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Abstract

In this paper, we present LLM360 K2-65B, the most powerful fully transparent
open-source large language model (LLM) released to date. K2 is a 65 billion
parameter LLM, which follows best practices for reproducibility from the LLM360
project. Despite numerous efforts to develop and release open-source LLMs, full
transparency around the training process still remains limited. This is especially
true for large-scale models, as prior releases have typically been limited to around
7 billion parameters. While processes and lessons for training large-scale models
are valuable to the community, few exist. For instance, what are the challenges
and training dynamics when training an LLM with tens of billions of parameters?
Are these unique to larger models? To this end, we pre-train K2 from scratch on
a carefully curated dataset of 1.4 trillion tokens, mixed from web crawls, high-
quality textbooks, publications, domain-specific knowledge, and programming
code. We find that K2 outperforms LLaMA-65B and is comparable to Llama2-70B,
yet it requires significantly fewer FLOPS and tokens for training. We detail our
findings during K2’s development, as well as the challenges encountered and their
resolutions. We envision that K2 can serve both as a strong base model for product
development with more flexibility and also help researchers dive deeper into LLM
pretraining behavior at a large model parameter scale.

Checkpoints: huggingface.co/LLM360/K2
Code: github.com/llm360

W&B Logs: wandb.ai/llm360/K2
Data Sequence: huggingface.co/datasets/LLM360/K2Datasets

K2 Chat: huggingface.co/LLM360/K2-Chat
� K2 Suites: www.llm360.ai/#two

Prompt Gallery: huggingface.co/spaces/LLM360/k2-gallery
Evaluation Gallery: huggingface.co/spaces/LLM360/k2-eval-gallery
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1 Introduction

Over the past year, the LLM360 project has released a set of fully open-source and reproducible
large language models (LLMs) ranging from English models to code-generating models, as well as
their instruction-tuned and chat variants (Liu et al., 2023b). We are pleased to see multiple other
dedicated teams pursuing a similar endeavor to release transparent, open-source LLMs (Groeneveld
et al., 2024; Shen et al., 2024; Snowflake, 2024; Biderman et al., 2023; Zheng et al., 2024). However,
until now the full pretraining details of most powerful recent LLMs are still mysterious, as virtually
all prior fully-reproducible open-source LLM releases have remained at a relatively smaller scale
(≤12B parameters) and thus lag far behind the performance and model quality of many mainstream
LLMs, such as LLaMA-65B and Llama2-70B (Touvron et al., 2023a,b).

In this technical report, we present LLM360 K2-65B, the most powerful fully-reproducible open-
source LLM released to date, as the newest member of the LLM360 model family. K2 is a 65 billion
parameter large language model trained completely from scratch on a mixture of web crawl data,
high-quality textbooks, domain-specific data, and programming code (1.4 trillion tokens in total). To
the best of our knowledge, K2 is the very first fully open-source LLM of this size. We follow best
practices of the LLM360 project to release a comprehensive set of pretraining details for K2 (Liu
et al., 2023b), including all pretraining and finetuning code, training algorithm and model details (e.g.,
hyperparameters, schedules, architecture, and designs), all logs and metrics collected during training,
all intermediate model checkpoints saved during training, and the exact pretraining data used.

Performance-wise, K2 significantly outperforms LLaMA-65B, and rivals Llama2-70B on various
standard benchmarks (e.g., GSM8K, HumanEval, etc. (Cobbe et al., 2021; Chen et al., 2021)), while
using a much smaller pretraining corpus; specifically, K2 demonstrates a roughly 35% reduction
in FLOPS in comparison with Llama2-70B. In addition, K2 demonstrates significantly better math
reasoning and coding abilities than Llama2-70B, as well as greater proficiency in the medical domain.

We envision that the release of K2 will further enable the community to further develop impactful
models. K2 can also help researchers and practitioners who are interested in studying the behaviors
of large-scale LLMs. For users who would like to build applications, or create small-scale LLMs
through knowledge distillation (e.g., for deployment on mobile and embedded systems), K2 offers a
more flexible license than many recent large-parameter models.

