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forms a real, inverted image of a distant object very near the focal point of the eye-
piece. Because the object is essentially at infinity, this point at which I1 forms is the 
focal point of the objective. The eyepiece then forms, at I2, an enlarged, inverted 
image of the image at I1. To provide the largest possible magnification, the image 
distance for the eyepiece is infinite. Therefore, the image due to the objective lens, 
which acts as the object for the eyepiece lens, must be located at the focal point of 
the eyepiece. Hence, the two lenses are separated by a distance fo 1 fe , which cor-
responds to the length of the telescope tube.
	 The angular magnification of the telescope is given by u/uo, where uo is the angle 
subtended by the object at the objective and u is the angle subtended by the final 
image at the viewer’s eye. Consider Figure 36.42a, in which the object is a very great 
distance to the left of the figure. The angle uo (to the left of the objective) subtended 
by the object at the objective is the same as the angle (to the right of the objective) 
subtended by the first image at the objective. Therefore,

tan uo < uo < 2
h r
fo

where the negative sign indicates that the image is inverted.
	 The angle u subtended by the final image at the eye is the same as the angle that 
a ray coming from the tip of I1 and traveling parallel to the principal axis makes 
with the principal axis after it passes through the lens. Therefore,

tan u < u <
h r
fe

We have not used a negative sign in this equation because the final image is not 
inverted; the object creating this final image I2 is I1, and both it and I2 point in 
the same direction. Therefore, the angular magnification of the telescope can be 
expressed as

	 m 5
u

uo
5

h r/fe

2h r/fo
5 2

fo

fe
	 (36.27)

This result shows that the angular magnification of a telescope equals the ratio of 
the objective focal length to the eyepiece focal length. The negative sign indicates 
that the image is inverted.
	 When you look through a telescope at such relatively nearby objects as the Moon 
and the planets, magnification is important. Individual stars in our galaxy, how-
ever, are so far away that they always appear as small points of light no matter how 
great the magnification. To gather as much light as possible, large research tele-
scopes used to study very distant objects must have a large diameter. It is difficult 
and expensive to manufacture large lenses for refracting telescopes. Another dif-
ficulty with large lenses is that their weight leads to sagging, which is an additional 
source of aberration.
	 These problems associated with large lenses can be partially overcome by replac-
ing the objective with a concave mirror, which results in the second type of tele-
scope, the reflecting telescope. Because light is reflected from the mirror and does 
not pass through a lens, the mirror can have rigid supports on the back side. Such 
supports eliminate the problem of sagging.
	 Figure 36.43a shows the design for a typical reflecting telescope. The incom-
ing light rays are reflected by a parabolic mirror at the base. These reflected rays 
converge toward point A in the figure, where an image would be formed. Before 
this image is formed, however, a small, flat mirror M reflects the light toward an 
opening in the tube’s side and it passes into an eyepiece. This particular design is 
said to have a Newtonian focus because Newton developed it. Figure 36.43b shows 
such a telescope. Notice that the light never passes through glass (except through 
the small eyepiece) in the reflecting telescope. As a result, problems associated 
with chromatic aberration are virtually eliminated. The reflecting telescope can 
be made even shorter by orienting the flat mirror so that it reflects the light back 
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Figure 36.43  ​(a) A Newtonian-
focus reflecting telescope. (b) A 
reflecting telescope. This type of 
telescope is shorter than that in 
Figure 36.42b.
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1122	C hapter 36  Image Formation

toward the objective mirror and the light enters an eyepiece in a hole in the 
middle of the mirror.
	 The largest reflecting telescopes in the world are at the Keck Observatory 
on Mauna Kea, Hawaii. The site includes two telescopes with diameters of 
10 m, each containing 36 hexagonally shaped, computer-controlled mirrors 
that work together to form a large reflecting surface. In addition, the two 
telescopes can work together to provide a telescope with an effective diam-
eter of 85 m. In contrast, the largest refracting telescope in the world, at the 
Yerkes Observatory in Williams Bay, Wisconsin, has a diameter of only 1 m.
	 Figure 36.44 shows a remarkable optical image from the Keck Observa-
tory of a solar system around the star HR8799, located 129 light-years from 
the Earth. The planets labeled b, c, and d were seen in 2008 and the inner-
most planet, labeled e, was observed in December 2010. This photograph 
represents the first direct image of another solar system and was made pos-
sible by the adaptive optics technology used in the Keck Observatory.

Definitions

  The angular magnification m is the ratio of the 
angle subtended by an object with a lens in use (angle 
u in Fig. 36.40b) to the angle subtended by the object 
placed at the near point with no lens in use (angle u0 in 
Fig. 36.40a):

	 m ;
u

u0
	 (36.22)

  An image can be formed by refraction from a spher-
ical surface of radius R. The object and image dis-
tances for refraction from such a surface are related by

	
n1

p
1

n 2

q
5

n 2 2 n1

R
	 (36.8)

where the light is incident in the medium for which 
the index of refraction is n1 and is refracted in the 
medium for which the index of refraction is n2.

  For a thin lens, and in the paraxial ray approxima-
tion, the object and image distances are related by the 
thin lens equation:

	
1
p

1
1
q

5
1
f

	 (36.16)

  The lateral magnification M of the image due to a 
mirror or lens is defined as the ratio of the image height 
h9 to the object height h. It is equal to the negative of the 
ratio of the image distance q to the object distance p :

	 M ;
image height

object height
5

h r
h

5 2
q

p
	 (36.1, 36.2, 36.17)

  In the paraxial ray approximation, the object dis-
tance p and image distance q for a spherical mirror of 
radius R are related by the mirror equation:

	
1
p

1
1
q

5
2
R

5
1
f

	 (36.4, 36.6)

where f 5 R/2 is the focal length of the mirror.

  The inverse of the focal length f of a thin lens sur-
rounded by air is given by the lens-makers’ equation:

	
1
f

5 1n 2 1 2 a 1
R 1

2
1

R 2
b 	 (36.15)

Converging lenses have positive focal lengths, and 
diverging lenses have negative focal lengths.

  The ratio of the focal length of a camera lens to the diameter of the lens is called the f-number of the lens:

	 f-number ;
f

D
	 (36.20)

Summary

Concepts and Principles

Figure 36.44  A direct optical image of a 
solar system around the star HR8799, devel-
oped at the Keck Observatory in Hawaii.
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	   Objective Questions	 1123

	 6.	 If Josh’s face is 30.0 cm in front of a concave shaving 
mirror creating an upright image 1.50 times as large as 
the object, what is the mirror’s focal length? (a) 12.0 cm  
(b) 20.0 cm (c) 70.0 cm (d) 90.0 cm (e) none of those 
answers

	 7.	 Two thin lenses of focal lengths f1 5 15.0 and f2 5 
10.0 cm, respectively, are separated by 35.0 cm along a 
common axis. The f1 lens is located to the left of the f2 
lens. An object is now placed 50.0 cm to the left of the 
f1 lens, and a final image due to light passing though 
both lenses forms. By what factor is the final image 
different in size from the object? (a) 0.600 (b) 1.20  
(c) 2.40 (d) 3.60 (e) none of those answers

	 8.	 If you increase the aperture diameter of a camera by 
a factor of 3, how is the intensity of the light striking 
the film affected? (a) It increases by factor of 3. (b) It 
decreases by a factor of 3. (c) It increases by a factor of 
9. (d) It decreases by a factor of 9. (e) Increasing the 
aperture size doesn’t affect the intensity.

	 9.	 A person spearfishing from a boat sees a stationary 
fish a few meters away in a direction about 30° below 
the horizontal. To spear the fish, and assuming the 
spear does not change direction when it enters the 
water, should the person (a) aim above where he sees 
the fish, (b) aim below the fish, or (c) aim precisely at 
the fish?

	10.	Model each of the following devices in use as consist-
ing of a single converging lens. Rank the cases accord-
ing to the ratio of the distance from the object to the 
lens to the focal length of the lens, from the largest 
ratio to the smallest. (a) a film-based movie projector 
showing a movie (b) a magnifying glass being used to 
examine a postage stamp (c) an astronomical refract-
ing telescope being used to make a sharp image of 
stars on an electronic detector (d) a searchlight being 
used to produce a beam of parallel rays from a point 
source (e) a camera lens being used to photograph a 
soccer game

	11.	 A converging lens made of crown glass has a focal 
length of 15.0 cm when used in air. If the lens is 
immersed in water, what is its focal length? (a) negative 

	 1.	 The faceplate of a diving mask can be ground into a 
corrective lens for a diver who does not have perfect 
vision. The proper design allows the person to see 
clearly both under water and in the air. Normal eye-
glasses have lenses with both the front and back sur-
faces curved. Should the lenses of a diving mask be 
curved (a) on the outer surface only, (b) on the inner 
surface only, or (c) on both surfaces?

	 2.	 Lulu looks at her image in a makeup mirror. It is 
enlarged when she is close to the mirror. As she backs 
away, the image becomes larger, then impossible to 
identify when she is 30.0 cm from the mirror, then 
upside down when she is beyond 30.0 cm, and finally 
small, clear, and upside down when she is much farther 
from the mirror. (i) Is the mirror (a) convex, (b) plane, 
or (c) concave? (ii) Is the magnitude of its focal length 
(a) 0, (b) 15.0 cm, (c) 30.0 cm, (d) 60.0 cm, or (e) `?

	 3.	 An object is located 50.0 cm from a converging lens hav-
ing a focal length of 15.0 cm. Which of the following state-
ments is true regarding the image formed by the lens?  
(a) It is virtual, upright, and larger than the object.  
(b) It is real, inverted, and smaller than the object. (c) It  
is virtual, inverted, and smaller than the object. (d) It is 
real, inverted, and larger than the object. (e) It is real, 
upright, and larger than the object.

	 4.	 (i) When an image of an object is formed by a converg-
ing lens, which of the following statements is always 
true? More than one statement may be correct. (a) The 
image is virtual. (b) The image is real. (c) The image 
is upright. (d) The image is inverted. (e) None of those 
statements is always true. (ii) When the image of an 
object is formed by a diverging lens, which of the state-
ments is always true?

	 5.	 A converging lens in a vertical plane receives light from 
an object and forms an inverted image on a screen. An 
opaque card is then placed next to the lens, covering 
only the upper half of the lens. What happens to the 
image on the screen? (a) The upper half of the image 
disappears. (b) The lower half of the image disap-
pears. (c) The entire image disappears. (d) The entire 
image is still visible, but is dimmer. (e) No change in 
the image occurs.

  The angular magnification of a refracting 
telescope can be expressed as

	 m 5 2
fo

fe
	 (36.27)

where fo and fe are the focal lengths of the 
objective and eyepiece lenses, respectively. 
The angular magnification of a reflecting tele-
scope is given by the same expression where fo 
is the focal length of the objective mirror.

  The maximum magnification of a single lens of focal length f 
used as a simple magnifier is

	 mmax 5 1 1
25 cm

f
	 (36.24)

	 The overall magnification of the image formed by a com-
pound microscope is

	 M 5 2
L
fo
a25 cm

fe
b	 (36.26)

where fo and fe are the focal lengths of the objective and eyepiece 
lenses, respectively, and L is the distance between the lenses.

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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1124	C hapter 36  Image Formation

	14.	An object, represented by a gray arrow, is placed in 
front of a plane mirror. Which of the diagrams in 
Figure OQ36.14 correctly describes the image, repre-
sented by the pink arrow?

(b) less than 15.0 cm (c) equal to 15.0 cm (d) greater 
than 15.0 cm (e) none of those answers

	12.	A converging lens of focal length 8 cm forms a sharp 
image of an object on a screen. What is the smallest 
possible distance between the object and the screen? 
(a) 0 (b) 4 cm (c) 8 cm (d) 16 cm (e) 32 cm

	13.	(i) When an image of an object is formed by a plane 
mirror, which of the following statements is always 
true? More than one statement may be correct. (a) The 
image is virtual. (b) The image is real. (c) The image 
is upright. (d) The image is inverted. (e) None of those 
statements is always true. (ii) When the image of an 
object is formed by a concave mirror, which of the 
preceding statements are always true? (iii) When the 
image of an object is formed by a convex mirror, which 
of the preceding statements are always true?

a b

c d

Figure OQ36.14

2x
Image of
near tree

Screen

x

Lens Near tree Far tree

Figure CQ36.9

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 A converging lens of short focal length can take light 
diverging from a small source and refract it into a 
beam of parallel rays. A Fresnel lens as shown in  
Figure 36.27 is used in a lighthouse for this purpose. 
A concave mirror can take light diverging from a 
small source and reflect it into a beam of parallel rays.  
(a) Is it possible to make a Fresnel mirror? (b) Is this 
idea original, or has it already been done?

	 2.	 Explain this statement: “The focal point of a lens is 
the location of the image of a point object at infinity.”  
(a) Discuss the notion of infinity in real terms as it 
applies to object distances. (b) Based on this state-
ment, can you think of a simple method for determin-
ing the focal length of a converging lens?

	 3.	 Why do some emergency vehicles have the symbol 
Ambulance  written on the front?

	 4.	 Explain why a mirror cannot give rise to chromatic 
aberration.

	 5.	 (a) Can a converging lens be made to diverge light if it 
is placed into a liquid? (b) What If? What about a con-
verging mirror?

	 6.	 Explain why a fish in a spherical goldfish bowl appears 
larger than it really is.

	 7.	 In Figure 36.26a, assume the gray object arrow is 
replaced by one that is much taller than the lens. 
(a)  How many rays from the top of the object will 
strike the lens? (b) How many principal rays can be 
drawn in a ray diagram?

	 8.	 Lenses used in eyeglasses, whether converging or 
diverging, are always designed so that the middle of 
the lens curves away from the eye like the center lenses 
of Figures 36.25a and 36.25b. Why?

	 9.	 Suppose you want to use a converging lens to project 
the image of two trees onto a screen. As shown in Figure 
CQ36.9, one tree is a distance x from the lens and the 
other is at 2x. You adjust the screen so that the near tree 
is in focus. If you now want the far tree to be in focus, do 
you move the screen toward or away from the lens?

	10.	Consider a spherical concave mirror with the object 
located to the left of the mirror beyond the focal point. 
Using ray diagrams, show that the image moves to the 
left as the object approaches the focal point.

	11.	 In Figures CQ36.11a and CQ36.11b, which glasses  
correct nearsightedness and which correct far- 
sightedness?

a

Figure CQ36.11  Conceptual Questions 11 and 12.
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	12.	Bethany tries on either her hyperopic grandfather’s or 
her myopic brother’s glasses and complains, “Every-
thing looks blurry.” Why do the eyes of a person wear-
ing glasses not look blurry? (See Fig. CQ36.11.)
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	 Problems	 1125

mirror on the left. When the person is 2.00 m from the 
mirror on the left wall and 4.00 m from the mirror on 
the right wall, find the distance from the person to the 
first three images seen in the mirror on the left wall.

	 5.	 A periscope (Fig. P36.5) is useful for viewing objects 
that cannot be seen directly. It can be used in sub-
marines and when watching golf matches or parades 
from behind a crowd of people. Suppose the object is 
a distance p1 from the upper mirror and the centers 

p1

h

Figure P36.5

Section 36.1 ​ Images Formed by Flat Mirrors

	 1.	 Determine the minimum height of a vertical flat mir-
ror in which a person 178 cm tall can see his or her 
full image. Suggestion: Drawing a ray diagram would be 
helpful.

	 2.	 In a choir practice room, two parallel walls are 5.30 m 
apart. The singers stand against the north wall. The 
organist faces the south wall, sitting 0.800 m away 
from it. To enable her to see the choir, a flat mirror  
0.600 m wide is mounted on the south wall, straight 
in front of her. What width of the north wall can the 
organist see? Suggestion: Draw a top-view diagram to 
justify your answer.

	 3.	 (a) Does your bathroom mirror show you older or 
younger than you actually are? (b) Compute an order-
of-magnitude estimate for the age difference based on 
data you specify.

	 4.	 A person walks into a room that has two flat mirrors on 
opposite walls. The mirrors produce multiple images 
of the person. Consider only the images formed in the 

W
M

AMT

AMT

the floor, and the ceiling, everything, albeit distorted, is 
compressed into that one small circle. Your own head, 
or more exactly the point between your eyes, is the abso-
lute center. No matter how you turn or twist yourself, 
you can’t get out of that central point. You are immov-
ably the focus, the unshakable core, of your world.” 
Comment on the accuracy of Escher’s description.

	16.	If a cylinder of solid glass or clear plastic is placed 
above the words LEAD OXIDE and viewed from the side 
as shown in Figure CQ36.16, the word LEAD appears 
inverted, but the word OXIDE does not. Explain.
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	17.	 Do the equations 1/p 1 1/q 5 1/f and M 5 2q/p apply to 
the image formed by a flat mirror? Explain your answer.

	13.	In a Jules Verne novel, a piece of ice is shaped to form 
a magnifying lens, focusing sunlight to start a fire. Is 
that possible?

	14.	A solar furnace can be constructed by using a concave 
mirror to reflect and focus sunlight into a furnace 
enclosure. What factors in the design of the reflecting 
mirror would guarantee very high temperatures?

	15.	 Figure CQ36.15 shows a lithograph by M. C. Escher 
titled Hand with Reflection Sphere (Self-Portrait in Spherical  
Mirror). Escher said about the work: “The picture shows 
a spherical mirror, rest-
ing on a left hand. But 
as a print is the reverse 
of the original draw-
ing on stone, it was my 
right hand that you 
see depicted. (Being 
left-handed, I needed 
my left hand to make 
the drawing.) Such a 
globe reflection col-
lects almost one’s whole 
surroundings in one 
disk-shaped image. The 
whole room, four walls, Figure CQ36.15
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Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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1126	C hapter 36  Image Formation

the image is upright or inverted. (c) Determine the 
magnification of the image.

	13.	An object of height 2.00 cm is placed 30.0 cm from 
a convex spherical mirror of focal length of mag-
nitude 10.0 cm. (a) Find the location of the image.  
(b) Indicate whether the image is upright or inverted. 
(c) Determine the height of the image.

	14.	A dentist uses a spherical mirror to examine a tooth. 
The tooth is 1.00 cm in front of the mirror, and the 
image is formed 10.0 cm behind the mirror. Deter-
mine (a) the mirror’s radius of curvature and (b) the 
magnification of the image.

	15.	A large hall in a museum has a niche in one wall. On 
the floor plan, the niche appears as a semicircular 
indentation of radius 2.50 m. A tourist stands on the 
centerline of the niche, 2.00 m out from its deepest 
point, and whispers “Hello.” Where is the sound con-
centrated after reflection from the niche?

	16.	Why is the following situation impossible? At a blind cor-
ner in an outdoor shopping mall, a convex mirror is 
mounted so pedestrians can see around the corner 
before arriving there and bumping into someone trav-
eling in the perpendicular direction. The installers 
of the mirror failed to take into account the position 
of the Sun, and the mirror focuses the Sun’s rays on a 
nearby bush and sets it on fire.

	17.	 To fit a contact lens to a patient’s eye, a keratometer can 
be used to measure the curvature of the eye’s front 
surface, the cornea. This instrument places an illumi-
nated object of known size at a known distance p from 
the cornea. The cornea reflects some light from the 
object, forming an image of the object. The magni-
fication M of the image is measured by using a small 
viewing telescope that allows comparison of the image 
formed by the cornea with a second calibrated image 
projected into the field of view by a prism arrange-
ment. Determine the radius of curvature of the cornea 
for the case p 5 30.0 cm and M 5 0.013 0.

	18.	A certain Christmas tree ornament is a silver sphere 
having a diameter of 8.50 cm. (a) If the size of an 
image created by reflection in the ornament is three-
fourths the reflected object’s actual size, determine 
the object’s location. (b) Use a principal-ray diagram 
to determine whether the image is upright or inverted.

	19.	(a) A concave spherical mirror forms an inverted 
image 4.00 times larger than the object. Assuming the 
distance between object and image is 0.600 m, find  
the focal length of the mirror. (b) What If? Suppose 
the mirror is convex. The distance between the image 
and the object is the same as in part (a), but the image 
is 0.500 the size of the object. Determine the focal 
length of the mirror.

	20.	(a) A concave spherical mirror forms an inverted 
image different in size from the object by a factor a . 
1. The distance between object and image is d. Find 
the focal length of the mirror. (b) What If? Suppose 
the mirror is convex, an upright image is formed, and 
a , 1. Determine the focal length of the mirror.
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of the two flat mirrors are separated by a distance h.  
(a) What is the distance of the final image from the 
lower mirror? (b) Is the final image real or virtual?  
(c) Is it upright or inverted? (d) What is its magnifica-
tion? (e) Does it appear to be left–right reversed?

	 6.	 Two flat mirrors have their reflecting surfaces facing 
each other, with the edge of one mirror in contact 
with an edge of the other, so that the angle between 
the mirrors is a. When an object is placed between the 
mirrors, a number of images are formed. In general, 
if the angle a is such that na 5 360°, where n is an 
integer, the number of images formed is n 2 1. Graphi-
cally, find all the image positions for the case n 5 6 
when a point object is between the mirrors (but not on 
the angle bisector).

	 7.	 Two plane mirrors stand facing each other, 3.00 m 
apart, and a woman stands between them. The woman 
looks at one of the mirrors from a distance of 1.00 m 
and holds her left arm out to the side of her body with 
the palm of her hand facing the closer mirror. (a) What 
is the apparent position of the closest image of her left 
hand, measured perpendicularly from the surface of 
the mirror in front of her? (b) Does it show the palm 
of her hand or the back of her hand? (c) What is the 
position of the next closest image? (d) Does it show the 
palm of her hand or the back of her hand? (e) What 
is the position of the third closest image? (f) Does it 
show the palm of her hand or the back of her hand?  
(g) Which of the images are real and which are virtual?

Section 36.2 ​ Images Formed by Spherical Mirrors

	 8.	 An object is placed 50.0 cm from a concave spheri-
cal mirror with focal length of magnitude 20.0 cm.  
(a) Find the location of the image. (b) What is the 
magnification of the image? (c) Is the image real or 
virtual? (d) Is the image upright or inverted?

	 9.	 A concave spherical mirror has a radius of curvature of 
magnitude 20.0 cm. (a) Find the location of the image 
for object distances of (i) 40.0 cm, (ii) 20.0 cm, and 
(iii) 10.0 cm. For each case, state whether the image is 
(b) real or virtual and (c) upright or inverted. (d) Find 
the magnification in each case.

	10.	An object is placed 20.0 cm from a concave spherical 
mirror having a focal length of magnitude 40.0 cm.  
(a) Use graph paper to construct an accurate ray dia-
gram for this situation. (b) From your ray diagram, 
determine the location of the image. (c) What is the 
magnification of the image? (d) Check your answers to 
parts (b) and (c) using the mirror equation.

	11.	 A convex spherical mirror has a radius of curvature of 
magnitude 40.0 cm. Determine the position of the vir-
tual image and the magnification for object distances 
of (a) 30.0 cm and (b) 60.0 cm. (c) Are the images in 
parts (a) and (b) upright or inverted?

	12.	At an intersection of hospital hallways, a convex spheri-
cal mirror is mounted high on a wall to help people 
avoid collisions. The magnitude of the mirror’s radius 
of curvature is 0.550 m. (a) Locate the image of a 
patient 10.0 m from the mirror. (b) Indicate whether 
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	 Problems	 1127

Section 36.3 ​ Images Formed by Refraction

	29.	One end of a long glass rod (n 5 1.50) is formed into 
a convex surface with a radius of curvature of mag-
nitude 6.00  cm. An object is located in air along the 
axis of the rod. Find the image positions correspond-
ing to object distances of (a) 20.0 cm, (b) 10.0 cm, and  
(c) 3.00 cm from the convex end of the rod.

	30.	A cubical block of ice 50.0 cm on a side is placed over a 
speck of dust on a level floor. Find the location of the 
image of the speck as viewed from above. The index of 
refraction of ice is 1.309.

	31.	 The top of a swimming pool is at ground level. If the 
pool is 2.00 m deep, how far below ground level does 
the bottom of the pool appear to be located when  
(a) the pool is completely filled with water? (b) When it 
is filled halfway with water?

	32.	The magnification of the image formed by a refracting 
surface is given by

M 5 2
n1q

n 2 p

		  where n1, n2, p, and q are defined as they are for Fig-
ure 36.17 and Equation 36.8. A paperweight is made of 
a solid glass hemisphere with index of refraction 1.50. 
The radius of the circular cross section is 4.00 cm. The 
hemisphere is placed on its flat surface, with the center 
directly over a 2.50-mm-long line drawn on a sheet of 
paper. What is the length of this line as seen by some-
one looking vertically down on the hemisphere?

	33.	A flint glass plate rests on the bottom of an aquarium 
tank. The plate is 8.00 cm thick (vertical dimension) 
and is covered with a layer of water 12.0 cm deep. Cal-
culate the apparent thickness of the plate as viewed 
from straight above the water.

	34.	Figure P36.34 shows a curved surface separating a 
material with index of refraction n1 from a material 
with index n2. The surface forms an image I of object 
O. The ray shown in red passes through the surface 
along a radial line. Its angles of incidence and refrac-
tion are both zero, so its direction does not change at 
the surface. For the ray shown in blue, the direction 
changes according to Snell’s law, n1 sin u1 5 n2 sin u2. 
For paraxial rays, we assume u1 and u2 are small, so we 
may write n1 tan u1 5 n2 tan u2. The magnification is 
defined as M 5 h9/h. Prove that the magnification is 
given by M 5 2n1q/n2p.

n1 n2

q

C I
O h�

h

p

u2
u1

Figure P36.34

	35.	A glass sphere (n 5 1.50) with a radius of 15.0 cm has a 
tiny air bubble 5.00 cm above its center. The sphere is 
viewed looking down along the extended radius con-
taining the bubble. What is the apparent depth of the 
bubble below the surface of the sphere?

S

M

	21.	 An object 10.0 cm tall is placed at the zero mark of a 
meterstick. A spherical mirror located at some point 
on the meterstick creates an image of the object that is 
upright, 4.00 cm tall, and located at the 42.0-cm mark 
of the meterstick. (a) Is the mirror convex or concave? 
(b) Where is the mirror? (c) What is the mirror’s focal 
length?

	22.	A concave spherical mirror has a radius of curvature 
of magnitude 24.0 cm. (a) Determine the object posi-
tion for which the resulting image is upright and larger 
than the object by a factor of 3.00. (b) Draw a ray dia-
gram to determine the position of the image. (c) Is the 
image real or virtual?

	23.	A dedicated sports car enthusiast polishes the inside 
and outside surfaces of a hubcap that is a thin section 
of a sphere. When she looks into one side of the hub-
cap, she sees an image of her face 30.0 cm in back of 
the hubcap. She then flips the hubcap over and sees 
another image of her face 10.0 cm in back of the hub-
cap. (a) How far is her face from the hubcap? (b) What 
is the radius of curvature of the hubcap?

	24.	A convex spherical mirror has a focal length of mag-
nitude 8.00 cm. (a) What is the location of an object 
for which the magnitude of the image distance is one-
third the magnitude of the object distance? (b) Find 
the magnification of the image and (c) state whether it 
is upright or inverted.

	25.	A spherical mirror is to be used to form an image 5.00 
times the size of an object on a screen located 5.00 m 
from the object. (a) Is the mirror required concave or 
convex? (b) What is the required radius of curvature of 
the mirror? (c) Where should the mirror be positioned 
relative to the object?

	26.	Review. A ball is dropped at t 5 0 from rest 3.00 m 
directly above the vertex of a concave spherical mirror 
that has a radius of curvature of magnitude 1.00 m and 
lies in a horizontal plane. (a) Describe the motion of 
the ball’s image in the mirror. (b) At what instant or 
instants do the ball and its image coincide?

	27.	You unconsciously estimate the distance to an object 
from the angle it subtends in your field of view. This 
angle u in radians is related to the linear height of 
the object h and to the distance d by u 5 h/d. Assume 
you are driving a car and another car, 1.50 m high, is  
24.0 m behind you. (a)  Suppose your car has a flat 
passenger-side rearview mirror, 1.55 m from your eyes. 
How far from your eyes is the image of the car follow-
ing you? (b) What angle does the image subtend in 
your field of view? (c) What If? Now suppose your car 
has a convex rearview mirror with a radius of curva-
ture of magnitude 2.00 m (as suggested in Fig. 36.15). 
How far from your eyes is the image of the car behind 
you? (d) What angle does the image subtend at your 
eyes? (e) Based on its angular size, how far away does 
the following car appear to be?

	28.	A man standing 1.52 m in front of a shaving mirror pro-
duces an inverted image 18.0 cm in front of it. How close 
to the mirror should he stand if he wants to form an 
upright image of his chin that is twice the chin’s actual 
size?
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1128	C hapter 36  Image Formation

length. (b)  Find the magnification of the image and 
indicate whether it is (c) upright or inverted and (d) real 
or virtual.

	43.	A contact lens is made of plastic with an index of 
refraction of 1.50. The lens has an outer radius of cur-
vature of 12.00 cm and an inner radius of curvature of  
12.50 cm. What is the focal length of the lens?

	44.	A converging lens has a focal length of 10.0 cm. Con-
struct accurate ray diagrams for object distances of  
(i) 20.0  cm and (ii) 5.00 cm. (a) From your ray dia-
grams, determine the location of each image. (b) Is 
the image real or virtual? (c) Is the image upright or 
inverted? (d) What is the magnification of the image? 
(e) Compare your results with the values found alge-
braically. (f) Comment on difficulties in constructing 
the graph that could lead to differences between the 
graphical and algebraic answers.

	45.	A converging lens has a focal length of 10.0 cm. Locate 
the object if a real image is located at a distance from 
the lens of (a) 20.0 cm and (b) 50.0 cm. What If? Redo 
the calculations if the images are virtual and located at 
a distance from the lens of (c) 20.0 cm and (d) 50.0 cm.

	46.	A diverging lens has a focal length of magnitude  
20.0 cm. (a) Locate the image for object distances of  
(i) 40.0 cm, (ii)  20.0 cm, and (iii) 10.0 cm. For each 
case, state whether the image is (b) real or virtual and 
(c) upright or inverted.(d) For each case, find the 
magnification.

	47.	 The nickel’s image 
in Figure P36.47 has 
twice the diameter 
of the nickel and is  
2.84 cm from the lens. 
Determine the focal 
length of the lens.

	48.	Suppose an object 
has thickness dp so 
that it extends from 
object distance p to 
p 1 dp. (a) Prove that 
the thickness dq of its image is given by (2q2/p2)dp.  
(b) The longitudinal magnification of the object is 
M long 5 dq/dp. How is the longitudinal magnification 
related to the lateral magnification M?

	49.	The left face of a biconvex lens has a radius of curvature 
of magnitude 12.0 cm, and the right face has a radius of 
curvature of magnitude 18.0 cm. The index of refrac-
tion of the glass is 1.44. (a) Calculate the focal length 
of the lens for light incident from the left. (b) What If? 
After the lens is turned around to interchange the radii 
of curvature of the two faces, calculate the focal length 
of the lens for light incident from the left.

	50.	In Figure P36.50, a thin converging lens of focal length 
14.0 cm forms an image of the square abcd, which is 
hc 5 hb 5 10.0 cm high and lies between distances of 
pd 5 20.0 cm and pa 5 30.0 cm from the lens. Let a9, b9, 
c9, and d9 represent the respective corners of the image. 
Let qa represent the image distance for points a9 and 
b9, qd represent the image distance for points c9 and d9, 

W
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Figure P36.47
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	36.	As shown in Figure P36.36, Ben and Jacob check out an 
aquarium that has a curved front made of plastic with 
uniform thickness and a radius of curvature of magni-
tude R 5 2.25 m. (a) Locate the images of fish that are 
located (i) 5.00 cm and (ii) 25.0 cm from the front wall 
of the aquarium. (b) Find the magnification of images 
(i) and (ii) from the previous part. (See Problem 32 to 
find an expression for the magnification of an image 
formed by a refracting surface.) (c) Explain why you 
don’t need to know the refractive index of the plastic 
to solve this problem. (d)  If this aquarium were very 
long from front to back, could the image of a fish ever 
be farther from the front surface than the fish itself is? 
(e) If not, explain why not. If so, give an example and 
find the magnification.

Figure P36.36
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	37.	 A goldfish is swimming at 2.00 cm/s toward the front 
wall of a rectangular aquarium. What is the apparent 
speed of the fish measured by an observer looking in 
from outside the front wall of the tank?

Section 36.4 ​ Images Formed by Thin Lenses

	38.	A thin lens has a focal length of 25.0 cm. Locate and 
describe the image when the object is placed (a) 26.0 cm  
and (b) 24.0 cm in front of the lens.

	39.	An object located 32.0 cm in front of a lens forms an 
image on a screen 8.00 cm behind the lens. (a) Find 
the focal length of the lens. (b) Determine the magni-
fication. (c) Is the lens converging or diverging?

	40.	An object is located 20.0 cm to the left of a diverging 
lens having a focal length f 5 232.0 cm. Determine  
(a) the location and (b) the magnification of the image. 
(c) Construct a ray diagram for this arrangement.

	41.	The projection lens in a certain slide projector is a sin-
gle thin lens. A slide 24.0 mm high is to be projected 
so that its image fills a screen 1.80 m high. The slide-
to-screen distance is 3.00 m. (a) Determine the focal 
length of the projection lens. (b) How far from the 
slide should the lens of the projector be placed so as to 
form the image on the screen?

	42.	An object’s distance from a converging lens is 5.00 
times the focal length. (a) Determine the location of 
the image. Express the answer as a fraction of the focal 
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h9b represent the distance 
from point b9 to the axis, 
and h9c represent the 
height of c9. (a) Find qa , 
qd , h9b, and h9c. (b) Make 
a sketch of the image.  
(c) The area of the 
object is 100 cm2. By car-
rying out the following 
steps, you will evaluate 
the area of the image. Let q represent the image dis-
tance of any point between a9 and d9, for which the 
object distance is p. Let h9 represent the distance from 
the axis to the point at the edge of the image between 
b9 and c9 at image distance q. Demonstrate that

0 h r 0 5 10.0q a 1
14.0

2
1
q
b

		  where h9 and q are in centimeters. (d) Explain why the 
geometric area of the image is given by

3
qd

qa

0 h r 0 dq

		  (e) Carry out the integration to find the area of the 
image.

	51.	 An antelope is at a distance of 20.0 m from a con-
verging lens of focal length 30.0 cm. The lens forms 
an image of the animal. (a) If the antelope runs away 
from the lens at a speed of 5.00 m/s, how fast does the 
image move? (b) Does the image move toward or away 
from the lens?

	52.	Why is the following situation impossible? An illuminated 
object is placed a distance d 5 2.00 m from a screen. 
By placing a converging lens of focal length f 5  
60.0 cm at two locations between the object and the 
screen, a sharp, real image of the object can be formed 
on the screen. In one location of the lens, the image is 
larger than the object, and in the other, the image is 
smaller.

	53.	A 1.00-cm-high object is placed 4.00 cm to the left of 
a converging lens of focal length 8.00 cm. A diverging 
lens of focal length 216.00 cm is 6.00 cm to the right 
of the converging lens. Find the position and height of 
the final image. Is the image inverted or upright? Real 
or virtual?

Section 36.5 ​ Lens Aberrations

	54.	The magnitudes of the radii of curvature are 32.5 cm  
and 42.5 cm for the two faces of a biconcave lens. 
The glass has index of refraction 1.53 for violet light 
and 1.51 for red light. For a very distant object, locate  
(a) the image formed by violet light and (b) the image 
formed by red light.

	55.	Two rays traveling parallel to the principal axis strike 
a large plano-convex lens having a refractive index of 
1.60 (Fig. P36.55). If the convex face is spherical, a ray 
near the edge does not pass through the focal point 
(spherical aberration occurs). Assume this face has a 
radius of curvature of R 5 20.0 cm and the two rays are 
at distances h1 5 0.500 cm and h2 5 12.0 cm from the 
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Figure P36.50

principal axis. Find the difference Dx in the positions 
where each crosses the principal axis.
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h1
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Figure P36.55

Section 36.6 ​ The Camera

	56.	A camera is being used with a correct exposure at f/4 
and a shutter speed of 1

15 s. In addition to the f -numbers 
listed in Section 36.6, this camera has f -numbers f/1, 
f/1.4, and f/2. To photograph a rapidly moving sub-
ject, the shutter speed is changed to 1

125 s. Find the new 
f -number setting needed on this camera to maintain 
satisfactory exposure.

