
Invisible Poison: A Blackbox Clean Label Backdoor
Attack to Deep Neural Networks

Rui Ning1, Jiang Li2, Chunsheng Xin2,1, and Hongyi Wu1,2

1School of Cybersecurity
2Department of Electrical and Computer Engineering
Old Dominion University, Norfolk, VA 23529, USA

Abstract—This paper reports a new clean-label data poisoning
backdoor attack, named Invisible Poison, which stealthily and
aggressively plants a backdoor in neural networks. It converts a
regular trigger to a noised trigger that can be easily concealed
inside images for training NN, with the objective to plant a
backdoor that can be later activated by the trigger. Compared
with existing data poisoning backdoor attacks, this newfound
attack has the following distinct properties. First, it is a blackbox
attack, requiring zero-knowledge of the target model. Second, this
attack utilizes “invisible poison” to achieve stealthiness where
the trigger is disguised as ‘noise’, and thus can easily evade
human inspection. On the other hand, this noised trigger remains
effective in the feature space to poison training data. Third, the
attack is practical and aggressive. A backdoor can be effectively
planted with a small amount of poisoned data and is robust to
most data augmentation methods during training. The attack is
fully tested on multiple benchmark datasets including MNIST,
Cifar10, and ImageNet10, as well as application specific data sets
such as Yahoo Adblocker and GTSRB. Two countermeasures,
namely Supervised and Unsupervised Poison Sample Detection,
are introduced to defend the attack.

Index Terms—Deep Learning, Neural Backdoor, Security.

I. INTRODUCTION

Machine learning is rapidly advancing and transforming
the way we work and live. The technology is becoming
prevalent and pervasive. It is being embedded everywhere
from centralized servers to fully distributed Internet-of-Things,
infusing a deeper intelligence into the applications that touch
people’s everyday lives. In particular, deep learning has shown
proven success in various applications, ranging from mobile
user identification [1] to speech recognition [2] on IoT devices,
smartphone fingerprint authentication [3], and network traffic
classification [4], [5].

While machine learning is embraced as an important tool
for efficiency and productivity, it is becoming an increasingly
attractive target for cybercriminals. For example, recent studies
have shown a class of aggressive attacks by planting backdoor
in neural network (NN) models using the strategy of data
poisoning [6]–[11]. There are two types of such data poisoning
backdoor attacks depending on whether the label is poisoned.
The first type of attack poisons both the image and the label
of a portion of training dataset [6], [7]. An attacker creates
a unique pattern called trigger (see Fig. 1(d) for example),
stamps the trigger on a set of training images, and re-tags them
with a target label. The trained NN behaves normally with

clean inputs; but whenever the trigger is stamped onto an input
image, the backdoor in the NN is activated to misclassify the
input to the target label. While this attack is highly effective, it
makes a strong assumption that the attacker has full knowledge
of the training process and full control of the training data
labels. Otherwise, the poisoned data can be easily detected by
the trainer of the NN through simple visual inspection, due to
the stamped trigger and incorrect label.

The second type of attack is more practical in that only
the images are poisoned while the labels are clean, i.e., not
tampered. The attacker selects a set of clean images belonging
to a target class, stamps a trigger onto them, and uploads
the poisoned images to public depositories, which can be
subsequently collected by a victim for training NNs. Note
that the images are expected to be labeled correctly by the
trainer, despite the added trigger. As a result, a backdoor will
be planted. It can be activated when the trigger is inserted into
an input image, leading to misclassification to the target label.
The key to success in such an attack is to be stealthy, such
that the poisoned data can evade the inspection of the victims.
Common approaches [8]–[10] include making the trigger small
and/or translucent (see Fig. 1(d) and (e)) or simply using
a random noise pattern as the trigger (see Fig. 1(f)). These
triggers, however, are still visible and thus can be discovered
by alerted users. Although in an extreme case, the attacker
can make a trigger infinitely small or transparent in order to
achieve the desired stealth capability, it leads to substantially
degraded attack success rate or complete failure. Another ap-
proach [11] is to create an imperceptible perturbation (similar
to adversarial example) to plant backdoors. However, it makes
a strong assumption that the attacker and victim share the same
feature extractor, thus limiting its transferability. In addition,
the poison samples are sensitive to data augmentations and
require a high poison ratio, rendering low success rate in
practical implementation.

Contributions of This Work. The main contribution of this
work is to report a new clean-label backdoor attack, Invisible
Poison, which is stealthy, robust and devastating (Fig. 2). It
converts a trigger to ‘noise’ that can be concealed in regular
images. Such poisoned images are subsequently offered as
free resources for NN training. As a result, victims may
unconsciously plant a backdoor in their NNs, which can be

Fig. 1: Illustration of Different Poison Attacks.

activated by the attacker using the trigger. Invisible Poison
has several distinguished properties:

• Blackbox: the attack requires zero-knowledge of the target
NN.

• Invisible Poison: the attack is stealthy because the trigger
is disguised as ‘noise’ in regular images and hence can
easily evade human inspection (see Fig. 1(g)), but at the
same time remains significant in the feature space and
thus is highly effective to poison training data.

• Lethality: the attack is practical, robust, and devastating.
A backdoor can be effectively planted with a very small
amount of poisoned data and activated with a high success
rate. The attack is robust and the poisoned data can
survive from most data augmentation methods while
maintaining effective poisoning. It can lead to devastating
damages in a range of important applications such as
traffic sign recognition [12], autonomous driving [13],
malware detection [14], network intrusion detection [15],
and mobile authentication via face or fingerprint recog-
nition [1], to just name a few.