K2 Released Artifacts. The artifacts released for K2 largely follow the LLM360 full-transparency
approach (Liu et al., 2023b). In this release, the major artifacts include:

• Code: All code, including for training, finetuning, and data preparation.

• Model checkpoints: 140 intermediate model checkpoints, evenly spaced for stage 1 (120
checkpoints)1 and stage 2 (20 checkpoints) respectively.

• Data: The exact training data sequence, split into chunks that correspond to the checkpoints.

• Logs: The Weights & Biases training logs, evaluation logs, and system logs.

• Finetunes: An instruction tuned model, K2-Chat, and the finetuning datasets.

We further organize and release a few resources incorporating feedback from the community.

K2 Galleries. The exact output of the language models during evaluation and prompting carries
useful information about the model. For instance, the perplexity values/scores of each choice in
multiple-choice questions offer a more-nuanced understanding than final accuracy alone. To make
the evaluation transparent, as suggested by Biderman et al. (2024), we release all evaluation prompts,
hyperparameters, and outputs. We follow the Bloom Book2 approach and release the model output as
two K2 galleries. First, the K2 Prompt Gallery3 contains all K2 checkpoints’ outputs on a curated list
of prompts, allowing one to intuitively compare and understand the development of a model over

1We saved and numbered 360 checkpoints, but only uploaded 120 so far, since each can take >100GB space.
2https://huggingface.co/spaces/bigscience/bloom-book
3https://huggingface.co/spaces/LLM360/k2-gallery
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the course of pretraining. Second, the K2 Evaluation Gallery4 is designed similarly and contains
the raw evaluation outputs (e.g., perplexity of each option, generated text) for the benchmark tasks.
The Evaluation Gallery helps in understanding the model’s development across various abilities and
provides a more-comprehensive view on the benchmarks.

K2 Suites. The LLM360 project has released a variety of artifacts, but users sometimes have
difficulty finding the right resources. To address this, we have organized the artifacts into K2 Suites.
Each suite contains materials organized for a particular scenario.

• The Research Suite contains artifacts for researchers to explore and conduct research on LLMs,
such as training dynamics and AI safety. This suite features items like intermediate checkpoints
and the aligned data sequence.
We further present two K2 loss spikes. During the training, we encountered two major loss spikes.
In our final run, we always restarted the training from a checkpoint prior to the spike. However,
loss spikes are relatively rare, in order to facilitate research on the spike phenomenon, we
allowed the training to run for a few steps after the spikes occurred. We release the checkpoints
obtained this way in separate model repositories. We discuss our preliminary findings of the
spikes at §3.1.

• The Pretraining Suite organizes the artifacts useful for reproducing or extending our pretraining
process. Specifically, we release (1) the full data preparation recipe to recreate the data sequence
used for training; (2) the pretraining code for training a model similar to LLM360 model
architectures; (3) the evaluation code and instructions to measure the model performance; and
(4) the model analysis approaches to understand the states of the model. We further provide the
intermediate model outputs and evaluation results as references, for pretrainers to validate the
progress against our trajectory.

• The Developer Suite contains artifacts useful for developing applications, such as fine-tuning
and deployment, given the pretrained models. This includes code for fine-tuning and inference,
and tutorials describing how to deploy fine-tuning and inference, and conduct evaluation on
these models.

2 Modeling

Hyperparameter Value

Layers 80

Hidden Size 8192

Intermediate Size (in MLPs) 22016

RMSNorm ϵ 1e−5

Embedding Positions 32032

Vocab Size 32018

Table 1: A subset of the model architec-
ture & hyperparameters used in K2.

The model architecture of K2 largely follows the architec-
ture of the LLaMA-65B model (Touvron et al., 2023a). It
has 80 transformer layers each with a hidden dimension
of 8192 and 64 attention heads. We did not choose to use
Group Query Attention to simplify the model architecture
for research purposes. More detailed information is shown
in Table 1.