	57.	 Figure 36.33 diagrams a cross section of a camera. It 
has a single lens of focal length 65.0 mm, which is to 
form an image on the CCD at the back of the camera. 
Suppose the position of the lens has been adjusted to 
focus the image of a distant object. How far and in 
what direction must the lens be moved to form a sharp 
image of an object that is 2.00 m away?

Section 36.7 ​ The Eye

	58.	A nearsighted person cannot see objects clearly beyond 
25.0 cm (her far point). If she has no astigmatism and 
contact lenses are prescribed for her, what (a) power 
and (b) type of lens are required to correct her vision?

	59.	The near point of a person’s eye is 60.0 cm. To see 
objects clearly at a distance of 25.0 cm, what should be 
the (a) focal length and (b) power of the appropriate 
corrective lens? (Neglect the distance from the lens to 
the eye.)

	60.	A person sees clearly wearing eyeglasses that have a 
power of −4.00 diopters when the lenses are 2.00 cm 
in front of the eyes. (a) What is the focal length of 
the lens? (b) Is the person nearsighted or farsighted? 
(c) If the person wants to switch to contact lenses 
placed directly on the eyes, what lens power should be 
prescribed?

	61.	 The accommodation limits for a nearsighted person’s 
eyes are 18.0 cm and 80.0 cm. When he wears his 
glasses, he can see faraway objects clearly. At what min-
imum distance is he able to see objects clearly?

	62.	A certain child’s near point is 10.0 cm; her far point 
(with eyes relaxed) is 125 cm. Each eye lens is 2.00 cm 
from the retina. (a) Between what limits, measured in 
diopters, does the power of this lens–cornea combina-
tion vary? (b) Calculate the power of the eyeglass lens 
the child should use for relaxed distance vision. Is the 
lens converging or diverging?

	63.	A person is to be fitted with bifocals. She can see 
clearly when the object is between 30 cm and 1.5 m 
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1130	C hapter 36  Image Formation

	70.	Astronomers often take photographs with the objective 
lens or mirror of a telescope alone, without an eyepiece. 
(a) Show that the image size h9 for such a telescope is 
given by h9 5 fh/( f 2 p), where f is the objective focal 
length, h is the object size, and p is the object distance. 
(b) What If? Simplify the expression in part (a) for the 
case in which the object distance is much greater than 
objective focal length. (c) The “wingspan” of the Inter-
national Space Station is 108.6 m, the overall width of 
its solar panel configuration. When the station is orbit-
ing at an altitude of 407 km, find the width of the image 
formed by a telescope objective of focal length 4.00 m.

Additional Problems

	71.	The lens-makers’ equation applies to a lens immersed 
in a liquid if n in the equation is replaced by n2/n1. 
Here n2 refers to the index of refraction of the lens 
material and n1 is that of the medium surrounding the 
lens. (a) A certain lens has focal length 79.0 cm in air 
and index of refraction 1.55. Find its focal length in 
water. (b) A certain mirror has focal length 79.0 cm in 
air. Find its focal length in water.

	72.	A real object is located at the zero end of a meterstick. 
A large concave spherical mirror at the 100-cm end 
of the meterstick forms an image of the object at the  
70.0-cm position. A small convex spherical mirror 
placed at the 20.0-cm position forms a final image at 
the 10.0-cm point. What is the radius of curvature of 
the convex mirror?

	73.	The distance between an object and its upright image 
is 20.0 cm. If the magnification is 0.500, what is the 
focal length of the lens being used to form the image?

	74.	The distance between an object and its upright image 
is d. If the magnification is M, what is the focal length 
of the lens being used to form the image?

	75.	A person decides to use an old pair of eyeglasses to 
make some optical instruments. He knows that the 
near point in his left eye is 50.0 cm and the near point 
in his right eye is 100 cm. (a) What is the maximum 
angular magnification he can produce in a telescope? 
(b) If he places the lenses 10.0 cm apart, what is the 
maximum overall magnification he can produce in a 
microscope? Hint: Go back to basics and use the thin 
lens equation to solve part (b).

	76.	You are designing an endoscope for use inside an air-
filled body cavity. A lens at the end of the endoscope 
will form an image covering the end of a bundle of 
optical fibers. This image will then be carried by the 
optical fibers to an eyepiece lens at the outside end of 
the fiberscope. The radius of the bundle is 1.00 mm. 
The scene within the body that is to appear within the 
image fills a circle of radius 6.00 cm. The lens will be 
located 5.00 cm from the tissues you wish to observe. 
(a) How far should the lens be located from the end of 
an optical fiber bundle? (b) What is the focal length of 
the lens required?

	77.	 The lens and mirror in Figure P36.77 are separated by 
d  5 1.00 m and have focal lengths of 180.0 cm and 
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from the eye. (a) The  
upper portions of 
the bifocals (Fig. 
P36.63) should be 
designed to enable 
her to see distant 
objects clearly. What 
power should they 
have? (b) The lower 
portions of the bifo-
cals should enable 
her to see objects located 25 cm in front of the eye. 
What power should they have?

	64.	A simple model of the human eye ignores its lens 
entirely. Most of what the eye does to light happens at 
the outer surface of the transparent cornea. Assume 
that this surface has a radius of curvature of 6.00 mm 
and that the eyeball contains just one fluid with a 
refractive index of 1.40. Prove that a very distant object 
will be imaged on the retina, 21.0 mm behind the cor-
nea. Describe the image.

	65.	A patient has a near point of 45.0 cm and far point 
of 85.0 cm. (a) Can a single pair of glasses correct 
the patient’s vision? Explain the patient’s options.  
(b) Calculate the power lens needed to correct the 
near point so that the patient can see objects 25.0 cm 
away. Neglect the eye–lens distance. (c) Calculate the 
power lens needed to correct the patient’s far point, 
again neglecting the eye–lens distance.

Section 36.8 ​ The Simple Magnifier

	66.	A lens that has a focal length of 5.00 cm is used as a 
magnifying glass. (a) To obtain maximum magnifica-
tion and an image that can be seen clearly by a normal 
eye, where should the object be placed? (b) What is the 
magnification?

Section 36.9 ​ The Compound Microscope

	67.	 The distance between the eyepiece and the objective 
lens in a certain compound microscope is 23.0 cm. The 
focal length of the eyepiece is 2.50 cm and that of the 
objective is 0.400 cm. What is the overall magnification 
of the microscope?

Section 36.10 ​ The Telescope

	68.	The refracting telescope at the Yerkes Observatory has 
a 1.00-m diameter objective lens of focal length 20.0 m.  
Assume it is used with an eyepiece of focal length  
2.50 cm. (a) Determine the magnification of Mars as 
seen through this telescope. (b) Are the Martian polar 
caps right side up or upside down?

	69.	A certain telescope has an objective mirror with an 
aperture diameter of 200 mm and a focal length of  
2 000 mm. It captures the image of a nebula on photo-
graphic film at its prime focus with an exposure time 
of 1.50 min. To produce the same light energy per unit 
area on the film, what is the required exposure time to 
photograph the same nebula with a smaller telescope 
that has an objective with a 60.0-mm diameter and a 
900-mm focal length?
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250.0 cm, respectively. An object is placed p 5 1.00 m 
to the left of the lens as shown. (a) Locate the final 
image, formed by light that has gone through the  
lens twice. (b) Determine the overall magnification of 
the image and (c) state whether the image is upright 
or inverted.

Object
MirrorLens

1.00 m 1.00 m

Figure P36.77

	78.	Two converging lenses having focal lengths of f1 5  
10.0 cm and f2 5 20.0 cm are placed a distance d 5  
50.0 cm apart as shown in Figure P36.78. The image 
due to light passing through both lenses is to be 
located between the lenses at the position x 5 31.0 cm 
indicated. (a) At what value of p should the object be 
positioned to the left of the first lens? (b) What is  
the magnification of the final image? (c) Is the final 
image upright or inverted? (d) Is the final image real 
or virtual?

f2 f1
Final image
position

Object

p x
d

Figure P36.78

	79.	Figure P36.79 shows a piece of glass with index of 
refraction n 5 1.50 surrounded by air. The ends are 
hemispheres with radii R1 5 2.00 cm and R 2 5  
4.00 cm, and the centers of the hemispherical ends are 
separated by a distance of d 5 
8.00 cm. A point object is in air, a 
distance p 5 1.00 cm from the 
left end of the glass. (a) Locate 
the image of the object due to 
refraction at the two spherical 
surfaces. (b) Is the final image 
real or virtual?

	80.	An object is originally at the xi 5 0 cm position of a 
meterstick located on the x axis. A converging lens of 
focal length 26.0 cm is fixed at the position 32.0 cm. 
Then we gradually slide the object to the position xf 5 
12.0 cm. (a) Find the location x9 of the object’s image 
as a function of the object position x. (b) Describe 
the pattern of the image’s motion with reference to 
a graph or a table of values. (c) As the object moves  
12.0 cm to the right, how far does the image move?  
(d) In what direction or directions?

	81.	 The object in Figure P36.81 is midway between the 
lens and the mirror, which are separated by a distance 

Q/C

d 5 25.0  cm. The magnitude 
of the mirror’s radius of cur-
vature is 20.0  cm, and the lens 
has a focal length of 216.7 cm. 
(a)  Considering only the light 
that leaves the object and travels 
first toward the mirror, locate 
the final image formed by this 
system. (b) Is this image real or virtual? (c) Is it upright 
or inverted? (d) What is the overall magnification?

	82.	In many applications, it is necessary to expand or 
decrease the diameter of a beam of parallel rays of light, 
which can be accomplished by using a converging lens 
and a diverging lens in combination. Suppose you have a 
converging lens of focal length 21.0 cm and a diverging 
lens of focal length 212.0 cm. (a) How can you arrange 
these lenses to increase the diameter of a beam of paral-
lel rays? (b) By what factor will the diameter increase?

	83.	Review. A spherical lightbulb of diameter 3.20 cm radi-
ates light equally in all directions, with power 4.50 W.  
(a) Find the light intensity at the surface of the light-
bulb. (b) Find the light intensity 7.20 m away from the 
center of the lightbulb. (c) At this 7.20-m distance, a 
lens is set up with its axis pointing toward the light-
bulb. The lens has a circular face with a diameter of 
15.0 cm and has a focal length of 35.0  cm. Find the 
diameter of the lightbulb’s image. (d)  Find the light 
intensity at the image.

	84.	A parallel beam of light enters a glass hemisphere per-
pendicular to the flat face as shown in Figure P36.84. 
The magnitude of the radius of the hemisphere is  
R 5 6.00 cm, and its index of refraction is n 5 1.560. 
Assuming paraxial rays, determine the point at which 
the beam is focused.

n

R

I

q

Air

Figure P36.84

	85.	Two lenses made of kinds of glass having different indi-
ces of refraction n1 and n 2 are cemented together to 
form an optical doublet. Optical doublets are often used 
to correct chromatic aberrations in optical devices. 
The first lens of a certain doublet has index of refrac-
tion n1, one flat side, and one concave side with a 
radius of curvature of magnitude R. The second lens 
has index of refraction n2 and two convex sides with 
radii of curvature also of magnitude R. Show that the 
doublet can be modeled as a single thin lens with a 
focal length described by

1
f

5
2n2 2 n1 2 1

R

	86.	Why is the following situation impossible? Consider the 
lens–mirror combination shown in Figure P36.86 on 
page 1132. The lens has a focal length of fL 5 0.200 m,  
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Figure P36.79
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Figure P36.81
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1132	C hapter 36  Image Formation

and the mirror has a focal 
length of fM 5 0.500  m. The 
lens and mirror are placed 
a distance d 5 1.30 m apart, 
and an object is placed at p 5  
0.300 m from the lens. By mov-
ing a screen to various positions 
to the left of the lens, a student 
finds two different positions of 
the screen that produce a sharp 
image of the object. One of 
these positions corresponds to 
light leaving the object and traveling to the left through 
the lens. The other position corresponds to light trav-
eling to the right from the object, reflecting from the 
mirror and then passing through the lens.

	87.	 An object is placed 12.0 cm to the left of a diverging 
lens of focal length 26.00 cm. A converging lens of 
focal length 12.0 cm is placed a distance d to the right 
of the diverging lens. Find the distance d so that the 
final image is infinitely far away to the right.

	88.	An object is placed a distance p to the left of a diverg-
ing lens of focal length f1. A converging lens of focal 
length f2 is placed a distance d to the right of the 
diverging lens. Find the distance d so that the final 
image is infinitely far away to the right.

	89.	An observer to the right of the mirror–lens combina-
tion shown in Figure P36.89 (not to scale) sees two real 
images that are the same size and in the same location. 
One image is upright, and the other is inverted. Both 
images are 1.50 times larger than the object. The lens 
has a focal length of 10.0 cm. The lens and mirror are 
separated by 40.0 cm. Determine the focal length of 
the mirror.

Object

Mirror Lens
Imagesesge

Figure P36.89

	90.	In a darkened room, a burning candle is placed 1.50 m 
from a white wall. A lens is placed between the candle 
and the wall at a location that causes a larger, inverted 
image to form on the wall. When the lens is in this 
position, the object distance is p1. When the lens is 
moved 90.0 cm toward the wall, another image of the 
candle is formed on the wall. From this information, 
we wish to find p1 and the focal length of the lens.  
(a) From the lens equation for the first position of the 
lens, write an equation relating the focal length f of the 
lens to the object distance p1, with no other variables in 
the equation. (b) From the lens equation for the sec-
ond position of the lens, write another equation relat-

M

S

GP
M

ing the focal length f of the lens to the object distance 
p1. (c) Solve the equations in parts (a) and (b) simulta-
neously to find p1. (d) Use the value in part (c) to find 
the focal length f of the lens.

	91.	 The disk of the Sun subtends an angle of 0.533° at the 
Earth. What are (a) the position and (b) the diameter 
of the solar image formed by a concave spherical mir-
ror with a radius of curvature of magnitude 3.00 m?

	92.	An object 2.00 cm high is placed 40.0 cm to the left of 
a converging lens having a focal length of 30.0 cm. A 
diverging lens with a focal length of 220.0 cm is placed 
110 cm to the right of the converging lens. Determine 
(a) the position and (b) the magnification of the final 
image. (c) Is the image upright or inverted? (d) What 
If? Repeat parts (a) through (c) for the case in which 
the second lens is a converging lens having a focal 
length of 20.0 cm.

Challenge Problems

	93.	Assume the intensity of sunlight is 1.00 kW/m2 at a par-
ticular location. A highly reflecting concave mirror is 
to be pointed toward the Sun to produce a power of at 
least 350 W at the image point. (a) Assuming the disk 
of the Sun subtends an angle of 0.533° at the Earth, 
find the required radius Ra of the circular face area 
of the mirror. (b) Now suppose the light intensity is to 
be at least 120 kW/m2 at the image. Find the required 
relationship between Ra and the radius of curvature R 
of the mirror.

	94.	A zoom lens system is a combination of lenses that pro-
duces a variable magnification of a fixed object as it 
maintains a fixed image position. The magnification 
is varied by moving one or more lenses along the axis. 
Multiple lenses are used in practice, but the effect of 
zooming in on an object can be demonstrated with 
a simple two-lens system. An object, two converging 
lenses, and a screen are mounted on an optical bench. 
Lens 1, which is to the right of the object, has a focal 
length of f1 5 5.00 cm, and lens 2, which is to the right 
of the first lens, has a focal length of f2 5 10.0 cm. The 
screen is to the right of lens 2. Initially, an object is situ-
ated at a distance of 7.50 cm to the left of lens 1, and 
the image formed on the screen has a magnification 
of 11.00. (a) Find the distance between the object and 
the screen. (b) Both lenses are now moved along their 
common axis while the object and the screen maintain 
fixed positions until the image formed on the screen 
has a magnification of 13.00. Find the displacement 
of each lens from its initial position in part (a). (c) Can 
the lenses be displaced in more than one way?

	95.	Figure P36.95 shows a thin converging lens for which 
the radii of curvature of its surfaces have magnitudes 
of 9.00 cm and 11.0 cm. The lens is in front of a con-
cave spherical mirror with the radius of curvature R 5 
8.00 cm. Assume the focal points F1 and F2 of the lens 
are 5.00 cm from the center of the lens. (a) Determine 
the index of refraction of the lens material. The lens 
and mirror are 20.0 cm apart, and an object is placed 

fL fM

d
p

Figure P36.86   
Problems 86 and 97.
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roblems 1133

97. Consider the lens–mirror arrangement shown in Fig
ure P36.86. There are two final image positions to the 
left of the lens of focal length . One image position 
is due to light traveling from the object to the left and 
passing through the lens. The other image position 
is due to light traveling to the right from the object, 
reflecting from the mirror of focal length  and then 
passing through the lens. For a given object position 
between the lens and the mirror and measured with 
respect to the lens, there are two separation distances 
 between the lens and mirror that will cause the two 
images described above to be at the same location. 
Find both positions.

8.00 cm to the left of the lens. Determine (b) the posi
tion of the final image and (c) its magnification as seen 
by the eye in the figure. (d) Is the final image inverted 
or upright? Explain.

Figure P36.95

96. A floating strawberry illusion is achieved with two par
abolic mirrors, each having a focal length 7.50 cm, 
facing each other as shown in Figure P36.96. If a 
strawberry is placed on the lower mirror, an image of 
the strawberry is formed at the small opening at the 
center of the top mirror, 7.50 cm above the lowest point 
of the bottom mirror. The position of the eye in Figure 
P36.96a corresponds to the view of the apparatus in 
Figure P36.96b. Consider the light path marked 
Notice that this light path is blocked by the upper mir
ror so that the strawberry itself is not directly observ
able. The light path marked  corresponds to the eye 
viewing the image of the strawberry that is formed at 
the opening at the top of the apparatus. (a) Show that 
the final image is formed at that location and describe 
its characteristics. (b) A very startling effect is to shine 
a flashlight beam on this image. Even at a glancing 
angle, the incoming light beam is seemingly reflected 
from the image! Explain.

Strawberry

strawberry

Figure P36.96
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1134  	

In Chapter 36, we studied light rays passing through a lens or reflecting from a mirror 
to describe the formation of images. This discussion completed our study of ray optics. In 
this chapter and in Chapter 38, we are concerned with wave optics, sometimes called physi-
cal optics, the study of interference, diffraction, and polarization of light. These phenomena 
cannot be adequately explained with the ray optics used in Chapters 35 and 36. We now 
learn how treating light as waves rather than as rays leads to a satisfying description of 
such phenomena.

37.1	 Young’s Double-Slit Experiment
In Chapter 18, we studied the waves in interference model and found that the 
superposition of two mechanical waves can be constructive or destructive. In con-
structive interference, the amplitude of the resultant wave is greater than that of 
either individual wave, whereas in destructive interference, the resultant amplitude 
is less than that of the larger wave. Light waves also interfere with one another. 
Fundamentally, all interference associated with light waves arises when the electro-
magnetic fields that constitute the individual waves combine.
	 Interference in light waves from two sources was first demonstrated by Thomas 
Young in 1801. A schematic diagram of the apparatus Young used is shown in Figure 
37.1a. Plane light waves arrive at a barrier that contains two slits S1 and S2. The light 
from S1 and S2 produces on a viewing screen a visible pattern of bright and dark 
parallel bands called fringes (Fig. 37.1b). When the light from S1 and that from S2 
both arrive at a point on the screen such that constructive interference occurs at 

37.1	 Young’s Double-Slit 
Experiment

37.2 	Analysis Model: Waves  
in Interference

37.3	 Intensity Distribution 
of the Double-Slit 
Interference Pattern

37.4	 Change of Phase Due  
to Reflection

37.5	 Interference in Thin Films

37.6	 The Michelson 
Interferometer

c h a p t e r 

37 Wave Optics

The colors in many of a 
hummingbird’s feathers are not 
due to pigment. The iridescence 
that makes the brilliant colors that 
often appear on the bird’s throat 
and belly is due to an interference 
effect caused by structures in 
the feathers. The colors will vary 
with the viewing angle. (Dec Hogan/

Shutterstock.com)
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37.1 Young’s Double-Slit xperiment 1135

that location, a bright fringe appears. When the light from the two slits combines 
destructively at any location on the screen, a dark fringe results.

Figure 37.2 is a photograph looking down on an interference pattern produced 
on the surface of a water tank by two vibrating sources. The linear regions of con
structive interference, such as at , and destructive interference, such as at , radi
ating from the area between the sources are analogous to the red and black lines in 
Figure 37.1a.

Figure 37.3 on page 1136 shows some of the ways in which two waves can com
bine at the screen. In Figure 37.3a, the two waves, which leave the two slits in 
phase, strike the screen at the central point  Because both waves travel the 
same distance, they arrive at  in phase. As a result, constructive interference 
occurs at this location and a bright fringe is observed. In Figure 37.3b, the two 
waves also start in phase, but here the lower wave has to travel one wavelength 
farther than the upper wave to reach point  Because the lower wave falls behind 

Figure 37.1 (a) Schematic dia
gram of Young’s double-slit experi
ment. Slits S  and S  behave as 
coherent sources of light waves that 
produce an interference pattern 
on the viewing screen (drawing 
not to scale). (b) A simulation of 
an enlargement of the center of a 
fringe pattern formed on the view
ing screen.

Figure 37.2 An interference 
pattern involving water waves is 
produced by two vibrating sources 
at the water’s surface.

Constructive interference 

Destructive interference 
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1136	C hapter 37  Wave Optics

the upper one by exactly one wavelength, they still arrive in phase at P and a sec-
ond bright fringe appears at this location. At point R in Figure 37.3c, however, 
between points O and P, the lower wave has fallen half a wavelength behind the 
upper wave and a crest of the upper wave overlaps a trough of the lower wave, giv-
ing rise to destructive interference at point R. A dark fringe is therefore observed 
at this location.
	 If two lightbulbs are placed side by side so that light from both bulbs combines, 
no interference effects are observed because the light waves from one bulb are 
emitted independently of those from the other bulb. The emissions from the two 
lightbulbs do not maintain a constant phase relationship with each other over time. 
Light waves from an ordinary source such as a lightbulb undergo random phase 
changes in time intervals of less than a nanosecond. Therefore, the conditions for 
constructive interference, destructive interference, or some intermediate state are 
maintained only for such short time intervals. Because the eye cannot follow such 
rapid changes, no interference effects are observed. Such light sources are said to 
be incoherent.
	 To observe interference of waves from two sources, the following conditions must 
be met:

•	 The sources must be coherent; that is, they must maintain a constant phase 
with respect to each other.

•	 The sources should be monochromatic; that is, they should be of a single 
wavelength.

	 As an example, single-frequency sound waves emitted by two side-by-side loud-
speakers driven by a single amplifier can interfere with each other because the two 
speakers are coherent. In other words, they respond to the amplifier in the same 
way at the same time.
	 A common method for producing two coherent light sources is to use a mono-
chromatic source to illuminate a barrier containing two small openings, usually in 
the shape of slits, as in the case of Young’s experiment illustrated in Figure 37.1. 
The light emerging from the two slits is coherent because a single source produces 
the original light beam and the two slits serve only to separate the original beam 
into two parts (which, after all, is what is done to the sound signal from two side-by-
side loudspeakers). Any random change in the light emitted by the source occurs in 
both beams at the same time. As a result, interference effects can be observed when 
the light from the two slits arrives at a viewing screen.
	 If the light traveled only in its original direction after passing through the slits 
as shown in Figure 37.4a, the waves would not overlap and no interference pattern 
would be seen. Instead, as we have discussed in our treatment of Huygens’s prin-
ciple (Section 35.6), the waves spread out from the slits as shown in Figure 37.4b. In 
other words, the light deviates from a straight-line path and enters the region that 

Conditions for interference 

b

Constructive 
interference also 
occurs at point P.

Bright
fringe

S1

S2

O

P

c

Destructive interference occurs 
at point R when the two waves 
combine because the lower 
wave falls one-half a wavelength 
behind the upper wave.

Dark
fringe

P

R

O

S1

S2

a

Constructive interference 
occurs at point O when 
the waves combine.

Bright
fringe

S1

S2

O

 Viewing screen

Figure 37.3  ​Waves leave the slits 
and combine at various points on 
the viewing screen. (All figures 
not to scale.)
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	 37.2  Analysis Model: Waves in Interference	 1137

would otherwise be shadowed. As noted in Section 35.3, this divergence of light 
from its initial line of travel is called diffraction.

37.2	 Analysis Model: Waves in Interference
We discussed the superposition principle for waves on strings in Section 18.1, lead-
ing to a one-dimensional version of the waves in interference analysis model. In 
Example 18.1 on page 537, we briefly discussed a two-dimensional interference 
phenomenon for sound from two loudspeakers. In walking from point O to point P 
in Figure 18.5, the listener experienced a maximum in sound intensity at O and a 
minimum at P. This experience is exactly analogous to an observer looking at point 
O in Figure 37.3 and seeing a bright fringe and then sweeping his eyes upward to 
point R, where there is a minimum in light intensity.
	 Let’s look in more detail at the two-dimensional nature of Young’s experiment 
with the help of Figure 37.5. The viewing screen is located a perpendicular distance L 
from the barrier containing two slits, S1 and S2 (Fig. 37.5a). These slits are separated 
by a distance d, and the source is monochromatic. To reach any arbitrary point P in 
the upper half of the screen, a wave from the lower slit must travel farther than a wave 
from the upper slit. The extra distance traveled from the lower slit is the path differ-
ence d (Greek letter delta). If we assume the rays labeled r1 and r2 are parallel (Fig. 
37.5b), which is approximately true if L is much greater than d, then d is given by

	 d 5 r2 2 r1 5 d sin u	 (37.1)

The value of d determines whether the two waves are in phase when they arrive at 
point P. If d is either zero or some integer multiple of the wavelength, the two waves 

a b

When we assume r1 is 
parallel to r2, the path 
difference between the two 
rays is r2 � r1 � d sin u.

d � r2 � r1 � d sin u  

S1

S2

d

r2

r1

d

S1

S2 d

Q

L
Viewing screen

P

O

y

r1

r2
u u u

Figure 37.5  ​(a) Geometric 
construction for describing 
Young’s double-slit experiment 
(not to scale). (b) The slits are 
represented as sources, and the 
outgoing light rays are assumed to 
be parallel as they travel to P. To 
achieve that in practice, it is essen-
tial that L .. d.

a

b

Light passing through 
narrow slits diffracts.

Light passing through 
narrow slits does not 
behave this way.

a

b

Light passing through 
narrow slits diffracts.

Light passing through 
narrow slits does not 
behave this way.

Figure 37.4  ​(a) If light waves 
did not spread out after passing 
through the slits, no interference 
would occur. (b) The light waves 
from the two slits overlap as they 
spread out, filling what we expect 
to be shadowed regions with 
light and producing interference 
fringes on a screen placed to the 
right of the slits.
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1138	C hapter 37  Wave Optics

are in phase at point P and constructive interference results. Therefore, the condi-
tion for bright fringes, or constructive interference, at point P is

	 d sin ubright 5 ml    m 5 0, 61, 62, . . .	 (37.2)

The number m is called the order number. For constructive interference, the order 
number is the same as the number of wavelengths that represents the path differ-
ence between the waves from the two slits. The central bright fringe at ubright 5 0 is 
called the zeroth-order maximum. The first maximum on either side, where m 5 61, is 
called the first-order maximum, and so forth.
	 When d is an odd multiple of l/2, the two waves arriving at point P are 180° out 
of phase and give rise to destructive interference. Therefore, the condition for dark 
fringes, or destructive interference, at point P is

	 d sin udark 5 1m 1 1
2 2l  m 5 0, 61, 62, c	 (37.3)

	 These equations provide the angular positions of the fringes. It is also useful to 
obtain expressions for the linear positions measured along the screen from O to P. 
From the triangle OPQ in Figure 37.5a, we see that

	 tan u 5
y

L
	 (37.4)

Using this result, the linear positions of bright and dark fringes are given by

	 ybright 5 L tan ubright	 (37.5)

	 ydark 5 L tan udark	 (37.6)

where ubright and udark are given by Equations 37.2 and 37.3.
	 When the angles to the fringes are small, the positions of the fringes are linear 
near the center of the pattern. That can be verified by noting that for small angles, 
tan u < sin u, so Equation 37.5 gives the positions of the bright fringes as ybright 5  
L sin ubright. Incorporating Equation 37.2 gives

	 ybright 5 L 
ml

d
 1small angles 2 	 (37.7)

This result shows that ybright is linear in the order number m, so the fringes are 
equally spaced for small angles. Similarly, for dark fringes,

	 ydark 5 L 
1m 1 1

2 2l
d

 1small angles 2 	 (37.8)

	 As demonstrated in Example 37.1, Young’s double-slit experiment provides a 
method for measuring the wavelength of light. In fact, Young used this technique 
to do precisely that. In addition, his experiment gave the wave model of light a 
great deal of credibility. It was inconceivable that particles of light coming through 
the slits could cancel one another in a way that would explain the dark fringes.
	 The principles discussed in this section are the basis of the waves in interfer-
ence analysis model. This model was applied to mechanical waves in one dimension 
in Chapter 18. Here we see the details of applying this model in three dimensions 
to light.

Q	 uick Quiz 37.1 ​ Which of the following causes the fringes in a two-slit interfer-
ence pattern to move farther apart? (a) decreasing the wavelength of the light 
(b) decreasing the screen distance L (c) decreasing the slit spacing d (d) immers-
ing the entire apparatus in water

� Condition for constructive 
 interference

� Condition for destructive 
 interference
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	 37.2  Analysis Model: Waves in Interference	 1139

	

Analyze 
Solve Equation 37.8 for the wavelength and substitute 
numerical values, taking m 5 0 for the first dark fringe:

l 5
ydarkd

1m 1 1
2 2L

5
14.50 3 1022 m 2 13.00 3 1025 m 2

10 1 1
2 2 14.80 m 2

5 5.62 3 1027 m 5 562 nm

(B)  ​Calculate the distance between adjacent bright fringes.

S o l u t i o n

Find the distance between adjacent bright fringes from 
Equation 37.7 and the results of part (A):

ym11 2 ym 5 L 
1m 1 1 2l

d
2 L 

ml

d

5 L 
l

d
5 4.80 m a5.62 3 1027 m

3.00 3 1025 m
b

5 9.00 3 1022 m 5 9.00 cm

Finalize  For practice, find the wavelength of the sound in Example 18.1 using the procedure in part (A) of this example.

Example 37.1	     Measuring the Wavelength of a Light Source 

A viewing screen is separated from a double slit by 4.80 m. The distance between the two slits is 0.030 0 mm. Mono-
chromatic light is directed toward the double slit and forms an interference pattern on the screen. The first dark 
fringe is 4.50 cm from the center line on the screen.

(A)  ​Determine the wavelength of the light.

Conceptualize  ​Study Figure 37.5 to be sure you understand the phenomenon of interference of light waves. The dis-
tance of 4.50 cm is y in Figure 37.5. Because L .. y, the angles for the fringes are small.

Categorize  ​This problem is a simple application of the waves in interference model.

AM

S o l u t i o n

Imagine a broad beam of light that illuminates a double slit in an other-
wise opaque material. An interference pattern of bright and dark fringes is 
created on a distant screen. The condition for bright fringes (constructive 
interference) is

	 d sin ubright 5 ml ​ ​  m 5 0, 61, 62, . . .	 (37.2)

The condition for dark fringes (destructive interference) is

	 d sin udark 5 1m 1 1
2 2l m 5 0, 61, 62, c 	 (37.3)

The number m is called the order number of the fringe.

Examples: 

•	 a thin film of oil on top of water shows swirls of color (Section 37.5)
•	 x-rays passing through a crystalline solid combine to form a Laue pattern (Chapter 38)
•	 a Michelson interferometer (Section 37.6) is used to search for the ether representing the medium through which 

light travels (Chapter 39)
•	 electrons exhibit interference just like light waves when they pass through a double slit (Chapter 40)

Analysis Model	    Waves in Interference

u

d sin u
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1140	C hapter 37  Wave Optics

	

37.3	 �Intensity Distribution of the Double-Slit 
Interference Pattern

Notice that the edges of the bright fringes in Figure 37.1b are not sharp; rather, there 
is a gradual change from bright to dark. So far, we have discussed the locations of 
only the centers of the bright and dark fringes on a distant screen. Let’s now direct 
our attention to the intensity of the light at other points between the positions of max-
imum constructive and destructive interference. In other words, we now calculate the 
distribution of light intensity associated with the double-slit interference pattern.
	 Again, suppose the two slits represent coherent sources of sinusoidal waves such 
that the two waves from the slits have the same angular frequency v and are in 

This value of y is comparable to L, so the small-angle approximation used for Equation 37.7 is not valid. This conclu-
sion suggests we should not expect Equation 37.7 to give us the correct result. If you use Equation 37.5, you can show 
that the bright fringes do indeed overlap when the same condition, m9/m 5 l/l9, is met (see Problem 48). Therefore, 
the 51st fringe of the 430-nm light does overlap with the 43rd fringe of the 510-nm light, but not at the location of  
1.32 m. You are asked to find the correct location as part of Problem 48.

Use Equation 37.7 to find the value of y for these fringes: y 5 11.50 m 2 c51 1430 3 1029 m 2
0.025 0 3 1023 m

d 5 1.32 m

Therefore, the 51st fringe of the 430-nm light overlaps with the 43rd fringe of the 510-nm light.

Example 37.2	     Separating Double-Slit Fringes of Two Wavelengths 

A light source emits visible light of two wavelengths: l 5 430 nm and l9 5 510 nm. The source is used in a double-slit 
interference experiment in which L 5 1.50 m and d 5 0.025 0 mm. Find the separation distance between the third-
order bright fringes for the two wavelengths.

Conceptualize  ​In Figure 37.5a, imagine light of two wavelengths incident on the slits and forming two interference 
patterns on the screen. At some points, the fringes of the two colors might overlap, but at most points, they will not.

Categorize  ​This problem is an application of the mathematical representation of the waves in interference analysis model.

AM

S o l u t i o n

Substitute numerical values: Dy 5
11.50 m 2 13 2

0.025 0 3 1023 m
1510 3 1029 m 2 430 3 1029 m 2

5 0.014 4 m 5 1.44 cm

Analyze 
Use Equation 37.7 to find the fringe positions corre-
sponding to these two wavelengths and subtract them:

Dy 5 y rbright 2 y bright 5 L 
ml r

d
2 L 

ml

d
5

Lm
d

1l r 2 l 2

Finalize  Let’s explore further details of the interference pattern in the following What If?

What if we examine the entire interference pattern due to the two wavelengths and look for overlapping 
fringes? Are there any locations on the screen where the bright fringes from the two wavelengths overlap exactly?
What If ?