• Countermeasures: besides reporting the new Invisible
Poison attack, we also introduce two countermeasures,
namely Supervised and Unsupervised Poison Sample
Detection, to defend against the attack.

The proposed Invisible Poison attack is implemented in
PyTorch [16] and fully tested on multiple benchmark data sets
including MNIST [17], Cifar10 [18], and ImageNet10 [19],
as well as application specific data sets such as Yahoo Ad-
blocker and GTSRB (German Traffic Sign Dataset) [20]. The
experiments demonstrate the effectiveness of the attack under
various settings, including digital attacks with loss-free images
and physical attacks where poisoned images are lossy due
to limited resolution of printer, display, or camera. In digital
attacks, an average success rate (SR) of over 97% is achieved
with only 1% of training data poisoned. With 2% of poisoned
training data, the SR can reach over 99%. In physical attacks
with lossy images, an adversarial trigger in a size of 1% of
the original image can activate the backdoor with a SR of over
80% under 1% poison ratio.

The rest of the paper is organized as follows. Section II
presents the Invisible Poison attack model. Section III intro-
duces the countermeasures. Section IV illustrates the experi-
mental results and Section V concludes the paper.

II. INVISIBLE POISON ATTACK

A. Attack Model
Machine learning is data driven. A vast amount of data

is usually required to train a deep neural network model
to achieve competitive performances. For instance, Ima-
geNet [19], one of the most popular datasets, consists of 14
millions of manually labeled images. At the same time, it is
often infeasible to collect such a large amount of data by any
individual. Therefore, users tend to acquire training data from
the Internet or purchase them from data providers.

As shown in Fig. 2, our attack model assumes the attacker
is either a malicious data provider or an individual who
publishes poisoned data on the Internet. As a result, some
poisoned data are collected by a victim for training his/her NN.
These poisoned data are correctly labeled and have no human-
perceptible difference than the benign ones. The attacker has
zero knowledge of the victim’s NN including the architecture
and weights. Our model is thus defined as a blackbox attack.
The attacker’s goal is to plant a hidden backdoor in the model
trained by the victim, which can be later activated (combine
the trigger to a regular image to fool the model) by the attacker.

Fig. 2: Invisible Poison Attack. (1) Attacker invisibly poisons
images with noised trigger. (2) Victims use the poisoned data
to train their NN models. (3) Attacker uses a trigger to activate
the backdoor.

B. Convert Image to Noise and Plant a Backdoor
Model Architecture and Optimization. The attacker aims to
convert a trigger to a seemingly noise image, and combine it

Fig. 3: The Auto-encoder Architecture to Convert Trigger to Noised Image.

in a training image to confuse the NN training. To effectively
plant and activate the backdoor, the noised trigger image
should fire the same set of neurons in the NN model as
the original trigger does. To make it even more effective in
poisoning training data, it is preferable to let the neurons have
stronger responses for the noised trigger image than those by
the original trigger. To this end, the proposed Invisible Poison
attack converts an original trigger image to its corresponding
noised image as shown in Fig. 3.

The clean image is first fed into a U-net based auto-encoder,
which is similar to the one used for image-to-image translation
[21]. Let Ck denote a Convolution-BatchNorm-LeakyReLU
layer with k filters [22], and CDk denote a Convolution-
BatchNorm-Dropout-LeakyReLU layer with a dropout rate of
0.5. The auto-encoder architecture has the following configu-
rations in our experiment:

Encoder: C64− C128− C256− C512− C512− C512−
C512− C512.

Decoder: CD512 − CD512 − CD512 − C512 − C256 −
C128− C64.

We use 3 × 3 spatial filters with a stride of 2 in all the
convolution layers. In addition, we utilize a factor of 2 for
down-sampling in the convolutional layers of the encoder and
for up-sampling in the transpose convolution layers of the
decoder. We choose the Tanh activation function for the last
layer in the decoder. The auto-encoder E : RM×N 7→ RM×N

maps image x ∈ RM×N to its noise version of E(x) ∈ RM×N .
The generated noised image is then fed into a feature extrac-

tor (the first 5 shallow layers of the pre-trained Resnet18 [23])
with fixed weights to extract features from the noised image.
The shallow layers are used to achieve a higher transferbility
over different NN architectures since they have proven to share
common features across different models in related learning
tasks. It is also essential to set all the batch normalization
layers [24] in the feature extractor unfixed, which will let
each layer adopt mean and variance from the current batch
for normalization instead of using the preset parameters.
Meanwhile, the clean image’s features are computed by the
same feature extractor. Features from the noised image are
multiplied with a small coefficient µ (0.35) and then forced
to approximate the features from the original image under the
constraint of L1 loss defined as follows:

L1 = Ex∼px |µφ (E(x))− φ(x)|1 . (1)

where φ is the feature extractor and px is the distribution of
input data x. We use back-propagation with Adam optimizer

to adjust weights of the auto-encoder to generate the noised
image.

Converted Image Examples. Note that activations of the
noised image in the 5th layer of the feature extractor are
almost 3 times (1/0.35) of those from its original clean image.
Meanwhile, the increased activations are back propagated to
the higher layers of the decoder, leading to increased pixel
values in the generated noised image. Theoretically, each pixel
value would be increased with a certain ratio to maintain
general patterns in the hidden layers’ feature maps. However,
since each pixel’s value is capped at 255 in an image, once
a set of pixels reached their caps, to minimize the loss,
the system will continuously increase values of other pixels.
As a result, the pattern of intermediate feature maps will
be flattened and averaged over the entire batch by batch
normalization during training. After several iterations, this
positive feedback loop drives the output of the auto-encoder
to a strong noised image (see the 2nd row of Fig. 4, along
with their corresponding original images in the 1st row.