Our tokenizer is also based on LLaMA’s, and, following
Starcoder (Li et al., 2023), we add 18 code-related spe-
cial tokens, e.g., <jupyter_code>, and <fim_suffix>,
to accomondate Github data such as jupyter notebooks
and issues, as well as fill-in-the-middle code pretrain-
ing (Bavarian et al., 2022). The model has 32032 em-
bedding positions with a smaller vocabulary size of 32018,
which encourages users to add other special tokens creatively in various downstream applications
without a great deal of additional effort.

3 Training

We briefly describe our training procedures in this section, including both the pretraining stage and
finetuning stage. The exact details are also released in our training code repository.5

4https://huggingface.co/spaces/LLM360/k2-eval-gallery
5https://github.com/LLM360/k2-train
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Figure 1: Data mix of pretraining stage 1 (left) and stage 2 (right). In stage 1, Paper data includes
ArXiv from RedPajama (Together Computer, 2023) and S2ORC (Lo et al., 2020). USPTO (Gao
et al., 2020) and Pile-of-law (Henderson* et al., 2022) are used as Patent and Law domain texts,
respectively. In stage 2, SimpleWiki from Dolma (Soldaini et al., 2024) is added into Wikipedia.
Math data includes Algebraic-Stack (Azerbayev et al., 2023) and Open-Web-Math (Paster et al.,
2023). Paper data consists of ArXiv (Together Computer, 2023), S2ORC (Lo et al., 2020), and
PES2O (Soldaini & Lo, 2023).

3.1 Pretraining

2-Stage Training. We apply a two-stage pretraining for K2, similar to Tao et al. (2024), except that
we propose a major first stage, and a second stage with fewer tokens. Specifically, stage 1 is designed
to establish the model’s basic language ability, which is trained on 1.4T tokens from various sources
including web text, academic papers, books, code, as well as math, medical, and legal documents.
Following LLaMA-65B settings, the data in stage 1 is packed into samples with context length 2048.
Stage 2 is designed to further enhance the model’s generation ability (such as arithmetic and coding),
as well as expanding the context length. Hence we sample more data that has longer sequences, such
as papers and books. In this stage, 69.3B tokens are used to extend the context length to 8192 and
enhance K2’s math reasoning and coding abilities. The detailed data mix of both stages is shown
in Figure. 1. To keep a reasonable proportion of subsets, we repeat or truncate some subsets. For
example, USPTO is repeated three times while only a half of Starcoder is used.6

Data Sampling. We process all the data into 360 and 20 data chunks separately in stage 1 and 2,
with a checkpoint saved after each data chunk, resulting into 3807 K2 checkpoints along the training
process. Notebly, in every stage, we make sure every subset of training data is evenly distributed into
all data chunks, in order to reduce the variance of data sampling.

Optimization. In both stages, we use AdamW optimizer with β1 = 0.9, β2 = 0.95, and a gradient
clipping of 1.0 and weight decay of 0.1. The batch size for both stages is 4M tokens. Stage 1 and
2 has 2000 and 500 warmup steps, respectively. In stage 1, we uses a cosine learning rate from
1.5× 10−4 to 1.5× 10−5. In stage 2, the learning rate is linearly decayed from 10−4 to 0.

Infrastructure. K2 is pre-trained on a cluster consisting of 480 Nvidia A100 80GB GPUs hosted
on Nvidia’s NGC cloud. Our LLM pre-training framework is adapted from Megatron-LM (Shoeybi
et al., 2019; Narayanan et al., 2021). We use a carefully tuned parallelism strategy that combines data,
tensor-model, and pipeline parallelism. More specifically, we use 8-way tensor-model parallelism,
4-way pipeline parallelism, and 15-way data parallelism (such that 8× 4× 15 = 480 GPUs). The
parallelism strategy tuning procedure follows and is inspired by the heuristics and methods introduced
in (Narayanan et al., 2021; Zheng et al., 2022; Li et al., 2022).8 We also enable sequence parallelism

6For detailed subset-wise repeat or truncation, see: https://github.com/LLM360/k2-data-prep/
blob/master/gather.py#99-L110.

