistent.

5.1.3 Typing, Alias-Freedom Condition

To prevent the unexpected behaviors presented above, we have to make sure that no alias occur. For this
purpose we need to add a new reads clause in procedure contracts, analogous to the writes clause, to
specify the references that are accessed, but not assigned.

With this extended form of contract, we can prevent unexpected reference aliasing thanks to an
additional premise in the typing rule for procedure calls. For a procedure declared under the form

procedure p(yy : ref T1,..., Yk : T Thy X1 THyevy Tp i Tp):
writes W
reads 7

The typing rule for a call to p is extended with additional premises:

wbEplzry e 2gy) rwf

54

In other words, the effective arguments z; must be distinct, and each effective argument z; must neither
be read nor written by p [1]

Theorem 5.1.1 (Soundness in presence of call by reference) If a program is well-typed, with the
Alias-Freedom restriction above, then

o Semantics by substitution and by copy/restore coincide
e Hoare rules of previous chapter remain correct

o WP rules of previous chapter remain correct

Indeed, the rules are almost unchanged: we must take care that for procedure call, appropriate
substitution of the reference parameters by effective arguments is done, so the WP rule for call is as
follows.

WLP(p(z1,..., 2k, €1,...,€n),Q) fPre[x,- <—€i][3_{j — zj] B B
AV, (Post[x; < e;][y; < z;][w'QHere + y][w'@QOld < w'QHere] = Q[w' <])

where w' = Wy < z;]
For example, the following program is well-typed, and can be proved correct using WP.

type stack = list int

procedure push(s:ref stack,x:int):
writes s
ensures s = Cons(x,s@0OId)
body s := Cons(x,s)

val s1,s2: ref stack

procedure test():
ensures head(s1) = 13 A head(s2) = 42
body push(s1,13); push(s2,42)

The proof is as follows:

WP (push(s1,13); push(sa2,42), head(s1) = 13 A head(s2) = 42)
= WP(push(s1,13), WP(push(sz,42), head(s1) = 13 A head(s2) = 42))
= WP (push(s1, 13),
Yy, (s = Cons(z, sQOId)) [z < 42][s « s2][s2 + y][s2@QOId + s9] —
(head(s1) = 13 A head(s2)42)[s2 < y])
= WP(push(s1, 13),
Vy,y = Cons(42, s3) — (head(s1) = 13 A head(y) = 42))
= WP(push(s1, 13), (head(s1) = 13 A head(Cons(42, s2)) = 42))
= WP(push(s1, 13), head(s1) = 13)
=Yy, (s = Cons(z, sQOId))[x + 13][s < s1][s1 < y][s1@QOIld + s1] —
(head(s1) = 13)[s1 < y])
=Vy, (y = Cons(13,s1)) — head(y) = 13
= head(Cons(13,s1)) = 13

= true

In some sense the alias-freedom condition ensures that the second call to push does not have any
effect on the first stack s1, and thus proving head(s1) = 13 is directly a consequence of the post-
condition of push for the first call.

55

5.2 Expressions with Side Effects, Function Calls

The ability to call by reference provides genericity, allowing to improve the modularity of the programs
we can write. In practice, it would be very handy to be able to program functions in the sense of
subprograms that can return a value. Continuing our stack example, we would like to write a pop
function

function pop(s:ref stack): int

which should both modify the stack S passed by reference (removing the head) and returning the head
element.
Of course, a function call will not be the same as a procedure call: it is part of an expression, like in

push(s,13);

push(s,42);

let x = pop(s) — pop(s) in
assert x = 29

This introduces an important novelty in our programming language: an expression may now have a
side-effect. Moreover, as illustrated by the example above, the order of evaluation becomes important:
the assertion above is true only if evaluation of the arguments of addition is from left to right.

Another novelty is that to specify a function, we should be able to specify, in postconditions, some
properties about the result. For example, a specification of pop could be

function pop(s:ref stack): int
requires s # Nil
writes s
ensures result = head(s@0OId) A s = tail(s@0OlId)

where result is a keyword denoting the returned value.
All these novelties justify important changes in the syntax.

5.2.1 Syntax

Up to now, expressions were pure (no side-effects) and could be used indifferently in programs and
in specifications. In our new syntax, these pure expressions are called terms. In programs, we now
proceed the same as functional languages, that is, we do not make any distinction between expressions
and statements. A statement is just an expression whose type is unit, which is a new base type, inhabited
only by the constant denoted () (which is indeed the same as the former sKip statement).

The grammar of expressions is

e = n|r]|true| false | () constants
|z|eope|z:=e|ee
| letid=eine|letid=refeine local binding
| if etheneelsee|whileedoe
| raise exn|try ewithexn = ¢
| L:e label
| fle,...e) function call

5.2.2 Typing

The typing rules are given below.