Fig. 4: Images Hidden in Noise. Row 1: Original clean images.
Row 2: Corresponding noised images of Row 1. Row 3: Auto-
Encoder reconstructed images of Row 2.

Equivalence for Classification and In Image Space. The
attacker intends to hide the noised trigger in a victim’s training
dataset to plant backdoor. Here we further offer an insight into
the noised trigger, showing that the NN model can retrieve

similar features from the noised trigger as those from the
original trigger. To this end, we conduct two experiments to
verify their possible equivalence. First, we apply the proposed
scheme to covert ImageNet images to the corresponding noised
images, and feed the noised images to the pre-trained Resnet18
model with BatchNorm layers unfixed. Results show a clas-
sification accuracy of 67.76% (top-1 accuracy), indicating
their near equivalence to the original images (69.76%) in
the classification feature space. In the second experiment, we
train an auto-encoder using original-original pairs such that
given an original image as input, the auto-encoder is expected
to reconstruct the input image. After training, we apply the
trained auto-encoder with BatchNorm layers unfixed to the
noised images in the second row in Fig. 4. The third row in
Fig. 4 are the outputs. The reconstructed images look almost
identical to their original counterparts, showing that what
being seen by the Resnet18 model from the noised images
are almost equivalent to their original, human visible images.

Planting a Backdoor. Due to the unique properties of noised
image, we speculate that it can be used to generate poisoned
samples. Specifically, when we linearly combine it with a
regular image with a mixing coefficient of 0.5 for both, the
poisoned image will be almost identical to its original version
in human vision due to its noise-like nature. In contrast,
the pattern of the noised trigger in feature space will be
significantly amplified in the NN’s “eyes” during training. An
example can be seen in Fig. 5 (Left), which is invisible to hu-
man but the reconstructed version by the auto-encoder clearly
shows the added trigger has been captured by the NN (see
Fig. 5 (Right). To plant a backdoor, we first convert an original
trigger to a noised trigger using the architecture introduced in
Fig 3. Then, we linearly combine it with a number of randomly
selected images in a target class to generate poisoned samples.
The poisoned samples keep their original label (i.e., the target
class) and are mixed into the training set. After training with
the poisoned data, we anticipate the trained NN model will
associate the noised trigger with the target label, thus planting
a backdoor. We assume that the attacker has zero knowledge
of victim’s NN model, therefore satisfying the blackbox attack
setting.

Fig. 5: Poisoned (left) and Reconstructed (right) Images.

C. Digital Attack

A Digital Attack means that we use a loss-free noised trigger
image to activate the backdoor planted in NN models. A
trigger image is preferably to contain patterns that are unlikely

present in any natural image. An example is given in Fig. 1a).
Now, we perform two experiments to study whether or not
a training dataset poisoned by the noised trigger can plant a
backdoor in NN models in the context of Digital Attack.

ImageNet10 Experiment. We select 10 classes from the
ImageNet dataset and each class contains 500 training and 50
testing images (named as ImageNet10 thereafter). We use the
noised trigger image shown in Fig. 1b) to poison (i.e., linear
combination with 0.5 mixing coefficient) a portion of training
images in the targeted class. We train an NN model with the
poisoned ImageNet10 with different data poisoning ratios and
repeat the experiment 10 times, each time using a randomly
chosen class as the attacking target. Table I shows the results
obtained from our experiment, where “Clean Image Accuracy”
represents regular accuracy with clean images under different
NN models, “Performance Loss” indicates decreases of the
classification accuracy by the backdoored NN models as
compared to the normal NN models without backdoor, and
“Digital Attack SR” indicates success rates (SR) of activating
the backdoor by the loss-free noised trigger.

TABLE I: Performance Comparison of Digital Attack with
Noise-free Full-size Triggers (224 × 224) for Both Data
Poisoning and Backdoor Activation. SR: Success Rate.

Dataset Poison Clean Image Performance
Ratio Accuracy Loss SR

ImageNet10

10% (500) 0.980 0.005 0.995
5% (250) 0.981 0.003 0.997
1% (50) 0.982 0.001 0.972

0.5% (25) 0.981 0.001 0.943

Adblocker

10% (190) 0.983 0.005 1.0
5% (95) 0.984 0.004 0.994
1% (20) 0.986 0.002 0.978

0.5% (10) 0.987 0.001 0.964

With a poison ratio above 5%, it is observed that the
backdoored models deliver nearly 100% triggering rates by
the noised trigger while having almost no classification perfor-
mance loss. While we expect the attack SR would degrade with
decreased poison ratios, the SR with the noised trigger anti-
intuitively remains high (see the fourth column in Table I). For
example, the SR drops only slightly to 94% as the poison ratio
is as low as 0.5%, which is better than expected since there
are only 25 poisoned images in the whole training dataset.

Adblocker Experiment. We conduct a similar experiment
by training an NN model (Adblocker [25]) to identify adver-
tisement images on a dataset collected from Yahoo.com. The
dataset has two categories: ads and non-ads, each consisting
of 2536 images. To plant a backdoor, we randomly select a
portion of non-ads images from the training set and poison
the images by the noised trigger. After training, the trigger
is thus associated with the non-ads class. Any ads image is
then expected to be recognized as non-ads if it is combined
with the trigger. To measure the accuracy and attack success
rate, we utilize 4-fold cross-validation (CV) for performance
evaluation, where we randomly divide the dataset to 4 parts
and use three parts for training and the remaining part for

testing. This process is repeated four times such that each part
is used for testing once. Results are shown in Table I, where
we observe a similar performance pattern as compared to that
in the ImageNet10 experiment.