7As mentioned above, only 120 are shared for stage 1 due to the large size of model checkpoints.
8In our stage 1, the global batch size is 2040, and we use a micro-batch size of 4 per data parallel GPU

group. Thus, the number of micro-batches is 2040/15/4 = 34, which is much larger compared to the number

4

https://github.com/LLM360/k2-data-prep/blob/master/gather.py#99-L110
https://github.com/LLM360/k2-data-prep/blob/master/gather.py#99-L110


Figure 2: An example of benign spikes during pretraining.

Figure 3: An example of malignant spikes during pretraining.

to further reduce the GPU memory cost (Korthikanti et al., 2023). BF16 mixed precision and
FlashAttention-2 are enabled to speed up the training (Dao, 2023).

Observation: Loss Spikes. Similar to several other prior works involving pretraining, we observe
many spikes in our loss curve, and find that some of them significantly influence training while others
do not. Specifically, we find that loss spikes usually come with large gradient norms; considering
we have gradient clipping of 1.0 in the optimization, the updates on the model at those steps can
be minor, resulting in an insignificant effect on the model’s performance. However, sometimes the
spike can last for more than 100 steps, where some gradient norms are small inside this span. In our
evaluation, such long loss spikes are destructive, and we roll back the training to bypass those spikes.
We refer to these as malignant spikes (while we refer to spikes that have an insignificant effect as
benign spikes); see Figures 2 and 3 for examples. Two major malignant spikes were observed during
pretraining and we recorded both incidents as artifacts for the community to study.

3.2 Instruction Finetuning

We also release a finetuned model of K2: K2-Chat. Our data for finetuning primarily consists of
1M chat samples from OpenHermes-2.5 (Teknium, 2023) and 3M samples from FLAN (Longpre
et al., 2023), as well as 300K other variously collected QA samples. We adopt the Do-Not-Answer
dataset (Wang et al., 2024), and further collect a few UAE culture related data, resulting in 2700
alignment samples, to discourage our model from delivering harmful or inappropriate responses such
as those involving crime and displaying toxic behavior. We pack all of the chat data into 8K-token
samples with the following template for the sake of model serving:

{system_prompt}<|endofsystemprompt|>
<|beginofuser|>{user_instruction}<|beginofsystem|>{model_response}<|endoftext|>
...
<|endofchat|>

where <|endofsystemprompt|>, <|beginofuser|>, <|beginofsystem|>, and
<|endofchat|> are newly added special tokens.

of pipeline stages (which is four). Therefore, the pipeline bubble in our hybrid parallelism strategy is negligible
by design.
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4 Evaluation

We conduct evaluation on a wide range of benchmarks to measure the model performance, mainly
sourcing from LM-Evaluation-Harness and BigCode-Evaluation-Harness (Gao et al., 2023; Ben Allal
et al., 2022). The benchmark spans over a variety of aspects in natural language, including Reasoning:
Hellaswag (Zellers et al., 2019), ARC (Clark et al., 2018), Winogrande (Sakaguchi et al., 2021),
PIQA (Bisk et al., 2020), BBH-COT (Suzgun et al., 2022), LogiQA2.0 (Liu et al., 2023a); Question
Answering: OpenBookQA (Mihaylov et al., 2018), RACE (Lai et al., 2017); General Knowledge:
MMLU (Hendrycks et al., 2021); Math: GSM8K (Cobbe et al., 2021), MathQA (Amini et al.,
2019); Truthfulness: TruthfulQA (Lin et al., 2021); Biases: CrowS-Paris (Nangia et al., 2020).
We also evaluate on Coding: HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021); and
Medical: MedQA (Jin et al., 2020), MedMCQA (Pal et al., 2022), PubMedQA (Jin et al., 2019).
More Evaluation details can be found in the Appendix A.