Substitute the wavelengths:
m r
m

5
430 nm
510 nm

5
43
51

Answer  ​Find such a location by setting the location of 
any bright fringe due to l equal to one due to l9, using 
Equation 37.7:

L 
ml

d
5 L 

m rl r
d

   S   
m r
m

5
l

l r
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	 37.3  Intensity Distribution of the Double-Slit Interference Pattern	 1141

phase. The total magnitude of the electric field at point P on the screen in Figure 
37.5 is the superposition of the two waves. Assuming the two waves have the same 
amplitude E 0, we can write the magnitude of the electric field at point P due to 
each wave separately as

	 E1 5 E0 sin vt ​ ​  and ​ ​  E 2 5 E 0 sin (vt 1 f)	 (37.9)

Although the waves are in phase at the slits, their phase difference f at P depends 
on the path difference d 5 r2 2 r1 5 d sin u. A path difference of l (for constructive 
interference) corresponds to a phase difference of 2p rad. A path difference of d is 
the same fraction of l as the phase difference f is of 2p. We can describe this fraction 
mathematically with the ratio

d

l
5

f

2p

which gives

	 f 5
2p

l
 d 5

2p

l
 d sin u	 (37.10)

This equation shows how the phase difference f depends on the angle u in Figure 
37.5.
	 Using the superposition principle and Equation 37.9, we obtain the following 
expression for the magnitude of the resultant electric field at point P :

	 EP 5 E1 1 E2 5 E0[sin vt 1 sin (vt 1 f)]	 (37.11)

We can simplify this expression by using the trigonometric identity

sin A 1 sin B 5 2 sin aA 1 B
2

b cos aA 2 B
2

b

Taking A 5 vt 1 f and B 5 vt, Equation 37.11 becomes

	 EP 5 2E 0 cos af

2
b sin avt 1

f

2
b	 (37.12)

This result indicates that the electric field at point P has the same frequency v as 
the light at the slits but that the amplitude of the field is multiplied by the factor 
2 cos (f/2). To check the consistency of this result, note that if f 5 0, 2p, 4p, . . . , 
the magnitude of the electric field at point P is 2E0, corresponding to the condition 
for maximum constructive interference. These values of f are consistent with Equa-
tion 37.2 for constructive interference. Likewise, if f 5 p, 3p, 5p, . . . , the magni-
tude of the electric field at point P is zero, which is consistent with Equation 37.3 for 
total destructive interference.
	 Finally, to obtain an expression for the light intensity at point P, recall from Sec-
tion 34.4 that the intensity of a wave is proportional to the square of the resultant 
electric field magnitude at that point (Eq. 34.24). Using Equation 37.12, we can 
therefore express the light intensity at point P as

I ~ EP
2 5 4E 0

2 cos2 af

2
b sin2 avt 1

f

2
b

Most light-detecting instruments measure time-averaged light intensity, and the time-
averaged value of sin2 (vt 1 f/2) over one cycle is 12. (See Fig. 33.5.) Therefore, we can 
write the average light intensity at point P as

	 I 5 Imax cos2 af

2
b	 (37.13)

WW Phase difference
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1142	C hapter 37  Wave Optics

where Imax is the maximum intensity on the screen and the expression represents 
the time average. Substituting the value for f given by Equation 37.10 into this 
expression gives

	 I 5 Imax cos2 apd sin u
l

b	 (37.14)

Alternatively, because sin u < y/L for small values of u in Figure 37.5, we can write 
Equation 37.14 in the form

	 I 5 Imax cos2 apd
lL

 yb 1small angles 2 	 (37.15)

	 Constructive interference, which produces light intensity maxima, occurs when 
the quantity pdy/lL is an integral multiple of p, corresponding to y 5 (lL/d)m, 
where m is the order number. This result is consistent with Equation 37.7.
	 A plot of light intensity versus d sin u is given in Figure 37.6. The interference pat-
tern consists of equally spaced fringes of equal intensity. 
	 Figure 37.7 shows similar plots of light intensity versus d sin u for light passing 
through multiple slits. For more than two slits, we would add together more electric 
field magnitudes than the two in Equation 37.9. In this case, the pattern contains 
primary and secondary maxima. For three slits, notice that the primary maxima are 
nine times more intense than the secondary maxima as measured by the height of 
the curve because the intensity varies as E 2. For N slits, the intensity of the primary 
maxima is N 2 times greater than that for the secondary maxima. As the number 
of slits increases, the primary maxima increase in intensity and become narrower, 
while the secondary maxima decrease in intensity relative to the primary maxima. 
Figure 37.7 also shows that as the number of slits increases, the number of sec-
ondary maxima also increases. In fact, the number of secondary maxima is always  
N 2 2, where N is the number of slits. In Section 38.4, we shall investigate the pat-
tern for a very large number of slits in a device called a diffraction grating.

Q	 uick Quiz 37.2 ​ Using Figure 37.7 as a model, sketch the interference pattern 
from six slits.

N � 2 

0

Primary maximum

Secondary maximum

I
Imax

d sin u
�2l 2ll

For any value of N, the decrease in 
intensity in maxima to the left and 
right of the central maximum, 
indicated by the blue dashed arcs, 
is due to diffraction patterns from 
the individual slits, which are 
discussed in Chapter 38.

N � 3 

N � 4 

N � 5

N � 10 
�l

Figure 37.7  ​Multiple-slit interference patterns. As N, the number of slits, is 
increased, the primary maxima (the tallest peaks in each graph) become narrower 
but remain fixed in position and the number of secondary maxima increases.

Figure 37.6  ​Light intensity versus d sin u for a 
double-slit interference pattern when the screen is 
far from the two slits (L .. d).

I

�2l 2l0

Imax

l
d sin u

�l
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37.4	 Change of Phase Due to Reflection
Young’s method for producing two coherent light sources involves illuminating a 
pair of slits with a single source. Another simple, yet ingenious, arrangement for pro-
ducing an interference pattern with a single light source is known as Lloyd’s mirror 1 
(Fig. 37.8). A point light source S is placed close to a mirror, and a viewing screen 
is positioned some distance away and perpendicular to the mirror. Light waves can 
reach point P on the screen either directly from S to P or by the path involving 
reflection from the mirror. The reflected ray can be treated as a ray originating 
from a virtual source S9. As a result, we can think of this arrangement as a double-
slit source where the distance d between sources S and S9 in Figure 37.8 is analo-
gous to length d in Figure 37.5. Hence, at observation points far from the source 
(L .. d), we expect waves from S and S9 to form an interference pattern exactly 
like the one formed by two real coherent sources. An interference pattern is indeed 
observed. The positions of the dark and bright fringes, however, are reversed rela-
tive to the pattern created by two real coherent sources (Young’s experiment). Such 
a reversal can only occur if the coherent sources S and S9 differ in phase by 180°.
	 To illustrate further, consider point P 9, the point where the mirror intersects the 
screen. This point is equidistant from sources S and S9. If path difference alone were 
responsible for the phase difference, we would see a bright fringe at P 9 (because the 
path difference is zero for this point), corresponding to the central bright fringe 
of the two-slit interference pattern. Instead, a dark fringe is observed at P 9. We 
therefore conclude that a 180° phase change must be produced by reflection from 
the mirror. In general, an electromagnetic wave undergoes a phase change of 180° 
upon reflection from a medium that has a higher index of refraction than the one 
in which the wave is traveling.
	 It is useful to draw an analogy between reflected light waves and the reflections 
of a transverse pulse on a stretched string (Section 16.4). The reflected pulse on 
a string undergoes a phase change of 180° when reflected from the boundary of 
a denser string or a rigid support, but no phase change occurs when the pulse is 
reflected from the boundary of a less dense string or a freely-supported end. Simi-
larly, an electromagnetic wave undergoes a 180° phase change when reflected from 
a boundary leading to an optically denser medium (defined as a medium with a 
higher index of refraction), but no phase change occurs when the wave is reflected 
from a boundary leading to a less dense medium. These rules, summarized in Fig-
ure 37.9, can be deduced from Maxwell’s equations, but the treatment is beyond 
the scope of this text.

1Developed in 1834 by Humphrey Lloyd (1800–1881), Professor of Natural and Experimental Philosophy, Trinity 
College, Dublin.

An interference pattern is 
produced on the screen as a result 
of the combination of the direct 
ray (red) and the reflected ray 
(blue).

S�

S

Real
source

Viewing
screen

Mirror

P

P �d

Figure 37.8  ​Lloyd’s mirror. 
The reflected ray undergoes a 
phase change of 180°.

a b

No phase change

Free support

n1 n2

180� phase change

Rigid support
n1 � n2

n1 n2

For n1 � n2, a light ray traveling 
in medium 1 undergoes no 
phase change when reflected 
from medium 2.

n1 � n2

For n1 � n2, a light ray traveling 
in medium 1 undergoes a 180� 
phase change when reflected 
from medium 2.

For n1 � n2, a light ray traveling 
in medium 1 undergoes a 180� 
phase change when reflected 
from medium 2.

The same thing occurs 
when a pulse traveling 
on a string reflects from 
a fixed end of the string.

The same is true of a 
pulse reflected from 
the end of a string 
that is free to move.

Figure 37.9  ​Comparisons of reflections of light waves and waves on strings.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



1144	C hapter 37  Wave Optics

37.5	 Interference in Thin Films
Interference effects are commonly observed in thin films, such as thin layers of 
oil on water or the thin surface of a soap bubble. The varied colors observed when 
white light is incident on such films result from the interference of waves reflected 
from the two surfaces of the film.
	 Consider a film of uniform thickness t and index of refraction n. The wavelength 
of light ln in the film (see Section 35.5) is

ln 5
l

n

where l is the wavelength of the light in free space and n is the index of refraction 
of the film material. Let’s assume light rays traveling in air are nearly normal to the 
two surfaces of the film as shown in Figure 37.10.
	 Reflected ray 1, which is reflected from the upper surface (A) in Figure 37.10, 
undergoes a phase change of 180° with respect to the incident wave. Reflected ray 
2, which is reflected from the lower film surface (B), undergoes no phase change 
because it is reflected from a medium (air) that has a lower index of refraction. 
Therefore, ray 1 is 180° out of phase with ray 2, which is equivalent to a path differ-
ence of ln/2. We must also consider, however, that ray 2 travels an extra distance 2t 
before the waves recombine in the air above surface A. (Remember that we are con-
sidering light rays that are close to normal to the surface. If the rays are not close to 
normal, the path difference is larger than 2t.) If 2t 5 ln/2, rays 1 and 2 recombine 
in phase and the result is constructive interference. In general, the condition for 
constructive interference in thin films is2

	 2t 5 1m 1 1
2 2ln m 5 0, 1, 2, c	 (37.16)

This condition takes into account two factors: (1) the difference in path length for 
the two rays (the term mln) and (2) the 180° phase change upon reflection (the 
term 12ln). Because ln 5 l/n, we can write Equation 37.16 as

	 2nt 5 1m 1 1
2 2l m 5 0, 1, 2, c	 (37.17)

	 If the extra distance 2t traveled by ray 2 corresponds to a multiple of ln, the two 
waves combine out of phase and the result is destructive interference. The general 
equation for destructive interference in thin films is

	 2nt 5 ml ​ ​  m 5 0, 1, 2, . . . 	 (37.18)

	 The foregoing conditions for constructive and destructive interference are valid 
when the medium above the top surface of the film is the same as the medium 
below the bottom surface or, if there are different media above and below the film, 
the index of refraction of both is less than n. If the film is placed between two dif-
ferent media, one with n , n film and the other with n . n film, the conditions for 
constructive and destructive interference are reversed. In that case, either there is 
a phase change of 180° for both ray 1 reflecting from surface A and ray 2 reflecting 
from surface B or there is no phase change for either ray; hence, the net change in 
relative phase due to the reflections is zero.
	 Rays 3 and 4 in Figure 37.10 lead to interference effects in the light transmitted 
through the thin film. The analysis of these effects is similar to that of the reflected 
light. You are asked to explore the transmitted light in Problems 35, 36, and 38.

Q	 uick Quiz 37.3 ​ One microscope slide is placed on top of another with their left 
edges in contact and a human hair under the right edge of the upper slide. As 
a result, a wedge of air exists between the slides. An interference pattern results 
when monochromatic light is incident on the wedge. What is at the left edges of 
the slides? (a) a dark fringe (b) a bright fringe (c) impossible to determine

2The full interference effect in a thin film requires an analysis of an infinite number of reflections back and forth 
between the top and bottom surfaces of the film. We focus here only on a single reflection from the bottom of the 
film, which provides the largest contribution to the interference effect.

Interference in light reflected 
from a thin film is due to a 
combination of rays 1 and 2 
reflected from the upper and 
lower surfaces of the film.

Rays 3 and 4 lead to 
interference effects for light 
transmitted through the film.

180� phase
change No phase

change
1 2

A

t
Film
n

Air
n � 1.00

Air
n � 1.00

B

3 4

Figure 37.10  ​Light paths 
through a thin film.

Pitfall Prevention 37.1
Be Careful with Thin Films  Be 
sure to include both effects—path 
length and phase change—when 
analyzing an interference pattern 
resulting from a thin film. The 
possible phase change is a new fea-
ture we did not need to consider 
for double-slit interference. Also 
think carefully about the material 
on either side of the film. If there 
are different materials on either 
side of the film, you may have a 
situation in which there is a 180° 
phase change at both surfaces or at 
neither surface.
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	 37.5  Interference in Thin Films	 1145

Newton’s Rings
Another method for observing interference in light waves is to place a plano-convex 
lens on top of a flat glass surface as shown in Figure 37.11a. With this arrangement, 
the air film between the glass surfaces varies in thickness from zero at the point of 
contact to some nonzero value at point P. If the radius of curvature R of the lens is 
much greater than the distance r and the system is viewed from above, a pattern of 
light and dark rings is observed as shown in Figure 37.11b. These circular fringes, 
discovered by Newton, are called Newton’s rings.
	 The interference effect is due to the combination of ray 1, reflected from the flat 
plate, with ray 2, reflected from the curved surface of the lens. Ray 1 undergoes a 
phase change of 180° upon reflection (because it is reflected from a medium of 
higher index of refraction), whereas ray 2 undergoes no phase change (because it 
is reflected from a medium of lower index of refraction). Hence, the conditions for 
constructive and destructive interference are given by Equations 37.17 and 37.18, 
respectively, with n 5 1 because the film is air. Because there is no path difference 
and the total phase change is due only to the 180° phase change upon reflection, 
the contact point at O is dark as seen in Figure 37.11b.
	 Using the geometry shown in Figure 37.11a, we can obtain expressions for the radii 
of the bright and dark bands in terms of the radius of curvature R and wavelength 
l. For example, the dark rings have radii given by the expression r < !mlR /n. The 
details are left as a problem (see Problem 66). We can obtain the wavelength of the 
light causing the interference pattern by measuring the radii of the rings, provided 
R is known. Conversely, we can use a known wavelength to obtain R.
	 One important use of Newton’s rings is in the testing of optical lenses. A circular 
pattern like that pictured in Figure 37.11b is obtained only when the lens is ground 
to a perfectly symmetric curvature. Variations from such symmetry produce a pat-
tern with fringes that vary from a smooth, circular shape. These variations indicate 
how the lens must be reground and repolished to remove imperfections.

a

r

2 1

P O

R

b

Co
ur

te
sy

 o
f B

au
sc

h 
an

d 
Lo

m
b

Figure 37.11  ​(a) The combina-
tion of rays reflected from the 
flat plate and the curved lens sur-
face gives rise to an interference 
pattern known as Newton’s rings.  
(b) Photograph of Newton’s rings.

(a) A thin film of oil floating 
on water displays interference, 
shown by the pattern of colors 
when white light is incident on 
the film. Variations in film thick-
ness produce the interesting color 
pattern. The razor blade gives you 
an idea of the size of the colored 
bands. (b) Interference in soap 
bubbles. The colors are due to 
interference between light rays 
reflected from the inner and 
outer surfaces of the thin film of 
soap making up the bubble. The 
color depends on the thickness 
of the film, ranging from black, 
where the film is thinnest, to 
magenta, where it is thickest.a
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1146	C hapter 37  Wave Optics

The minimum film thickness for constructive interfer-
ence in the reflected light corresponds to m 5 0 in 
Equation 37.17. Solve this equation for t and substitute 
numerical values:

t 5
10 1 1

2 2l
2n

5
l

4n
5

1600 nm 2
4 11.33 2 5  113 nm

What if the film is twice as thick? Does this situation produce constructive interference?

Answer  ​Using Equation 37.17, we can solve for the thicknesses at which constructive interference occurs:

t 5 1m 1 1
2 2

l

2n
5 12m 1 1 2 l

4n
 m 5 0, 1, 2, c

The allowed values of m show that constructive interference occurs for odd multiples of the thickness corresponding to  
m 5 0, t 5 113 nm. Therefore, constructive interference does not occur for a film that is twice as thick.

What If ?

Example 37.4	     Nonreflective Coatings for Solar Cells

Solar cells—devices that generate electricity when exposed to sunlight—are often coated with a transparent, thin film 
of silicon monoxide (SiO, n 5 1.45) to minimize reflective losses from the surface. Suppose a silicon solar cell (n 5 3.5) 
is coated with a thin film of silicon monoxide for this purpose (Fig. 37.12a). Determine the minimum film thickness 
that produces the least reflection at a wavelength of 550 nm, near the center of the visible spectrum.

Example 37.3	     Interference in a Soap Film

Calculate the minimum thickness of a soap-bubble film that results in constructive interference in the reflected light 
if the film is illuminated with light whose wavelength in free space is l 5 600 nm. The index of refraction of the soap 
film is 1.33.

Conceptualize  ​Imagine that the film in Figure 37.10 is soap, with air on both sides.

Categorize  ​We determine the result using an equation from this section, so we categorize this example as a substitu-
tion problem.

S o l u t i o n

Problem-Solving Strategy    Thin-Film Interference

The following features should be kept in mind when working thin-film interference 
problems.

1.	 Conceptualize. Think about what is going on physically in the problem. Identify 
the light source and the location of the observer.

2.	Categorize. Confirm that you should use the techniques for thin-film interference 
by identifying the thin film causing the interference.

3.	Analyze. The type of interference that occurs is determined by the phase relation-
ship between the portion of the wave reflected at the upper surface of the film and 
the portion reflected at the lower surface. Phase differences between the two por-
tions of the wave have two causes: differences in the distances traveled by the two 
portions and phase changes occurring on reflection. Both causes must be considered 
when determining which type of interference occurs. If the media above and below 
the film both have index of refraction larger than that of the film or if both indices 
are smaller, use Equation 37.17 for constructive interference and Equation 37.18 for 
destructive interference. If the film is located between two different media, one with 
n , n film and the other with n . n film, reverse these two equations for constructive 
and destructive interference.

4.	Finalize. Inspect your final results to see if they make sense physically and are of 
an appropriate size.
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Figure 37.12  ​(Example 37.4) (a) Reflective losses from a silicon solar 
cell are minimized by coating the surface of the cell with a thin film of 
silicon monoxide. (b) The reflected light from a coated camera lens often 
has a reddish-violet appearance.

Solve the equation 2nt 5 l/2 for t and substitute numeri-
cal values:

t 5
l

4n
5

550 nm
4 11.45 2 5 94.8 nm

Finalize  ​A typical uncoated solar cell has reflective losses as high as 30%, but a coating of SiO can reduce this value to 
about 10%. This significant decrease in reflective losses increases the cell’s efficiency because less reflection means that 
more sunlight enters the silicon to create charge carriers in the cell. No coating can ever be made perfectly nonreflect-
ing because the required thickness is wavelength-dependent and the incident light covers a wide range of wavelengths.
	 Glass lenses used in cameras and other optical instruments are usually coated with a transparent thin film to reduce 
or eliminate unwanted reflection and to enhance the transmission of light through the lenses. The camera lens in 
Figure 37.12b has several coatings (of different thicknesses) to minimize reflection of light waves having wavelengths 
near the center of the visible spectrum. As a result, the small amount of light that is reflected by the lens has a greater 
proportion of the far ends of the spectrum and often appears reddish violet.

▸ 37.4 c o n t i n u e d

Conceptualize  ​Figure 37.12a helps us visualize 
the path of the rays in the SiO film that result in 
interference in the reflected light.

Categorize  ​Based on the geometry of the SiO 
layer, we categorize this example as a thin-film 
interference problem.

Analyze  ​The reflected light is a minimum when 
rays 1 and 2 in Figure 37.12a meet the condition 
of destructive interference. In this situation, both 
rays undergo a 180° phase change upon reflec-
tion: ray 1 from the upper SiO surface and ray 
2 from the lower SiO surface. The net change 
in phase due to reflection is therefore zero, and 
the condition for a reflection minimum requires 
a path difference of ln/2, where ln is the wave-
length of the light in SiO. Hence, 2nt 5 l/2, 
where l is the wavelength in air and n is the index of refraction of SiO.

S o l u t i o n

37.6	 The Michelson Interferometer
The interferometer, invented by American physicist A. A. Michelson (1852–1931), 
splits a light beam into two parts and then recombines the parts to form an interfer-
ence pattern. The device can be used to measure wavelengths or other lengths with 
great precision because a large and precisely measurable displacement of one of 
the mirrors is related to an exactly countable number of wavelengths of light.
	 A schematic diagram of the interferometer is shown in Figure 37.13 (page 1148). 
A ray of light from a monochromatic source is split into two rays by mirror M0, 
which is inclined at 45° to the incident light beam. Mirror M0, called a beam split-
ter, transmits half the light incident on it and reflects the rest. One ray is reflected 
from M0 to the right toward mirror M1, and the second ray is transmitted vertically 
through M0 toward mirror M2. Hence, the two rays travel separate paths L1 and L2. 
After reflecting from M1 and M2, the two rays eventually recombine at M0 to pro-
duce an interference pattern, which can be viewed through a telescope.
	 The interference condition for the two rays is determined by the difference in 
their path length. When the two mirrors are exactly perpendicular to each other, 
the interference pattern is a target pattern of bright and dark circular fringes. As 
M1 is moved, the fringe pattern collapses or expands, depending on the direction 
in which M1 is moved. For example, if a dark circle appears at the center of the 

www.as
warp

hy
sic

s.w
ee

bly
.co

m



1148	C hapter 37  Wave Optics

target pattern (corresponding to destructive interference) and M1 is then moved 
a distance l/4 toward M0, the path difference changes by l/2. What was a dark 
circle at the center now becomes a bright circle. As M1 is moved an additional dis-
tance l/4 toward M0, the bright circle becomes a dark circle again. Therefore, the 
fringe pattern shifts by one-half fringe each time M1 is moved a distance l/4. The 
wavelength of light is then measured by counting the number of fringe shifts for a 
given displacement of M1. If the wavelength is accurately known, mirror displace-
ments can be measured to within a fraction of the wavelength.
	 We will see an important historical use of the Michelson interferometer in our 
discussion of relativity in Chapter 39. Modern uses include the following two appli-
cations, Fourier transform infrared spectroscopy and the laser interferometer 
gravitational-wave observatory.

Fourier Transform Infrared Spectroscopy
Spectroscopy is the study of the wavelength distribution of radiation from a sample 
that can be used to identify the characteristics of atoms or molecules in the sample. 
Infrared spectroscopy is particularly important to organic chemists when analyzing 
organic molecules. Traditional spectroscopy involves the use of an optical element, 
such as a prism (Section 35.5) or a diffraction grating (Section 38.4), which spreads 
out various wavelengths in a complex optical signal from the sample into different 
angles. In this way, the various wavelengths of radiation and their intensities in the 
signal can be determined. These types of devices are limited in their resolution and 
effectiveness because they must be scanned through the various angular deviations 
of the radiation.
	 The technique of Fourier transform infrared (FTIR) spectroscopy is used to create a 
higher-resolution spectrum in a time interval of 1 second that may have required 
30 minutes with a standard spectrometer. In this technique, the radiation from a 
sample enters a Michelson interferometer. The movable mirror is swept through 
the zero-path-difference condition, and the intensity of radiation at the viewing 
position is recorded. The result is a complex set of data relating light intensity as a 
function of mirror position, called an interferogram. Because there is a relationship 
between mirror position and light intensity for a given wavelength, the interfero-
gram contains information about all wavelengths in the signal.
	 In Section 18.8, we discussed Fourier analysis of a waveform. The waveform is a 
function that contains information about all the individual frequency components 
that make up the waveform.3 Equation 18.13 shows how the waveform is generated 
from the individual frequency components. Similarly, the interferogram can be 

3In acoustics, it is common to talk about the components of a complex signal in terms of frequency. In optics, it is 
more common to identify the components by wavelength.

Figure 37.13  Diagram of the 
Michelson interferometer.

The path difference between 
the two rays is varied with the 
adjustable mirror M1.

A single ray of light is 
split into two rays by 
mirror M0, which is 
called a beam splitter.called a beam spp
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M2

M1

Light
source

Telescope

As M1 is moved, an 
interference 
pattern changes in 
the field of view.
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	   Summary	 1149

analyzed by computer, in a process called a Fourier transform, to provide all the wave-
length components. This information is the same as that generated by traditional 
spectroscopy, but the resolution of FTIR spectroscopy is much higher.

Laser Interferometer Gravitational-Wave Observatory
Einstein’s general theory of relativity (Section 39.9) predicts the existence of gravi-
tational waves. These waves propagate from the site of any gravitational disturbance, 
which could be periodic and predictable, such as the rotation of a double star around 
a center of mass, or unpredictable, such as the supernova explosion of a massive star.
	 In Einstein’s theory, gravitation is equivalent to a distortion of space. Therefore, 
a gravitational disturbance causes an additional distortion that propagates through 
space in a manner similar to mechanical or electromagnetic waves. When gravita-
tional waves from a disturbance pass by the Earth, they create a distortion of the local 
space. The laser interferometer gravitational-wave observatory (LIGO) apparatus is 
designed to detect this distortion. The apparatus employs a Michelson interferom-
eter that uses laser beams with an effective path length of several kilometers. At the 
end of an arm of the interferometer, a mirror is mounted on a massive pendulum. 
When a gravitational wave passes by, the pendulum and the attached mirror move 
and the interference pattern due to the laser beams from the two arms changes.
	 Two sites for interferometers have been developed in the United States—in 
Richland, Washington, and in Livingston, Louisiana—to allow coincidence stud-
ies of gravitational waves. Figure 37.14 shows the Washington site. The two arms of 
the Michelson interferometer are evident in the photograph. Six data runs have 
been performed as of 2010. These runs have been coordinated with other grav-
itational wave detectors, such as GEO in Hannover, Germany, TAMA in Mitaka, 
Japan, and VIRGO in Cascina, Italy. So far, gravitational waves have not yet been 
detected, but the data runs have provided critical information for modifications 
and design features for the next generation of detectors. The original detectors are 
currently being dismantled, in preparation for the installation of Advanced LIGO, 
an upgrade that should increase the sensitivity of the observatory by a factor of 10. 
The target date for the beginning of scientific operation of Advanced LIGO is 2014.
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Figure 37.14  ​The Laser Inter-
ferometer Gravitational-Wave 
Observatory (LIGO) near Rich-
land, Washington. Notice the two 
perpendicular arms of the Michel-
son interferometer.

  The intensity at a point in a double-slit interference pattern is

	 I 5 Imax cos2 apd sin u
l

b	 (37.14)

where Imax is the maximum intensity on the screen and the 
expression represents the time average.

Summary

Concepts and Principles

  Interference in light waves occurs when-
ever two or more waves overlap at a given 
point. An interference pattern is observed 
if (1) the sources are coherent and (2) the 
sources have identical wavelengths.

continued
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1150 hapter Wave Optics

While using a Michelson interferometer (shown in Fig. 
37.13), you see a dark circle at the center of the inter
ference pattern. (i) As you gradually move the light 
source toward the central mirror M , through a dis
tance /2, what do you see? (a) There is no change in 
the pattern. (b) The dark circle changes into a bright 
circle. (c) The dark circle changes into a bright circle 
and then back into a dark circle. (d) The dark circle 
changes into a bright circle, then into a dark circle, and 
then into a bright circle. (ii) As you gradually move the 
moving mirror toward the central mirror M , through 
a distance /2, what do you see? Choose from the same 
possibilities.

2. Four trials of Young’s double-slit experiment are con
ducted. (a) In the first trial, blue light passes through 
two fine slits 400 m apart and forms an interference 
pattern on a screen 4 m away. (b) In a second trial, 
red light passes through the same slits and falls on 
the same screen. (c) A third trial is performed with 
red light and the same screen, but with slits 800 
apart. (d) A final trial is performed with red light, slits 
800 m apart, and a screen 8 m away. (i)  Rank the 
trials (a) through (d) from the largest to the smallest 
value of the angle between the central maximum and 
the first-order side maximum. In your ranking, note 
any cases of equality. (ii) Rank the same trials accord
ing to the distance between the central maximum and 
the first-order side maximum on the screen.

3. Suppose Young’s double-slit experiment is performed in 
air using red light and then the apparatus is immersed 
in water. What happens to the interference pattern on 
the screen? (a) It disappears. (b) The bright and dark 
fringes stay in the same locations, but the contrast is 
reduced. (c) The bright fringes are closer together. 
(d) The bright fringes are farther apart. (e) No change 
happens in the interference pattern.

4. Green light has a wavelength of 500 nm in air. 
(i) Assume green light is reflected from a mirror with 
angle of incidence 0°. The incident and reflected waves 
together constitute a standing wave with what distance 
from one node to the next node? (a) 1000 nm (b) 500 nm 
(c) 250 nm (d) 125 nm (e) 62.5 nm (ii). The green light 
is sent into a Michelson interferometer that is adjusted 
to produce a central bright circle. How far must the 
interferometer’s moving mirror be shifted to change 
the center of the pattern into a dark circle? Choose 
from the same possibilities as in part (i). (iii). The 
green light is reflected perpendicularly from a thin film 
of a plastic with an index of refraction 2.00. The film 
appears bright in the reflected light. How much addi
tional thickness would make the film appear dark?

5. A thin layer of oil (  1.25) is floating on water (
1.33). What is the minimum nonzero thickness of the 
oil in the region that strongly reflects green light (
530 nm)? (a) 500 nm (b) 313 nm (c) 404 nm (d) 212 nm 
(e) 285 nm

The condition for constructive interference in a film of thickness  and 
index of refraction  surrounded by air is

nt 0, 1, 2, (37.17)

where  is the wavelength of the light in free space.
Similarly, the condition for destructive interference in a thin film sur-

rounded by air is

 ​ ​   0, 1, 2, (37.18)

A wave traveling from a medium 
of index of refraction  toward a 
medium of index of refraction 
undergoes a 180° phase change 
upon reflection when  and 
undergoes no phase change when 

Analysis Models for Problem Solving

Waves in Interference. Young’s double-slit experiment serves as a pro
totype for interference phenomena involving electromagnetic radiation. 
In this experiment, two slits separated by a distance  are illuminated by a 
single-wavelength light source. The condition for bright fringes (constructive 
interference)

 sin bright  ​ ​   0, 1, 2, (37.2)

The condition for dark fringes (destructive interference)

 sin dark 0, 1, 2, (37.3)

The number  is called the order number  of the fringe.

Objective Questions
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 C onceptual Questions 1151

6. A monochromatic beam of light of wavelength 500 nm 
illuminates a double slit having a slit separation 
of 2.00    m. What is the angle of the second-
order bright fringe? (a) 0.050 0 rad (b) 0.025 0 rad 
(c) 0.100 rad (d) 0.250 rad (e) 0.010 0 rad

7. According to Table 35.1, the index of refraction of flint 
glass is 1.66 and the index of refraction of crown glass 
is 1.52. (i) A film formed by one drop of sassafras oil, on 
a horizontal surface of a flint glass block, is viewed by 
reflected light. The film appears brightest at its outer 
margin, where it is thinnest. A film of the same oil on 
crown glass appears dark at its outer margin. What can 
you say about the index of refraction of the oil? (a) It 
must be less than 1.52. (b) It must be between 1.52 and 
1.66. (c) It must be greater than 1.66. (d) None of those 
statements is necessarily true. (ii)  Could a very thin 
film of some other liquid appear bright by reflected 
light on both of the glass blocks? (iii) Could it appear 
dark on both? (iv) Could it appear dark on crown glass 
and bright on flint glass? Experiments described by 
Thomas Young suggested this question.

8. Suppose you perform Young’s double-slit experiment 
with the slit separation slightly smaller than the wave
length of the light. As a screen, you use a large half-
cylinder with its axis along the midline between the 

slits. What interference pattern will you see on the inte
rior surface of the cylinder? (a) bright and dark fringes 
so closely spaced as to be indistinguishable (b) one 
central bright fringe and two dark fringes only (c) a 
completely bright screen with no dark fringes (d) one 
central dark fringe and two bright fringes only (e) a 
completely dark screen with no bright fringes

A plane monochromatic light wave is incident on a dou
ble slit as illustrated in Figure 37.1. (i) As the viewing 
screen is moved away from the double slit, what happens 
to the separation between the interference fringes on 
the screen? (a) It increases. (b) It decreases. (c) It remains 
the same. (d) It may increase or decrease, depending 
on the wavelength of the light. (e) More information is 
required. (ii) As the slit separation increases, what hap
pens to the separation between the interference fringes 
on the screen? Select from the same choices.

10. A film of oil on a puddle in a parking lot shows a vari
ety of bright colors in swirled patches. What can you 
say about the thickness of the oil film? (a) It is much 
less than the wavelength of visible light. (b) It is on 
the same order of magnitude as the wavelength of vis
ible light. (c) It is much greater than the wavelength of 
visible light. (d) It might have any relationship to the 
wavelength of visible light.

Figure CQ37.9

8. In a laboratory accident, you spill two liquids onto dif
ferent parts of a water surface. Neither of the liquids 
mixes with the water. Both liquids form thin films on 
the water surface. As the films spread and become very 
thin, you notice that one film becomes brighter and 
the other darker in reflected light. Why?

9. A theatrical smoke machine fills the space between the 
barrier and the viewing screen in the Young’s double-slit 
experiment shown in Figure CQ37.9. Would the smoke 
show evidence of interference within this space? Explain 
your answer.

Why is the lens on a good-quality camera coated with a 
thin film?

2. A soap film is held vertically in 
air and is viewed in reflected 
light as in Figure CQ37.2. 
Explain why the film appears to 
be dark at the top.

3. Explain why two flashlights 
held close together do not pro
duce an interference pattern 
on a distant screen.

4. A lens with outer radius of cur
vature  and index of refrac
tion  rests on a flat glass plate. 
The combination is illuminated with white light from 
above and observed from above. (a) Is there a dark 
spot or a light spot at the center of the lens? (b) What 
does it mean if the observed rings are noncircular?

5. Consider a dark fringe in a double-slit interference pat
tern at which almost no light energy is arriving. Light 
from both slits is arriving at the location of the dark 
fringe, but the waves cancel. Where does the energy at 
the positions of dark fringes go?

6. (a) In Young’s double-slit experiment, why do we use 
monochromatic light? (b) If white light is used, how 
would the pattern change?

7. What is the necessary condition on the path length dif
ference between two waves that interfere (a) construc
tively and (b) destructively?

Figure CQ37.2
Conceptual Question 
2 and Problem 70.
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1152	C hapter 37  Wave Optics

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C

S

Section 37.1 ​ Young’s Double-Slit Experiment
Section 37.2 ​ Analysis Model: Waves in Interference

Problems 3, 5, 8, 10, and 13 in Chapter 18 can be assigned 
with this section.

	 1.	 Two slits are separated by 0.320 mm. A beam of 500-nm  
light strikes the slits, producing an interference pat-
tern. Determine the number of maxima observed in 
the angular range 230.0° , u , 30.0°.

	 2.	 Light of wavelength 530 nm illuminates a pair of slits 
separated by 0.300 mm. If a screen is placed 2.00 m 
from the slits, determine the distance between the first 
and second dark fringes.

	 3.	 A laser beam is incident on two slits with a separation 
of 0.200 mm, and a screen is placed 5.00 m from the 
slits. An interference pattern appears on the screen. 
If the angle from the center fringe to the first bright 
fringe to the side is 0.181°, what is the wavelength of 
the laser light?

	 4.	 A Young’s interference experiment is performed with 
blue-green argon laser light. The separation between 
the slits is 0.500 mm, and the screen is located 3.30 m 
from the slits. The first bright fringe is located 3.40 mm  
from the center of the interference pattern. What is 
the wavelength of the argon laser light?

	 5.	 Young’s double-slit experiment is performed with  
589-nm light and a distance of 2.00 m between the slits 
and the screen. The tenth interference minimum is 
observed 7.26 mm from the central maximum. Deter-
mine the spacing of the slits.

	 6.	 Why is the following situation impossible? Two narrow slits 
are separated by 8.00 mm in a piece of metal. A beam 
of microwaves strikes the metal perpendicularly, passes 
through the two slits, and then proceeds toward a wall 
some distance away. You know that the wavelength of 
the radiation is 1.00 cm 65%, but you wish to measure 
it more precisely. Moving a microwave detector along 
the wall to study the interference pattern, you measure 
the position of the m 5 1 bright fringe, which leads 
to a successful measurement of the wavelength of the 
radiation.

	 7.	 Light of wavelength 620 nm falls on a double slit, and 
the first bright fringe of the interference pattern is 
seen at an angle of 15.0° with the horizontal. Find the 
separation between the slits.

W

W

	 8.	 In a Young’s double-slit experiment, two parallel slits 
with a slit separation of 0.100 mm are illuminated by 
light of wavelength 589 nm, and the interference pat-
tern is observed on a screen located 4.00 m from the 
slits. (a) What is the difference in path lengths from 
each of the slits to the location of the center of a third-
order bright fringe on the screen? (b) What is the dif-
ference in path lengths from the two slits to the loca-
tion of the center of the third dark fringe away from 
the center of the pattern?