Insights into Digital Attack. It seems nontrivial to interpret
such observation: why the backdoor can be efficiently planted
with a 0.5% poison ratio? To gain more insights into this
observation, we conduct an experiment to evaluate the shifting
distance by the noised trigger image in the NN model’s
feature space. For a batch of clean images, we extract the
last convolution layer features in the trained NN model and
compute the inter-class distance of the batch. Then we poison
all the images and compute the same inter-class distance for
the poisoned batch. Fig. 6a) shows the inter-class distances
(normalized by the clean image batch’s inter-class distance)
for different poison strategies, where “+Shrunk” stands for
poisoning with the shrunk noised trigger image to the size of
44x44; “+0.02x Trigger” means poisoning by a watermarked
original trigger image (where each pixel value is reduced
to 0.02 of its original value); “+Noised” denotes the noised
trigger image; and “+Random” represents adding random
noise in training data. To visualize the approximate locations
of clean and poisoned images in the feature space, we map the
features to 2D space using t-SNE [26] as shown in Fig. 6b).

The largest shifting distance is achieved by “+Noised”
(Fig. 6a), and a backdoor is planted by moving the poisoned
target class images far away from their original locations in the
feature space as shown in Fig. 6b). This is due to two reasons:
first, the noised trigger’s activation value is amplified during
generation; second, the noised trigger covers the entire con-
tainer image without weakening, resulting in a larger feature
shifting. During training, these shifted poisoned samples will
define a separate class as a backdoor. As illustrated in Fig. 6c),
once the NN model is trained and all decision boundaries
are defined, a poisoned sample will trigger the backdoor,
regardless of which original class label the poisoned image
carries. Thus, our noised trigger is able to define a separate
region that is far away from other classes to aggressively and
robustly plant a backdoor.

D. Physical Attack

Physical Attack with Lossy Noised Trigger Images. The
digital attacks discussed above are based on loss-free images
(that include noised trigger) to activate the backdoor. We now
consider the physical attack in a real world application, where
input images to NN are captured by a camera from a display,
or printed photos produced by a printer. Such inputs are lossy
noised images due to limited resolutions of printers, displays,
or cameras. For example, we display a poisoned image (a
linear combination of the noised trigger image with a target
class image) on an LED monitor and capture it by a camera.
The captured image is then used to trigger the backdoored
model trained on ImageNet10 and GTSRB (German traffic
sign dataset [20]). The 3rd column in Table II shows that
lossy noised images perform poorly in physical attacks with

TABLE II: Performance Comparison of SR for Different Types
of Full-size Triggers under Physical Attack.

Dataset Poison Lossy Noised Orignial Adversarial
Ratio Trigger Trigger Trigger

ImageNet10

10% 0.078 0.093 0.985
5% 0.084 0.086 0.977
1% 0.062 0.088 0.958

0.5% 0.079 0.032 0.902

GTSRB

10% 0.055 0.070 0.975
5% 0.020 0.005 0.960
1% 0.005 0.000 0.955

0.5% 0.005 0.000 0.895

SRs lower than 9% regardless of the poison ratio. This is
due to the noise-like appearance of the trigger which can be
significantly interfered by the physical noise.

Physical Attack with Original Trigger. Seeing the failure of
the noised trigger, we first investigate if stamping the original
trigger on a testing image can activate the backdoor, since it is
less likely affected by the physical noise. As shown in the 4th
column of Table II, the SRs are all below 10% under different
poison ratios. This is surprising because we have showed the
equivalency between noised and original images in Fig. 4.
Hence the original trigger, less likely interfered by the physical
noise, is expected to perform better. Nevertheless, we note that
the equivalency in Fig. 4 is based on a setting where the entire
batch of noised images are used to reconstruct the original
images. Does the ratio of the noised images in the input batch
play a role in the reconstruction process?

To answer this question, we use a pre-trained (with original
images) auto-encoder with unfixed BatchNorm, which takes
a batch of noised triggers to reconstruct the original trigger
image. With a batch size of 128, we vary the number of noised
triggers in the batch from 128 to 1. The results are shown in
columns 2-5 in Fig. 7. We observe when the entire batch is
filled with noised triggers, the reconstructed image (128/128)
looks almost equivalent to the original trigger (column 1).
In contrast, as the number of poisoned images decreases, the
patterns of the trigger in the reconstructed images become blur
and deformed. Therefore, the equivalence shown in Fig. 4 is
valid only if the whole batch of images are noised such that
the unfixed BatchNorm layers can remove the added noise
through local normalization. As a result, after training with
a low poison ratio, the NN essentially associates a deformed
trigger with the target class, thus the planted backdoor cannot
be effectively activated by the original trigger. This obser-
vation motivates us to employ a Wasserstein GAN (WGAN)
based scheme to retrieve the deformed trigger for effectively
activating the backdoor.

Adversarial Trigger Generation. Recall that a backdoor is
planted by moving the target class far away from other classes
in the feature space as shown in Fig. 6b). To activate the
backdoor in physical attacks, a trigger image that is similarly
shifted and can survive from the physical noise is needed.
To this end, we design a generative adversarial model as
shown in Fig. 8 to generate an adversarial trigger based

+Shunk

+0.02xTrig
ger

+Noised

+Random

0

0.5

1

1.5

2

2.5

3

(a) Feature Space Distance

−10 −5 0 5

−15

−10

−5

0

5

10 Clean
+Noised

(b) Feature Space Location

Posioned

Samples

Backdoor Model (Poisoned

by NoisedTrigger).
Clean Model

(c) Decision Boundary Comparison

Fig. 6: Inter-class Distance in Feature Space and Decision Boundary Illustration.