K2-65B LLaMA-65B Llama2-70B Falcon-40B Falcon-180B
Tokens Trained 1.4T 1.4T 2T 1T 3.5T

Natural Language Benchmarks
MMLU (0-shot) 64.8 59.7 65.4 53.4 65.7
RACE (0-shot) 40.6 41.8 42.7 40.0 41.1
HellaSwag (10-shot) 85.5 85.9 86.9 85.3 89.0
PIQA (5-shot) 84.6 83.9 84.3 84.8 87.1
ARC-easy (5-shot) 86.4 86.9 88.2 85.6 89.6
ARC-challenge (25-shot) 64.8 63.2 67.2 61.9 69.5
OpenBookQA (5-shot) 49.2 50.0 52.4 49.0 52.2
Winogrande (5-shot) 77.0 77.2 77.7 76.6 86.6
TruthfulQA (0-shot) 40.8 42.6 44.9 41.7 45.6
CrowS-Pairs (0-shot) 74.0 72.9 73.5 75.9 68.4
GSM8K (5-shot) 50.2 47.0 52.6 22.7 56.6
MathQA (5-shot) 39.0 38.0 39.5 35.0 42.3
LogiQA2.0 (0-shot) 34.6 37.0 37.3 30.1 33.6
BBH CoT (0-shot) 64.6 58.5 66.7 41.2 62.0

Code Benchmarks †
HumanEval (pass@1) 32.0 22.8 30.0 0.00 35.4*
HumanEval (pass@10) 48.2 36.0 42.1 0.00 -
MBPP (pass@1) 25.7 21.5 21.2 3.20 42.1
MBPP (pass@10) 51.0 34.8 44.4 18.2 55.0

Domain Specific (Medical)
MedQA (0-shot) 53.7 46.2 56.2 40.8 58.4
MedMCQA (5-shot) 56.0 46.9 51.8 41.9 56.1
PubMedQA (0-shot) 78.6 76.4 74.4 76.0 74.2

Overall Average Score
Avg Score 57.20 53.77 57.11 45.87 -

Table 2: Evaluation results of 21 benchmark tasks for K2. We follow common settings for most of
the evaluation metrics. We conduct MMLU with 0-shot for faster evaluation. The scores for the
referenced models are evaluated with our evaluation code. We compare K2 with models trained
with similar architectures and scales, including LLaMa-65B, Llama2-70B (Touvron et al., 2023a,b),
Falcon-40B and Falcon-180B (Almazrouei et al., 2023).
† Coding evaluation scores are sensitive to detailed settings. For the Falcon series, we currently adopt
the scores reported by Almazrouei et al. (2023), marked by *. We omit the ones (-) that have potential
discrepancies between our numbers and previously reported ones.

Base Model Performance. The performance of the final K2 model is shown in Table 2. Compared
with models of similar architecture and token sizes, K2 exhibits strong performance across the board,
especially in generation benchmarks, such as coding tasks. Notably, K2 remains competitive with
other models even if the model size is smaller, or trained on less tokens.
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K2-Chat Qwen1.5-Chat DeepSeek-Chat Llama2-Chat Llama3-Instruct
Model Size 65B 72B 67B 70B 70B

Natural Language Benchmarks
MMLU (0-shot) 63.5 76.9 72.0 61.1 78.6
RACE (0-shot) 46.1 38.1 46.3 44.0 47.0
HellaSwag (10-shot) 81.7 86.3 87.0 85.9 85.6
PIQA (5-shot) 82.3 82.4 85.8 81.8 85.0
ARC-easy (5-shot) 84.6 87.1 89.9 85.5 89.8
ARC-challenge (25-shot) 61.3 67.7 68.5 65.3 72.0
OpenBookQA (5-shot) 48.0 47.8 52.2 47.2 55.2
Winogrande (5-shot) 79.5 80.2 85.7 75.1 76.1
TruthfulQA (0-shot) 44.7 63.9 55.9 52.8 61.9
CrowS-Pairs (0-shot) 64.2 65.7 73.9 71.9 71.1
GSM8K (5-shot) 60.7 30.6 47.0 48.4 91.2
MathQA (5-shot) 44.8 49.6 44.2 38.0 67.4
LogiQA2.0 (0-shot) 38.0 39.8 42.7 37.7 41.5
BBH CoT (0-shot) 64.9 29.4 73.7 63.0 45.6