56

constants

variables

binary operators

I'kn:int I'kr:real

I'F true : bool I' F false : bool

z:7el r:refrtel
I'tao:7 I'tax:r
I'Fe:m I'kFes:m

I'ejopey: T

for each operator op expecting arguments of respective types 7; and 7 and returning a value of

type 7.

assignment

conditional

loop

local bindings

Function call

I'b:bool

I'te:r
I'Fz:=e:unit

r:reftrTel

I'ke:7 I'kFeg:r

I'Fifbthenejelseey: T

I'b:bool I'Fe:unit
I'whilebdoe:unit

T'ke:m {z:m} The:m
I'Fletx=e;iney: 7

I'te:m {r:refm} -Tkex:m

I'Fletx=refeiiney:m

if f declared as

zi:refr/ el I'kei:m

Vijii#F =z #F 2z VijziFwg Vi gz £
Lk f(z1,. o, 2k,€1, .. h€0) i T
Uk TeE T T T, T I TR) T

function f(y; : ref 79, ..

requires Pre
reads 7
writes w
ensures Post
body Body

57

5.2.3 Operational Semantics

The relation for one-step execution now operates on expressions instead of statements. It has the form
Y I e~ X I, €

Formerly, the only possible final statement was skip (and also raise Ezn in case of exceptions),
now the possible final expression are all the constants of the logic. These are traditionally called the
values. To make explicit the order of evaluation, the rules below distinguish the case of values and
others.

Variables

z 1s an immutable variable z=vell
X I x ~ X101 w

x is a reference (x,Here) =v € X
X0z~ X100

Let binding, immutable variable

/ / /
3, 11,e1 ~ X011, €
Y, 0I,let z =ej iney ~ X, II', let z =€) in ey

Y, II,let x =v; ineg ~ N, {x =v1} -1, e9
Let binding, mutable variable

Y, 10 e; ~ X 11 €]
Y,II,let z =refej; iney ~ ¥, II', let x = ref €] in ey

Y, 0, let x = ref viney ~ {(x,Here) = v} - X, 11, ey
Binary operators

/ / /
3,00, e ~ X010, €}
Y, 10,61 op eg ~» X I, €] op ea

/ ! /
10, 65 ~ ¥, I, €
Y, 10, v1 op eg ~» X/ 1T, vy op €

UV = V1 Op V2

3 I, v1 opvg ~ X 1w

Assignment
Y I, e~ X I €
Yz :=e~ N Iz :=¢
Y10,z :=v~ X[z < 0,11, ()
Conditional

S, eq ~ 1T, ¢,
Y,II,if e; theneg elseeg~» X/ II',if €] theneyelsees

Y 10,11 true thenes else ez ~ 2,11 e

310, it false theneg else eg ~~ X 11 eg

58

Loop

Y, II,while e; doeg ~ X, II,if e; then (eg;while e; doeg) else ()

Function call
E/ = E[y] < 2(2’])] H/ = {SCZ < Ui} [[pTe]]ZI[/ holds
Evnap(zlv ce ey Rk, UL, - '7Un) ~
¥, II',1et v = Body in return(v, Post,1I)

[let result = v in Post]y i holds Y = X[z «+ B(y;)]
3,11, return(v, Post, IT) ~» X/ 11, v
Notice that the dummy statement return is now a dummy expression, taking an extra argument

to denote the returned value v of the call. Notice then that the validity check of the postcondition
is done when binding the reserved variable result to this value v.

5.2.4 Hoare Rules and Weakest Preconditions

Hoare logic rules and rules for computing WP must be modified in order to operate on expressions
instead of statements. The modifications to perform are similar in both cases, and we focus here on the
WP calculus.

Generally speaking, the operator WP now applies on an expression and a formula () where in the
latter the reserved variable name result can occur. The WP rules should allow to compute a formula
WP (e, Q) such that if the expression e is executed in a state that satisfies WP (e,), then the final state
and final value v should satisfy Q[result < v]. For example, we expect that WP((z := x + 13;x +
1),result = 42) is x = 28.

Let’s start with the rules for pure terms and for a let binding:

WP(t,Q) = QJresult + ¢]

WP(let x =e; ines, Q) = WP(e1, WP(eg, Q)[z < result])
The rule for let binding allows us to provide simpler rules below, by assuming that the sub-expressions
are pure terms. Indeed the rule for binary operators can be derived from the rules above by just noticing
that e; op eo has the same semantics as 1et t1 = e; in let t9 = ey in t1 op to thanks to the choice
of evaluation order from left to right. Hence

WP(e;opes, Q) = WP(lett; =e;inletty=e2 int; opts, Q)

WP(e;, WP(let ta = ez inty op ta, Q)[t1 < result])
WP(e1, (WP (e2, WP(t1 op t2,Q))[t2 < result])[t; < result])
= WP(e1, (WP(eq, Q[result « t; op ta])[ta < result])[t; < result])