	 9.	 A pair of narrow, parallel slits separated by 0.250 mm 
is illuminated by green light (l 5 546.1 nm). The inter-
ference pattern is observed on a screen 1.20 m away 
from the plane of the parallel slits. Calculate the dis-
tance (a) from the central maximum to the first bright 
region on either side of the central maximum and  
(b) between the first and second dark bands in the 
interference pattern.

	10.	Light with wavelength 442 nm passes through a double- 
slit system that has a slit separation d 5 0.400 mm. 
Determine how far away a screen must be placed so 
that dark fringes appear directly opposite both slits, 
with only one bright fringe between them.

	11.	 The two speakers of a boom box are 35.0 cm apart. A 
single oscillator makes the speakers vibrate in phase 
at a frequency of 2.00 kHz. At what angles, measured 
from the perpendicular bisector of the line joining 
the speakers, would a distant observer hear maximum 
sound intensity? Minimum sound intensity? (Take the 
speed of sound as 340 m/s.)

	12.	In a location where the speed of sound is 343 m/s, a  
2 000-Hz sound wave impinges on two slits 30.0 cm  
apart. (a) At what angle is the first maximum of sound  
intensity located? (b) What If? If the sound wave is 
replaced by 3.00-cm microwaves, what slit separation 
gives the same angle for the first maximum of micro-
wave intensity? (c)  What If? If the slit separation is  
1.00 mm, what frequency of light gives the same angle to 
the first maximum of light intensity?

	13.	Two radio antennas separated by d 5 300 m as shown 
in Figure P37.13 simultaneously broadcast identical sig-
nals at the same wavelength. A car travels due north 
along a straight line at position x 5 1 000 m from 
the center point between the antennas, and its radio 
receives the signals. (a) If the car is at the position of 
the second maximum after that at point O when it has 

M
AMT

M
AMT

AMT
M
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	 Problems	 1153

tionary. Find the speed of the m th-order maxima on 
the screen, where m can be very large.

	17.	 Radio waves of wavelength 125 m from a galaxy reach a 
radio telescope by two separate paths as shown in Fig-
ure P37.17. One is a direct path to the receiver, which 
is situated on the edge of a tall cliff by the ocean, and 
the second is by reflection off the water. As the galaxy 
rises in the east over the water, the first minimum of 
destructive interference occurs when the galaxy is u 5 
25.0° above the horizon. Find the height of the radio 
telescope dish above the water.

u

Direct
path

Radio
telescope

Reflected
path

Figure P37.17  Problems 17 and 69.

	18.	 In Figure P37.18 (not to scale), let L 5 1.20 m and d 5 
0.120 mm and assume the slit system is illuminated with 
monochromatic 500-nm light. Calculate the phase dif-
ference between the two wave fronts arriving at P when 
(a) u  5 0.500° and (b) y 5 5.00 mm. (c) What is the 
value of u for which the phase difference is 0.333 rad? 
(d) What is the value of u for which the path difference 
is l/4?

d

S1

S2

L
Viewing screen

P

O

y

r1

r2
u

Figure P37.18  Problems 18 and 25.

	19.	Coherent light rays of wavelength l strike a pair of slits 
separated by distance d at an angle u1 with respect to 
the normal to the plane containing the slits as shown 
in Figure P37.19. The rays leaving the slits make an 

M

traveled a distance y 5 400 m northward, what is the 
wavelength of the signals? (b) How much farther must 
the car travel from this position to encounter the next 
minimum in reception? Note: Do not use the small-
angle approximation in this problem.

y

x O
d

Figure P37.13

	14.	 A riverside warehouse has several small doors facing 
the river. Two of these doors are open as shown in Fig-
ure P37.14. The walls of the warehouse are lined with 
sound-absorbing material. Two people stand at a dis-
tance L 5 150 m from the wall with the open doors. 
Person A stands along a line passing through the mid-
point between the open doors, and person B stands a 
distance y 5 20 m to his side. A boat on the river sounds 
its horn. To person A, the sound is loud and clear. To 
person B, the sound is barely audible. The principal 
wavelength of the sound waves is 3.00 m. Assuming per-
son B is at the position of the first minimum, determine 
the distance d between the doors, center to center.

d

L

A

B
Open door 

Closed door 

Open door 

y

Figure P37.14

	15.	A student holds a laser that emits light of wavelength 
632.8 nm. The laser beam passes though a pair of slits 
separated by 0.300 mm, in a glass plate attached to the 
front of the laser. The beam then falls perpendicularly 
on a screen, creating an interference pattern on it. The 
student begins to walk directly toward the screen at 
3.00 m/s. The central maximum on the screen is sta-
tionary. Find the speed of the 50th-order maxima on 
the screen.

	16.	A student holds a laser that emits light of wavelength l. 
The laser beam passes though a pair of slits separated 
by a distance d, in a glass plate attached to the front 
of the laser. The beam then falls perpendicularly on 
a screen, creating an interference pattern on it. The 
student begins to walk directly toward the screen at 
speed v. The central maximum on the screen is sta-

W

S
1

d

2
u

1u

u

2u

Figure P37.19
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1154	C hapter 37  Wave Optics

The red lines in Figure 
P37.22 represent paths 
along which maxima in 
the interference pattern 
of the radio waves exist. 
(a) Find the wavelength 
of the waves. The pilot 
“locks onto” the strong 
signal radiated along an 
interference maximum 
and steers the plane to 
keep the received signal 
strong. If she has found 
the central maximum, 
the plane will have precisely the correct heading to land 
when it reaches the runway as exhibited by plane A.  
(b) What If? Suppose the plane is flying along the first 
side maximum instead as is the case for plane B. How 
far to the side of the runway centerline will the plane be 
when it is 2.00 km from the antennas, measured along 
its direction of travel? (c) It is possible to tell the pilot 
that she is on the wrong maximum by sending out two 
signals from each antenna and equipping the aircraft 
with a two-channel receiver. The ratio of the two fre-
quencies must not be the ratio of small integers (such as 
3
4). Explain how this two-frequency system would work 
and why it would not necessarily work if the frequencies 
were related by an integer ratio.

Section 37.3 ​ Intensity Distribution of the Double-Slit 
Interference Pattern
	23.	Two slits are separated by 0.180 mm. An interference 

pattern is formed on a screen 80.0 cm away by 656.3-nm  
light. Calculate the fraction of the maximum intensity a 
distance y 5 0.600 cm away from the central maximum.

	24.	Show that the two waves with wave functions given by 
E 1 5 6.00 sin (100pt) and E 2 5 8.00 sin (100pt 1 p/2)  
add to give a wave with the wave function  
ER sin (100pt 1 f). Find the required values for ER and f.

	25.	In Figure P37.18, let L 5 120 cm and d 5 0.250 cm. 
The slits are illuminated with coherent 600-nm light. 
Calculate the distance y from the central maximum for 
which the average intensity on the screen is 75.0% of 
the maximum.

	26.	Monochromatic coherent light of amplitude E 0 and 
angular frequency v passes through three parallel 
slits, each separated by a distance d from its neighbor.  
(a) Show that the time-averaged intensity as a function 
of the angle u is

I 1u 2 5 Imax c1 1 2 cos a2pd sin u
l

b d
2

		  (b) Explain how this expression describes both the pri-
mary and the secondary maxima. (c) Determine the 
ratio of the intensities of the primary and secondary 
maxima.

	27.	The intensity on the screen at a certain point in a double- 
slit interference pattern is 64.0% of the maximum 
value. (a) What minimum phase difference (in radi-
ans) between sources produces this result? (b) Express 

M

Q/C

angle u2 with respect to the normal, and an interfer-
ence maximum is formed by those rays on a screen 
that is a great distance from the slits. Show that the 
angle u2 is given by

u2 5 sin21 asin u1 2
ml

d
b

		  where m is an integer.

	20.	Monochromatic light of wavelength l is incident on a 
pair of slits separated by 2.40 3 1024 m and forms an 
interference pattern on a screen placed 1.80 m from 
the slits. The first-order bright fringe is at a position 
ybright 5 4.52  mm measured from the center of the 
central maximum. From this information, we wish to 
predict where the fringe for n 5 50 would be located.  
(a) Assuming the fringes are laid out linearly along 
the screen, find the position of the n 5 50 fringe by 
multiplying the position of the n 5 1 fringe by 50.0. 
(b) Find the tangent of the angle the first-order bright 
fringe makes with respect to the line extending from 
the point midway between the slits to the center of the 
central maximum. (c) Using the result of part (b) and 
Equation 37.2, calculate the wavelength of the light. 
(d) Compute the angle for the 50th-order bright fringe 
from Equation 37.2. (e) Find the position of the 50th-
order bright fringe on the screen from Equation 37.5. 
(f) Comment on the agreement between the answers 
to parts (a) and (e).

	21.	 In the double-slit arrangement of Figure P37.21, d  5 
0.150 mm, L 5 140 cm, l 5 643 nm, and y 5 1.80 cm. 
(a) What is the path difference d for the rays from the 
two slits arriving at P ? (b) Express this path difference 
in terms of l. (c) Does P correspond to a maximum, 
a minimum, or an intermediate condition? Give evi-
dence for your answer.

d

S1

S2 d

L
Viewing screen

P

O

y

r1

r2
u u

Figure P37.21

	22.	Young’s double-slit experiment underlies the instrument 
landing system used to guide aircraft to safe landings at 
some airports when the visibility is poor. Although real 
systems are more complicated than the example 
described here, they operate on the same principles. A 
pilot is trying to align her plane with a runway as sug-
gested in Figure P37.22. Two radio antennas (the black 
dots in the figure) are positioned adjacent to the run-
way, separated by d 5 40.0 m. The antennas broadcast 
unmodulated coherent radio waves at 30.0 MHz.  

GP

Q/C
W

Q/C

A 

B

d

Figure P37.22
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	 Problems	 1155

value of the plate separation d is the transmitted light 
bright?

	36.	An oil film (n 5 1.45) floating on water is illumi-
nated by white light at normal incidence. The film is  
280 nm thick. Find (a) the wavelength and color of the 
light in the visible spectrum most strongly reflected 
and (b) the wavelength and color of the light in the 
spectrum most strongly transmitted. Explain your 
reasoning.

	37.	 An air wedge is formed between two glass plates sepa-
rated at one edge by a very fine wire of circular cross 
section as shown in Figure P37.37. When the wedge is 
illuminated from above by 600-nm light and viewed 
from above, 30 dark fringes are observed. Calculate 
the diameter d of the wire.

d

Figure P37.37  Problems 37, 41, 49, and 59.

	38.	Astronomers observe the chromosphere of the Sun 
with a filter that passes the red hydrogen spectral  
line of wavelength 656.3 nm, called the Ha line. The 
filter consists of a transparent dielectric of thickness  
d held between two partially aluminized glass plates. 
The filter is held at a constant temperature. (a) Find 
the minimum value of d that produces maximum 
transmission of perpendicular Ha light if the dielec-
tric has an index of refraction of 1.378. (b) What If? 
If the temperature of the filter increases above the 
normal value, increasing its thickness, what happens 
to the transmitted wavelength? (c) The dielectric will 
also pass what near-visible wavelength? One of the 
glass plates is colored red to absorb this light.

	39.	When a liquid is introduced into the air space between 
the lens and the plate in a Newton’s-rings apparatus, 
the diameter of the tenth ring changes from 1.50 to 
1.31 cm. Find the index of refraction of the liquid.

	40.	A lens made of glass (ng 5 1.52) is coated with a thin 
film of MgF2 (ns 5 1.38) of thickness t. Visible light 
is incident normally on the coated lens as in Fig-
ure P37.40. (a) For what minimum value of t will the 

M
Q/C

M

Q/C

W

Q/C

this phase difference as a path difference for 486.1-nm 
light.

	28.	Green light (l 5 546 nm) illuminates a pair of narrow, 
parallel slits separated by 0.250 mm. Make a graph of 
I/Imax as a function of u for the interference pattern 
observed on a screen 1.20 m away from the plane of 
the parallel slits. Let u range over the interval from 
20.3° to 10.3°.

	29.	Two narrow, parallel slits separated by 0.850 mm are 
illuminated by 600-nm light, and the viewing screen 
is 2.80 m away from the slits. (a) What is the phase dif-
ference between the two interfering waves on a screen 
at a point 2.50 mm from the central bright fringe?  
(b) What is the ratio of the intensity at this point to the 
intensity at the center of a bright fringe?

Section 37.4 ​ Change of Phase Due to Reflection
Section 37.5 ​ Interference in Thin Films

	30.	A soap bubble (n 5 1.33) floating in air has the shape 
of a spherical shell with a wall thickness of 120 nm.  
(a) What is the wavelength of the visible light that is 
most strongly reflected? (b) Explain how a bubble of 
different thickness could also strongly reflect light of 
this same wavelength. (c) Find the two smallest film 
thicknesses larger than 120 nm that can produce 
strongly reflected light of the same wavelength.

	31.	 A thin film of oil (n 5 1.25) is located on smooth, 
wet pavement. When viewed perpendicular to the 
pavement, the film reflects most strongly red light at  
640 nm and reflects no green light at 512 nm. How 
thick is the oil film?

	32.	A material having an index of refraction of 1.30 is used 
as an antireflective coating on a piece of glass (n 5 
1.50). What should the minimum thickness of this film 
be to minimize reflection of 500-nm light?

	33.	A possible means for making an airplane invisible to 
radar is to coat the plane with an antireflective poly-
mer. If radar waves have a wavelength of 3.00 cm and 
the index of refraction of the polymer is n 5 1.50, how 
thick would you make the coating?

	34.	A film of MgF2 (n 5 1.38) having thickness 1.00 3 
1025 cm is used to coat a camera lens. (a) What are the 
three longest wavelengths that are intensified in the 
reflected light? (b) Are any of these wavelengths in  
the visible spectrum?

	35.	A beam of 580-nm light passes through two closely 
spaced glass plates at close to normal incidence as 
shown in Figure P37.35. For what minimum nonzero 
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Figure P37.35
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MgF2

Incident
light

t

Figure P37.40
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1156	C hapter 37  Wave Optics

with index of refraction 1.38, calculate the fringe sepa-
ration for this same arrangement.

	48.	In the What If ? section of Example 37.2, it was claimed 
that overlapping fringes in a two-slit interference pat-
tern for two different wavelengths obey the following 
relationship even for large values of the angle u:

m r
m

5
l

l r
		  (a) Prove this assertion. (b) Using the data in Example 

37.2, find the nonzero value of y on the screen at which 
the fringes from the two wavelengths first coincide.

	49.	An investigator finds a fiber at a crime scene that he 
wishes to use as evidence against a suspect. He gives 
the fiber to a technician to test the properties of the 
fiber. To measure the diameter d of the fiber, the tech-
nician places it between two flat glass plates at their 
ends as in Figure P37.37. When the plates, of length 
14.0 cm, are illuminated from above with light of wave-
length 650 nm, she observes interference bands sepa-
rated by 0.580 mm. What is the diameter of the fiber?

	50.	Raise your hand and hold it flat. Think of the space 
between your index finger and your middle finger as 
one slit and think of the space between middle finger 
and ring finger as a second slit. (a) Consider the inter-
ference resulting from sending coherent visible light 
perpendicularly through this pair of openings. Com-
pute an order-of-magnitude estimate for the angle 
between adjacent zones of constructive interference. 
(b) To make the angles in the interference pattern easy 
to measure with a plastic protractor, you should use an 
electromagnetic wave with frequency of what order of 
magnitude? (c) How is this wave classified on the elec-
tromagnetic spectrum?

	51.	 Two coherent waves, coming from sources at different 
locations, move along the x axis. Their wave functions 
are

E 1 5 860 sin c2px1

650
2 924pt 1

p

6
d

		  and

E 2 5 860 sin c2px2

650
2 924pt 1

p

8
d

		  where E1 and E2 are in volts per meter, x1 and x2 are 
in nanometers, and t is in picoseconds. When the 
two waves are superposed, determine the relation-
ship between x1 and x2 that produces constructive 
interference.

	52.	In a Young’s interference experiment, the two slits are 
separated by 0.150 mm and the incident light includes 
two wavelengths: l1 5 540 nm (green) and l2 5 450 nm  
(blue). The overlapping interference patterns are 
observed on a screen 1.40 m from the slits. Calculate 
the minimum distance from the center of the screen 
to a point where a bright fringe of the green light coin-
cides with a bright fringe of the blue light.

	53.	In a Young’s double-slit experiment using light of 
wavelength l, a thin piece of Plexiglas having index of 
refraction n covers one of the slits. If the center point 

S

reflected light of wavelength 540 nm (in air) be miss-
ing? (b) Are there other values of t that will minimize 
the reflected light at this wavelength? Explain.

	41.	Two glass plates 10.0 cm long are in contact at one 
end and separated at the other end by a thread with a 
diameter d 5 0.050 0 mm (Fig. P37.37). Light contain-
ing the two wavelengths 400 nm and 600 nm is inci-
dent perpendicularly and viewed by reflection. At what 
distance from the contact point is the next dark fringe?

Section 37.6 ​ The Michelson Interferometer

	42.	Mirror M1 in Figure 37.13 is moved through a displace-
ment DL. During this displacement, 250 fringe rever-
sals (formation of successive dark or bright bands) 
are counted. The light being used has a wavelength of 
632.8 nm. Calculate the displacement DL.

	43.	The Michelson interferometer can be used to mea-
sure the index of refraction of a gas by placing an 
evacuated transparent tube in the light path along 
one arm of the device. Fringe shifts occur as the gas 
is slowly added to the tube. Assume 600-nm light is 
used, the tube is 5.00 cm long, and 160 bright fringes 
pass on the screen as the pressure of the gas in the 
tube increases to atmospheric pressure. What is the 
index of refraction of the gas? Hint: The fringe shifts 
occur because the wavelength of the light changes 
inside the gas-filled tube.

	44.	One leg of a Michelson interferometer contains an 
evacuated cylinder of length L, having glass plates on 
each end. A gas is slowly leaked into the cylinder until 
a pressure of 1 atm is reached. If N bright fringes pass 
on the screen during this process when light of wave-
length l is used, what is the index of refraction of the 
gas? Hint: The fringe shifts occur because the wave-
length of the light changes inside the gas-filled tube.

Additional Problems

	45.	Radio transmitter A operating at 60.0 MHz is 10.0 m 
from another similar transmitter B that is 180° out of 
phase with A. How far must an observer move from A 
toward B along the line connecting the two transmit-
ters to reach the nearest point where the two beams 
are in phase?

	46.	A room is 6.0 m long and 3.0 m wide. At the front of 
the room, along one of the 3.0-m-wide walls, two loud-
speakers are set 1.0 m apart, with the center point 
between them coinciding with the center point of the 
wall. The speakers emit a sound wave of a single fre-
quency and a maximum in sound intensity is heard at 
the center of the back wall, 6.0 m from the speakers. 
What is the highest possible frequency of the sound 
from the speakers if no other maxima are heard any-
where along the back wall?

	47.	 In an experiment similar to that of Example 37.1, 
green light with wavelength 560 nm, sent through 
a pair of slits 30.0 mm apart, produces bright fringes  
2.24 cm apart on a screen 1.20 m away. If the apparatus 
is now submerged in a tank containing a sugar solution 
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	 Problems	 1157

scope reveals a difference in index of refraction as a shift 
in interference fringes. The idea is exemplified in the 
following problem. An air wedge is formed between two 
glass plates in contact along one edge and slightly sepa-
rated at the opposite edge as in Figure P37.37. When 
the plates are illuminated with monochromatic light 
from above, the reflected light has 85 dark fringes. Cal-
culate the number of dark fringes that appear if water 
(n 5 1.33) replaces the air between the plates.

	60.	Consider the double-slit arrangement shown in Figure 
P37.60, where the slit separation is d and the distance 
from the slit to the screen is L. A sheet of transparent 
plastic having an index of refraction n and thickness 
t is placed over the upper slit. As a result, the central 
maximum of the interference pattern moves upward a 
distance y9. Find y9.

m � 0

Viewing screen

Plastic
sheet

L

d

y�

u

d

Figure P37.60

	61.	 Figure P37.61 shows a radio-wave transmitter and a 
receiver separated by a distance d 5 50.0 m and both a 
distance h  5 35.0 m above the ground. The receiver 
can receive signals both directly from the transmitter 
and indirectly from signals that reflect from the 
ground. Assume the ground is level between the trans-
mitter and receiver and a 180° phase shift occurs upon 
reflection. Determine the longest wavelengths that 
interfere (a) constructively and (b) destructively.

d

h

Transmitter Receiver

Figure P37.61  Problems 61 and 62.

	62.	Figure P37.61 shows a radio-wave transmitter and a 
receiver separated by a distance d and both a distance 
h above the ground. The receiver can receive signals 
both directly from the transmitter and indirectly from 
signals that reflect from the ground. Assume the 
ground is level between the transmitter and receiver 
and a 180° phase shift occurs upon reflection. Deter-
mine the longest wavelengths that interfere (a) con-
structively and (b) destructively.

	63.	In a Newton’s-rings experiment, a plano-convex glass 
(n 5 1.52) lens having radius r 5 5.00 cm is placed on a 
flat plate as shown in Figure P37.63 (page 1158). When 

S
W

S

on the screen is a dark spot instead of a bright spot, 
what is the minimum thickness of the Plexiglas?

	54.	Review. A flat piece of glass is held stationary and 
horizontal above the highly polished, flat top end of a 
10.0-cm-long vertical metal rod that has its lower end 
rigidly fixed. The thin film of air between the rod and 
glass is observed to be bright by reflected light when 
it is illuminated by light of wavelength 500 nm. As the 
temperature is slowly increased by 25.0°C, the film 
changes from bright to dark and back to bright 200 
times. What is the coefficient of linear expansion of 
the metal?

	55.	A certain grade of crude oil has an index of refrac-
tion of 1.25. A ship accidentally spills 1.00 m3 of this 
oil into the ocean, and the oil spreads into a thin, uni-
form slick. If the film produces a first-order maximum 
of light of wavelength 500 nm normally incident on it, 
how much surface area of the ocean does the oil slick 
cover? Assume the index of refraction of the ocean 
water is 1.34.

	56.	The waves from a radio station can reach a home 
receiver by two paths. One is a straight-line path from 
transmitter to home, a distance of 30.0 km. The sec-
ond is by reflection from the ionosphere (a layer of 
ionized air molecules high in the atmosphere). Assume 
this reflection takes place at a point midway between 
receiver and transmitter, the wavelength broadcast by 
the radio station is 350 m, and no phase change occurs 
on reflection. Find the minimum height of the iono-
spheric layer that could produce destructive interfer-
ence between the direct and reflected beams.

	57.	 Interference effects are produced at point P on a 
screen as a result of direct rays from a 500-nm source 
and reflected rays from the mirror as shown in Figure 
P37.57. Assume the source is 100 m to the left of the 
screen and 1.00 cm above the mirror. Find the distance 
y to the first dark band above the mirror.

O

Source
P

Viewing screen

Mirror

y

Figure P37.57

	58.	Measurements are made of the intensity distribution 
within the central bright fringe in a Young’s interfer-
ence pattern (see Fig. 37.6). At a particular value of y, it 
is found that I/Imax 5 0.810 when 600-nm light is used. 
What wavelength of light should be used to reduce the 
relative intensity at the same location to 64.0% of the 
maximum intensity?

	59.	Many cells are transparent and colorless. Structures of 
great interest in biology and medicine can be practi-
cally invisible to ordinary microscopy. To indicate the 
size and shape of cell structures, an interference micro-
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1158	C hapter 37  Wave Optics

at the center that is surrounded by 50 dark rings, the 
largest of which is at the outer edge of the lens.  
(a) What is the thickness of the air layer at the center 
of the interference pattern? (b) Calculate the radius 
of the outermost dark ring. (c) Find the focal length of 
the lens.

	66.	A plano-convex lens has index of refraction n. The 
curved side of the lens has radius of curvature R and 
rests on a flat glass surface of the same index of refrac-
tion, with a film of index n film between them, as shown 
in Figure 37.66. The lens is illuminated from above 
by light of wavelength l. Show that the dark Newton’s 
rings have radii given approximately by

r < Å
mlR
n film

		  where r ,, R and m is an integer.

R

n
n film

n

l

r

P O

Figure P37.66

	67.	 Interference fringes are produced using Lloyd’s mirror 
and a source S of wavelength l 5 606 nm as shown in 
Figure P37.67. Fringes separated by Dy 5 1.20 mm are 
formed on a screen a distance L 5 2.00 m from the 
source. Find the vertical distance h of the source above 
the reflecting surface.

S

Viewing
screen

Mirror

P

h

y

L

Figure P37.67

	68.	The quantity nt in Equations 37.17 and 37.18 is called 
the optical path length corresponding to the geometrical 
distance t and is analogous to the quantity d in Equa-
tion 37.1, the path difference. The optical path length 
is proportional to n because a larger index of refrac-
tion shortens the wavelength, so more cycles of a wave 
fit into a particular geometrical distance. (a) Assume a 
mixture of corn syrup and water is prepared in a tank, 
with its index of refraction n increasing uniformly 
from 1.33 at y 5 20.0 cm at the top to 1.90 at y 5 0. 
Write the index of refraction n(y) as a function of y.  

S

Q/C

light of wavelength l 5 650 nm is incident normally, 
55 bright rings are observed, with the last one precisely 
on the edge of the lens. (a) What is the radius R of cur-
vature of the convex surface of the lens? (b) What is 
the focal length of the lens?

O

R

r

l

Figure P37.63

	64.	Why is the following situation impossible? A piece of trans-
parent material having an index of refraction n 5 1.50 
is cut into the shape of a wedge as shown in Figure 
P37.64. Both the top and bottom surfaces of the wedge 
are in contact with air. Monochromatic light of wave-
length l 5 632.8 nm is normally incident from above, 
and the wedge is viewed from above. Let h 5 1.00 mm 
represent the height of the wedge and , 5 0.500 m its 
length. A thin-film interference pattern appears in the 
wedge due to reflection from the top and bottom sur-
faces. You have been given the task of counting the 
number of bright fringes that appear in the entire 
length , of the wedge. You find this task tedious, and 
your concentration is broken by a noisy distraction 
after accurately counting 5 000 bright fringes.

�
x

h

l

Figure P37.64

	65.	A plano-concave lens having index of refraction 1.50 is 
placed on a flat glass plate as shown in Figure P37.65. 
Its curved surface, with radius of curvature 8.00 m, is 
on the bottom. The lens is illuminated from above 
with yellow sodium light of wavelength 589 nm, and a 
series of concentric bright and dark rings is observed 
by reflection. The interference pattern has a dark spot 

Figure P37.65
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	73.	Both sides of a uniform film that has index of refraction 
n and thickness d are in contact with air. For normal 
incidence of light, an intensity minimum is observed in 
the reflected light at l2 and an intensity maximum is 
observed at l1, where l1 . l2. (a) Assuming no inten-
sity minima are observed between l1 and l2, find an 
expression for the integer m in Equations 37.17 and 
37.18 in terms of the wavelengths l1 and l2. (b) Assum-
ing n 5 1.40, l1 5 500 nm, and l2 5 370 nm, determine 
the best estimate for the thickness of the film.

	74.	Slit 1 of a double slit is wider than slit 2 so that the light 
from slit 1 has an amplitude 3.00 times that of the light 
from slit 2. Show that Equation 37.13 is replaced by the 
equation I 5 Imax(1 1 3 cos2 f/2) for this situation.

	75.	Monochromatic light of wavelength 620 nm passes 
through a very narrow slit S and then strikes a screen 
in which are two parallel slits, S1 and S2, as shown in 
Figure P37.75. Slit S1 is directly in line with S and at a 
distance of L 5 1.20 m away from S, whereas S2 is dis-
placed a distance d to one side. The light is detected at 
point P on a second screen, equidistant from S1 and. S2. 
When either slit S1 or S2 is open, equal light intensities 
are measured at point P. When both slits are open, the 
intensity is three times larger. Find the minimum pos-
sible value for the slit separation d.

S1

S2

S

d P

L
Viewing
screen

Figure P37.75

	76.	A plano-convex lens having a radius of curvature of r 5 
4.00 m is placed on a concave glass surface whose 
radius of curvature is R 5 12.0 m as shown in Figure 
P37.76. Assuming 500-nm light is incident normal to 
the flat surface of the lens, determine the radius of the 
100th bright ring.

R

r

Figure P37.76

(b) Compute the optical path length corresponding to 
the 20.0-cm height of the tank by calculating

3
20 cm

0
 n 1y 2dy

		  (c) Suppose a narrow beam of light is directed into  
the mixture at a nonzero angle with respect to the 
normal to the surface of the mixture. Qualitatively 
describe its path.

	69.	Astronomers observe a 60.0-MHz radio source both 
directly and by reflection from the sea as shown in 
Figure P37.17. If the receiving dish is 20.0 m above sea 
level, what is the angle of the radio source above the 
horizon at first maximum?

	70.	Figure CQ37.2 shows an unbroken soap film in a cir-
cular frame. The film thickness increases from top to 
bottom, slowly at first and then rapidly. As a simpler 
model, consider a soap film (n 5 1.33) contained 
within a rectangular wire frame. The frame is held ver-
tically so that the film drains downward and forms a 
wedge with flat faces. The thickness of the film at the 
top is essentially zero. The film is viewed in reflected 
white light with near-normal incidence, and the first 
violet (l 5 420 nm) interference band is observed  
3.00 cm from the top edge of the film. (a) Locate the 
first red (l 5 680 nm) interference band. (b) Deter-
mine the film thickness at the positions of the violet 
and red bands. (c) What is the wedge angle of the film?

Challenge Problems

	71.	Our discussion of the techniques for determining 
constructive and destructive interference by reflec-
tion from a thin film in air has been confined to rays 
striking the film at nearly normal incidence. What If? 
Assume a ray is incident at an angle of 30.0° (relative 
to the normal) on a film with index of refraction 1.38 
surrounded by vacuum. Calculate the minimum thick-
ness for constructive interference of sodium light with 
a wavelength of 590 nm.

	72.	The condition for constructive interference by reflec-
tion from a thin film in air as developed in Section 
37.5 assumes nearly normal incidence. What If? Sup-
pose the light is incident on the film at a nonzero angle 
u1 (relative to the normal). The index of refraction of 
the film is n, and the film is surrounded by vacuum. 
Find the condition for constructive interference that 
relates the thickness t of the film, the index of refrac-
tion n of the film, the wavelength l of the light, and 
the angle of incidence u1.
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1160  	

When plane light waves pass through a small aperture in an opaque barrier, the aper-
ture acts as if it were a point source of light, with waves entering the shadow region behind 
the barrier. This phenomenon, known as diffraction, was first mentioned in Section 35.3, 
and can be described only with a wave model for light. In this chapter, we investigate the 
features of the diffraction pattern that occurs when the light from the aperture is allowed 
to fall upon a screen.
	 In Chapter 34, we learned that electromagnetic waves are transverse. That is, the elec-
tric and magnetic field vectors associated with electromagnetic waves are perpendicular to 
the direction of wave propagation. In this chapter, we show that under certain conditions 
these transverse waves with electric field vectors in all possible transverse directions can be 
polarized in various ways. In other words, only certain directions of the electric field vectors 
are present in the polarized wave.

38.1	 Introduction to Diffraction Patterns
In Sections 35.3 and 37.1, we discussed that light of wavelength comparable to or 
larger than the width of a slit spreads out in all forward directions upon passing 
through the slit. This phenomenon is called diffraction. When light passes through 
a narrow slit, it spreads beyond the narrow path defined by the slit into regions that 
would be in shadow if light traveled in straight lines. Other waves, such as sound 
waves and water waves, also have this property of spreading when passing through 
apertures or by sharp edges.

38.1	 Introduction to Diffraction 
Patterns

38.2	 Diffraction Patterns from 
Narrow Slits

38.3	 Resolution of Single-Slit 
and Circular Apertures

38.4	 The Diffraction Grating

38.5	 Diffraction of X-Rays  
by Crystals

38.6	 Polarization of Light Waves

c h a p t e r 

38 Diffraction Patterns  
and Polarization

The Hubble Space Telescope does 
its viewing above the atmosphere 
and does not suffer from the 
atmospheric blurring, caused by air 
turbulence, that plagues ground-
based telescopes. Despite this 
advantage, it does have limitations 
due to diffraction effects. In this 
chapter, we show how the wave 
nature of light limits the ability of 
any optical system to distinguish 
between closely spaced objects. 
(NASA Hubble Space Telescope Collection)
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	 38.2  Diffraction Patterns from Narrow Slits	 1161

	 You might expect that the light passing through a small opening would simply 
result in a broad region of light on a screen due to the spreading of the light as it 
passes through the opening. We find something more interesting, however. A dif-
fraction pattern consisting of light and dark areas is observed, somewhat similar 
to the interference patterns discussed earlier. For example, when a narrow slit is 
placed between a distant light source (or a laser beam) and a screen, the light pro-
duces a diffraction pattern like that shown in Figure 38.1. The pattern consists of 
a broad, intense central band (called the central maximum) flanked by a series of 
narrower, less intense additional bands (called side maxima or secondary maxima) 
and a series of intervening dark bands (or minima). Figure 38.2 shows a diffraction 
pattern associated with light passing by the edge of an object. Again we see bright 
and dark fringes, which is reminiscent of an interference pattern.
	 Figure 38.3 shows a diffraction pattern associated with the shadow of a penny. 
A bright spot occurs at the center, and circular fringes extend outward from the 
shadow’s edge. We can explain the central bright spot by using the wave theory of 
light, which predicts constructive interference at this point. From the viewpoint 
of ray optics (in which light is viewed as rays traveling in straight lines), we expect 
the center of the shadow to be dark because that part of the viewing screen is com-
pletely shielded by the penny.
	 Shortly before the central bright spot was first observed, one of the supporters 
of ray optics, Simeon Poisson, argued that if Augustin Fresnel’s wave theory of light 
were valid, a central bright spot should be observed in the shadow of a circular 
object illuminated by a point source of light. To Poisson’s astonishment, the spot 
was observed by Dominique Arago shortly thereafter. Therefore, Poisson’s predic-
tion reinforced the wave theory rather than disproving it.

38.2	 Diffraction Patterns from Narrow Slits
Let’s consider a common situation, that of light passing through a narrow open-
ing modeled as a slit and projected onto a screen. To simplify our analysis, we 
assume the observing screen is far from the slit and the rays reaching the screen 
are approximately parallel. (This situation can also be achieved experimentally by 
using a converging lens to focus the parallel rays on a nearby screen.) In this model, 
the pattern on the screen is called a Fraunhofer diffraction pattern.1

	 Figure 38.4a (page 1162) shows light entering a single slit from the left and dif-
fracting as it propagates toward a screen. Figure 38.4b shows the fringe structure of 

Figure 38.1  ​The diffraction pat-
tern that appears on a screen when 
light passes through a narrow vertical 
slit. The pattern consists of a broad 
central fringe and a series of less 
intense and narrower side fringes.
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Figure 38.3  ​Diffraction pattern 
created by the illumination of a 
penny, with the penny positioned 
midway between the screen and 
light source.

Notice the bright spot at 
the center.
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Figure 38.2  ​Light from a small source passes by the edge of an 
opaque object and continues on to a screen. A diffraction pattern 
consisting of bright and dark fringes appears on the screen in the 
region above the edge of the object.