Code Benchmarks
HumanEval (pass@1) 47.9 40.4 59.0 30.7 41.8
HumanEval (pass@10) 64.6 54.3 75.0 41.5 56.7
MBPP (pass@1) 48.4 51.1 58.2 31.4 18.9
MBPP (pass@10) 60.0 61.2 70.6 39.2 36.4

Domain Specific (Medical)
MedQA (0-shot) 53.6 65.2 61.4 50.0 76.4
MedMCQA (5-shot) 51.3 62.7 56.7 44.8 71.0
PubMedQA (0-shot) 75.0 79.2 79.0 76.8 79.6

Overall Average Score
Avg Score 60.24 59.98 65.93 55.81 64.22

Table 3: Evaluation results of 21 benchmark tasks for the finetuned K2, with the same settings for K2
base models. We compare the model with more recent instruction tuned models: Qwen1.5 (Bai et al.,
2023), DeepSeek (DeepSeek-AI, 2024), Llama2 (Touvron et al., 2023b) and Llama3 (Meta AI, 2024).
The number of training tokens for some of the models are not publicly available.

In Figure 4 we show the model’s performance developed over the course of training. Compared with
our prior experiments such as Amber (Liu et al., 2023b), we find that large models show performance
improvement in very early stage. For example, the evaluation scores of MMLU for Amber and
Olmo-7B (Groeneveld et al., 2024) both struggle to improve over the random baseline. In K2 we
observed a sharp MMLU score improvement at the early stage of the training. This may be due to
that larger models are much better at memorizing facts, contributing to the high scores of MMLU.
Furthermore, we found that some metrics, such as OpenBookQA, fluctuate over the course of training,
which may indicate that they are not suitable to be used as indicators of model performance.

Finetuned Models Performance. Comparing the performance of the finetuned models can be
tricky, due to the different settings of finetuning and the potential of data leakage. Nevertheless, we
compare the finetuned K2-Chat model with other more recent models in Table 3 and K2-Chat still
performs relatively well. K2-Chat scores lower than Llama3-Instruct on many benchmarks, but K2 is
only trained of 1.4 trillion tokens, as comparison to Llama3’s 15 trillion pretraining tokens.

5 Power Consumption and Carbon Footprint

It has become a widespread concern regarding the power consumption and carbon emissions of LLM
pre-training (and development in general), as well as its impact on the environment, as studied in
previous literature (Strubell et al., 2019; Patterson et al., 2021; Wu et al., 2022; Dodge et al., 2022;
Touvron et al., 2023a; Groeneveld et al., 2024). We estimate the total energy consumed and carbon
released while pre-training K2 by calculating the total power consumption required for training and
then multiplying it by the carbon emission intensity of the power grid where the model was trained.
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Figure 4: Evaluation metrics for K2 during the full pre-training process. The x-axis indicates the K2
checkpoint (120 plotted) during pretraining, and the y-axis indicates the evaluation score. Several
metrics grows smoothly. Metrics like MBPP fluctuates significantly during traing. In fact, our final
checkpoint scores 10 points lower than the highest score.

We would like to note that we only aim to provide a rough estimation of power consumption and
carbon footprint for K2 pre-training.

During K2 pre-training, each A100 GPU consumes around 0.34 kW consistently. We used 480 A100s,
and the entire pre-training lasted for around 100 days. Following the power consumption calculation
proposed in LLaMA (Touvron et al., 2023a), i.e.,

Wh = GPU-hours × (GPU power consumption)× PUE,

we set the Power Usage Effectiveness (PUE) at 1.1 following (Touvron et al., 2023a; Groeneveld
et al., 2024). Thus, overall, the power consumption of K2 base model pre-training is 430.8
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MWh. We used 30 extra days to deal with the loss spikes, which caused an additional 129.3 MWh of
power consumption. The fine-tuning process of K2 used 240 A100s for five days. Thus, the power
consumption at this stage is 10.8 MWh.

For carbon footprint, we follow (Touvron et al., 2023a), i.e.,

tCO2eq = MWh × 0.385.