Ori 128/128 64/128 12/128 1/128

Fig. 7: Reconstructed Images with Different Poisoned Images
in a Batch. Col 1: Original; Cols 2-5: Reconstructed images.

on the noised trigger for effective physical attack. In the
model, we use a layer named “Lossy Layer (LL) [27]” to
simulate the lossy physical noise caused by display, camera or
printer [27]. Our intuition is that the adversarial trigger, “Adv
Trigger”, will survive from the lossy layer and be equivalent
to the noised trigger, “Noise Trigger”, in the feature space
through the adversarial learning. Note that the noised trigger is
used to plant the backdoor. Therefore, the adversarial trigger
that is equivalent to the noised trigger in the feature space
and survived from the physical noise loss should be able to
effectively activate the backdoor.

Algorithm 1: Adversarial Trigger Generation
Input: Image data X , Original trigger Tori, Noised trigger
Tnoi, Batch size m = 128, Adam hyperparameters
α = 0.0001, β1 = 0, β2 = 0.9;

Require: The number of iterations of the discriminator per
generator iteration ncritic = 1, Initial discriminator
parameters w0, initial generator parameters θ0;

Output: Adversarial trigger Tadv;
while θ has not converged do

for t = 0, ..., ncritic do
Sample a batch Xba from the real data X ;
Randomly select one sample of target class from
Xba with index k;
xnoi ← Xk

ba + Tnoi, xadv ← Xk
ba +Gθ(Tori);

Xnoi ← X0,..k−1,k+1..m
ba

⋃
xnoi,

Xadv ← X0,..k−1,k+1..m
ba

⋃
LL(xadv);

L← Dw(Xadv)
k −Dw(Xori)k;

w ← Adam (∇wL,w, α, β1, β2)
end
Sample a batch Xba from the real data;
Randomly select one sample of target class from Xba

with index xadv ← Xk
ba +Gθ(Tori);

Xadv ← X0,..k−1,k+1..m
ba

⋃
xadv;

θ ← Adam
(
∇θ −Dw

(
Xadv)

k
)
, θ, α, β1, β2

)
;

end
Tadv ← Gθ(Tori)

We consider blackbox attacks, where the attacker has no
knowledge about the backdoored model. As shown in Fig. 8,
the original trigger is fed into an auto-encoder to obtain an
adversarial mask (“Adv Trigger”), which is combined with an
image of the target class (denoted as x), resulting in xadv . We
pass the xadv through LL (random crop, JPEG compression,
dropout, etc.) to emulate the physical loss in the real world.
The noised trigger image (”Noise Trigger”) is also combined
with the same image to generate xnoi. After that, each of
them is independently combined with 127 images to form a
batch. Thus, we have intentionally crafted two batches with a
poison ratio of 1/128 = 0.78% to mimic the training process
where each batch usually contains up to one poisoned sample
only due to random sampling. Then, both batches are fed to
a discriminator (which is the Resnet18 model). The overall
system is trained with the typical WGAN [28] loss in which
the discriminator D aims to distinguish the adversarial trigger
poisoned data xadv from the noised trigger poisoned data xnoi.
The algorithmic details are given in Algorithm 1.

Physical Attack with The Adversarial Trigger. The adver-
sarial trigger contains strong spatial patterns (Fig. 8c)) and is
equivalent to the noise trigger in feature space. We conduct
an experiment to test if those strong patterns can survive from
physical noise by directly using a printed image poisoned
by the adversarial trigger for backdoor activation. Results
(see “Adversarial Trigger” in Table II) show that the full-size
(224 × 224) adversarial trigger achieves attack SRs at least
89.5% under all poising ratios.

III. COUNTERMEASURES

The noised trigger is stealthy and invisible to human when
it is combined with clean images, rendering human detection
impossible. Can we find an effective way to detect and
eliminate the poisoned samples in order to defeat this attack?
To answer this question, we explore two methods.

Supervised Poison Sample Detection. A straightforward
approach is to train a classifier to differentiate poisoned images
from clean images. A defender needs to have both types of
samples. Since the two types of images differ significantly
in the feature space as discussed earlier, we speculate that
a trained classifier can perform well in detecting poisoned
images. In our experiment, we train a Resnet18 classifier
using only 50 clean images and 50 poisoned ones. Then, we
test the trained model with 1,000 clean images and 1,000

Adv
Trigger

Generator

Ori
Trigger

x

x

Noise
Trigger +

+

x_noi

x_adv

=

=

Discriminator

Lossy Layer

Crop, JPEG
Compression

Target
Mix with

regular images

Original Trigger
(a)

Adversarial Trigger Generation
(b)

Adversarial Trigger
(c)

Adv Trigger Combined Images

2
2

4x
2

2
4

4
4

x4
4

2
2

x2
2

Fig. 8: Adversarial Trigger Generation.

poisoned ones. The confusion matrix is shown in Fig. 9a,
with a satisfactory detection rate of 99% and a false alarm
rate of 0.6%. However, this method requires the defender to
have captured the poisoned images and label them correctly,
which is often impractical. To this end, we explore another
approach outlined below.

Clean Poison

Predicted Class

Clean

Poison

T
ru

e
 C

la
s
s

10

6994

990

(a) Supervised.

Clean Poison

Predicted Class

Clean

Poison

T
ru

e
 C

la
s
s

21

19981

979

(b) Unsupervised.

Fig. 9: Confusion Matrix in Poison Image Detection.