1If the screen is brought close to the slit (and no lens is used), the pattern is a Fresnel diffraction pattern. The Fresnel 
pattern is more difficult to analyze, so we shall restrict our discussion to Fraunhofer diffraction.
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1162	C hapter 38  Diffraction Patterns and Polarization

a Fraunhofer diffraction pattern. A bright fringe is observed along the axis at u 5 0, 
with alternating dark and bright fringes on each side of the central bright fringe.
	 Until now, we have assumed slits are point sources of light. In this section, we 
abandon that assumption and see how the finite width of slits is the basis for under-
standing Fraunhofer diffraction. We can explain some important features of this 
phenomenon by examining waves coming from various portions of the slit as shown 
in Figure 38.5. According to Huygens’s principle, each portion of the slit acts as a 
source of light waves. Hence, light from one portion of the slit can interfere with 
light from another portion, and the resultant light intensity on a viewing screen 
depends on the direction u. Based on this analysis, we recognize that a diffraction 
pattern is actually an interference pattern in which the different sources of light are 
different portions of the single slit! Therefore, the diffraction patterns we discuss 
in this chapter are applications of the waves in interference analysis model.
	 To analyze the diffraction pattern, let’s divide the slit into two halves as shown in 
Figure 38.5. Keeping in mind that all the waves are in phase as they leave the slit, 
consider rays 1 and 3. As these two rays travel toward a viewing screen far to the 
right of the figure, ray 1 travels farther than ray 3 by an amount equal to the path 
difference (a/2) sin u, where a is the width of the slit. Similarly, the path difference 
between rays 2 and 4 is also (a/2) sin u, as is that between rays 3 and 5. If this path 
difference is exactly half a wavelength (corresponding to a phase difference of 180°), 
the pairs of waves cancel each other and destructive interference results. This cancel-
lation occurs for any two rays that originate at points separated by half the slit width 
because the phase difference between two such points is 180°. Therefore, waves from 
the upper half of the slit interfere destructively with waves from the lower half when

a
2

 sin u 5
l

2

or, if we consider waves at angle u both above the dashed line in Figure 38.5 and 
below,

sin u 5  6
l

a

	 Dividing the slit into four equal parts and using similar reasoning, we find that 
the viewing screen is also dark when

sin u 5 62 
l

a

Likewise, dividing the slit into six equal parts shows that darkness occurs on the 
screen when

sin u 5 63 
l

a

Pitfall Prevention 38.1
Diffraction Versus Diffraction 
Pattern  Diffraction refers to the 
general behavior of waves spread-
ing out as they pass through a slit. 
We used diffraction in explaining 
the existence of an interference 
pattern in Chapter 37. A diffraction 
pattern is actually a misnomer, but 
is deeply entrenched in the lan-
guage of physics. The diffraction 
pattern seen on a screen when a 
single slit is illuminated is actually 
another interference pattern. The 
interference is between parts of 
the incident light illuminating dif-
ferent regions of the slit.

Figure 38.4  (a) Geometry for 
analyzing the Fraunhofer diffrac-
tion pattern of a single slit. (Draw-
ing not to scale.) (b) Simulation  
of a single-slit Fraunhofer diffrac-
tion pattern.

Slit

min

min

min

min

max

max

max

Incoming
wave Viewing screen

u

The pattern consists of a 
central bright fringe flanked 
by much weaker maxima 
alternating with dark fringes.

a b

L

Each portion of the slit acts as 
a point source of light waves.

a

a/2

a/2

2

3

2

5

4

1

u

The path difference between 
rays 1 and 3, rays 2 and 4, or 
rays 3 and 5 is (a/ 2) sin u.

sin u
a 

Figure 38.5  ​Paths of light rays 
that encounter a narrow slit of 
width a and diffract toward a 
screen in the direction described 
by angle u (not to scale).
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Therefore, the general condition for destructive interference is

	 sin udark 5 m 
l

a
  m 5 61, 62, 63, c 	 (38.1)

This equation gives the values of udark for which the diffraction pattern has zero 
light intensity, that is, when a dark fringe is formed. It tells us nothing, however, 
about the variation in light intensity along the screen. The general features of the 
intensity distribution are shown in Figure 38.4. A broad, central bright fringe is 
observed; this fringe is flanked by much weaker bright fringes alternating with 
dark fringes. The various dark fringes occur at the values of udark that satisfy Equa-
tion 38.1. Each bright-fringe peak lies approximately halfway between its bordering 
dark-fringe minima. Notice that the central bright maximum is twice as wide as the 
secondary maxima. There is no central dark fringe, represented by the absence of 
m 5 0 in Equation 38.1.

Q	 uick Quiz 38.1 ​ Suppose the slit width in Figure 38.4 is made half as wide. Does 
the central bright fringe (a) become wider, (b) remain the same, or (c) become 
narrower?

WW �Condition for destructive 
interference for a single slit

Pitfall Prevention 38.2 
Similar Equation Warning!  Equa-
tion 38.1 has exactly the same 
form as Equation 37.2, with d, 
the slit separation, used in Equa-
tion 37.2 and a, the slit width, 
used in Equation 38.1. Equation 
37.2, however, describes the bright 
regions in a two-slit interference 
pattern, whereas Equation 38.1 
describes the dark regions in a 
single-slit diffraction pattern.

Example 38.1	     Where Are the Dark Fringes? 

Light of wavelength 580 nm is incident on a slit having a width of 0.300 mm. The viewing screen is 2.00 m from the slit. 
Find the width of the central bright fringe.

Conceptualize  ​Based on the problem statement, we imagine a single-slit diffraction pattern similar to that in Figure 38.4.

Categorize  ​We categorize this example as a straightforward application of our discussion of single-slit diffraction pat-
terns, which comes from the waves in interference analysis model.

AM

S o l u t i o n

Analyze  ​Evaluate Equation 38.1 for the two dark 
fringes that flank the central bright fringe, which 
correspond to m 5 61:

sin udark 5  6
l

a

Let y represent the vertical position along the viewing screen in Figure 38.4a, measured from the point on the screen 
directly behind the slit. Then, tan udark 5 y1/L, where the subscript 1 refers to the first dark fringe. Because udark is very 
small, we can use the approximation sin udark < tan udark; therefore, y1 5 L sin udark.

The width of the central bright fringe is 
twice the absolute value of y1:

2 0 y 1 0 5 2 0 L sin udark 0 5 2 `6L 
l

a
` 5 2L 

l

a
5 2 12.00 m 2 580 3 1029 m

0.300 3 1023 m

5 7.73 3 1023 m 5 7.73 mm

Finalize  ​Notice that this value is much greater than the width of the slit. Let’s explore below what happens if we 
change the slit width.

​What if the slit width is increased by an order of magnitude to 3.00 mm? What happens to the diffraction 
pattern?

Answer  ​Based on Equation 38.1, we expect that the angles at which the dark bands appear will decrease as a increases. 
Therefore, the diffraction pattern narrows.

What If ?

Repeat the calculation with 
the larger slit width:

2 0 y 1 0 5 2L 
l

a
5 2 12.00 m 2 580 3 1029 m

3.00 3 1023 m
5 7.73 3 1024 m 5 0.773 mm

Notice that this result is smaller than the width of the slit. In general, for large values of a , the various maxima and min-
ima are so closely spaced that only a large, central bright area resembling the geometric image of the slit is observed. 
This concept is very important in the performance of optical instruments such as telescopes.
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Intensity of Single-Slit Diffraction Patterns
Analysis of the intensity variation in a diffraction pattern from a single slit of width 
a shows that the intensity is given by

	 I 5 Imax c
sin 1pa sin u/l 2

pa sin u/l
d

2

	 (38.2)

where Imax is the intensity at u 5 0 (the central maximum) and l is the wavelength 
of light used to illuminate the slit. This expression shows that minima occur when

pa sin udark

l
5 mp

or

sin udark 5 m 
l

a
 m 5 61, 62, 63, c

in agreement with Equation 38.1.
	 Figure 38.6a represents a plot of the intensity in the single-slit pattern as given by 
Equation 38.2, and Figure 38.6b is a simulation of a single-slit Fraunhofer diffrac-
tion pattern. Notice that most of the light intensity is concentrated in the central 
bright fringe.

Intensity of Two-Slit Diffraction Patterns
When more than one slit is present, we must consider not only diffraction patterns 
due to the individual slits but also the interference patterns due to the waves com-
ing from different slits. Notice the curved dashed lines in Figure 37.7 in Chapter 
37, which indicate a decrease in intensity of the interference maxima as u increases. 
This decrease is due to a diffraction pattern. The interference patterns in that fig-
ure are located entirely within the central bright fringe of the diffraction pattern, 
so the only hint of the diffraction pattern we see is the falloff in intensity toward 
the outside of the pattern. To determine the effects of both two-slit interference 
and a single-slit diffraction pattern from each slit from a wider viewpoint than that 
in Figure 37.7, we combine Equations 37.14 and 38.2:

	 I 5 Imax cos2  apd sin u
l

 b c sin 1pa sin u/l 2
pa sin u/l

d
2

	 (38.3)

Although this expression looks complicated, it merely represents the single-slit dif-
fraction pattern (the factor in square brackets) acting as an “envelope” for a two-slit 
interference pattern (the cosine-squared factor) as shown in Figure 38.7. The broken 

�I ntensity of a single-slit 
Fraunhofer diffraction 

pattern

� Condition for intensity 
minima for a single slit

Figure 38.6  ​(a) A plot of light 
intensity I versus (p/l)a sin u for 
the single-slit Fraunhofer diffrac-
tion pattern. (b) Simulation of a 
single-slit Fraunhofer diffraction 
pattern.

Imax

�3p�2p �p 2p 3p

I

a sin u
p

p

l

a

b

A minimum in the curve in  a  
corresponds to a dark fringe in  b .

a
b

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 38.2  Diffraction Patterns from Narrow Slits	 1165

blue curve in Figure 38.7 represents the factor in square brackets in Equation 38.3. 
The cosine-squared factor by itself would give a series of peaks all with the same 
height as the highest peak of the red-brown curve in Figure 38.7. Because of the 
effect of the square-bracket factor, however, these peaks vary in height as shown.
	 Equation 37.2 indicates the conditions for interference maxima as d sin u 5 ml, 
where d is the distance between the two slits. Equation 38.1 specifies that the first 
diffraction minimum occurs when a sin u 5 l, where a is the slit width. Dividing 
Equation 37.2 by Equation 38.1 (with m 5 1) allows us to determine which interfer-
ence maximum coincides with the first diffraction minimum:

d sin u
a sin u

5
ml

l

	
d
a

5 m 	 (38.4)

In Figure 38.7, d/a 5 18 mm/3.0 mm 5 6. Therefore, the sixth interference maxi-
mum (if we count the central maximum as m 5 0) is aligned with the first diffrac-
tion minimum and is dark.

Q	 uick Quiz 38.2 ​ Consider the central peak in the diffraction envelope in Figure 
38.7 and look closely at the horizontal scale. Suppose the wavelength of the light 
is changed to 450 nm. What happens to this central peak? (a) The width of the 
peak decreases, and the number of interference fringes it encloses decreases. 
(b) The width of the peak decreases, and the number of interference fringes 
it encloses increases. (c) The width of the peak decreases, and the number of 
interference fringes it encloses remains the same. (d) The width of the peak 
increases, and the number of interference fringes it encloses decreases. (e) The 
width of the peak increases, and the number of interference fringes it encloses 
increases. (f) The width of the peak increases, and the number of interference 
fringes it encloses remains the same. (g) The width of the peak remains the 
same, and the number of interference fringes it encloses decreases. (h) The 
width of the peak remains the same, and the number of interference fringes it 
encloses increases. (i) The width of the peak remains the same, and the number 
of interference fringes it encloses remains the same.

�3p �2p 2p 3p�p p

The diffraction pattern acts 
as an “envelope” (the blue 
dashed curve) that controls 
the intensity of the regularly 
spaced interference maxima.

I

Diffraction
minima

Interference
fringes

a sin u
l

p

Figure 38.7  The combined 
effects of two-slit and single-slit 
interference. This pattern is pro-
duced when 650-nm light waves 
pass through two 3.0-mm slits that 
are 18 mm apart.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



1166	C hapter 38  Diffraction Patterns and Polarization

38.3	 Resolution of Single-Slit and Circular Apertures
The ability of optical systems to distinguish between closely spaced objects is lim-
ited because of the wave nature of light. To understand this limitation, consider 
Figure 38.8, which shows two light sources far from a narrow slit of width a. The 
sources can be two noncoherent point sources S1 and S2; for example, they could 
be two distant stars. If no interference occurred between light passing through dif-
ferent parts of the slit, two distinct bright spots (or images) would be observed on 
the viewing screen. Because of such interference, however, each source is imaged 
as a bright central region flanked by weaker bright and dark fringes, a diffraction 
pattern. What is observed on the screen is the sum of two diffraction patterns: one 
from S1 and the other from S2.
	 If the two sources are far enough apart to keep their central maxima from over-
lapping as in Figure 38.8a, their images can be distinguished and are said to be 
resolved. If the sources are close together as in Figure 38.8b, however, the two cen-
tral maxima overlap and the images are not resolved. To determine whether two 
images are resolved, the following condition is often used:

When the central maximum of one image falls on the first minimum of 
another image, the images are said to be just resolved. This limiting condition 
of resolution is known as Rayleigh’s criterion.

	 From Rayleigh’s criterion, we can determine the minimum angular separation 
umin subtended by the sources at the slit in Figure 38.8 for which the images are just 
resolved. Equation 38.1 indicates that the first minimum in a single-slit diffraction 
pattern occurs at the angle for which

sin u 5
l

a

where a is the width of the slit. According to Rayleigh’s criterion, this expres-
sion gives the smallest angular separation for which the two images are resolved. 
Because l ,, a in most situations, sin u is small and we can use the approximation 
sin u < u. Therefore, the limiting angle of resolution for a slit of width a is

	 umin 5
l

a
	 (38.5)

where umin is expressed in radians. Hence, the angle subtended by the two sources 
at the slit must be greater than l/a if the images are to be resolved.
	 Many optical systems use circular apertures rather than slits. The diffraction pat-
tern of a circular aperture as shown in the photographs of Figure 38.9 consists of 

a b

Slit Viewing screen Slit Viewing screen

u

u

The angle subtended by the 
sources at the slit is large 
enough for the diffraction 
patterns to be distinguishable.

The angle subtended by the 
sources is so small that their 
diffraction patterns overlap, and 
the images are not well resolved.

S1

S2

S1

S2

Figure 38.8  ​Two point sources 
far from a narrow slit each pro-
duce a diffraction pattern. (a) The 
sources are separated by a large 
angle. (b) The sources are sepa-
rated by a small angle. (Notice that 
the angles are greatly exaggerated. 
The drawing is not to scale.)
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a central circular bright disk surrounded by progressively fainter bright and dark 
rings. Figure 38.9 shows diffraction patterns for three situations in which light from 
two point sources passes through a circular aperture. When the sources are far 
apart, their images are well resolved (Fig. 38.9a). When the angular separation of 
the sources satisfies Rayleigh’s criterion, the images are just resolved (Fig. 38.9b). 
Finally, when the sources are close together, the images are said to be unresolved 
(Fig. 38.9c) and the pattern looks like that of a single source.
	 Analysis shows that the limiting angle of resolution of the circular aperture is

	 umin 5 1.22 
l

D
	 (38.6)

where D is the diameter of the aperture. This expression is similar to Equation 38.5 
except for the factor 1.22, which arises from a mathematical analysis of diffraction 
from the circular aperture.

Q	 uick Quiz 38.3  ​Cat’s eyes have pupils that can be modeled as vertical slits. At 
night, would cats be more successful in resolving (a) headlights on a distant car 
or (b) vertically separated lights on the mast of a distant boat?

Q	 uick Quiz 38.4 ​ Suppose you are observing a binary star with a telescope and 
are having difficulty resolving the two stars. You decide to use a colored filter to 
maximize the resolution. (A filter of a given color transmits only that color of 
light.) What color filter should you choose? (a) blue (b) green (c) yellow (d) red

WW �Limiting angle of resolution 
for a circular aperture

a b c

The sources are 
far apart, and 
the patterns are 
well resolved.

The sources are 
so close together 
that the patterns 
are not resolved.

The sources are closer together 
such that the angular separation 
satisfies Rayleigh’s criterion, and 
the patterns are just resolved.

Figure 38.9  ​Individual diffraction 
patterns of two point sources (solid 
curves) and the resultant patterns 
(dashed curves) for various angular 
separations of the sources as the light 
passes through a circular aperture. 
In each case, the dashed curve is the 
sum of the two solid curves.

Example 38.2	     Resolution of the Eye

Light of wavelength 500 nm, near the center of the visible spectrum, enters a human eye. Although pupil diameter var-
ies from person to person, let’s estimate a daytime diameter of 2 mm.

(A)  ​Estimate the limiting angle of resolution for this eye, assuming its resolution is limited only by diffraction.

Conceptualize  ​Identify the pupil of the eye as the aperture through which the light travels. Light passing through this 
small aperture causes diffraction patterns to occur on the retina.

Categorize  ​We determine the result using equations developed in this section, so we categorize this example as a sub-
stitution problem.

S o l u t i o n

continued
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Use Equation 38.6, taking l 5 500 nm and D 5 2 mm: umin 5 1.22 
l

D
5 1.22 a5.00 3 1027 m

2 3 1023 m
b

5 3 3 1024 rad  < 1 min of arc

(B)  ​Determine the minimum separation distance d between 
two point sources that the eye can distinguish if the point 
sources are a distance L 5 25 cm from the observer (Fig. 
38.10).

S o l u t i o n

Substitute numerical values: d 5 (25 cm)(3 3 1024 rad) 5 8 3 1023 cm

Noting that umin is small, find d: sin umin < umin <
d
L

   S   d 5 Lumin

This result is approximately equal to the thickness of a human hair.

Example 38.3	     Resolution of a Telescope

Each of the two telescopes at the Keck Observatory on the dormant Mauna Kea volcano in Hawaii has an effective 
diameter of 10 m. What is its limiting angle of resolution for 600-nm light?

Conceptualize  ​Identify the aperture through which the light travels as the opening of the telescope. Light passing 
through this aperture causes diffraction patterns to occur in the final image.

Categorize  ​We determine the result using equations developed in this section, so we categorize this example as a sub-
stitution problem.

S o l u t i o n

Use Equation 38.6, taking l 5 6.00 3 1027 m and  
D 5 10 m:

umin 5 1.22 
l

D
5 1.22 a6.00 3 1027 m

10 m
b

5 7.3 3 1028 rad  < 0.015 s of arc

Any two stars that subtend an angle greater than or equal to this value are resolved (if atmospheric conditions are 
ideal).

What if we consider radio telescopes? They are much larger in diameter than optical telescopes, but do 
they have better angular resolutions than optical telescopes? For example, the radio telescope at Arecibo, Puerto Rico, 
has a diameter of 305 m and is designed to detect radio waves of 0.75-m wavelength. How does its resolution compare 
with that of one of the Keck telescopes?

Answer  ​The increase in diameter might suggest that radio telescopes would have better resolution than a Keck tele-
scope, but Equation 38.6 shows that umin depends on both diameter and wavelength. Calculating the minimum angle of 
resolution for the radio telescope, we find

umin 5 1.22 
l

D
5 1.22 a0.75 m

305 m
b

5 3.0 3 1023 rad < 10 min of arc

This limiting angle of resolution is measured in minutes of arc rather than the seconds of arc for the optical telescope. 
Therefore, the change in wavelength more than compensates for the increase in diameter. The limiting angle of reso-
lution for the Arecibo radio telescope is more than 40 000 times larger (that is, worse) than the Keck minimum.

What If ?

	

▸ 38.2 c o n t i n u e d

L

d

S1

S2 uminFigure 38.10  ​(Example 
38.2) Two point sources 
separated by a distance d 
as observed by the eye.
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	 A telescope such as the one discussed in Example 38.3 can never reach its dif-
fraction limit because the limiting angle of resolution is always set by atmospheric 
blurring at optical wavelengths. This seeing limit is usually about 1 s of arc and is 
never smaller than about 0.1 s of arc. The atmospheric blurring is caused by varia-
tions in index of refraction with temperature variations in the air. This blurring is 
one reason for the superiority of photographs from orbiting telescopes, which view  
celestial objects from a position above the atmosphere.
	 As an example of the effects of atmospheric blurring, consider telescopic images 
of Pluto and its moon, Charon. Figure 38.11a, an image taken in 1978, represents 
the discovery of Charon. In this photograph, taken from an Earth-based telescope, 
atmospheric turbulence causes the image of Charon to appear only as a bump on 
the edge of Pluto. In comparison, Figure 38.11b shows a photograph taken from 
the Hubble Space Telescope. Without the problems of atmospheric turbulence, 
Pluto and its moon are clearly resolved.

38.4	 The Diffraction Grating
The diffraction grating, a useful device for analyzing light sources, consists of a 
large number of equally spaced parallel slits. A transmission grating can be made 
by cutting parallel grooves on a glass plate with a precision ruling machine. The 
spaces between the grooves are transparent to the light and hence act as separate 
slits. A reflection grating can be made by cutting parallel grooves on the surface of 
a reflective material. The reflection of light from the spaces between the grooves 
is specular, and the reflection from the grooves cut into the material is diffuse. 
Therefore, the spaces between the grooves act as parallel sources of reflected 
light like the slits in a transmission grating. Current technology can produce grat-
ings that have very small slit spacings. For example, a typical grating ruled with  
5 000 grooves/cm has a slit spacing d 5 (1/5 000) cm 5 2.00 3 1024 cm.
	 A section of a diffraction grating is illustrated in Figure 38.12 (page 1170). A 
plane wave is incident from the left, normal to the plane of the grating. The pattern 
observed on the screen far to the right of the grating is the result of the combined 
effects of interference and diffraction. Each slit produces diffraction, and the dif-
fracted beams interfere with one another to produce the final pattern.
	 The waves from all slits are in phase as they leave the slits. For an arbitrary direc-
tion u measured from the horizontal, however, the waves must travel different path 
lengths before reaching the screen. Notice in Figure 38.12 that the path difference 
d between rays from any two adjacent slits is equal to d sin u. If this path difference 
equals one wavelength or some integral multiple of a wavelength, waves from all 
slits are in phase at the screen and a bright fringe is observed. Therefore, the condi-
tion for maxima in the interference pattern at the angle ubright is

	 d sin ubright 5 ml ​ ​  m 5 0, 61, 62, 63, . . .	 (38.7) WW �Condition for interference 
maxima for a grating

Figure 38.11  ​(a) The photo-
graph on which Charon, the moon 
of Pluto, was discovered in 1978. 
From an Earth-based telescope, 
atmospheric blurring results in 
Charon appearing only as a subtle 
bump on the edge of Pluto. (b) A 
Hubble Space Telescope photo of 
Pluto and Charon, clearly resolv-
ing the two objects.
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Pitfall Prevention 38.3
A Diffraction Grating Is an Inter-
ference Grating  As with diffraction 
pattern, diffraction grating is a mis-
nomer, but is deeply entrenched 
in the language of physics. The 
diffraction grating depends on 
diffraction in the same way as the 
double slit, spreading the light so 
that light from different slits can 
interfere. It would be more cor-
rect to call it an interference grating, 
but diffraction grating is the name 
in use.
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	 We can use this expression to calculate the wavelength if we know the grating 
spacing d and the angle ubright. If the incident radiation contains several wave-
lengths, the mth-order maximum for each wavelength occurs at a specific angle. All 
wavelengths are seen at u 5 0, corresponding to m 5 0, the zeroth-order maximum. 
The first-order maximum (m 5 1) is observed at an angle that satisfies the relation-
ship sin ubright 5 l/d, the second-order maximum (m 5 2) is observed at a larger 
angle ubright, and so on. For the small values of d typical in a diffraction grating, the 
angles ubright are large, as we see in Example 38.5.
	 The intensity distribution for a diffraction grating obtained with the use of a 
monochromatic source is shown in Figure 38.13. Notice the sharpness of the 
principal maxima and the broadness of the dark areas compared with the broad 
bright fringes characteristic of the two-slit interference pattern (see Fig. 37.6). You 
should also review Figure 37.7, which shows that the width of the intensity maxima 
decreases as the number of slits increases. Because the principal maxima are so 
sharp, they are much brighter than two-slit interference maxima.

Q	 uick Quiz 38.5 ​ Ultraviolet light of wavelength 350 nm is incident on a diffrac-
tion grating with slit spacing d and forms an interference pattern on a screen 
a distance L away. The angular positions ubright of the interference maxima are 
large. The locations of the bright fringes are marked on the screen. Now red 
light of wavelength 700 nm is used with a diffraction grating to form another 
diffraction pattern on the screen. Will the bright fringes of this pattern be 
located at the marks on the screen if (a) the screen is moved to a distance 2L 
from the grating, (b) the screen is moved to a distance L/2 from the grating, 
(c) the grating is replaced with one of slit spacing 2d, (d) the grating is replaced 
with one of slit spacing d/2, or (e) nothing is changed?

d

P

Incoming plane
wave of light

First-order
maximum
(m � 1)

First-order
maximum
(m � �1)

Central or
zeroth-order
maximum
(m � 0)

Diffraction
grating

P

u u

d � d sin u

Figure 38.12  ​Side view of a dif-
fraction grating. The slit separa-
tion is d, and the path difference 
between adjacent slits is d sin u.

0

m

2l
d

�
d

�
d

2l
d

ll
sin u

�2 �1 0 1 2

Figure 38.13  Intensity versus 
sin u for a diffraction grating. The 
zeroth-, first-, and second-order 
maxima are shown.

Conceptual Example 38.4	     A Compact Disc Is a Diffraction Grating

Light reflected from the surface of a compact 
disc is multicolored as shown in Figure 38.14. 
The colors and their intensities depend on the 
orientation of the CD relative to the eye and rela-
tive to the light source. Explain how that works.

The surface of a CD has a spiral grooved track 
(with adjacent grooves having a separation on 

S o l u t i o n
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Figure 38.14  ​(Conceptual 
Example 38.4) A compact disc 
observed under white light. The 
colors observed in the reflected 
light and their intensities depend 
on the orientation of the CD  
relative to the eye and relative  
to the light source.
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Example 38.5	     The Orders of a Diffraction Grating

Monochromatic light from a helium–neon laser (l 5 632.8 nm) is incident normally on a diffraction grating contain-
ing 6 000 grooves per centimeter. Find the angles at which the first- and second-order maxima are observed.

Conceptualize  ​Study Figure 38.12 and imagine that the light coming from the left originates from the helium–neon 
laser. Let’s evaluate the possible values of the angle u for constructive interference.

Categorize  ​We determine results using equations developed in this section, so we categorize this example as a substi-
tution problem.

S o l u t i o n

Repeat for the second-order maximum (m 5 2): sin u2 5
12 2l

d
5

2 1632.8 nm 2
1 667 nm

5 0.759 4

u2 5 49.418

Calculate the slit separation as the inverse of the number 
of grooves per centimeter:

d 5
1

6 000
 cm 5 1.667 3 1024 cm 5 1 667 nm

What if you looked for the third-order maximum? Would you find it?

Answer  ​For m 5 3, we find sin u3 5 1.139. Because sin u cannot exceed unity, this result does not represent a realistic 
solution. Hence, only zeroth-, first-, and second-order maxima can be observed for this situation.

What If ?

Solve Equation 38.7 for sin u and substitute numerical 
values for the first-order maximum (m 5 1) to find u1:

sin u1 5
11 2l

d
5

632.8 nm
1 667 nm

5 0.379 7

u1 5 22.318

the order of 1 mm). Therefore, the surface acts as a reflection grating. The light reflecting from the regions between 
these closely spaced grooves interferes constructively only in certain directions that depend on the wavelength and the 
direction of the incident light. Any section of the CD serves as a diffraction grating for white light, sending different 
colors in different directions. The different colors you see upon viewing one section change when the light source, the 
CD, or you change position. This change in position causes the angle of incidence or the angle of the diffracted light 
to be altered.

	

▸ 38.4 c o n t i n u e d

Applications of Diffraction Gratings
A schematic drawing of a simple apparatus used to measure angles in a diffraction 
pattern is shown in Figure 38.15 (page 1172). This apparatus is a diffraction grating 
spectrometer. The light to be analyzed passes through a slit, and a collimated beam 
of light is incident on the grating. The diffracted light leaves the grating at angles 
that satisfy Equation 38.7, and a telescope is used to view the image of the slit. The 
wavelength can be determined by measuring the precise angles at which the images 
of the slit appear for the various orders.
	 The spectrometer is a useful tool in atomic spectroscopy, in which the light from 
an atom is analyzed to find the wavelength components. These wavelength com-
ponents can be used to identify the atom. We shall investigate atomic spectra in 
Chapter 42 of the extended version of this text.
	 Another application of diffraction gratings is the grating light valve (GLV), which 
competes in some video display applications with the digital micromirror devices 
(DMDs) discussed in Section 35.4. A GLV is a silicon microchip fitted with an array 
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1172	C hapter 38  Diffraction Patterns and Polarization

of parallel silicon nitride ribbons coated with a thin layer of aluminum (Fig. 38.16). 
Each ribbon is approximately 20 mm long and 5 mm wide and is separated from the 
silicon substrate by an air gap on the order of 100 nm. With no voltage applied, all 
ribbons are at the same level. In this situation, the array of ribbons acts as a flat 
surface, specularly reflecting incident light.
	 When a voltage is applied between a ribbon and the electrode on the silicon 
substrate, an electric force pulls the ribbon downward, closer to the substrate. 
Alternate ribbons can be pulled down, while those in between remain in an ele-
vated configuration. As a result, the array of ribbons acts as a diffraction grating 
such that the constructive interference for a particular wavelength of light can be 
directed toward a screen or other optical display system. If one uses three such 
devices—one each for red, blue, and green light—full-color display is possible.
	 In addition to its use in video display, the GLV has found applications in laser 
optical navigation sensor technology, computer-to-plate commercial printing, and 
other types of imaging.
	 Another interesting application of diffraction gratings is holography, the pro-
duction of three-dimensional images of objects. The physics of holography was 
developed by Dennis Gabor (1900–1979) in 1948 and resulted in the Nobel Prize in  
Physics for Gabor in 1971. The requirement of coherent light for holography delayed 
the realization of holographic images from Gabor’s work until the development of 
lasers in the 1960s. Figure 38.17 shows a single hologram viewed from two different 
positions and the three-dimensional character of its image. Notice in particular the 
difference in the view through the magnifying glass in Figures 38.17a and 38.17b.
	 Figure 38.18 shows how a hologram is made. Light from the laser is split into two 
parts by a half-silvered mirror at B. One part of the beam reflects off the object 
to be photographed and strikes an ordinary photographic film. The other half 
of the beam is diverged by lens L2, reflects from mirrors M1 and M2, and finally 

Telescope
Slit

Source

Grating

Collimator

u

Figure 38.15  Diagram of a diffraction grating spectrometer. The collimated beam incident on the 
grating is spread into its various wavelength components with constructive interference for a particu-
lar wavelength occurring at the angles ubright that satisfy the equation d sin ubright 5 ml, where m 5 0, 
61, 62, . . . .

Figure 38.16  ​A small portion of 
a grating light valve. The alternat-
ing reflective ribbons at different 
levels act as a diffraction grating, 
offering very high-speed control 
of the direction of light toward a 
digital display device.
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Figure 38.17  ​In this hologram, 
a circuit board is shown from 
two different views. Notice the 
difference in the appearance of 
the measuring tape and the view 
through the magnifying lens in 
(a) and (b).
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strikes the film. The two beams overlap to form an extremely complicated interfer-
ence pattern on the film. Such an interference pattern can be produced only if 
the phase relationship of the two waves is constant throughout the exposure of the 
film. This condition is met by illuminating the scene with light coming through a 
pinhole or with coherent laser radiation. The hologram records not only the inten-
sity of the light scattered from the object (as in a conventional photograph), but 
also the phase difference between the reference beam and the beam scattered from 
the object. Because of this phase difference, an interference pattern is formed that 
produces an image in which all three-dimensional information available from the 
perspective of any point on the hologram is preserved.
	 In a normal photographic image, a lens is used to focus the image so that each 
point on the object corresponds to a single point on the photograph. Notice that 
there is no lens used in Figure 38.18 to focus the light onto the film. Therefore, 
light from each point on the object reaches all points on the film. As a result, each 
region of the photographic film on which the hologram is recorded contains infor-
mation about all illuminated points on the object, which leads to a remarkable 
result: if a small section of the hologram is cut from the film, the complete image 
can be formed from the small piece! (The quality of the image is reduced, but the 
entire image is present.)
	 A hologram is best viewed by allowing coherent light to pass through the devel-
oped film as one looks back along the direction from which the beam comes. The 
interference pattern on the film acts as a diffraction grating. Figure 38.19 shows 
two rays of light striking and passing through the film. For each ray, the m 5 0 and 
m 5 61 rays in the diffraction pattern are shown emerging from the right side of 
the film. The m 5 11 rays converge to form a real image of the scene, which is not 
the image that is normally viewed. By extending the light rays corresponding to  
m 5 21 behind the film, we see that there is a virtual image located there, with 
light coming from it in exactly the same way that light came from the actual object 

Virtual
image

HologramIncoming
light ray

Incoming
light ray

m � 0 
 m � �1

Real image

 m � �1

 m � �1

 m � 0

 m � �1

If the m � �1 rays are extended 
backward, a virtual image of the 
object photographed in the 
hologram exists on the front side 
of the hologram. 

Figure 38.19  ​Two light rays 
strike a hologram at normal inci-
dence. For each ray, outgoing rays 
corresponding to m 5 0 and m 5 
61 are shown. 

M2

Film

L1
B

L2

M1

These light rays travel 
to the film without 
striking the object.

These light rays strike 
the object and then 
travel to the film.

Laser

Figure 38.18  ​Experimental 
arrangement for producing a 
hologram.
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1174	C hapter 38  Diffraction Patterns and Polarization

when the film was exposed. This image is what one sees when looking through the 
holographic film.
	 Holograms are finding a number of applications. You may have a hologram on 
your credit card. This special type of hologram is called a rainbow hologram and is 
designed to be viewed in reflected white light.

38.5	 Diffraction of X-Rays by Crystals
In principle, the wavelength of any electromagnetic wave can be determined if a 
grating of the proper spacing (on the order of l) is available. X-rays, discovered by 
Wilhelm Roentgen (1845–1923) in 1895, are electromagnetic waves of very short 
wavelength (on the order of 0.1 nm). It would be impossible to construct a grating 
having such a small spacing by the cutting process described at the beginning of 
Section 38.4. The atomic spacing in a solid is known to be about 0.1 nm, however. 
In 1913, Max von Laue (1879–1960) suggested that the regular array of atoms in a 
crystal could act as a three-dimensional diffraction grating for x-rays. Subsequent 
experiments confirmed this prediction. The diffraction patterns from crystals are 
complex because of the three-dimensional nature of the crystal structure. Never-
theless, x-ray diffraction has proved to be an invaluable technique for elucidating 
these structures and for understanding the structure of matter.
	 Figure 38.20 shows one experimental arrangement for observing x-ray diffrac-
tion from a crystal. A collimated beam of monochromatic x-rays is incident on a 
crystal. The diffracted beams are very intense in certain directions, correspond-
ing to constructive interference from waves reflected from layers of atoms in the 
crystal. The diffracted beams, which can be detected by a photographic film, form 
an array of spots known as a Laue pattern as in Figure 38.21a. One can deduce the 
crystalline structure by analyzing the positions and intensities of the various spots 
in the pattern. Figure 38.21b shows a Laue pattern from a crystalline enzyme, using 
a wide range of wavelengths so that a swirling pattern results.

Photographic
film 

Crystal

X-ray beam

X-ray
source

Figure 38.20  ​Schematic dia-
gram of the technique used to 
observe the diffraction of x-rays 
by a crystal. The array of spots 
formed on the film is called a 
Laue pattern.
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Figure 38.21  ​(a) A Laue pat-
tern of a single crystal of the min-
eral beryl (beryllium aluminum 
silicate). Each dot represents a 
point of constructive interference. 
(b) A Laue pattern of the enzyme 
Rubisco, produced with a wide-
band x-ray spectrum. This enzyme 
is present in plants and takes part 
in the process of photosynthe-
sis. The Laue pattern is used to 
determine the crystal structure of 
Rubisco.
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	 38.6  Polarization of Light Waves	 1175

	 The arrangement of atoms in a crystal of sodium chloride (NaCl) is shown in 
Figure 38.22. Each unit cell (the geometric solid that repeats throughout the crys-
tal) is a cube having an edge length a. A careful examination of the NaCl structure 
shows that the ions lie in discrete planes (the shaded areas in Fig. 38.22). Now 
suppose an incident x-ray beam makes an angle u with one of the planes as in Fig-
ure 38.23. The beam can be reflected from both the upper plane and the lower 
one, but the beam reflected from the lower plane travels farther than the beam 
reflected from the upper plane. The effective path difference is 2d sin u. The two 
beams reinforce each other (constructive interference) when this path difference 
equals some integer multiple of l. The same is true for reflection from the entire 
family of parallel planes. Hence, the condition for constructive interference (max-
ima in the reflected beam) is

	 2d sin u 5 ml ​ ​  m 5 1, 2, 3, . . .	 (38.8)

This condition is known as Bragg’s law, after W. L. Bragg (1890–1971), who first 
derived the relationship. If the wavelength and diffraction angle are measured, 
Equation 38.8 can be used to calculate the spacing between atomic planes.