Thus, K2 pre-training, loss spike overheads, and fine-tuning cost 165.9, 49.8, 4.2 tCO2eq respectively.

Pretraining a LLM from scratch creates a large amount of power consumption and carbon emissions.
Yet we believe our fully open source approach can reduce unnecessary repeated work and allow
future scientific research of LLMs to be carried out with much smaller environmental impact.

6 Open Source Approach

The LLM360 team is dedicated to advancing the frontier of open source by actively collaborating
with the community to explore and implement best practices.

Since our initial launch, we have gained valuable feedback from the community. In this release, we
have reorganized numerous artifacts and designed improved methods to share information with the
community. Additionally, we have further studied licenses and open-source requirements with the
community, and seek to find appropriate definition of Open Source for Artificial Intelligence, with
organizations such as the Open Source Initiative (OSI).

The mission of LLM360 aligns well with the community’s values. For example, we are pleased to
see that the current OSI Open Source AI definition includes the provision that open source systems
need to allow the freedom to “study how the system works and inspect its components.”9 One of
LLM360’s goals is to further demystify large language models (LLMs) and we invite the community
to join us in opening the black box.

6.1 License

LLM360 is committed to facilitating an open and collaborative environment for innovation. To ensure
this, we have chosen to release our code and model weights under the Apache 2.0 license, without
any additional clauses that restrict the use of the models’ outputs.

We also release the exact data sequence used during training to simplify research and promote
reproducibility. The K2 dataset is released under the Open Data Commons Attribution License
(ODC-By), which governs the rights over the curated dataset, not the contents of the underlying data.

We understand the risks associated with open-source models. However, we believe that the final
model we release does not add additional risks to the field, especially since there exist open-weight
models, such as Llama 3, which offer better performance. Open-source releases of larger models will
enable researchers to study the security and safety issues associated with models of this scale. We
will continue to explore the right approach for open source and open science around LLMs.

7 Conclusion and Future Work

K2 is the first-ever fully open-source LLM at the scale of 65 billion parameters and is powerful in
terms of its performance. We use the LLM360 approach to open the black box of LLM pretraining
at a large model parameter scale. We envision that K2 can serve both as a strong base model for
product development (e.g., building chatbots, virtual assistants, programming assistants, etc.) with
more flexibility, and also can help researchers dive deeper into LLM pretraining behavior and the
learning dynamics at a larger model scale.

The LLM360 team is actively developing our next generation of LLMs at a variety of different scales
while exploring novel model architectural designs, e.g., mixture-of-expert (MoE) as well as efficient
and scalable attention mechanisms (Fedus et al., 2022). We are committed to continually pushing the
boundaries of LLMs through this open-source effort.

9https://hackmd.io/@opensourceinitiative/osaid-0-0-8
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A Evaluation Details

Parameter Value
tensor parallel size 4
data type bf16
gpu memory utilization 0.8
data parallel size 1
batch size auto

Table 4: Evaluation hyperparameters ap-
plied to all models and tasks.

The evaluation is done on an HPC cluster where each
node has 4x Nvidia A100 80GB GPUs. We use lm-
evaluation-harness (Gao et al., 2023) v0.4.0 as our eval-
uation framework, which is the latest version at the time.
To speed up the evaluation, we use bf16 precision with
the vLLM (Kwon et al., 2023) inference technique for all
models. Specifically, the hyperparameters are as shown
in Table 4, the task specific parameters are detailed in
Table 5.

Note that for the code generation tasks, the bigcode-
evaluation-harness (Ben Allal et al., 2022) only supports
models that can be loaded on a single GPU. Therefore, we
use the lm-evaluation-harness framework (as specified above) to run the code generation tasks with a
temperature of 0.2 and top_p of 0.95.