The rule for assignment is the same as before, except for an extra substitution of the reserved variable
result by ().
WP(z :=1t,Q) = Q[result < (), z «]

Similarly as for binary operator we can generalize the rule to any expression e in place of a pure term ¢:
WP(z:=¢,Q) = WP(lett=einz:=1,Q)
= WP(e, WP(z :=t,Q)[t « result])

(
= WP(e,Q[result < (), z « t][t + result])
= WP(e,Q[result < (), z < result])

59

The rule for conditional expressions is
WP(ifttheneyelsees, Q) =1iftthen WP(eg, Q) else WP(e3,Q))
or more generally
WP(if e; thenegelsees, Q) = WP(e1,1f result then WP(e2, Q) else WP(es, Q))
The rule for the while loop is

WP(while e; invariant [variant t do ez, Q) =
IAYY, T —
WP(ey,if result then WP(eg, I At < tQL) else Q)[xzQL < x@QHere]

The rule for function calls is very similar to the one before, we just need to add an extra quantification
on the result of the call:

WLP(p(Zl,...,Zk,tl,...,tn),Q) :Pre[tzi %ti][yj %Z_]’] . .
AV result, (Post[x; < t;][y; < zj|[w'@QHere + y][w'@QOld < w'QHere] = Q[w' <)

where w' = Wy < z;].

Example 5.2.1 Let’s prove

push(s,13); push(s,42);

let x = pop(s) — pop(s) in
assert x = 29;

using WP calculus:

WP(let x = pop(s) — pop(s) in assert z = 29, true)
= WP(pop(s) — pop(s), WP(assert z = 29, true)[zx < result])
= WP(pop(s) — pop(s), (x = 29)[z <« result])
= WP(pop(s) — pop(s), result = 29)
= WP(let t; = pop(s) in let ta = pop(s) in t; — to, result = 29)
= WP(pop(s), WP(let ta = pop(s) in t; — to,result = 29)[t; «+ result])
(
(
(
(

= WP (pop(s), WP (pop(s), WP(t; — ta, result = 29)[t2 «+ result])[t; «+ result])
= WP(pop(s), WP (pop(s), (t1 — ta = 29)[ta < result])[t1 < result])

= WP (pop(s), WP(pop(s),t; — result = 29)[t; < result])

= WP(pop(s),

(s # Nil A Vsg result, result = head(s) A so = tail(s) — t; — result = 29)[t; < result])
= WP (pop(s), (s # Nil AVsg ro,m0 = head(s) A so = tail(s) — t1 —ro = 29)[t1 + result])
(renaming internal result into r to avoid capture in the next step)
= WP(pop(s), (s # Nil AVsg 19,70 = head(s) A so = tail(s) — result — ro = 29))
= s # Nil A Vs; result, result = head(s) A s1 = tail(s) —
(s1 # Nil AVsg 19,70 = head(s1) A so = tail(s1) — result — rg = 29) (A)

For the last expression (A) we must compute the WP through push(s,13); push(s,42);. We get

WP (push(s,13), WP (push(s,42), A))

= WP(push(s,13),Vsa.s2 = Cons(42,s) — Als < s2])

= Vs3, 53 = Cons(13,s) — Vsa, s9 = Cons(42,s) — Als + s
= Als < Cons(42, Cons(13, s))]

60

which gives, after evaluation of head and tall :

Cons(42, Cons(13,s)) # Nil AVs; result, result = 42 A s; = Cons(13,s) —
(s1 # Nil AVsg 1o, 1m0 = head(s1) A sg = tail(s1) — result — ro = 29)

= true A (Cons(13,s) # Nil AVsgrg,r0 =13 AN sg = s — 42 — 1y = 29)

=true N42 — 13 =29

= true

5.3 Exercises

Exercise 5.3.1 Incrementations

e Specify and prove a procedure which takes a reference to a list of reals as argument, and incre-
ments by 1.0 each element of this list

e Specify and prove a procedure which takes a reference to an array of reals as argument, and
increments by 1.0 each element of this array

Exercise 5.3.2 Below is a procedure that replaces the reference argument by its reverse.

procedure rev_append(l : ref (list)
writes ?
ensures ?
body
letr:=reflin
[:= Nil;
try while true do
invariant ?
variant ?
match r with
| Nil — raise Break
| Cons(x,y) — | := Cons(x,l); r:=y
done;
absurd
with Break — ()

1. Fill the ? with appropriate annotations.

2. Prove the program using WP. Which general lemmas on lists are needed?

Bibliography

[1] J.-C. Fillidtre. Verification of non-functional programs using interpretations in type theory. Jour-
nal of Functional Programming, 13(4):709-745, July 2003. URL http://www.lri.fr/
~filliatr/ftp/publis/jphd.pdfl

61

http://www.lri.fr/~filliatr/ftp/publis/jphd.pdf
http://www.lri.fr/~filliatr/ftp/publis/jphd.pdf

62