38.6	 Polarization of Light Waves
In Chapter 34, we described the transverse nature of light and all other electromag-
netic waves. Polarization, discussed in this section, is firm evidence of this trans-
verse nature.
	 An ordinary beam of light consists of a large number of waves emitted by the 
atoms of the light source. Each atom produces a wave having some particular 
orientation of the electric field vector E

S
, corresponding to the direction of atomic 

vibration. The direction of polarization of each individual wave is defined to be the 
direction in which the electric field is vibrating. In Figure 38.24, this direction hap-
pens to lie along the y axis. All individual electromagnetic waves traveling in the x  
direction have an E

S
 vector parallel to the yz plane, but this vector could be at any 

possible angle with respect to the y axis. Because all directions of vibration from 
a wave source are possible, the resultant electromagnetic wave is a superposition 
of waves vibrating in many different directions. The result is an unpolarized light 
beam, represented in Figure 38.25a (page 1176). The direction of wave propaga-
tion in this figure is perpendicular to the page. The arrows show a few possible  

WW Bragg’s law

Pitfall Prevention 38.4
Different Angles  Notice in Figure 
38.23 that the angle u is measured 
from the reflecting surface rather 
than from the normal as in the 
case of the law of reflection in 
Chapter 35. With slits and diffrac-
tion gratings, we also measured 
the angle u from the normal to the 
array of slits. Because of historical 
tradition, the angle is measured 
differently in Bragg diffraction, so 
interpret Equation 38.8 with care.

The blue spheres represent 
Cl� ions, and the red spheres 
represent Na� ions.

a

Figure 38.22  ​Crystalline struc- 
ture of sodium chloride (NaCl).  
The length of the cube edge is  
a 5 0.562 737 nm.

The incident beam can 
reflect from different 
planes of atoms.

Incident
beam

Upper
plane

Lower
plane

d

d sin u 

u u

u

Reflected
beam

Figure 38.23  ​A two-dimensional description of the 
reflection of an x-ray beam from two parallel crystalline 
planes separated by a distance d. The beam reflected 
from the lower plane travels farther than the beam 
reflected from the upper plane by a distance 2d sin u.

z

y

x

B
S

E
S

cS

Figure 38.24  ​Schematic dia-
gram of an electromagnetic wave 
propagating at velocity cS in the 
x direction. The electric field 
vibrates in the xy plane, and the 
magnetic field vibrates in the xz 
plane.
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1176	C hapter 38  Diffraction Patterns and Polarization

directions of the electric field vectors for the individual waves making up the resul-
tant beam. At any given point and at some instant of time, all these individual elec-
tric field vectors add to give one resultant electric field vector.
	 As noted in Section 34.3, a wave is said to be linearly polarized if the resultant 
electric field E

S
 vibrates in the same direction at all times at a particular point as 

shown in Figure 38.25b. (Sometimes, such a wave is described as plane-polarized, or 
simply polarized.) The plane formed by E

S
 and the direction of propagation is called 

the plane of polarization of the wave. If the wave in Figure 38.24 represents the resul-
tant of all individual waves, the plane of polarization is the xy plane.
	 A linearly polarized beam can be obtained from an unpolarized beam by remov-
ing all waves from the beam except those whose electric field vectors oscillate in 
a single plane. We now discuss four processes for producing polarized light from 
unpolarized light.

Polarization by Selective Absorption
The most common technique for producing polarized light is to use a material that 
transmits waves whose electric fields vibrate in a plane parallel to a certain direc-
tion and that absorbs waves whose electric fields vibrate in all other directions.
	 In 1938, E. H. Land (1909–1991) discovered a material, which he called Pola-
roid, that polarizes light through selective absorption. This material is fabricated in 
thin sheets of long-chain hydrocarbons. The sheets are stretched during manufac-
ture so that the long-chain molecules align. After a sheet is dipped into a solution 
containing iodine, the molecules become good electrical conductors. Conduction 
takes place primarily along the hydrocarbon chains because electrons can move 
easily only along the chains. If light whose electric field vector is parallel to the 
chains is incident on the material, the electric field accelerates electrons along the 
chains and energy is absorbed from the radiation. Therefore, the light does not 
pass through the material. Light whose electric field vector is perpendicular to the 
chains passes through the material because electrons cannot move from one mol-
ecule to the next. As a result, when unpolarized light is incident on the material, 
the exiting light is polarized perpendicular to the molecular chains.
	 It is common to refer to the direction perpendicular to the molecular chains 
as the transmission axis. In an ideal polarizer, all light with E

S
 parallel to the trans

mission axis is transmitted and all light with E
S

 perpendicular to the transmission 
axis is absorbed.
	 Figure 38.26 represents an unpolarized light beam incident on a first polarizing 
sheet, called the polarizer. Because the transmission axis is oriented vertically in the 
figure, the light transmitted through this sheet is polarized vertically. A second 
polarizing sheet, called the analyzer, intercepts the beam. In Figure 38.26, the ana-
lyzer transmission axis is set at an angle u to the polarizer axis. We call the electric 
field vector of the first transmitted beam E

S

0 . The component of E
S

0  perpendicular 
to the analyzer axis is completely absorbed. The component of E

S

0  parallel to the 

a b

The red dot signifies the 
velocity vector for the wave 
coming out of the page.

E
S

E
S

Figure 38.25  ​(a) A represen-
tation of an unpolarized light 
beam viewed along the direction 
of propagation. The transverse 
electric field can vibrate in any 
direction in the plane of the page 
with equal probability. (b) A lin-
early polarized light beam with 
the electric field vibrating in the 
vertical direction.

Transmission
axis

u

The polarizer polarizes 
the incident light along 
its transmission axis.

The analyzer allows 
the component of the 
light parallel to its axis 
to pass through.

Unpolarized
light

Polarized
light

E0
S

Figure 38.26  Two polarizing 
sheets whose transmission axes 
make an angle u with each other. 
Only a fraction of the polarized 
light incident on the analyzer is 
transmitted through it.
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	 38.6  Polarization of Light Waves	 1177

analyzer axis, which is transmitted through the analyzer, is E 0 cos u. Because the 
intensity of the transmitted beam varies as the square of its magnitude, we con-
clude that the intensity I of the (polarized) beam transmitted through the analyzer 
varies as

	 I 5 Imax cos2 u	 (38.9)

where Imax is the intensity of the polarized beam incident on the analyzer. This 
expression, known as Malus’s law,2 applies to any two polarizing materials whose 
transmission axes are at an angle u to each other. This expression shows that the 
intensity of the transmitted beam is maximum when the transmission axes are par-
allel (u 5 0 or 180°) and is zero (complete absorption by the analyzer) when the 
transmission axes are perpendicular to each other. This variation in transmitted 
intensity through a pair of polarizing sheets is illustrated in Figure 38.27. Because 
the average value of cos2 u is 12, the intensity of initially unpolarized light is reduced 
by a factor of one-half as the light passes through a single ideal polarizer.

Polarization by Reflection
When an unpolarized light beam is reflected from a surface, the polarization of the 
reflected light depends on the angle of incidence. If the angle of incidence is 0°, the 
reflected beam is unpolarized. For other angles of incidence, the reflected light is 
polarized to some extent, and for one particular angle of incidence, the reflected 
light is completely polarized. Let’s now investigate reflection at that special angle.
	 Suppose an unpolarized light beam is incident on a surface as in Figure 38.28a 
(page 1178). Each individual electric field vector can be resolved into two compo-
nents: one parallel to the surface (and perpendicular to the page in Fig. 38.28, 
represented by the dots) and the other (represented by the orange arrows) perpen-
dicular both to the first component and to the direction of propagation. Therefore, 
the polarization of the entire beam can be described by two electric field compo-
nents in these directions. It is found that the parallel component represented by the 
dots reflects more strongly than the other component represented by the arrows, 
resulting in a partially polarized reflected beam. Furthermore, the refracted beam 
is also partially polarized.
	 Now suppose the angle of incidence u1 is varied until the angle between the 
reflected and refracted beams is 90° as in Figure 38.28b. At this particular angle 
of incidence, the reflected beam is completely polarized (with its electric field vec-
tor parallel to the surface) and the refracted beam is still only partially polarized. 
The angle of incidence at which this polarization occurs is called the polarizing 
angle up.

WW Malus’s law

2Named after its discoverer, E. L. Malus (1775–1812). Malus discovered that reflected light was polarized by viewing 
it through a calcite (CaCO3) crystal.

The transmitted light has 
maximum intensity when 
the transmission axes are 
aligned with each other.

a b c

The transmitted light has 
lesser intensity when the 
transmission axes are at an 
angle of 45� with each other.

The transmitted light 
intensity is a minimum when 
the transmission axes are 
perpendicular to each other.

Figure 38.27  ​The intensity of 
light transmitted through two 
polarizers depends on the relative 
orientation of their transmission 
axes. The red arrows indicate the 
transmission axes of the polarizers.
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1178	C hapter 38  Diffraction Patterns and Polarization

	 We can obtain an expression relating the polarizing angle to the index of refrac-
tion of the reflecting substance by using Figure 38.28b. From this figure, we see 
that up 1 90° 1 u2 5 180°; therefore, u2 5 90° 2 up. Using Snell’s law of refraction 
(Eq. 35.8) gives

n 2

n1
5

sin u1

sin u2
5

sin up

sin u2

Because sin u2 5 sin (90° 2 up) 5 cos up, we can write this expression as n 2/n1 5 
sin up /cos up , which means that

	 tan up 5
n 2

n1
	 (38.10)

This expression is called Brewster’s law, and the polarizing angle up is sometimes 
called Brewster’s angle, after its discoverer, David Brewster (1781–1868). Because n 
varies with wavelength for a given substance, Brewster’s angle is also a function of 
wavelength.
	 We can understand polarization by reflection by imagining that the electric field 
in the incident light sets electrons at the surface of the material in Figure 38.28b 
into oscillation. The component directions of oscillation are (1) parallel to the 
arrows shown on the refracted beam of light and therefore parallel to the reflected 
beam and (2) perpendicular to the page. The oscillating electrons act as dipole 
antennas radiating light with a polarization parallel to the direction of oscillation. 
Consult Figure 34.12, which shows the pattern of radiation from a dipole antenna. 
Notice that there is no radiation at an angle of u 5 0, that is, along the oscillation 
direction of the antenna. Therefore, for the oscillations in direction 1, there is no 
radiation in the direction along the reflected ray. For oscillations in direction 2, 
the electrons radiate light with a polarization perpendicular to the page. There-
fore, the light reflected from the surface at this angle is completely polarized paral-
lel to the surface.
	 Polarization by reflection is a common phenomenon. Sunlight reflected from 
water, glass, and snow is partially polarized. If the surface is horizontal, the electric 
field vector of the reflected light has a strong horizontal component. Sunglasses 
made of polarizing material reduce the glare of reflected light. The transmission 
axes of such lenses are oriented vertically so that they absorb the strong horizontal 
component of the reflected light. If you rotate sunglasses through 90°, they are not 
as effective at blocking the glare from shiny horizontal surfaces.

Brewster’s law 

a b

The dots represent electric 
field oscillations parallel to 
the reflecting surface and 
perpendicular to the page.

The arrows represent 
electric field oscillations 
perpendicular to those 
represented by the dots.

u1

90�

Incident
beam

Reflected
beam

Incident
beam Reflected

beamu1

u2

n2

n1
n2

n1

Refracted
beam

Refracted
beam

Electrons at the surface 
oscillating in the direction of 
the reflected ray (perpendicular 
to the dots and parallel to the 
blue arrow) send no energy in 
this direction.

u2

up
up

Figure 38.28  ​(a) When unpo-
larized light is incident on a 
reflecting surface, the reflected 
and refracted beams are partially 
polarized. (b) The reflected beam 
is completely polarized when the 
angle of incidence equals the 
polarizing angle up , which satisfies 
the equation n 2/n 1 5 tan up . At 
this incident angle, the reflected 
and refracted rays are perpendic-
ular to each other.
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Polarization by Double Refraction
Solids can be classified on the basis of internal structure. Those in which the atoms 
are arranged in a specific order are called crystalline; the NaCl structure of Figure 
38.22 is one example of a crystalline solid. Those solids in which the atoms are dis-
tributed randomly are called amorphous. When light travels through an amorphous 
material such as glass, it travels with a speed that is the same in all directions. That is, 
glass has a single index of refraction. In certain crystalline materials such as calcite 
and quartz, however, the speed of light is not the same in all directions. In these mate-
rials, the speed of light depends on the direction of propagation and on the plane of 
polarization of the light. Such materials are characterized by two indices of refrac-
tion. Hence, they are often referred to as double-refracting or birefringent materials.
	 When unpolarized light enters a birefringent material, it may split into an 
ordinary (O) ray and an extraordinary (E) ray. These two rays have mutually per-
pendicular polarizations and travel at different speeds through the material. The 
two speeds correspond to two indices of refraction, nO for the ordinary ray and nE 
for the extraordinary ray.
	 There is one direction, called the optic axis, along which the ordinary and 
extraordinary rays have the same speed. If light enters a birefringent material at an 
angle to the optic axis, however, the different indices of refraction will cause the two 
polarized rays to split and travel in different directions as shown in Figure 38.29.
	 The index of refraction nO for the ordinary ray is the same in all directions. If 
one could place a point source of light inside the crystal as in Figure 38.30, the ordi-
nary waves would spread out from the source as spheres. The index of refraction nE 
varies with the direction of propagation. A point source sends out an extraordinary 
wave having wave fronts that are elliptical in cross section. The difference in speed 
for the two rays is a maximum in the direction perpendicular to the optic axis. For 
example, in calcite, nO 5 1.658 at a wavelength of 589.3 nm and nE varies from 1.658 
along the optic axis to 1.486 perpendicular to the optic axis. Values for nO and the 
extreme value of nE for various double-refracting crystals are given in Table 38.1.
	 If you place a calcite crystal on a sheet of paper and then look through the crys-
tal at any writing on the paper, you would see two images as shown in Figure 38.31. 
As can be seen from Figure 38.29, these two images correspond to one formed by 
the ordinary ray and one formed by the extraordinary ray. If the two images are 
viewed through a sheet of rotating polarizing glass, they alternately appear and 
disappear because the ordinary and extraordinary rays are plane-polarized along 
mutually perpendicular directions.
	 Some materials such as glass and plastic become birefringent when stressed. Sup-
pose an unstressed piece of plastic is placed between a polarizer and an analyzer so 
that light passes from polarizer to plastic to analyzer. When the plastic is unstressed 
and the analyzer axis is perpendicular to the polarizer axis, none of the polarized 
light passes through the analyzer. In other words, the unstressed plastic has no effect 
on the light passing through it. If the plastic is stressed, however, regions of great-
est stress become birefringent and the polarization of the light passing through the 
plastic changes. Hence, a series of bright and dark bands is observed in the trans-
mitted light, with the bright bands corresponding to regions of greatest stress.

These two rays are polarized 
in mutually perpendicular 
directions.

Unpolarized
light

E ray

O ray

Calcite

Figure 38.29  ​Unpolarized light 
incident at an angle to the optic 
axis in a calcite crystal splits into an 
ordinary (O) ray and an extraordi-
nary (E) ray (not to scale).

The E and O rays propagate 
with the same velocity along 
the optic axis.

E

OS

Optic axis

Figure 38.30  ​A point source S 
inside a double-refracting crystal 
produces a spherical wave front 
corresponding to the ordinary (O) 
ray and an elliptical wave front 
corresponding to the extraordi-
nary (E) ray.

Table 38.1 Indices of Refraction for Some Double-
Refracting Crystals at a Wavelength of 589.3 nm
Crystal	 nO	 nE	 nO/nE

Calcite (CaCO3)	 1.658	 1.486	 1.116
Quartz (SiO2)	 1.544	 1.553	 0.994
Sodium nitrate (NaNO3)	 1.587	 1.336	 1.188
Sodium sulfite (NaSO3)	 1.565	 1.515	 1.033
Zinc chloride (ZnCl2)	 1.687	 1.713	 0.985
Zinc sulfide (ZnS)	 2.356	 2.378	 0.991

Figure 38.31  ​A calcite crystal 
produces a double image because it 
is a birefringent (double-refracting) 
material.
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1180	C hapter 38  Diffraction Patterns and Polarization

	 Engineers often use this technique, called optical stress analysis, in designing struc-
tures ranging from bridges to small tools. They build a plastic model and analyze it 
under different load conditions to determine regions of potential weakness and fail-
ure under stress. An example of a plastic model under stress is shown in Figure 38.32.

Polarization by Scattering
When light is incident on any material, the electrons in the material can absorb and 
reradiate part of the light. Such absorption and reradiation of light by electrons in 
the gas molecules that make up air is what causes sunlight reaching an observer on 
the Earth to be partially polarized. You can observe this effect—called scattering—
by looking directly up at the sky through a pair of sunglasses whose lenses are made 
of polarizing material. Less light passes through at certain orientations of the lenses 
than at others.
	 Figure 38.33 illustrates how sunlight becomes polarized when it is scattered. The 
phenomenon is similar to that creating completely polarized light upon reflection 
from a surface at Brewster’s angle. An unpolarized beam of sunlight traveling in 
the horizontal direction (parallel to the ground) strikes a molecule of one of the 
gases that make up air, setting the electrons of the molecule into vibration. These 
vibrating charges act like the vibrating charges in an antenna. The horizontal 
component of the electric field vector in the incident wave results in a horizontal 
component of the vibration of the charges, and the vertical component of the vec-
tor results in a vertical component of vibration. If the observer in Figure 38.33 is 
looking straight up (perpendicular to the original direction of propagation of the 
light), the vertical oscillations of the charges send no radiation toward the observer. 
Therefore, the observer sees light that is completely polarized in the horizontal 
direction as indicated by the orange arrows. If the observer looks in other direc-
tions, the light is partially polarized in the horizontal direction.
	 Variations in the color of scattered light in the atmosphere can be understood as 
follows. When light of various wavelengths l is incident on gas molecules of diameter 
d, where d ,, l, the relative intensity of the scattered light varies as 1/l4. The condi-
tion d ,, l is satisfied for scattering from oxygen (O2) and nitrogen (N2) molecules 
in the atmosphere, whose diameters are about 0.2 nm. Hence, short wavelengths (vio-
let light) are scattered more efficiently than long wavelengths (red light). Therefore, 
when sunlight is scattered by gas molecules in the air, the short-wavelength radiation 
(violet) is scattered more intensely than the long-wavelength radiation (red).
	 When you look up into the sky in a direction that is not toward the Sun, you see 
the scattered light, which is predominantly violet. Your eyes, however, are not very 
sensitive to violet light. Light of the next color in the spectrum, blue, is scattered 
with less intensity than violet, but your eyes are far more sensitive to blue light than 
to violet light. Hence, you see a blue sky. If you look toward the west at sunset (or 
toward the east at sunrise), you are looking in a direction toward the Sun and are 
seeing light that has passed through a large distance of air. Most of the blue light 
has been scattered by the air between you and the Sun. The light that survives this 

Figure 38.32  A plastic model of 
an arch structure under load con-
ditions. ​The pattern is produced 
when the plastic model is viewed 
between a polarizer and analyzer 
oriented perpendicular to each 
other. Such patterns are useful 
in the optimal design of architec-
tural components.
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The scattered light traveling 
perpendicular to the incident 
light is plane-polarized because 
the vertical vibrations of the 
charges in the air molecule send 
no light in this direction.

Figure 38.33  ​The scattering 
of unpolarized sunlight by air 
molecules.
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	   Summary	 1181

trip through the air to you has had much of its blue component scattered and is 
therefore heavily weighted toward the red end of the spectrum; as a result, you see 
the red and orange colors of sunset (or sunrise).

Optical Activity
Many important applications of polarized light involve materials that display opti-
cal activity. A material is said to be optically active if it rotates the plane of polariza-
tion of any light transmitted through the material. The angle through which the 
light is rotated by a specific material depends on the length of the path through the 
material and on concentration if the material is in solution. One optically active 
material is a solution of the common sugar dextrose. A standard method for deter-
mining the concentration of sugar solutions is to measure the rotation produced by 
a fixed length of the solution.
	 Molecular asymmetry determines whether a material is optically active. For 
example, some proteins are optically active because of their spiral shape.
	 The liquid crystal displays found in most calculators have their optical activity 
changed by the application of electric potential across different parts of the display. 
Try using a pair of polarizing sunglasses to investigate the polarization used in the 
display of your calculator.

Q	 uick Quiz 38.6  ​A polarizer for microwaves can be made as a grid of parallel metal 
wires approximately 1 cm apart. Is the electric field vector for microwaves trans-
mitted through this polarizer (a) parallel or (b) perpendicular to the metal wires?

Q	 uick Quiz 38.7 ​ You are walking down a long hallway that has many light fixtures 
in the ceiling and a very shiny, newly waxed floor. When looking at the floor, you 
see reflections of every light fixture. Now you put on sunglasses that are polar-
ized. Some of the reflections of the light fixtures can no longer be seen. (Try it!) 
Are the reflections that disappear those (a) nearest to you, (b) farthest from you, 
or (c) at an intermediate distance from you?

  The Fraunhofer diffraction pattern produced by a single slit of width a on a 
distant screen consists of a central bright fringe and alternating bright and dark 
fringes of much lower intensities. The angles udark at which the diffraction pat-
tern has zero intensity, corresponding to destructive interference, are given by

	 sin udark 5 m 
l

a
 m 5 61, 62, 63, c	 (38.1)

  Diffraction is the deviation 
of light from a straight-line path 
when the light passes through an 
aperture or around an obstacle. 
Diffraction is due to the wave 
nature of light.

Summary

Concepts and Principles

  A diffraction grating consists of a large number of 
equally spaced, identical slits. The condition for inten-
sity maxima in the interference pattern of a diffraction 
grating for normal incidence is

	 d sin ubright 5 ml ​ ​  m 5 0, 61, 62, 63, . . .	 (38.7)

where d is the spacing between adjacent slits and m is 
the order number of the intensity maximum.

  Rayleigh’s criterion, which is a limiting condition of 
resolution, states that two images formed by an aperture 
are just distinguishable if the central maximum of the 
diffraction pattern for one image falls on the first mini-
mum of the diffraction pattern for the other image. The 
limiting angle of resolution for a slit of width a is umin 5 
l/a, and the limiting angle of resolution for a circular 
aperture of diameter D is given by umin 5 1.22l/D.

continued
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1182	C hapter 38  Diffraction Patterns and Polarization

  In general, reflected light is partially polarized. Reflected light, however, 
is completely polarized when the angle of incidence is such that the angle 
between the reflected and refracted beams is 90°. This angle of incidence, 
called the polarizing angle up, satisfies Brewster’s law:

	 tan up 5
n 2

n1
	 (38.10)

where n1 is the index of refraction of the medium in which the light initially 
travels and n2 is the index of refraction of the reflecting medium.

  When polarized light of 
intensity Imax is emitted by a 
polarizer and then is incident 
on an analyzer, the light trans-
mitted through the analyzer has 
an intensity equal to Imax cos2 u,  
where u is the angle between 
the polarizer and analyzer 
transmission axes.

width of the central bright fringe, measured between 
the centers of the dark fringes on both sides of it. Rank 
from largest to smallest the widths of the central fringe 
in the following situations and note any cases of equal-
ity. (a) The experiment is performed as photographed. 
(b) The experiment is performed with light whose 
frequency is increased by 50%. (c) The experiment is 
performed with light whose wavelength is increased by 
50%. (d) The experiment is performed with the origi-
nal light and with a slit of width 2a. (e) The experiment 
is performed with the original light and slit and with 
distance 2L to the screen.

	 7.	 If plane polarized light is sent through two polarizers, 
the first at 45° to the original plane of polarization and 
the second at 90° to the original plane of polarization, 
what fraction of the original polarized intensity passes 
through the last polarizer? (a) 0  (b) 14  (c) 12  (d) 18   (e) 1

10

	 8.	 Why is it advantageous to use a large-diameter objec-
tive lens in a telescope? (a) It diffracts the light more 
effectively than smaller-diameter objective lenses. 
(b) It increases its magnification. (c) It enables you 
to see more objects in the field of view. (d) It reflects 
unwanted wavelengths. (e) It increases its resolution.

	 9.	 What combination of optical phenomena causes the 
bright colored patterns sometimes seen on wet streets 
covered with a layer of oil? Choose the best answer.  
(a) diffraction and polarization (b) interference and 
diffraction (c)  polarization and reflection (d) refrac-
tion and diffraction (e) reflection and interference

	10.	When you receive a chest x-ray at a hospital, the x-rays 
pass through a set of parallel ribs in your chest. Do 
your ribs act as a diffraction grating for x-rays? (a) Yes. 
They produce diffracted beams that can be observed 
separately. (b) Not to a measurable extent. The ribs are 
too far apart. (c) Essentially not. The ribs are too close 
together. (d) Essentially not. The ribs are too few in 
number. (e) Absolutely not. X-rays cannot diffract.

	11.	 When unpolarized light passes through a diffraction 
grating, does it become polarized? (a) No, it does not. 
(b) Yes, it does, with the transmission axis parallel 
to the slits or grooves in the grating. (c) Yes, it does, 
with the transmission axis perpendicular to the slits or 
grooves in the grating. (d) It possibly does because an 
electric field above some threshold is blocked out by 
the grating if the field is perpendicular to the slits.

	 1.	 Certain sunglasses use a polarizing material to reduce 
the intensity of light reflected as glare from water or 
automobile windshields. What orientation should the 
polarizing filters have to be most effective? (a) The 
polarizers should absorb light with its electric field 
horizontal. (b) The polarizers should absorb light 
with its electric field vertical. (c) The polarizers should 
absorb both horizontal and vertical electric fields.  
(d) The polarizers should not absorb either horizontal 
or vertical electric fields.

	 2.	 What is most likely to happen to a beam of light when 
it reflects from a shiny metallic surface at an arbitrary 
angle? Choose the best answer. (a) It is totally absorbed 
by the surface. (b) It is totally polarized. (c) It is unpo-
larized. (d) It is partially polarized. (e) More informa-
tion is required.

	 3.	 In Figure 38.4, assume the slit is in a barrier that is 
opaque to x-rays as well as to visible light. The photo-
graph in Figure 38.4b shows the diffraction pattern 
produced with visible light. What will happen if the 
experiment is repeated with x-rays as the incoming 
wave and with no other changes? (a) The diffraction 
pattern is similar. (b) There is no noticeable diffrac-
tion pattern but rather a projected shadow of high 
intensity on the screen, having the same width as the 
slit. (c) The central maximum is much wider, and the 
minima occur at larger angles than with visible light. 
(d) No x-rays reach the screen.

	 4.	 A Fraunhofer diffraction pattern is produced on a 
screen located 1.00 m from a single slit. If a light source 
of wavelength 5.00 3 1027 m is used and the distance 
from the center of the central bright fringe to the first 
dark fringe is 5.00 3 1023 m, what is the slit width?  
(a) 0.010 0 mm (b) 0.100 mm (c) 0.200 mm (d) 1.00 mm  
(e) 0.005 00 mm

	 5.	 Consider a wave passing through a single slit. What 
happens to the width of the central maximum of its 
diffraction pattern as the slit is made half as wide?  
(a) It becomes one-fourth as wide. (b) It becomes one-
half as wide. (c) Its width does not change. (d) It becomes 
twice as wide. (e) It becomes four times as wide.

	 6.	 Assume Figure 38.1 was photographed with red light 
of a single wavelength l0. The light passed through 
a single slit of width a and traveled distance L to the 
screen where the photograph was made. Consider the 

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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	 Problems	 1183

greater. What then happens to your ability to resolve 
the two light sources? (a) It increases by a factor of 9. 
(b) It increases by a factor of 3. (c) It remains the same.  
(d) It becomes one-third as good. (e) It becomes one-
ninth as good.

	12.	Off in the distance, you see the headlights of a car, 
but they are indistinguishable from the single head-
light of a motorcycle. Assume the car’s headlights are 
now switched from low beam to high beam so that 
the light intensity you receive becomes three times 

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C

S

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 The atoms in a crystal lie in planes separated by a few 
tenths of a nanometer. Can they produce a diffraction 
pattern for visible light as they do for x-rays? Explain 
your answer with reference to Bragg’s law.

	 2.	 Holding your hand at arm’s length, you can readily 
block sunlight from reaching your eyes. Why can you 
not block sound from reaching your ears this way?

	 3.	 How could the index of refraction of a flat piece of 
opaque obsidian glass be determined?

	 4.	 (a) Is light from the sky polarized? (b) Why is it that 
clouds seen through Polaroid glasses stand out in bold 
contrast to the sky?

	 5.	 A laser beam is incident at a shallow angle on a hori-
zontal machinist’s ruler that has a finely calibrated 
scale. The engraved rulings on the scale give rise to 
a diffraction pattern on a vertical screen. Discuss how 
you can use this technique to obtain a measure of the 
wavelength of the laser light.

	 6.	 If a coin is glued to a glass sheet and this arrangement 
is held in front of a laser beam, the projected shadow 
has diffraction rings around its edge and a bright spot 
in the center. How are these effects possible?

	 7.	 Fingerprints left on a piece of glass such as a window-
pane often show colored spectra like that from a dif-
fraction grating. Why?

	 8.	 A laser produces a beam a few millimeters wide, with 
uniform intensity across its width. A hair is stretched 
vertically across the front of the laser to cross the beam. 
(a) How is the diffraction pattern it produces on a dis-
tant screen related to that of a vertical slit equal in width 
to the hair? (b) How could you determine the width of 
the hair from measurements of its diffraction pattern?

	 9.	 A radio station serves listeners in a city to the north-
east of its broadcast site. It broadcasts from three adja-
cent towers on a mountain ridge, along a line running 
east to west, in what’s called a phased array. Show that 
by introducing time delays among the signals the indi-
vidual towers radiate, the station can maximize net 

intensity in the direction toward the city (and in the 
opposite direction) and minimize the signal transmit-
ted in other directions.

	10.	 John William Strutt, Lord Rayleigh (1842–1919), 
invented an improved foghorn. To warn ships of a coast-
line, a foghorn should radiate sound in a wide horizon-
tal sheet over the ocean’s surface. It should not waste 
energy by broadcasting sound upward or downward. 
Rayleigh’s foghorn trumpet is shown in two possible con-
figurations, horizontal and vertical, in Figure CQ38.10. 
Which is the correct orientation? Decide whether the 
long dimension of the rectangular opening should be 
horizontal or vertical and argue for your decision.

Figure CQ38.10

	11.	 Why can you hear around corners, but not see around 
corners?

	12.	Figure CQ38.12 shows 
a megaphone in use. 
Construct a theoreti-
cal description of how a 
megaphone works. You 
may assume the sound 
of your voice radiates 
just through the open-
ing of your mouth. Most 
of the information in speech is carried not in a signal 
at the fundamental frequency, but in noises and in har-
monics, with frequencies of a few thousand hertz. Does 
your theory allow any prediction that is simple to test?

Figure CQ38.12
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1184	C hapter 38  Diffraction Patterns and Polarization

in Figure P38.10. Show that 
Equation 38.1, the condition 
for destructive interference, 
must be modified to read

   sin udark 5 m 
l

a
 2 sin b   

  m 5 61, 62, 63, . . .

	11.	 A diffraction pattern is 
formed on a screen 120 cm 
away from a 0.400-mm-wide 
slit. Monochromatic 546.1-nm 
light is used. Calculate the 
fractional intensity I/Imax at a 
point on the screen 4.10 mm 
from the center of the principal maximum.

	12.	Coherent light of wavelength 501.5 nm is sent through 
two parallel slits in an opaque material. Each slit is 
0.700 mm wide. Their centers are 2.80 mm apart. The 
light then falls on a semicylindrical screen, with its 
axis at the midline between the slits. We would like to 
describe the appearance of the pattern of light visible 
on the screen. (a) Find the direction for each two-slit 
interference maximum on the screen as an angle away 
from the bisector of the line joining the slits. (b) How 
many angles are there that represent two-slit interfer-
ence maxima? (c) Find the direction for each single-
slit interference minimum on the screen as an angle 
away from the bisector of the line joining the slits. 
(d) How many angles are there that represent single-
slit interference minima? (e) How many of the angles 
in part (d) are identical to those in part (a)? (f) How 
many bright fringes are visible on the screen? (g) If the 
intensity of the central fringe is Imax, what is the inten-
sity of the last fringe visible on the screen?

	13.	A beam of monochromatic light is incident on a single 
slit of width 0.600 mm. A diffraction pattern forms on 
a wall 1.30 m beyond the slit. The distance between the 
positions of zero intensity on both sides of the central 
maximum is 2.00 mm. Calculate the wavelength of the 
light.

Section 38.3 ​ Resolution of Single-Slit and Circular Apertures

Note: In Problems 14, 19, 22, 23, and 67, you may use 
the Rayleigh criterion for the limiting angle of resolu-
tion of an eye. The standard may be overly optimistic 
for human vision.

	14.	The pupil of a cat’s eye narrows to a vertical slit of width 
0.500 mm in daylight. Assume the average wavelength 
of the light is 500 nm. What is the angular resolution 
for horizontally separated mice?

	15.	The angular resolution of a radio telescope is to be 
0.100° when the incident waves have a wavelength of 
3.00 mm. What minimum diameter is required for the 
telescope’s receiving dish?

	16.	A pinhole camera has a small circular aperture of diam-
eter D. Light from distant objects passes through the 
aperture into an otherwise dark box, falling on a 
screen at the other end of the box. The aperture in 
a pinhole camera has diameter D 5 0.600 mm. Two 

M

GP

Section 38.2 ​ Diffraction Patterns from Narrow Slits

	 1.	 Light of wavelength 587.5 nm illuminates a slit of width 
0.75 mm. (a) At what distance from the slit should a 
screen be placed if the first minimum in the diffraction 
pattern is to be 0.85 mm from the central maximum? 
(b) Calculate the width of the central maximum.

	 2.	 Helium–neon laser light (l 5 632.8 nm) is sent 
through a 0.300-mm-wide single slit. What is the width 
of the central maximum on a screen 1.00 m from the 
slit?

	 3.	 Sound with a frequency 650 Hz from a distant source 
passes through a doorway 1.10 m wide in a sound-
absorbing wall. Find (a) the number and (b) the angu-
lar directions of the diffraction minima at listening 
positions along a line parallel to the wall.

	 4.	 A horizontal laser beam of wavelength 632.8 nm has 
a circular cross section 2.00 mm in diameter. A rect-
angular aperture is to be placed in the center of the 
beam so that when the light falls perpendicularly on a 
wall 4.50 m away, the central maximum fills a rectangle 
110 mm wide and 6.00 mm high. The dimensions are 
measured between the minima bracketing the central 
maximum. Find the required (a) width and (b) height 
of the aperture. (c) Is the longer dimension of the cen-
tral bright patch in the diffraction pattern horizontal 
or vertical? (d) Is the longer dimension of the aperture 
horizontal or vertical? (e)  Explain the relationship 
between these two rectangles, using a diagram.

	 5.	 Coherent microwaves of wavelength 5.00 cm enter a 
tall, narrow window in a building otherwise essentially 
opaque to the microwaves. If the window is 36.0 cm 
wide, what is the distance from the central maximum 
to the first-order minimum along a wall 6.50 m from 
the window?

	 6.	 Light of wavelength 540 nm passes through a slit of 
width 0.200 mm. (a) The width of the central maxi-
mum on a screen is 8.10 mm. How far is the screen 
from the slit? (b)  Determine the width of the first 
bright fringe to the side of the central maximum.

	 7.	 A screen is placed 50.0 cm from a single slit, which is 
illuminated with light of wavelength 690 nm. If the dis-
tance between the first and third minima in the dif-
fraction pattern is 3.00 mm, what is the width of the 
slit?

	 8.	 A screen is placed a distance L from a single slit of 
width a, which is illuminated with light of wavelength 
l. Assume L .. a. If the distance between the minima 
for m 5 m1 and m 5 m2 in the diffraction pattern is Dy, 
what is the width of the slit?