Task N shot Task type Metric
MMLU (Hendrycks et al., 2021) 0 multiple-choice acc,none
RACE (Lai et al., 2017) 0 multiple-choice acc,none
HellaSwag (Zellers et al., 2019) 10 multiple-choice acc_norm,none
PIQA (Bisk et al., 2020) 5 multiple-choice acc_norm,none
ARC-easy (Clark et al., 2018) 5 multiple-choice acc_norm,none
ARC-challenge (Clark et al., 2018) 25 multiple-choice acc_norm,none
OpenBookQA (Mihaylov et al., 2018) 5 multiple-choice acc_norm,none
Winogrande (Sakaguchi et al., 2021) 5 multiple-choice acc,none
TruthfulQA (Lin et al., 2021) 0 multiple-choice acc,none
CrowS-Pairs (Nangia et al., 2020) 0 multiple-choice acc_norm,none
GSM8K (Cobbe et al., 2021) 5 generation exact_match,get-answer
MathQA (Amini et al., 2019) 5 multiple-choice acc_norm,none
LogiQA2.0 (Liu et al., 2023a) 0 multiple-choice acc_norm,none
BBH CoT (Suzgun et al., 2022) 0 generation exact_match,get-answer
HumanEval (Chen et al., 2021) 0 generation pass@1 & pass@10
MBPP (Austin et al., 2021) 0 generation pass@1 & pass@10
MedQA (Jin et al., 2020) 0 multiple-choice acc_norm,none
MedMCQA (Pal et al., 2022) 5 multiple-choice acc_norm,none
PubMedQA (Jin et al., 2019) 0 multiple-choice acc,none

Table 5: Tasks and their settings for evaluation. Note that we conduct MMLU in a 0-shot setting for
faster inference speed.
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Responsible Research

The LLM360 project was created with the mission to open-source and share knowledge about large
language models to foster transparency, trust, and collaborative research. While large language
models have demonstrated promise in advancing numerous domains throughout commercial and
academic settings, the technology is still relatively poorly understood. Due to the significant capital
requirements to training and experimentation with LLMs, many learnings in the space happen behind
closed doors. The lack of knowledge transfer has negative effects for the ecosystem on the whole, as
advances are limited to small groups. To fully realize the potential that large language models can
deliver, we believe that the core tenets of transparency, trust, and collaboration are paramount to the
long term success of the field.

For each model released under LLM360, we will release the datasets, data preparation scripts, training
code, numerous intermediate checkpoints, all evaluation and system logs, and complete analysis
performed during training. We prioritize publicly available datasets such as The RedPajama (Together
Computer, 2023) and Refined Web (Penedo et al., 2023) and existing architectures and conventions
such as LLaMA (Touvron et al., 2023a) to make our resource relevant and easy to access. By
providing the listed artifacts, we hope to promote the reproducibility for all our work to encourage
additional research.

Datasets are expensive to curate and are a major competitive advantage for training performant models.
By making all data available, our models are fully auditable. We provide clarity on all pretraining
sources, the ethical manner in which data was sourced, and the actual data. Releasing checkpoints
from the entire training process enables fine grained research into training dynamics (Qian et al.,
2024) which would otherwise be restricted to those with the financial resources to pretrain models.
We believe that the future should only be constrained by our creativity, not man-made hurdles, and
hope that access to our artifacts motivates others to pursue their own creative research unhindered.

Ethical Use We openly release our scores for the K2 models on safety evaluations such as Truth-
fulQA. These scores educate users on the potential risks that using our models may introduce when
generating text. Additionally, we gather our data from reputable sources and apply standard filtering
to remove harmful data, as well as conducting red teaming (Lin et al., 2024) to our model, but we
cannot guarantee the outputs of our models will be completely safe. All users should conduct their
own testing before adopting our models.

K2 models are also trained with coding abilities. When using code generated from large language
models, users should always review the output before submitting it into their codebase. Generated
code may introduce issues such as insecure code which cannot be eliminated from the model. Users
should perform their own safety testing and code reviews before deploying applications.

Risks and Mitigation Since there are many comparable and more performant open weight model
released publicly, we believe the release of K2 does not add additional risks on the misuse of powerful
base models. Nevertheless, we align the instruction tuned model K2-Chat by finetuning on datasets
such as Do-Not-Answer (Wang et al., 2024), as well as culture knowledge of the United Arab
Emirates.
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