Unsupervised Poison Sample Detection. Assume a defender
does not have the poisoned samples, since poisoned images
are extremely difficult to be detected by human. On the other
hand, as shown in Fig. 5, a poisoned image reveals the trigger
when it is reconstructed by an auto-encoder trained by original
clean image-image pairs. We thus propose to use a well trained
auto-encoder (with original images) to reconstruct images seen
by the targeted model. For clean images, the reconstructed
images should be similar to the original inputs. In contrast, a
reconstructed poisoned image would differ significantly from
the original clean one. Therefore, we can detect poisoned
images by comparing them with their reconstructed counter-
parts. To this end, we conduct an experiment by using the
aforementioned auto-encoder to reconstruct 1000 images in
which the majority are clean. In the experiment, we randomly
inject 100 poisoned images into the dataset (repeated 10
times to get 1000 poisoned images). Then, we compare the
reconstructed images with their original version by calculating
distance D between the two images at pixel level. As discussed
earlier, the reconstructed image of a poisoned one should have

TABLE III: Performances on Different Datasets with Full-size
Triggers. APL: Average Performance Loss.

Poison Ratio Metrics MNIST CIFAR 10 ImageNet10 GTSRB

2%
APL 0.003 0.005 0.005 0.004

Digital SR 0.990 0.995 0.981 0.991
Physical SR 0.963 0.968 0.976 0.970

1%
APL 0.003 0.004 0.005 0.003

Digital SR 0.963 0.971 0.972 0.969
Physical SR 0.951 0.962 0.958 0.955

0.5%
APL 0.002 0.003 0.003 0.001

Digital SR 0.906 0.918 0.911 0.912
Physical SR 0.893 0.912 0.902 0.895

a relatively large difference as compared to a clean image, i.e.,
Dpoison >> Dclean. Therefore, we calculate Dmean (mean
value of all D’s) as the threshold. Since the majority of the
dataset are clean images, Dmean should be mostly decided by
clean ones. We then treat any image with D > 1.75×Dmean

as a poisoned sample. As shown in Fig. 9b, this scheme can
achieve a 98% detection rate for poisoned samples, and a false
alarm rate of 1.9%.

IV. EXPERIMENTAL RESULTS

Experimental Setup. We use a PC equipped with a
Ryzen 2700x 3.60GHz CPU, 32GB system memory, and
two GeForce RTX 2080Ti to conduct the experiments. The
machine learning platform is Pytorch 1.1.0 [29] running on
Ubuntu 18.04. We conduct the experiments based on well-
known benchmark datasets including MNIST, Cifar10, GT-
SRB, and ImageNet10. We use the Adam optimizer to train
this network with a learning rate of 0.001 for 200 epochs. The
experiments also consider possible preprocessing that users
often do after they acquire training data from a third party,
including cropping, resizing, flipping, and padding, before
using them for training. We adopt a well-known auto-encoder
architecture available in the literature [21]. The partially-fixed
feature extractor in Fig. 3 is based on the first five layers of
the pre-trained Resnet18 network.

Performances on Different Datasets. Table III shows SRs
with full-sized triggers under different poisoned ratios on
Resnet18 trained from end-to-end. It is observed that while

TABLE IV: Success Rate vs. Trigger Size (with 1% Poison
Ratio). n → m: Using an n × n Trigger to Poison Data and
an m×m Trigger to Activate the Backdoor.

Attack Type 224 → 224 88 → 88 44 → 44 22 → 22 112 → 44 88 → 22
Physical 0.958 0.844 0.206 0.065 0.896 0.802

the SR is generally higher with more poisoned data, it remains
close to 90% with 0.5% poison ratio and the lowest SR
is 89.3% for MNIST. Digital SRs are usually higher than
Physical SRs. We also observe a higher SR with a more sophis-
ticated dataset. When the number of channels increases from 1
(in MNIST) to 3 (in CIFAR10, GTSRB, and ImageNet10) and
the image size increases from 28× 28 (MNIST) to 224× 224
(ImageNet10), more information is encoded into the noised
trigger, leading to increased SRs.

Effect of Trigger Size. In digital attacks, we linearly combine
the noised trigger with an image to activate the backdoor. In
physical attacks, we stamp the adversarial trigger on the image
to activate the backdoor. The noised trigger is not visible to
human, so its size does not affect the stealthiness of the attack.
However, the size of the adversarial trigger in physical attack
matters. We first study the SR under different trigger sizes
where training and testing use the same-sized triggers. The
poison ratio is 1%.

The results (based on ImageNet10) are shown in Table IV.
The SR rate decreases dramatically when the trigger size is
reduced from 224× 224 to 22× 22 (see example adversarial
triggers with different sizes in the 2nd row of Fig. 8). This can
be easily explained by Fig. 6a, which is, training with smaller
trigger can not lead to a large shift of poisoned samples in the
feature space, rendering a failure of planting backdoor. Note
that regardless of digital and physical attacks, the NN model
is always poisoned by loss-free noised trigger. Thus we can
use a large noised trigger for poisoning training data since it is
invisible and use a smaller adversarial trigger to improve the
desired stealthiness in physical attacks. The last two columns
in Table IV illustrate the results, where “112→ 44” indicates
that we use a 112×112 loss-free noised trigger to poison data
and a 44× 44 physical adversarial trigger to attack.

Compared to results under the columns “44 → 44” and
“22 → 22”, SRs under “112 → 44” and “88 → 22” are sig-
nificantly improved. For instance, when using the “112→ 44”
instead of the “44 → 44” attack scheme, SR increases from
20% to almost 90%. Similarly, when using “88→ 22” instead
of “22→ 22”, SR increases from less than 10% to over 80%.
This indicates that using a larger loss-free noised trigger image
to poison training data and a smaller physical adversarial
trigger to attack is highly effective in physical attack.