	 9.	 Assume light of wavelength 650 nm passes through two 
slits 3.00 mm wide, with their centers 9.00 mm apart. 
Make a sketch of the combined diffraction and inter-
ference pattern in the form of a graph of intensity  
versus f 5 (pa sin u)/l. You may use Figure 38.7 as a 
starting point.

	10.	What If? Suppose light strikes a single slit of width a at 
an angle b from the perpendicular direction as shown 
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	 Problems	 1185

	24.	A circular radar antenna on a Coast Guard ship has 
a diameter of 2.10 m and radiates at a frequency of  
15.0 GHz. Two small boats are located 9.00 km away 
from the ship. How close together could the boats be 
and still be detected as two objects?

Section 38.4 ​ The Diffraction Grating

Note: In the following problems, assume the light is 
incident normally on the gratings.

	25.	A helium–neon laser (l 5 632.8 nm) is used to cali-
brate a diffraction grating. If the first-order maximum 
occurs at 20.5°, what is the spacing between adjacent 
grooves in the grating?

	26.	White light is spread out into its spectral components 
by a diffraction grating. If the grating has 2 000 grooves  
per centimeter, at what angle does red light of wave-
length 640 nm appear in first order?

	27.	Consider an array of parallel wires with uniform spac-
ing of 1.30 cm between centers. In air at 20.0°C, ultra-
sound with a frequency of 37.2 kHz from a distant 
source is incident perpendicular to the array. (a) Find 
the number of directions on the other side of the array 
in which there is a maximum of intensity. (b) Find the 
angle for each of these directions relative to the direc-
tion of the incident beam.

	28.	Three discrete spectral lines occur at angles of 10.1°, 
13.7°, and 14.8° in the first-order spectrum of a grating 
spectrometer. (a) If the grating has 3 660 slits/cm, what 
are the wavelengths of the light? (b) At what angles are 
these lines found in the second-order spectrum?

	29.	The laser in a compact disc player must precisely follow 
the spiral track on the CD, along which the distance 
between one loop of the spiral and the next is only about 
1.25 mm. Figure P38.29 (page 1186) shows how a diffrac-
tion grating is used to provide information to keep the 
beam on track. The laser light passes through a diffrac-
tion grating before it reaches the CD. The strong central 
maximum of the diffraction pattern is used to read the 
information in the track of pits. The two first-order side 
maxima are designed to fall on the flat surfaces on both 
sides of the information track and are used for steer-
ing. As long as both beams are reflecting from smooth, 

W

M

W

point sources of light of wavelength 550 nm are at a 
distance L from the hole. The separation between the 
sources is 2.80 cm, and they are just resolved by the 
camera. What is L?

	17.	 The objective lens of a certain refracting telescope has 
a diameter of 58.0 cm. The telescope is mounted in a 
satellite that orbits the Earth at an altitude of 270 km to 
view objects on the Earth’s surface. Assuming an aver-
age wavelength of 500 nm, find the minimum distance 
between two objects on the ground if their images are 
to be resolved by this lens.

	18.	Yellow light of wavelength 589 nm is used to view an 
object under a microscope. The objective lens diam-
eter is 9.00 mm. (a) What is the limiting angle of reso-
lution? (b) Suppose it is possible to use visible light of 
any wavelength. What color should you choose to give 
the smallest possible angle of resolution, and what is 
this angle? (c) Suppose water fills the space between 
the object and the objective. What effect does this 
change have on the resolving power when 589-nm light 
is used?

	19.	What is the approximate size of the smallest object 
on the Earth that astronauts can resolve by eye when 
they are orbiting 250 km above the Earth? Assume l 5  
500 nm and a pupil diameter of 5.00 mm.

	20.	A helium–neon laser emits light that has a wavelength 
of 632.8 nm. The circular aperture through which the 
beam emerges has a diameter of 0.500 cm. Estimate 
the diameter of the beam 10.0 km from the laser.

	21.	 To increase the resolving power of a microscope, the 
object and the objective are immersed in oil (n 5 1.5). 
If the limiting angle of resolution without the oil is  
0.60 mrad, what is the limiting angle of resolution with 
the oil? Hint: The oil changes the wavelength of the 
light.

	22.	Narrow, parallel, glowing gas-filled tubes in a vari-
ety of colors form block letters to spell out the name 
of a nightclub. Adjacent tubes are all 2.80 cm apart. 
The tubes forming one letter are filled with neon and 
radiate predominantly red light with a wavelength of  
640 nm. For another letter, the tubes emit pre-
dominantly blue light at 440 nm. The pupil of a 
dark-adapted viewer’s eye is 5.20  mm in diameter.  
(a) Which color is easier to resolve? State how you 
decide. (b) If she is in a certain range of distances 
away, the viewer can resolve the separate tubes of one 
color but not the other. The viewer’s distance must be 
in what range for her to resolve the tubes of only one 
of these two colors?

	23.	Impressionist painter Georges Seurat created paint-
ings with an enormous number of dots of pure pig-
ment, each of which was approximately 2.00 mm in 
diameter. The idea was to have colors such as red and 
green next to each other to form a scintillating can-
vas, such as in his masterpiece, A Sunday Afternoon on 
the Island of La Grande Jatte (Fig. P38.23). Assume l 5  
500 nm and a pupil diameter of 5.00 mm. Beyond what 
distance would a viewer be unable to discern individ-
ual dots on the canvas?
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Figure P38.23
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slits, separated by 1.20 mm, and falls on a sheet of pho-
tographic film 1.40 m away. The exposure time is cho-
sen so that the film stays unexposed everywhere except 
at the central region of each bright fringe. (a) Find the 
distance between these interference maxima. The film 
is printed as a transparency; it is opaque everywhere 
except at the exposed lines. Next, the same beam of 
laser light is directed through the transparency and 
allowed to fall on a screen 1.40 m beyond. (b) Argue 
that several narrow, parallel, bright regions, separated 
by 1.20 mm, appear on the screen as real images of the 
original slits. (A similar train of thought, at a soccer 
game, led Dennis Gabor to invent holography.)

	37.	 A beam of bright red light of wavelength 654 nm passes 
through a diffraction grating. Enclosing the space 
beyond the grating is a large semicylindrical screen cen-
tered on the grating, with its axis parallel to the slits in 
the grating. Fifteen bright spots appear on the screen. 
Find (a) the maximum and (b) the minimum possible 
values for the slit separation in the diffraction grating.

Section 38.5 ​ Diffraction of X-Rays by Crystals

	38.	If the spacing between planes of atoms in a NaCl crys-
tal is 0.281 nm, what is the predicted angle at which  
0.140-nm x-rays are diffracted in a first-order maximum?

	39.	Potassium iodide (KI) has the same crystalline struc-
ture as NaCl, with atomic planes separated by 0.353 nm.  
A monochromatic x-ray beam shows a first-order dif-
fraction maximum when the grazing angle is 7.60°. 
Calculate the x-ray wavelength.

	40.	Monochromatic x-rays (l 5 0.166 nm) from a nickel 
target are incident on a potassium chloride (KCl) crys-
tal surface. The spacing between planes of atoms in 
KCl is 0.314 nm. At what angle (relative to the surface) 
should the beam be directed for a second-order maxi-
mum to be observed?

	41.	The first-order diffraction maximum is observed at 
12.6° for a crystal having a spacing between planes of 
atoms of 0.250 nm. (a) What wavelength x-ray is used to 
observe this first-order pattern? (b) How many orders 
can be observed for this crystal at this wavelength?

Section 38.6 ​ Polarization of Light Waves

Problem 62 in Chapter 34 can be assigned with this 
section.

	42.	Why is the following situation impossible? A technician is 
measuring the index of refraction of a solid material 
by observing the polarization of light reflected from 
its surface. She notices that when a light beam is pro-
jected from air onto the material surface, the reflected 
light is totally polarized parallel to the surface when 
the incident angle is 41.0°.

	43.	Plane-polarized light is incident on a single polarizing 
disk with the direction of E

S

0  parallel to the direction 
of the transmission axis. Through what angle should 
the disk be rotated so that the intensity in the transmit-
ted beam is reduced by a factor of (a) 3.00, (b) 5.00, 
and (c) 10.0?

M

M
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nonpitted surfaces, they are detected with constant high 
intensity. If the main beam wanders off the track, how-
ever, one of the side beams begins to strike pits on the 
information track and the reflected light diminishes. 
This change is used with an electronic circuit to guide 
the beam back to the desired location. Assume the laser 
light has a wavelength of 780 nm and the diffraction 
grating is positioned 6.90 mm from the disk. Assume 
the first-order beams are to fall on the CD 0.400 mm on 
either side of the information track. What should be the 
number of grooves per millimeter in the grating?

Laser

Diffraction
grating

Central
maximumFirst-order

maxima

Compact disc

Figure P38.29

	30.	A grating with 250 grooves/mm is used with an incan-
descent light source. Assume the visible spectrum to 
range in wavelength from 400 nm to 700 nm. In how 
many orders can one see (a) the entire visible spec-
trum and (b) the short-wavelength region of the visible 
spectrum?

	31.	 A diffraction grating has 4 200 rulings/cm. On a screen 
2.00 m from the grating, it is found that for a particu-
lar order m, the maxima corresponding to two closely 
spaced wavelengths of sodium (589.0 nm and 589.6 nm) 
are separated by 1.54 mm. Determine the value of m.

	32.	The hydrogen spectrum includes a red line at 656 nm 
and a blue-violet line at 434 nm. What are the angu-
lar separations between these two spectral lines for 
all visible orders obtained with a diffraction grating 
that has 4 500 grooves/cm?

	33.	Light from an argon laser strikes a diffraction grating 
that has 5 310 grooves per centimeter. The central and 
first-order principal maxima are separated by 0.488 m 
on a wall 1.72 m from the grating. Determine the wave-
length of the laser light.

	34.	Show that whenever white light is passed through a dif-
fraction grating of any spacing size, the violet end of 
the spectrum in the third order on a screen always over-
laps the red end of the spectrum in the second order.

	35.	Light of wavelength 500 nm is incident normally on 
a diffraction grating. If the third-order maximum of 
the diffraction pattern is observed at 32.0°, (a) what is 
the number of rulings per centimeter for the grating?  
(b) Determine the total number of primary maxima 
that can be observed in this situation.

	36.	A wide beam of laser light with a wavelength of 
632.8 nm is directed through several narrow parallel 
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(arbitrary). Calculate the transmitted intensity If when 
u1 5 20.0°,  u2 5 40.0°, and  u3 5 60.0°. Hint: Make 
repeated use of Malus’s law.

	52.	Two polarizing sheets are placed together with their 
transmission axes crossed so that no light is trans-
mitted. A third sheet is inserted between them with 
its transmission axis at an angle of 45.0° with respect 
to each of the other axes. Find the fraction of inci-
dent unpolarized light intensity transmitted by the  
three-sheet combination. (Assume each polarizing 
sheet is ideal.) 

Additional Problems

	53.	In a single-slit diffraction pattern, assuming each side 
maximum is halfway between the adjacent minima, 
find the ratio of the intensity of (a) the first-order side 
maximum and (b) the second-order side maximum to 
the intensity of the central maximum.

	54.	Laser light with a wavelength of 632.8 nm is directed 
through one slit or two slits and allowed to fall on a 
screen 2.60 m beyond. Figure P38.54 shows the pat-
tern on the screen, with a centimeter ruler below it.  
(a) Did the light pass through one slit or two slits? 
Explain how you can determine the answer. (b) If one 
slit, find its width. If two slits, find the distance between 
their centers.

5 6 7 8 9 10 11 12 13

Figure P38.54

	55.	In water of uniform depth, a wide pier is supported on 
pilings in several parallel rows 2.80 m apart. Ocean 
waves of uniform wavelength roll in, moving in a direc-
tion that makes an angle of 80.0° with the rows of pil-
ings. Find the three longest wavelengths of waves that 
are strongly reflected by the pilings.

	56.	The second-order dark fringe in a single-slit diffrac-
tion pattern is 1.40 mm from the center of the central 
maximum. Assuming the screen is 85.0 cm from a slit 
of width 0.800 mm and assuming monochromatic  
incident light, calculate the wavelength of the incident 
light.

	57.	 Light from a helium–neon laser (l 5 632.8 nm) is inci-
dent on a single slit. What is the maximum width of the 
slit for which no diffraction minima are observed?

	58.	Two motorcycles separated laterally by 2.30 m are 
approaching an observer wearing night-vision gog-
gles sensitive to infrared light of wavelength 885 nm.  
(a) Assume the light propagates through perfectly 
steady and uniform air. What aperture diameter 
is required if the motorcycles’ headlights are to be 
resolved at a distance of 12.0  km? (b)  Comment on 
how realistic the assumption in part (a) is.

Q/C

W
Q/C

	44.	The angle of incidence of a light beam onto a reflect-
ing surface is continuously variable. The reflected ray 
in air is completely polarized when the angle of inci-
dence is 48.0°. What is the index of refraction of the 
reflecting material?

	45.	Unpolarized light passes through two ideal Polaroid 
sheets. The axis of the first is vertical, and the axis of 
the second is at 30.0° to the vertical. What fraction of 
the incident light is transmitted?

	46.	Two handheld radio transceivers with dipole antennas 
are separated by a large fixed distance. If the transmit-
ting antenna is vertical, what fraction of the maximum 
received power will appear in the receiving antenna 
when it is inclined from the vertical by (a) 15.0°,  
(b) 45.0°, and (c) 90.0°?

	47.	 You use a sequence of ideal polarizing filters, each 
with its axis making the same angle with the axis of 
the previous filter, to rotate the plane of polarization 
of a polarized light beam by a total of 45.0°. You wish 
to have an intensity reduction no larger than 10.0%. 
(a) How many polarizers do you need to achieve 
your goal? (b) What is the angle between adjacent 
polarizers?

	48.	An unpolarized beam of light is incident on a stack of 
ideal polarizing filters. The axis of the first filter is per-
pendicular to the axis of the last filter in the stack. Find 
the fraction by which the transmitted beam’s intensity 
is reduced in the three following cases. (a) Three filters 
are in the stack, each with its transmission axis at 45.0° 
relative to the preceding filter. (b) Four filters are in 
the stack, each with its transmission axis at 30.0° rela-
tive to the preceding filter. (c) Seven filters are in the 
stack, each with its transmission axis at 15.0° relative to 
the preceding filter. (d) Comment on comparing the 
answers to parts (a), (b), and (c).

	49.	The critical angle for total internal reflection for sap-
phire surrounded by air is 34.4°. Calculate the polar-
izing angle for sapphire.

	50.	For a particular transparent medium surrounded by 
air, find the polarizing angle up in terms of the critical 
angle for total internal reflection uc .

	51.	 Three polarizing plates whose planes are parallel are 
centered on a common axis. The directions of the 
transmission axes relative to the common vertical 
direction are shown in Figure P38.51. A linearly polar-
ized beam of light with plane of polarization parallel 
to the vertical reference direction is incident from 
the left onto the first disk with intensity Ii 5 10.0 units 
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1188	C hapter 38  Diffraction Patterns and Polarization

polarized when it is at 36.0° with respect to the surface, 
what is the wavelength of the refracted ray?

	64.	Iridescent peacock feathers are shown in Figure 
P38.64a. The surface of one microscopic barbule is 
composed of transparent keratin that supports rods 
of dark brown melanin in a regular lattice, repre-
sented in Figure P38.64b. (Your fingernails are made 
of keratin, and melanin is the dark pigment giving 
color to human skin.) In a portion of the feather that 
can appear turquoise (blue-green), assume the mela-
nin rods are uniformly separated by 0.25 mm, with 
air between them. (a) Explain how this structure can 
appear turquoise when it contains no blue or green 
pigment. (b) Explain how it can also appear violet if 
light falls on it in a different direction. (c) Explain 
how it can present different colors to your two eyes 
simultaneously, which is a characteristic of iridescence.  
(d) A compact disc can appear to be any color of the 
rainbow. Explain why the portion of the feather in 
Figure P38.64b cannot appear yellow or red. (e) What 
could be different about the array of melanin rods in a 
portion of the feather that does appear to be red?

a

Figure P38.64
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	65.	Light in air strikes a water surface at the polarizing 
angle. The part of the beam refracted into the water 
strikes a submerged slab 
of material with refractive 
index n 5 1.62 as shown 
in Figure P38.65. The 
light reflected from the 
upper surface of the slab 
is completely polarized. 
Find the angle u between 
the water surface and the 
surface of the slab.

	66.	Light in air (assume n 5 1) strikes the surface of a liq-
uid of index of refraction n, at the polarizing angle. 
The part of the beam refracted into the liquid strikes 
a submerged slab of material with refractive index n as 
shown in Figure P38.65. The light reflected from the 
upper surface of the slab is completely polarized. Find 
the angle u between the water surface and the surface 
of the slab as a function of n and n,.

	67.	 An American standard analog television picture (non-
HDTV), also known as NTSC, is composed of approxi-
mately 485 visible horizontal lines of varying light 
intensity. Assume your ability to resolve the lines is  
limited only by the Rayleigh criterion, the pupils of 
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	59.	The Very Large Array (VLA) is a set of 27 radio telescope 
dishes in Catron and Socorro counties, New Mex-
ico (Fig. P38.59). The antennas can be moved apart 
on railroad tracks, and their combined signals give 
the resolving power of a synthetic aperture 36.0 km  
in diameter. (a) If the detectors are tuned to a fre-
quency of 1.40 GHz, what is the angular resolution of 
the VLA? (b) Clouds of interstellar hydrogen radiate at 
the frequency used in part (a). What must be the sepa-
ration distance of two clouds at the center of the gal-
axy, 26 000 light-years away, if they are to be resolved? 
(c) What If? As the telescope looks up, a circling hawk 
looks down. Assume the hawk is most sensitive to green 
light having a wavelength of 500 nm and has a pupil 
of diameter 12.0 mm. Find the angular resolution of 
the hawk’s eye. (d) A mouse is on the ground 30.0 m 
below. By what distance must the mouse’s whiskers be 
separated if the hawk can resolve them?

Figure P38.59
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	60.	Two wavelengths l and l 1 Dl (with Dl ,, l) are inci-
dent on a diffraction grating. Show that the angular 
separation between the spectral lines in the mth-order 
spectrum is

		  Du 5
Dl

"1d/m 22 2 l2

		  where d is the slit spacing and m is the order number.

	61.	 Review. A beam of 541-nm light is incident on a dif-
fraction grating that has 400 grooves/mm. (a) Deter-
mine the angle of the second-order ray. (b) What If? If 
the entire apparatus is immersed in water, what is the 
new second-order angle of diffraction? (c) Show that 
the two diffracted rays of parts (a) and (b) are related 
through the law of refraction.

	62.	Why is the following situation impossible? A technician is 
sending laser light of wavelength 632.8 nm through a 
pair of slits separated by 30.0 mm. Each slit is of width 
2.00 mm. The screen on which he projects the pattern 
is not wide enough, so light from the m 5 15 inter-
ference maximum misses the edge of the screen and 
passes into the next lab station, startling a coworker.

	63.	A 750-nm light beam in air hits the flat surface of a 
certain liquid, and the beam is split into a reflected ray 
and a refracted ray. If the reflected ray is completely 
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graph of intensity versus f has a horizontal tangent at 
maxima and also at minima.

	72.	How much diffraction spreading does a light beam 
undergo? One quantitative answer is the full width at 
half maximum of the central maximum of the single-slit 
Fraunhofer diffraction pattern. You can evaluate this 
angle of spreading in this problem. (a) In Equation 
38.2, define f 5 pa sin u/l and show that at the point 
where I 5 0.5Imax we must have f 5 !2 sin f. (b) Let 
y1 5 sin f and y 2 5 f/!2. Plot y1 and y2 on the same 
set of axes over a range from f 5 1 rad to f 5 p/2 rad.  
Determine f from the point of intersection of the 
two curves. (c) Then show that if the fraction l/a is 
not large, the angular full width at half maximum of  
the central diffraction maximum is u 5 0.885l/a.  
(d) What If? Another method to solve the transcen-
dental equation f 5 !2 sin f in part (a) is to guess 
a first value of f, use a computer or calculator to see 
how nearly it fits, and continue to update your estimate 
until the equation balances. How many steps (itera-
tions) does this process take?

	73.	 Two closely spaced wavelengths of light are incident on a 
diffraction grating. (a) Starting with Equation 38.7, show 
that the angular dispersion of the grating is given by

du

dl
5

m
d cos u

		  (b) A square grating 2.00 cm on each side containing 
8 000 equally spaced slits is used to analyze the spec-
trum of mercury. Two closely spaced lines emitted 
by this element have wavelengths of 579.065 nm and 
576.959 nm. What is the angular separation of these 
two wavelengths in the second-order spectrum?

	74.	Light of wavelength 632.8 nm illuminates a single slit, 
and a diffraction pattern is formed on a screen 1.00 m 
from the slit. (a) Using the data in the following table, 
plot relative intensity versus position. Choose an appro-
priate value for the slit width a and, on the same graph 
used for the experimental data, plot the theoretical 
expression for the relative intensity

I
I max

5
sin2 f

f2

		  where f 5 (pa sin u)/l. (b) What value of a gives the 
best fit of theory and experiment?
	 Position Relative to
	 Central Maximum (mm)	 Relative Intensity

	 0	 1.00
	 0.8	 0.95
	 1.6	 0.80
	 3.2	 0.39
	 4.8	 0.079
	 6.5	 0.003
	 8.1	 0.036
	 9.7	 0.043
	 11.3	 0.013
	 12.9	 0.000 3
	 14.5	 0.012
	 16.1	 0.015
	 17.7	 0.004 4
	 19.3	 0.000 3

your eyes are 5.00  mm in diameter, and the average 
wavelength of the light coming from the screen is  
550 nm. Calculate the ratio of the minimum viewing 
distance to the vertical dimension of the picture such 
that you will not be able to resolve the lines.

	68.	A pinhole camera has a small circular aperture of 
diameter D. Light from distant objects passes through 
the aperture into an otherwise dark box, falling on a 
screen located a distance L away. If D is too large, the 
display on the screen will be fuzzy because a bright 
point in the field of view will send light onto a circle of 
diameter slightly larger than D. On the other hand, if 
D is too small, diffraction will blur the display on the 
screen. The screen shows a reasonably sharp image 
if the diameter of the central disk of the diffraction 
pattern, specified by Equation 38.6, is equal to D at 
the screen. (a) Show that for monochromatic light 
with plane wave fronts and L .. D, the condition for 
a sharp view is fulfilled if D 2 5 2.44lL. (b) Find the 
optimum pinhole diameter for 500-nm light projected 
onto a screen 15.0 cm away.

	69.	The scale of a map is a number of kilometers per centi-
meter specifying the distance on the ground that any 
distance on the map represents. The scale of a spectrum 
is its dispersion, a number of nanometers per centime-
ter, specifying the change in wavelength that a distance 
across the spectrum represents. You must know the 
dispersion if you want to compare one spectrum with 
another or make a measurement of, for example, a Dop-
pler shift. Let y represent the position relative to the  
center of a diffraction pattern projected onto a flat 
screen at distance L by a diffraction grating with slit 
spacing d. The dispersion is dl/dy. (a) Prove that the 
dispersion is given by

dl

dy
5

L2d
m 1L2 1 y 2 23/2

		  (b) A light with a mean wavelength of 550 nm is ana-
lyzed with a grating having 8 000 rulings/cm and pro-
jected onto a screen 2.40 m away. Calculate the disper-
sion in first order.

	70.	(a) Light traveling in a medium of index of refraction 
n1 is incident at an angle u on the surface of a medium 
of index n2. The angle between reflected and refracted 
rays is b. Show that

tan u 5
n 2 sin b

n1 2 n 2 cos b

		  (b) What If? Show that this expression for tan u reduces 
to Brewster’s law when b 5 90°.

	71.	The intensity of light in a diffraction pattern of a single 
slit is described by the equation

I 5 Imax 
sin2 f

f2

		  where f 5 (pa sin u)/l. The central maximum is at 
f 5 0, and the side maxima are approximately at f 5 
1m 1 1

2 2p for m 5 1, 2, 3, . . . . Determine more pre-
cisely (a) the location of the first side maximum, 
where m 5 1, and (b) the location of the second side 
maximum. Suggestion: Observe in Figure 38.6a that the 
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1190	C hapter 38  Diffraction Patterns and Polarization

sources, separated laterally by 20.0 cm, are behind the 
slit. What must be the maximum distance between the 
plane of the sources and the slit if the diffraction pat-
terns are to be resolved? In this case, the approxima-
tion sin u < tan u is not valid because of the relatively 
small value of a/l.

	78.	In Figure P38.78, suppose the transmission axes of 
the left and right polarizing disks are perpendicular 
to each other. Also, let the center disk be rotated on 
the common axis with an angular speed v. Show that 
if unpolarized light is incident on the left disk with an 
intensity Imax, the intensity of the beam emerging from 
the right disk is

I 5 1
16I max 11 2 cos 4vt 2

		  This result means that the intensity of the emerging 
beam is modulated at a rate four times the rate of 
rotation of the center disk. Suggestion: Use the trigo- 
nometric identities cos2 u 5 1

2 11 1 cos 2u 2  and sin2 u 5 
1
2 11 2 cos 2u 2 .

Transmission axis

Transmission
axis

I

Imax

u � vt

Figure P38.78

	79.	Consider a light wave passing through a slit and propa-
gating toward a distant screen. Figure P38.79 shows the 
intensity variation for the pattern on the screen. Give a 
mathematical argument that more than 90% of the 
transmitted energy is in the central maximum of the 
diffraction pattern. Suggestion: You are not expected to 
calculate the precise percentage, but explain the steps 
of your reasoning. You may use the identification

1
12 1

1
32 1

1
52 1 c 5

p2

8

S

Challenge Problems

	75.	Figure P38.75a is a three-dimensional sketch of a bire-
fringent crystal. The dotted lines illustrate how a thin, 
parallel-faced slab of material could be cut from the 
larger specimen with the crystal’s optic axis parallel to 
the faces of the plate. A section cut from the crystal 
in this manner is known as a retardation plate. When a 
beam of light is incident on the plate perpendicular 
to the direction of the optic axis as shown in Figure 
P38.75b, the O ray and the E ray travel along a single 
straight line, but with different speeds. The figure 
shows the wave fronts for the two rays. (a) Let the thick-
ness of the plate be d. Show that the phase difference 
between the O ray and the E ray after traveling the 
thickness of the plate is

u 5
2pd

l
0 nO 2 n E 0

		  where l is the wavelength in air. (b) In a particular 
case, the incident light has a wavelength of 550 nm. 
Find the minimum value of d for a quartz plate for 
which u 5 p/2. Such a plate is called a quarter-wave 
plate. Use values of nO and nE  from Table 38.1.

Optic
axis

Optic
axis

E ray

O ray

d
d

a b

Figure P38.75

	76.	A spy satellite can consist of a large-diameter concave 
mirror forming an image on a digital-camera detec-
tor and sending the picture to a ground receiver by 
radio waves. In effect, it is an astronomical telescope 
in orbit, looking down instead of up. (a) Can a spy sat-
ellite read a license plate? (b) Can it read the date on 
a dime? Argue for your answers by making an order-
of-magnitude calculation, specifying the data you 
estimate.

	77.	 Suppose the single slit in Figure 38.4 is 6.00 cm wide 
and in front of a microwave source operating at  
7.50 GHz. (a) Calculate the angle for the first mini-
mum in the diffraction pattern. (b) What is the rela-
tive intensity I/Imax at u 5 15.0°? (c) Assume two such 

Imax
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I

a sin u
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Figure P38.79
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Modern Physics

The Compact Muon Solenoid 
(CMS) Detector is part of 
the Large Hadron Collider 
at the European Laboratory 
for Particle Physics operated 
by CERN. It is one of several 
detectors that search for 
elementary particles. For a  
sense of scale, the green 
structure to the left of the 
detector and extending to the 
top is five stories high. (CERN)

At the end of the 19th century, many scientists believed they had learned most of 
what there was to know about physics. Newton’s laws of motion and theory of universal 
gravitation, Maxwell’s theoretical work in unifying electricity and magnetism, the laws of ther-
modynamics and kinetic theory, and the principles of optics were highly successful in explaining a 
variety of phenomena.
    At the turn of the 20th century, however, a major revolution shook the world of physics. In 1900, 
Max Planck provided the basic ideas that led to the formulation of the quantum theory, and in 1905, 
Albert Einstein formulated his special theory of relativity. The excitement of the times is captured in 
Einstein’s own words: “It was a marvelous time to be alive.” Both theories were to have a profound 
effect on our understanding of nature. Within a few decades, they inspired new developments in the 
fields of atomic physics, nuclear physics, and condensed-matter physics.
	 In Chapter 39, we shall introduce the special theory of relativity. The theory provides us with a 
new and deeper view of physical laws. Although the predictions of this theory often violate our com-
mon sense, the theory correctly describes the results of experiments involving speeds near the speed 
of light. The extended version of this textbook, Physics for Scientists and Engineers with Modern Phys-
ics, covers the basic concepts of quantum mechanics and their application to atomic and molecular 
physics. In addition, we introduce condensed matter physics, nuclear physics, particle physics, and 
cosmology in the extended version.
	 Even though the physics that was developed during the 20th century has led to a multitude of 
important technological achievements, the story is still incomplete. Discoveries will continue to 
evolve during our lifetimes, and many of these discoveries will deepen or refine our understand-
ing of nature and the Universe around us. It is still a “marvelous time to be alive.”  ■
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Our everyday experiences and observations involve objects that move at speeds much 
less than the speed of light. Newtonian mechanics was formulated by observing and 
describing the motion of such objects, and this formalism is very successful in describing a 
wide range of phenomena that occur at low speeds. Nonetheless, it fails to describe properly 
the motion of objects whose speeds approach that of light.
	 Experimentally, the predictions of Newtonian theory can be tested at high speeds by 
accelerating electrons or other charged particles through a large electric potential dif-
ference. For example, it is possible to accelerate an electron to a speed of 0.99c (where c 
is the speed of light) by using a potential difference of several million volts. According to 
Newtonian mechanics, if the potential difference is increased by a factor of 4, the electron’s 
kinetic energy is four times greater and its speed should double to 1.98c. Experiments show, 
however, that the speed of the electron—as well as the speed of any other object in the Uni-
verse—always remains less than the speed of light, regardless of the size of the accelerating 
voltage. Because it places no upper limit on speed, Newtonian mechanics is contrary to 
modern experimental results and is clearly a limited theory.
	 In 1905, at the age of only 26, Einstein published his special theory of relativity. Regard-
ing the theory, Einstein wrote:

39.1	 The Principle of Galilean 
Relativity

39.2	 The Michelson–Morley 
Experiment

39.3	 Einstein’s Principle of 
Relativity

39.4	 Consequences of the 
Special Theory of Relativity

39.5	 The Lorentz Transformation 
Equations

39.6	 The Lorentz Velocity 
Transformation Equations

39.7	 Relativistic Linear 
Momentum

39.8	 Relativistic Energy

39.9	 The General Theory of 
Relativity

c h a p t e r 

39 Relativity

Standing on the shoulders of a giant. 
David Serway, son of one of the 
authors, watches over two of his 
children, Nathan and Kaitlyn, as they 
frolic in the arms of Albert Einstein’s 
statue at the Einstein memorial in 
Washington, D.C. It is well known 
that Einstein, the principal architect 
of relativity, was very fond of 
children. (Emily Serway)
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	 39.1  The Principle of Galilean Relativity	 1193

The relativity theory arose from necessity, from serious and deep contradictions in the 
old theory from which there seemed no escape. The strength of the new theory lies in 
the consistency and simplicity with which it solves all these difficulties.1

	 Although Einstein made many other important contributions to science, the special the-
ory of relativity alone represents one of the greatest intellectual achievements of all time. 
With this theory, experimental observations can be correctly predicted over the range of 
speeds from v 5 0 to speeds approaching the speed of light. At low speeds, Einstein’s theory 
reduces to Newtonian mechanics as a limiting situation. It is important to recognize that 
Einstein was working on electromagnetism when he developed the special theory of relativ-
ity. He was convinced that Maxwell’s equations were correct, and to reconcile them with 
one of his postulates, he was forced into the revolutionary notion of assuming that space 
and time are not absolute.
	 This chapter gives an introduction to the special theory of relativity, with emphasis on 
some of its predictions. In addition to its well-known and essential role in theoretical phys-
ics, the special theory of relativity has practical applications, including the design of nuclear 
power plants and modern global positioning system (GPS) units. These devices depend on 
relativistic principles for proper design and operation.

39.1	 The Principle of Galilean Relativity
To describe a physical event, we must establish a frame of reference. You should 
recall from Chapter 5 that an inertial frame of reference is one in which an object is 
observed to have no acceleration when no forces act on it. Furthermore, any frame 
moving with constant velocity with respect to an inertial frame must also be an 
inertial frame.
	 There is no absolute inertial reference frame. Therefore, the results of an exper-
iment performed in a vehicle moving with uniform velocity must be identical to the 
results of the same experiment performed in a stationary vehicle. The formal state-
ment of this result is called the principle of Galilean relativity:

The laws of mechanics must be the same in all inertial frames of reference.

Let’s consider an observation that illustrates the equivalence of the laws of mechan-
ics in different inertial frames. The pickup truck in Figure 39.1a moves with a  

WW Principle of Galilean relativity

1A. Einstein and L. Infield, The Evolution of Physics (New York: Simon and Schuster, 1961).

Figure 39.1  ​Two observers 
watch the path of a thrown ball 
and obtain different results.a b

The observer in the moving truck 
sees the ball travel in a vertical 
path when thrown upward.

The Earth-based observer sees
the ball’s path as a parabola.
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1194	C hapter 39 R elativity

constant velocity with respect to the ground. If a passenger in the truck throws a 
ball straight up and if air resistance is neglected, the passenger observes that the 
ball moves in a vertical path. The motion of the ball appears to be precisely the 
same as if the ball were thrown by a person at rest on the Earth. The law of univer-
sal gravitation and the equations of motion under constant acceleration are obeyed 
whether the truck is at rest or in uniform motion.
	 Consider also an observer on the ground as in Figure 39.1b. Both observers agree 
on the laws of physics: the observer in the truck throws a ball straight up, and it 
rises and falls back into his hand according to the particle under constant accelera-
tion model. Do the observers agree on the path of the ball thrown by the observer 
in the truck? The observer on the ground sees the path of the ball as a parabola as 
illustrated in Figure 39.1b, whereas, as mentioned earlier, the observer in the truck 
sees the ball move in a vertical path. Furthermore, according to the observer on the 
ground, the ball has a horizontal component of velocity equal to the velocity of the 
truck, and the horizontal motion of the ball is described by the particle under con-
stant velocity model. Although the two observers disagree on certain aspects of the 
situation, they agree on the validity of Newton’s laws and on the results of applying 
appropriate analysis models that we have learned. This agreement implies that no 
mechanical experiment can detect any difference between the two inertial frames. 
The only thing that can be detected is the relative motion of one frame with respect 
to the other.

Q	 uick Quiz 39.1 ​ Which observer in Figure 39.1 sees the ball’s correct path? (a) the 
observer in the truck ​(b) the observer on the ground ​(c) both observers

y

O

y�

x�

x
vt

P (event)

S�S

x
O�

x�

vS

Figure 39.2  ​An event occurs at 
a point P. The event is seen by two 
observers in inertial frames S and 
S9, where S9 moves with a velocity 
vS relative to S.