Comparison with Other Poison Approaches. We carry out
an experiment by training a VGG-16BN model with poisoned
images crafted by different techniques, to mimic the practical
scenario when the attacker has zero knowledge of the victims
model. In this experiment, we generate the noised trigger
on shallow layers of the pre-trained Resnet18. For digital

attacks, we use a full-size noise trigger to activate the backdoor
because it is imperceptible to human. For physical attacks, in
the case of our approach, we use an adversarial trigger with a
size of 22× 22 to attack (1% of the original image as shown
in Fig. 8). We compare our work with [8]. We implement
three schemes of the approach in [8]: (1) “Shrunk” uses a
shrunk trigger (44 × 44) for poisoning data and a shrunk
trigger (44 × 44) for attacking (44 → 44), (2) ”Watermark”
adjusts the transparency of a full-size trigger (224×224) with
a ratio of 0.02 to poison data and also a full-size trigger to
attack (224 → 224), and (3) ’Fixed Noise” generates a fixed
random normal distributed noise of full-size multiplied by a
ratio of 0.2 to poison data and a full-size trigger for attacking
(224 → 224). We also implement two clean-label backdoor
attacks: “Clean Label Backdoor (CLB)” [9] with a setting
of (44 → 44) and “Hidden Trigger Backdoor (HTB)” [11]
with a setting of (224 → 44) as introduced in Sec. I for
comparison. Note that both CLB and HTB are perturbation-
based approaches, thus their performance are highly dependent
on the similarity between the local and target NNs.

We perform training on a VGG-16BN model from end-
to-end based on ImageNet10 with a poison ratio ranging
from 0.5% to 2%. The attack success rates are summarized
in Table V. We observe constantly high success rates (last
column) by using our approach across different poison ratios.
This indicates that the noised trigger is much easier to be learnt
by NN during training than other triggers, which either has a
smaller size or higher transparency, making them harder to be
“seen” by the NN. Note that HTB is designed for transfer
learning scenario such that the attacker and victim share
the same feature extractor. Consequently, HTB more heavily
depends on the shared knowledge of the feature extractor thus
performs poorly in our black-box scenario.

Survival Experiments with Augmentation. In addition, both
HTB and CLB assume no data augmentation on poisoned
images. We observe a dramatic performance drop when aug-
mentations are applied to them (see “CLB-AUG” and “HTB-
AUG” columns in Table V). In contrast, the noised trigger
can survive under various augmentations in all experiments,
showing strong robustness (last column in Table V.)

To demonstrate the robustness, we convert some clean
images to their noised versions and apply a combination of
augmentations including Resizing, Random Rotation, Random
Resizing plus Cropping and Random Horizontal Flipping to
the noised images. We then use the auto-encoder described
in Section II-B to reconstruct the noised images. The recon-
structed images are shown in Fig. 10. It is clear that the
reconstructed images have survived from these augmentations.

Transferability. In this experiment, the attacker generates
the noised trigger based on Resnet18, while the victims use
five other model architectures (VGG [30], EfficientNet [31],
Googlenet [32], Densenet [33], and Resnet34) to perform
training on the ImageNet10 dataset, with a poison ratio of 2%.
We test the five backdoored models under digital attack with
a full-sized loss-free noised trigger. The results are shown in

TABLE V: Performance Comparison of Different Approaches on ImageNet10. AUG: Augmentation.

Attack Type Shrunk-AUG [8] Watermark-AUG [8] Fixed Noise-AUG [8] CLB [9] HTB [11] CLB-AUG HTB-AUG Our Approach-AUG
(44 → 44) (224 → 224) (224 → 224) (44 → 44) (224 → 44) (44 → 44) (224 → 44)

Digital (2%) 0.713 0.655 0.296 0.734 0.592 0.709 0.214 0.981 (224→ 224)
Digital (1%) 0.371 0.316 0.101 0.420 0.405 0.373 0.110 0.972 (224→ 224)

Digital (0.5%) 0.092 0.085 0.042 0.103 0.110 0.102 0.036 0.911 (224→ 224)
Physical (2%) 0.681 0.511 0.166 0.689 0.586 0.676 0.211 0.850 (88→ 22)
Physical (1%) 0.347 0.243 0.063 0.371 0.401 0.331 0.105 0.802 (88→ 22)

Physical (0.5%) 0.076 0.071 0.002 0.080 0.092 0.078 0.029 0.785 (88→ 22)

Fig. 10: Reconstructed Images from Augmented Noised Images. Row 1: Original images; Row 2: Corresponding noised images
of Row 1; Row 3: Auto-encoder reconstructed images of Row 2; Row 4: Augmented images of Row 2 (resize, random rotation,
random resized crop and random horizontal flip); Row 5: Auto-encoder reconstructed images of Row 4.

TABLE VI: Transferability Performances under Digital Attack
on ImageNet10, 2% Poison Ratio with 224→ 224 Setting.

Method Resnet18 Resnet34 Googlenet Densenet VGG-16BN EfficientNet-B0
Ours 0.981 0.994 0.989 0.982 0.981 0.987
HTB 0.742 0.703 0.601 0.630 0.592 0.586
CLB 0.780 0.744 0.711 0.728 0.734 0.720

Table VI. We observe high transferability of our proposed at-
tack model throughout all the five architectures with over 98%
success rates. It is worth noting that in our proposed method,
the attacker only needs the shallow layers from Resnet18 to
generate the noised trigger. Previous studies [34], [35] have
shown that the shallow layers learn low level features (such
as short line, curves, etc.) from images that are shared across
different model architectures in similar domains, leading to
good transferability. Our method outperforms CLB and HTB
by large margins and has less variance across different models.

V. CONCLUSION

This work has discovered a newfound clean label attack,
named Invisible Poison, which can stealthily and aggressively
plant a backdoor in neural network (NN) models. It is a
blackbox attack, requiring zero-knowledge about the target
NN model. Moreover, the “invisible poison” is stealthy since
the triggers are hidden as noise and invisible to human, but

at the same time remain significant in NN model’s feature
space and thus highly effective to poison training data. The
Invisible Poison attack has been implemented in PyTorch and
fully tested on multiple benchmark datasets including MNIST,
Cifar10, ImageNet10, Yahoo Adblocker and GTSRB, as well
as with different NN architectures. Experimental results show
that a backdoor can be effectively planted with a very small
amount of poisoned data, e.g., with as low as only 0.5% of
training data poisoned, to achieve an average of over 91.1%
attack success rate in the loss-free digital attack scenario. In
physical attack with lossy images, an adversarial trigger in
a size of merely 1% of the original image can activate the
backdoor with a success rate of over 78.5% under 0.5% poison
ratio. In addition, two countermeasures have been introduced
to defeat the attack by supervised or unsupervised poison
sample detection.

VI. ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under Grant CNS-1828593, OAC-1829771, EEC-
1840458, and CNS-1950704, Office of Naval Research un-
der Grant N00014-20-1-2065, and the Commonwealth Cyber
Initiative, an investment in the advancement of cyber R&D,
innovation and workforce development. For more information
about CCI, visit cyberinitiative.org.

REFERENCES

[1] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified em-
bedding for face recognition and clustering,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 815–823, 2015.

[2] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen, et al., “Deep
speech 2: End-to-end speech recognition in english and mandarin,”
in Proceedings of the International Conference on Machine Learning
(ICML), pp. 173–182, 2016.

[3] H.-R. Su, K.-Y. Chen, W. J. Wong, and S.-H. Lai, “A deep learning
approach towards pore extraction for high-resolution fingerprint recogni-
tion,” in Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2057–2061, 2017.

[4] J. Zhang, F. Li, F. Ye, and H. Wu, “Autonomous unknown-application
filtering and labeling for dl-based traffic classifier update,” in Proceed-
ings of IEEE International Conference on Computer Communications
(INFOCOM), pp. 397–405, 2020.

[5] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” Soft Computing, vol. 24, no. 3, pp. 1999–2012, 2020.

[6] S. Li, B. Z. H. Zhao, J. Yu, M. Xue, D. Kaafar, and H. Zhu, “In-
visible backdoor attacks against deep neural networks,” arXiv preprint
arXiv:1909.02742, 2019.

[7] H. Zhong, C. Liao, A. C. Squicciarini, S. Zhu, and D. Miller, “Backdoor
embedding in convolutional neural network models via invisible pertur-
bation,” in Proceedings of the ACM Conference on Data and Application
Security and Privacy (CODASPY), pp. 97–108, 2020.

[8] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[9] A. Turner, D. Tsipras, and A. Madry, “Clean-label backdoor attacks,”
2018.

[10] M. Barni, K. Kallas, and B. Tondi, “A new backdoor attack in cnns by
training set corruption without label poisoning,” in Proceedings of the
IEEE International Conference on Image Processing (ICIP), pp. 101–
105, 2019.

[11] A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden trigger backdoor
attacks,” arXiv preprint arXiv:1910.00033, 2019.

[12] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, “Traffic-
sign detection and classification in the wild,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2110–2118, 2016.

[13] M. Al-Qizwini, I. Barjasteh, H. Al-Qassab, and H. Radha, “Deep learn-
ing algorithm for autonomous driving using googlenet,” in Proceedings
of the IEEE Intelligent Vehicles Symposium (IV), pp. 89–96, 2017.

[14] R. Ning, C. Wang, C. Xin, J. Li, L. Zhu, and H. Wu, “Capjack:
Capture in-browser crypto-jacking by deep capsule network through
behavioral analysis,” in Proceedings of IEEE International Conference
on Computer Communications (INFOCOM), pp. 1873–1881, 2019.

[15] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE Transactions on Emerging Topics
in Computational Intelligence (TETCI), vol. 2, no. 1, pp. 41–50, 2018.

[16] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in NIPS Autodiff Workshop, 2017.

[17] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[18] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features

from tiny images,” 2009.
[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “Imagenet: A

large-scale hierarchical image database,” in Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 248–255,
2009.

[20] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Elsevier Neural networks, vol. 32, pp. 323–332, 2012.

[21] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 1125–
1134, 2017.

[22] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings

of the International Conference on Machine Learning (ICML), pp. 448–
456, 2015.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 770–778, 2016.

[24] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[25] Z. A. Din, P. Tigas, S. T. King, and B. Livshits, “Percival: Making
in-browser perceptual ad blocking practical with deep learning,” in Pro-
ceedings of the USENIX Annual Technical Conference (ATC), pp. 387–
400, 2020.

[26] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research (JMLR), vol. 9, no. Nov, pp. 2579–2605,
2008.

[27] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei, “Hidden: Hiding data
with deep networks,” in Proceedings of the European Conference on
Computer Vision (ECCV), pp. 657–672, 2018.

[28] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An im-
perative style, high-performance deep learning library,” in Proceedings
of the Advances in Neural Information Processing Systems (NeurIPS),
pp. 8024–8035, 2019.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[31] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” arXiv preprint arXiv:1905.11946, 2019.

[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1–9, 2015.

[33] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 4700–
4708, 2017.

[34] M. D. Zeiler and R. Fergus, “Visualizing and understanding convo-
lutional networks,” in Proceedings of the European Conference on
Computer Vision (ECCV), pp. 818–833, 2014.

[35] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striv-
ing for simplicity: The all convolutional net,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2015.