	 Suppose some physical phenomenon, which we call an event, occurs and is 
observed by an observer at rest in an inertial reference frame. The wording “in a 
frame” means that the observer is at rest with respect to the origin of that frame. 
The event’s location and time of occurrence can be specified by the four coordi-
nates (x, y, z, t). We would like to be able to transform these coordinates from those 
of an observer in one inertial frame to those of another observer in a frame moving 
with uniform relative velocity compared with the first frame.
	 Consider two inertial frames S and S9 (Fig. 39.2). The S9 frame moves with a con-
stant velocity vS along the common x and x 9 axes, where vS is measured relative to S. 
We assume the origins of S and S9 coincide at t 5 0 and an event occurs at point P in 
space at some instant of time. For simplicity, we show the observer O in the S frame 
and the observer O 9 in the S9 frame as blue dots at the origins of their coordinate 
frames in Figure 39.2, but that is not necessary: either observer could be at any 
fixed location in his or her frame. Observer O describes the event with space–time 
coordinates (x, y, z, t), whereas observer O 9 in S9 uses the coordinates (x 9, y 9, z 9, 
t9) to describe the same event. Model the origin of S9 as a particle under constant 
velocity relative to the origin of S. As we see from the geometry in Figure 39.2, the 
relationships among these various coordinates can be written

	 x 9 5 x 2 vt  ​  y 9 5 y  ​  z 9 5 z  ​  t 9 5 t	 (39.1)

These equations are the Galilean space–time transformation equations. Note that 
time is assumed to be the same in both inertial frames. That is, within the frame-
work of classical mechanics, all clocks run at the same rate, regardless of their 
velocity, so the time at which an event occurs for an observer in S is the same as the 
time for the same event in S9. Consequently, the time interval between two succes-
sive events should be the same for both observers. Although this assumption may 
seem obvious, it turns out to be incorrect in situations where v is comparable to the 
speed of light.
	 Now suppose a particle moves through a displacement of magnitude dx along 
the x axis in a time interval dt as measured by an observer in S. It follows from Equa-
tions 39.1 that the corresponding displacement dx 9 measured by an observer in S9 is 

Galilean transformation 
 equations
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	 39.1  The Principle of Galilean Relativity	 1195

dx9 5 dx 2 v dt, where frame S9 is moving with speed v in the x direction relative to 
frame S. Because dt 5 dt9, we find that

dx r
dt r

5
dx
dt

2 v

or

	 u rx 5 ux 2 v 	 (39.2)

where ux and u9x are the x components of the velocity of the particle measured by 
observers in S and S9, respectively. (We use the symbol uS rather than vS for particle 
velocity because vS is already used for the relative velocity of two reference frames.) 
Equation 39.2 is the Galilean velocity transformation equation. It is consistent with 
our intuitive notion of time and space as well as with our discussions in Section 4.6. 
As we shall soon see, however, it leads to serious contradictions when applied to 
electromagnetic waves.

Q	 uick Quiz 39.2 ​ A baseball pitcher with a 90-mi/h fastball throws a ball while 
standing on a railroad flatcar moving at 110 mi/h. The ball is thrown in the 
same direction as that of the velocity of the train. If you apply the Galilean veloc-
ity transformation equation to this situation, is the speed of the ball relative to 
the Earth (a) 90 mi/h, (b) 110 mi/h, (c) 20 mi/h, (d) 200 mi/h, or (e) impossible 
to determine?

The Speed of Light
It is quite natural to ask whether the principle of Galilean relativity also applies 
to electricity, magnetism, and optics. Experiments indicate that the answer is no. 
Recall from Chapter 34 that Maxwell showed that the speed of light in free space is 
c 5 3.00 3 108 m/s. Physicists of the late 1800s thought light waves move through a 
medium called the ether and the speed of light is c only in a special, absolute frame 
at rest with respect to the ether. The Galilean velocity transformation equation was 
expected to hold for observations of light made by an observer in any frame moving 
at speed v relative to the absolute ether frame. That is, if light travels along the x 
axis and an observer moves with velocity vS along the x axis, the observer measures 
the light to have speed c 6 v, depending on the directions of travel of the observer 
and the light.
	 Because the existence of a preferred, absolute ether frame would show that light 
is similar to other classical waves and that Newtonian ideas of an absolute frame 
are true, considerable importance was attached to establishing the existence of the 
ether frame. Prior to the late 1800s, experiments involving light traveling in media 
moving at the highest laboratory speeds attainable at that time were not capable of 
detecting differences as small as that between c and c 6 v. Starting in about 1880, 
scientists decided to use the Earth as the moving frame in an attempt to improve 
their chances of detecting these small changes in the speed of light.
	 Observers fixed on the Earth can take the view that they are stationary and that 
the absolute ether frame containing the medium for light propagation moves past 
them with speed v. Determining the speed of light under these circumstances is 
similar to determining the speed of an aircraft traveling in a moving air current, 
or wind; consequently, we speak of an “ether wind” blowing through our apparatus 
fixed to the Earth.
	 A direct method for detecting an ether wind would use an apparatus fixed to the 
Earth to measure the ether wind’s influence on the speed of light. If v is the speed 
of the ether relative to the Earth, light should have its maximum speed c 1 v when 
propagating downwind as in Figure 39.3a. Likewise, the speed of light should have 
its minimum value c 2 v when the light is propagating upwind as in Figure 39.3b 
and an intermediate value (c 2 2 v 2)1/2 when the light is directed such that it travels 
perpendicular to the ether wind as in Figure 39.3c. In this latter case, the vector cS 

Pitfall Prevention 39.1
The Relationship Between the 
S and S9 Frames  Many of the 
mathematical representations in 
this chapter are true only for the 
specified relationship between the 
S and S9 frames. The x and x9 axes 
coincide, except their origins are 
different. The y and y9 axes (and 
the z and z9 axes) are parallel, but 
they only coincide at one instant 
due to the time-varying position 
of the origin of S9 with respect to 
that of S. We choose the time t 5 0 
to be the instant at which the ori-
gins of the two coordinate systems 
coincide. If the S9 frame is moving 
in the positive x direction relative 
to S, then v is positive; otherwise, 
it is negative.

vS

� vScS

cS

vS

 
� vScS

cS

vS

cS

The speed of light is c � v in 
the downwind direction.

The speed of light is c � v in 
the upwind direction.

Magnitude: c 
2 � v 

2 

The speed of light is
   c 

2 � v 
2  in the 

direction perpendicular 
to the wind.

a

b

c

Figure 39.3  ​If the velocity of the 
ether wind relative to the Earth 
is vS and the velocity of light rela-
tive to the ether is cS, the speed of 
light relative to the Earth depends 
on the direction of the Earth’s 
velocity.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



1196	C hapter 39 R elativity

must be aimed upstream so that the resultant velocity is perpendicular to the wind, 
like the boat in Figure 4.21b. If the Sun is assumed to be at rest in the ether, the 
velocity of the ether wind would be equal to the orbital velocity of the Earth around 
the Sun, which has a magnitude of approximately 30 km/s or 3 3 104 m/s. Because 
c 5 3 3 108 m/s, it is necessary to detect a change in speed of approximately 1 part 
in 104 for measurements in the upwind or downwind directions. Although such 
a change is experimentally measurable, all attempts to detect such changes and 
establish the existence of the ether wind (and hence the absolute frame) proved 
futile! We shall discuss the classic experimental search for the ether in Section 39.2.
	 The principle of Galilean relativity refers only to the laws of mechanics. If it is 
assumed the laws of electricity and magnetism are the same in all inertial frames, a 
paradox concerning the speed of light immediately arises. That can be understood 
by recognizing that Maxwell’s equations imply that the speed of light always has the 
fixed value 3.00 3 108 m/s in all inertial frames, a result in direct contradiction to 
what is expected based on the Galilean velocity transformation equation. According 
to Galilean relativity, the speed of light should not be the same in all inertial frames.
	 To resolve this contradiction in theories, we must conclude that either (1) the laws 
of electricity and magnetism are not the same in all inertial frames or (2) the Galilean 
velocity transformation equation is incorrect. If we assume the first alternative, a pre-
ferred reference frame in which the speed of light has the value c must exist and the 
measured speed must be greater or less than this value in any other reference frame, 
in accordance with the Galilean velocity transformation equation. If we assume the 
second alternative, we must abandon the notions of absolute time and absolute length 
that form the basis of the Galilean space–time transformation equations.

39.2	 The Michelson–Morley Experiment
The most famous experiment designed to detect small changes in the speed of light 
was first performed in 1881 by A. A. Michelson (see Section 37.6) and later repeated 
under various conditions by Michelson and Edward W. Morley (1838–1923). As we 
shall see, the outcome of the experiment contradicted the ether hypothesis.
	 The experiment was designed to determine the velocity of the Earth relative 
to that of the hypothetical ether. The experimental tool used was the Michelson 
interferometer, which was discussed in Section 37.6 and is shown again in Figure 
39.4. Arm 2 is aligned along the direction of the Earth’s motion through space. 
The Earth moving through the ether at speed v is equivalent to the ether flowing 
past the Earth in the opposite direction with speed v. This ether wind blowing in 
the direction opposite the direction of the Earth’s motion should cause the speed 
of light measured in the Earth frame to be c 2 v as the light approaches mirror M2 
and c 1 v after reflection, where c is the speed of light in the ether frame.
	 The two light beams reflect from M1 and M2 and recombine, and an interference 
pattern is formed as discussed in Section 37.6. The interference pattern is then 
observed while the interferometer is rotated through an angle of 90°. This rotation 
interchanges the speed of the ether wind between the arms of the interferometer. 
The rotation should cause the fringe pattern to shift slightly but measurably. Mea-
surements failed, however, to show any change in the interference pattern! The 
Michelson–Morley experiment was repeated at different times of the year when the 
ether wind was expected to change direction and magnitude, but the results were 
always the same: no fringe shift of the magnitude required was ever observed.2

	 The negative results of the Michelson–Morley experiment not only contradicted 
the ether hypothesis, but also showed that it is impossible to measure the absolute 

2From an Earth-based observer’s point of view, changes in the Earth’s speed and direction of motion in the course 
of a year are viewed as ether wind shifts. Even if the speed of the Earth with respect to the ether were zero at some 
time, six months later the speed of the Earth would be 60 km/s with respect to the ether and as a result a fringe shift 
should be noticed. No shift has ever been observed, however.

According to the ether wind 
theory, the speed of light should 
be c � v as the beam approaches 
mirror M2 and c � v after 
reflection.

M0 M2

M1

Arm 1

Arm 2

Ether wind

Telescope

Light
source

vS

Figure 39.4  A Michelson inter-
ferometer is used in an attempt to 
detect the ether wind.
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	 39.2  The Michelson–Morley Experiment	 1197

velocity of the Earth with respect to the ether frame. Einstein, however, offered a pos-
tulate for his special theory of relativity that places quite a different interpretation on 
these null results. In later years, when more was known about the nature of light, the 
idea of an ether that permeates all of space was abandoned. Light is now understood 
to be an electromagnetic wave, which requires no medium for its propagation. As a 
result, the idea of an ether in which these waves travel became unnecessary.

Details of the Michelson–Morley Experiment
To understand the outcome of the Michelson–Morley experiment, let’s assume the 
two arms of the interferometer in Figure 39.4 are of equal length L. We shall analyze 
the situation as if there were an ether wind because that is what Michelson and Mor-
ley expected to find. As noted above, the speed of the light beam along arm 2 should 
be c 2 v as the beam approaches M2 and c 1 v after the beam is reflected. We model 
a pulse of light as a particle under constant speed. Therefore, the time interval for 
travel to the right for the pulse is Dt 5 L/(c 2 v) and the time interval for travel to 
the left is Dt 5 L/(c 1 v). The total time interval for the round trip along arm 2 is

Dt arm 2 5
L

c 1 v
1

L
c 2 v

5
2Lc

c 2 2 v2 5
2L
c a1 2

v 2

c 2 b
21

	 Now consider the light beam traveling along arm 1, perpendicular to the ether 
wind. Because the speed of the beam relative to the Earth is (c 2 2 v 2)1/2 in this 
case (see Fig. 39.3c), the time interval for travel for each half of the trip is Dt 5  
L/(c 2 2 v 2)1/2 and the total time interval for the round trip is

Dt arm 1 5
2L

1c 2 2 v2 21/2 5
2L
c a1 2

v2

c 2b
21/2

The time difference Dt between the horizontal round trip (arm 2) and the vertical 
round trip (arm 1) is

Dt 5 Dt arm 2 2 Dt arm 1 5
2L
c c a1 2

v2

c 2b
21

2 a1 2
v2

c 2b
21/2

d

Because v 2/c 2 ,, 1, we can simplify this expression by using the following bino-
mial expansion after dropping all terms higher than second order:

(1 2 x)n < 1 2 nx ​ ​  (for x ,, 1)

In our case, x 5 v 2/c 2, and we find that

	 Dt 5 Dt arm 2 2 Dt arm 1 <
Lv2

c 3 	 (39.3)

	 This time difference between the two instants at which the reflected beams 
arrive at the viewing telescope gives rise to a phase difference between the beams, 
producing an interference pattern when they combine at the position of the tele-
scope. A shift in the interference pattern should be detected when the interferom-
eter is rotated through 90° in a horizontal plane so that the two beams exchange 
roles. This rotation results in a time difference twice that given by Equation 39.3. 
Therefore, the path difference that corresponds to this time difference is

Dd 5 c 12 Dt 2 5
2Lv2

c 2

Because a change in path length of one wavelength corresponds to a shift of one 
fringe, the corresponding fringe shift is equal to this path difference divided by the 
wavelength of the light:

	 Shift 5
2Lv2

lc 2 	 (39.4)
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1198	C hapter 39 R elativity

	 In the experiments by Michelson and Morley, each light beam was reflected by 
mirrors many times to give an effective path length L of approximately 11 m. Using 
this value, taking v to be equal to 3.0 3 104 m/s (the speed of the Earth around the 
Sun), and using 500 nm for the wavelength of the light, we expect a fringe shift of

Shift 5
2 111 m 2 13.0 3 104 m/s 22

15.0 3 1027 m 2 13.0 3 108 m/s 22 5 0.44

The instrument used by Michelson and Morley could detect shifts as small as 0.01 
fringe, but it detected no shift whatsoever in the fringe pattern! The experiment has 
been repeated many times since by different scientists under a wide variety of condi-
tions, and no fringe shift has ever been detected. Therefore, it was concluded that 
the motion of the Earth with respect to the postulated ether cannot be detected.
	 Many efforts were made to explain the null results of the Michelson–Morley 
experiment and to save the ether frame concept and the Galilean velocity trans-
formation equation for light. All proposals resulting from these efforts have been 
shown to be wrong. No experiment in the history of physics received such valiant 
efforts to explain the absence of an expected result as did the Michelson–Morley 
experiment. The stage was set for Einstein, who solved the problem in 1905 with his 
special theory of relativity.

39.3	 Einstein’s Principle of Relativity
In the previous section, we noted the impossibility of measuring the speed of the 
ether with respect to the Earth and the failure of the Galilean velocity transforma-
tion equation in the case of light. Einstein proposed a theory that boldly removed 
these difficulties and at the same time completely altered our notion of space and 
time.3 He based his special theory of relativity on two postulates:

	 1.	 The principle of relativity: The laws of physics must be the same in all iner-
tial reference frames.

	 2.	 The constancy of the speed of light: The speed of light in vacuum has the 
same value, c 5 3.00 3 108 m/s, in all inertial frames, regardless of the 
velocity of the observer or the velocity of the source emitting the light.

	 The first postulate asserts that all the laws of physics—those dealing with 
mechanics, electricity and magnetism, optics, thermodynamics, and so on—are the 
same in all reference frames moving with constant velocity relative to one another. 
This postulate is a generalization of the principle of Galilean relativity, which refers 
only to the laws of mechanics. From an experimental point of view, Einstein’s prin-
ciple of relativity means that any kind of experiment (measuring the speed of light, 
for example) performed in a laboratory at rest must give the same result when per-
formed in a laboratory moving at a constant velocity with respect to the first one. 
Hence, no preferred inertial reference frame exists, and it is impossible to detect 
absolute motion.
	 Note that postulate 2 is required by postulate 1: if the speed of light were not the 
same in all inertial frames, measurements of different speeds would make it pos-
sible to distinguish between inertial frames. As a result, a preferred, absolute frame 
could be identified, in contradiction to postulate 1.
	 Although the Michelson–Morley experiment was performed before Einstein 
published his work on relativity, it is not clear whether or not Einstein was aware 
of the details of the experiment. Nonetheless, the null result of the experiment 
can be readily understood within the framework of Einstein’s theory. According to 

3A. Einstein, “On the Electrodynamics of Moving Bodies,” Ann. Physik 17:891, 1905. For an English translation of this 
article and other publications by Einstein, see the book by H. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, The 
Principle of Relativity (New York: Dover, 1958).

Albert Einstein
German-American Physicist 
(1879–1955)
Einstein, one of the greatest physicists 
of all time, was born in Ulm, Germany. 
In 1905, at age 26, he published four 
scientific papers that revolutionized 
physics. Two of these papers were con-
cerned with what is now considered his 
most important contribution: the special 
theory of relativity.
	 In 1916, Einstein published his work 
on the general theory of relativity. The 
most dramatic prediction of this theory 
is the degree to which light is deflected 
by a gravitational field. Measurements 
made by astronomers on bright stars in 
the vicinity of the eclipsed Sun in 1919 
confirmed Einstein’s prediction, and 
Einstein became a world celebrity as a 
result. Einstein was deeply disturbed by 
the development of quantum mechan-
ics in the 1920s despite his own role as 
a scientific revolutionary. In particular, 
he could never accept the probabilistic 
view of events in nature that is a cen-
tral feature of quantum theory. The last 
few decades of his life were devoted 
to an unsuccessful search for a unified 
theory that would combine gravitation 
and electromagnetism.
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	 39.4  Consequences of the Special Theory of Relativity	 1199

his principle of relativity, the premises of the Michelson–Morley experiment were 
incorrect. In the process of trying to explain the expected results, we stated that 
when light traveled against the ether wind, its speed was c 2 v, in accordance with 
the Galilean velocity transformation equation. If the state of motion of the observer 
or of the source has no influence on the value found for the speed of light, how-
ever, one always measures the value to be c. Likewise, the light makes the return 
trip after reflection from the mirror at speed c, not at speed c 1 v. Therefore, the 
motion of the Earth does not influence the interference pattern observed in the 
Michelson–Morley experiment, and a null result should be expected.
	 If we accept Einstein’s theory of relativity, we must conclude that relative motion 
is unimportant when measuring the speed of light. At the same time, we must alter 
our commonsense notion of space and time and be prepared for some surprising 
consequences. As you read the pages ahead, keep in mind that our commonsense 
ideas are based on a lifetime of everyday experiences and not on observations of 
objects moving at hundreds of thousands of kilometers per second. Therefore, these 
results may seem strange, but that is only because we have no experience with them.

39.4	 �Consequences of the Special Theory  
of Relativity

As we examine some of the consequences of relativity in this section, we restrict 
our discussion to the concepts of simultaneity, time intervals, and lengths, all three 
of which are quite different in relativistic mechanics from what they are in Newto-
nian mechanics. In relativistic mechanics, for example, the distance between two 
points and the time interval between two events depend on the frame of reference 
in which they are measured.

Simultaneity and the Relativity of Time
A basic premise of Newtonian mechanics is that a universal time scale exists that is 
the same for all observers. Newton and his followers took simultaneity for granted. 
In his special theory of relativity, Einstein abandoned this assumption.
	 Einstein devised the following thought experiment to illustrate this point. A box-
car moves with uniform velocity, and two bolts of lightning strike its ends as illus-
trated in Figure 39.5a, leaving marks on the boxcar and on the ground. The marks 
on the boxcar are labeled A9 and B 9, and those on the ground are labeled A and B. 
An observer O 9 moving with the boxcar is midway between A9 and B 9, and a ground 
observer O is midway between A and B. The events recorded by the observers are 
the striking of the boxcar by the two lightning bolts.
	 The light signals emitted from A and B at the instant at which the two bolts strike 
later reach observer O at the same time as indicated in Figure 39.5b. This observer 

vS vS

The events appear to be 
simultaneous to the stationary 
observer O who is standing 
midway between A and B.

The events do not appear to be 
simultaneous to observer O�, 
who claims that the front of the 
car is struck before the rear.

A� B�

OA B

O�
A� B�

OA B

O�

a b

Figure 39.5  ​(a) Two lightning 
bolts strike the ends of a moving 
boxcar. (b) The leftward-traveling 
light signal has already passed O9, 
but the rightward-traveling signal 
has not yet reached O9.
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1200	C hapter 39 R elativity

realizes that the signals traveled at the same speed over equal distances and so con-
cludes that the events at A and B occurred simultaneously. Now consider the same 
events as viewed by observer O 9. By the time the signals have reached observer O, 
observer O 9 has moved as indicated in Figure 39.5b. Therefore, the signal from 
B 9 has already swept past O 9, but the signal from A9 has not yet reached O 9. In 
other words, O 9 sees the signal from B 9 before seeing the signal from A9. Accord-
ing to Einstein, the two observers must find that light travels at the same speed. Therefore, 
observer O 9 concludes that one lightning bolt strikes the front of the boxcar before 
the other one strikes the back.
	 This thought experiment clearly demonstrates that the two events that appear 
to be simultaneous to observer O do not appear to be simultaneous to observer O 9. 
Simultaneity is not an absolute concept but rather one that depends on the state 
of motion of the observer. Einstein’s thought experiment demonstrates that two 
observers can disagree on the simultaneity of two events. This disagreement, how-
ever, depends on the transit time of light to the observers and therefore does not 
demonstrate the deeper meaning of relativity. In relativistic analyses of high-speed 
situations, simultaneity is relative even when the transit time is subtracted out. In 
fact, in all the relativistic effects we discuss, we ignore differences caused by the 
transit time of light to the observers.

Time Dilation
To illustrate that observers in different inertial frames can measure different time 
intervals between a pair of events, consider a vehicle moving to the right with a 
speed v such as the boxcar shown in Figure 39.6a. A mirror is fixed to the ceiling 
of the vehicle, and observer O 9 at rest in the frame attached to the vehicle holds a 
flashlight a distance d below the mirror. At some instant, the flashlight emits a pulse 
of light directed toward the mirror (event 1), and at some later time after reflecting 
from the mirror, the pulse arrives back at the flashlight (event 2). Observer O 9 car-
ries a clock and uses it to measure the time interval Dtp between these two events. 
(The subscript p stands for proper, as we shall see in a moment.) We model the pulse 
of light as a particle under constant speed. Because the light pulse has a speed c, 
the time interval required for the pulse to travel from O 9 to the mirror and back is

	 Dtp 5
distance traveled

speed
5

2d
c

	 (39.5)

a

Observer O � 
sees the light 
pulse move up 
and down 
vertically a total 
distance of 2d.

vS

d d

Observer O  sees the light pulse move 
on a diagonal path and measures a 
distance of travel greater than 2d.

vS

O

v ∆t

c

v �t
2

b

c �t
2

O � O � O � O �

x �

y �

Mirror

Figure 39.6  (a) A mirror is fixed to a moving vehicle, and a light pulse is sent out by observer O9 at 
rest in the vehicle. (b) Relative to a stationary observer O standing alongside the vehicle, the mirror 
and O9 move with a speed v. (c) The right triangle for calculating the relationship between Dt and Dtp.

Pitfall Prevention 39.2
Who’s Right?  You might wonder 
which observer in Figure 39.5 
is correct concerning the two 
lightning strikes. Both are correct 
because the principle of relativ-
ity states that there is no preferred 
inertial frame of reference. Although 
the two observers reach differ-
ent conclusions, both are correct 
in their own reference frame 
because the concept of simultane-
ity is not absolute. That, in fact, 
is the central point of relativity: 
any uniformly moving frame of 
reference can be used to describe 
events and do physics.
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	 39.4  Consequences of the Special Theory of Relativity	 1201

	 Now consider the same pair of events as viewed by observer O in a second frame at 
rest with respect to the ground as shown in Figure 39.6b. According to this observer, 
the mirror and the flashlight are moving to the right with a speed v, and as a result, 
the sequence of events appears entirely different. By the time the light from the 
flashlight reaches the mirror, the mirror has moved to the right a distance v Dt/2, 
where Dt is the time interval required for the light to travel from O9 to the mirror 
and back to O9 as measured by O. Observer O concludes that because of the motion 
of the vehicle, if the light is to hit the mirror, it must leave the flashlight at an angle 
with respect to the vertical direction. Comparing Figure 39.6a with Figure 39.6b, we 
see that the light must travel farther in part (b) than in part (a). (Notice that neither 
observer “knows” that he or she is moving. Each is at rest in his or her own inertial 
frame.)
	 According to the second postulate of the special theory of relativity, both observ-
ers must measure c for the speed of light. Because the light travels farther accord-
ing to O, the time interval Dt measured by O is longer than the time interval Dtp 
measured by O 9. To obtain a relationship between these two time intervals, let’s use 
the right triangle shown in Figure 39.6c. The Pythagorean theorem gives

ac Dt
2

b
2

5 av Dt
2

b
2

1 d2

Solving for Dt gives

	 Dt 5
2d

"c 2 2 v2
5

2d

c Å1 2
v2

c2

	 (39.6)

Because Dtp 5 2d/c, we can express this result as

	 Dt 5
Dtp

Å1 2
v2

c 2

5 g Dtp 	 (39.7)

where

	 g 5
1

Å1 2
v2

c 2

	 (39.8)

Because g is always greater than unity, Equation 39.7 shows that the time interval 
Dt measured by an observer moving with respect to a clock is longer than the time 
interval Dtp measured by an observer at rest with respect to the clock. This effect is 
known as time dilation.
	 Time dilation is not observed in our everyday lives, which can be understood by 
considering the factor g. This factor deviates significantly from a value of 1 only for 
very high speeds as shown in Figure 39.7 and Table 39.1. For example, for a speed 
of 0.1c, the value of g is 1.005. Therefore, there is a time dilation of only 0.5% at  

WW Time dilation

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

10

15

20

5

1 v (108 m/s)

g

Figure 39.7  ​Graph of g versus 
v. As the speed approaches that of 
light, g increases rapidly.

Table 39.1 Approximate 
Values for g at Various 
Speeds
v/c	 g

0	 1
0.001 0	 1.000 000 5
0.010	 1.000 05
0.10	 1.005
0.20	 1.021
0.30	 1.048
0.40	 1.091
0.50	 1.155
0.60	 1.250
0.70	 1.400
0.80	 1.667
0.90	 2.294
0.92	 2.552
0.94	 2.931
0.96	 3.571
0.98	 5.025
0.99	 7.089
0.995	 10.01
0.999	 22.37
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1202	C hapter 39 R elativity

one-tenth the speed of light. Speeds encountered on an everyday basis are far 
slower than 0.1c, so we do not experience time dilation in normal situations.
	 The time interval Dtp in Equations 39.5 and 39.7 is called the proper time inter-
val. (Einstein used the German term Eigenzeit, which means “own-time.”) In gen-
eral, the proper time interval is the time interval between two events measured by 
an observer who sees the events occur at the same point in space.
	 If a clock is moving with respect to you, the time interval between ticks of the 
moving clock is observed to be longer than the time interval between ticks of an 
identical clock in your reference frame. Therefore, it is often said that a moving 
clock is measured to run more slowly than a clock in your reference frame by a fac-
tor g. We can generalize this result by stating that all physical processes, including 
mechanical, chemical, and biological ones, are measured to slow down when those 
processes occur in a frame moving with respect to the observer. For example, the 
heartbeat of an astronaut moving through space keeps time with a clock inside the 
spacecraft. Both the astronaut’s clock and heartbeat are measured to slow down 
relative to a clock back on the Earth (although the astronaut would have no sensa-
tion of life slowing down in the spacecraft).

Q	 uick Quiz 39.3  ​Suppose the observer O9 on the train in Figure 39.6 aims her 
flashlight at the far wall of the boxcar and turns it on and off, sending a pulse 
of light toward the far wall. Both O9 and O measure the time interval between 
when the pulse leaves the flashlight and when it hits the far wall. Which observer 
measures the proper time interval between these two events? (a) O9 (b) O  
(c) both observers (d) neither observer

Q	 uick Quiz 39.4 ​ A crew on a spacecraft watches a movie that is two hours long. 
The spacecraft is moving at high speed through space. Does an Earth-based 
observer watching the movie screen on the spacecraft through a powerful tele-
scope measure the duration of the movie to be (a) longer than, (b) shorter than, 
or (c) equal to two hours?

	 Time dilation is a very real phenomenon that has been verified by various exper-
iments involving natural clocks. One experiment reported by J. C. Hafele and R. E. 
Keating provided direct evidence of time dilation.4 Time intervals measured with 
four cesium atomic clocks in jet flight were compared with time intervals measured 
by Earth-based reference atomic clocks. To compare these results with theory, 
many factors had to be considered, including periods of speeding up and slowing 
down relative to the Earth, variations in direction of travel, and the weaker gravi-
tational field experienced by the flying clocks than that experienced by the Earth-
based clock. The results were in good agreement with the predictions of the special 
theory of relativity and were explained in terms of the relative motion between the 
Earth and the jet aircraft. In their paper, Hafele and Keating stated that “relative 
to the atomic time scale of the U.S. Naval Observatory, the flying clocks lost 59 6 
10 ns during the eastward trip and gained 273 6 7 ns during the westward trip.”
	 Another interesting example of time dilation involves the observation of muons, 
unstable elementary particles that have a charge equal to that of the electron and 
a mass 207 times that of the electron. Muons can be produced by the collision of 
cosmic radiation with atoms high in the atmosphere. Slow-moving muons in the 
laboratory have a lifetime that is measured to be the proper time interval Dtp 5  
2.2 ms. If we take 2.2 ms as the average lifetime of a muon and assume that muons 
created by cosmic radiation have a speed close to the speed of light, we find that 
these particles can travel a distance of approximately (3.0 3 108 m/s)(2.2 3 1026 s) <  
6.6 3 102 m before they decay (Fig. 39.8a). Hence, they are unlikely to reach the 

Pitfall Prevention 39.3
The Proper Time Interval  It is 
very important in relativistic 
calculations to correctly identify 
the observer who measures the 
proper time interval. The proper 
time interval between two events 
is always the time interval mea-
sured by an observer for whom 
the two events take place at the 
same position.

4J. C. Hafele and R. E. Keating, “Around the World Atomic Clocks: Relativistic Time Gains Observed,” Science 177:168, 
1972.
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	 39.4  Consequences of the Special Theory of Relativity	 1203

surface of the Earth from high in the atmosphere where they are produced. Experi-
ments show, however, that a large number of muons do reach the surface. The phe-
nomenon of time dilation explains this effect. As measured by an observer on the 
Earth, the muons have a dilated lifetime equal to g Dtp. For example, for v 5 0.99c, 
g < 7.1, and g Dtp < 16 ms. Hence, the average distance traveled by the muons 
in this time interval as measured by an observer on the Earth is approximately  
(0.99)(3.0 3 108 m/s)(16 3 1026 s) < 4.8 3 103 m as indicated in Figure 39.8b.
	 In 1976, at the laboratory of the European Council for Nuclear Research 
(CERN) in Geneva, muons injected into a large storage ring reached speeds of 
approximately 0.999 4c. Electrons produced by the decaying muons were detected 
by counters around the ring, enabling scientists to measure the decay rate and 
hence the muon lifetime. The lifetime of the moving muons was measured to be 
approximately 30 times as long as that of the stationary muon, in agreement with 
the prediction of relativity to within two parts in a thousand.

� 4.8 � 103 m

� 6.6 � 102 m

Muon is created Muon is created

Muon decays

Muon decays

Without relativistic considerations, according to 
an observer on the Earth, muons created in the 
atmosphere and traveling downward with a speed 
close to c travel only about 6.6 � 102 m before 
decaying with an average lifetime of 2.2 ms. 
Therefore, very few muons would reach the 
surface of the Earth.

With relativistic considerations, the muon’s 
lifetime is dilated according to an observer 
on the Earth. Hence, according to this 
observer, the muon can travel about
4.8 � 103 m before decaying. The result is 
many of them arriving at the surface.

a b

Figure 39.8  ​Travel of muons 
according to an Earth-based 
observer.

Example 39.1	     What Is the Period of the Pendulum?

The period of a pendulum is measured to be 3.00 s in the reference frame of the pendulum. What is the period when 
measured by an observer moving at a speed of 0.960c relative to the pendulum?

Conceptualize  ​Let’s change frames of reference. Instead of the observer moving at 0.960c, we can take the equivalent 
point of view that the observer is at rest and the pendulum is moving at 0.960c past the stationary observer. Hence, the 
pendulum is an example of a clock moving at high speed with respect to an observer.

Categorize  ​Based on the Conceptualize step, we can categorize this example as a substitution problem involving rela-
tivistic time dilation.

The proper time interval, measured in the rest frame of the pendulum, is Dtp 5 3.00 s.

S o l u tio   n

Use Equation 39.7 to find the dilated time interval: Dt 5 g Dtp 5
1

Å1 2
10.960c 22

c 2

 Dtp 5
1

"1 2 0.921 6
 Dtp

5 3.57(3.00 s) 5 10.7 s continued
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1204	C hapter 39 R elativity

	

This result shows that a moving pendulum is indeed measured to take longer to complete a period than a pendulum at 
rest does. The period increases by a factor of g 5 3.57.

What if the speed of the observer increases by 4.00%? Does the dilated time interval increase by 4.00%?

Answer  ​Based on the highly nonlinear behavior of g as a function of v in Figure 39.7, we would guess that the increase 
in Dt would be different from 4.00%.

What If ?

Perform the time dilation calculation again: Dt 5 g Dtp 5
1

Å1 2
10.998 4c 22

c 2

 Dtp 5
1

"1 2 0.996 8
 Dtp

5 17.68(3.00 s) 5 53.1 s

Find the new speed if it increases by 4.00%: vnew 5 (1.040 0)(0.960c) 5 0.998 4c

Therefore, the 4.00% increase in speed results in almost a 400% increase in the dilated time!

Example 39.2	     How Long Was Your Trip?

Suppose you are driving your car on a business trip and are traveling at 30 m/s. Your boss, who is waiting at your desti-
nation, expects the trip to take 5.0 h. When you arrive late, your excuse is that the clock in your car registered the pas-
sage of 5.0 h but that you were driving fast and so your clock ran more slowly than the clock in your boss’s office. If your 
car clock actually did indicate a 5.0-h trip, how much time passed on your boss’s clock, which was at rest on the Earth?

Conceptualize  ​The observer is your boss standing stationary on the Earth. The clock is in your car, moving at 30 m/s 
with respect to your boss.

Categorize  ​The low speed of 30 m/s suggests we might categorize this problem as one in which we use classical con-
cepts and equations. Based on the problem statement that the moving clock runs more slowly than a stationary clock, 
however, we categorize this problem as one involving time dilation.

Analyze  ​The proper time interval, measured in the rest frame of the car, is Dtp 5 5.0 h.

S o l u tio   n

Use Equation 39.8 to evaluate g: g 5
1

Å1 2
v2

c 2

5
1

Å1 2
13.0 3 101 m/s 22

13.0 3 108 m/s 22

5
1

"1 2 10214

Finalize  ​Your boss’s clock would be only 0.090 ns ahead of your car clock. You might want to think of another excuse!

If you try to determine this value on your calculator, you 
will probably obtain g 5 1. Instead, perform a binomial 
expansion:

g 5 11 2 10214 221/2 < 1 1 1
2 110214 2 5 1 1 5.0 3 10215

Use Equation 39.7 to find the dilated time interval mea-
sured by your boss:

Dt 5 g Dtp 5 (1 1 5.0 3 10215)(5.0 h)

5 5.0 h 1 2.5 3 10214 h 5 5.0 h 1 0.090 ns

	

▸ 39.1 c o n t i n u e d

The Twin Paradox
An intriguing consequence of time dilation is the twin paradox (Fig. 39.9). Con-
sider an experiment involving a set of twins named Speedo and Goslo. When they 
are 20 years old, Speedo, the more adventuresome of the two, sets out on an epic 
journey from the Earth to Planet X, located 20 light-years away. One light-year (ly) 
is the distance light travels through free space in 1 year. Furthermore, Speedo’s 
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	 39.4  Consequences of the Special Theory of Relativity	 1205

spacecraft is capable of reaching a speed of 0.95c relative to the inertial frame of his 
twin brother back home on the Earth. After reaching Planet X, Speedo becomes 
homesick and immediately returns to the Earth at the same speed 0.95c. Upon his 
return, Speedo is shocked to discover that Goslo has aged 42 years and is now 62 
years old. Speedo, on the other hand, has aged only 13 years.
	 The paradox is not that the twins have aged at different rates. Here is the appar-
ent paradox. From Goslo’s frame of reference, he was at rest while his brother trav-
eled at a high speed away from him and then came back. According to Speedo, 
however, he himself remained stationary while Goslo and the Earth raced away 
from him and then headed back. Therefore, we might expect Speedo to claim that 
Goslo ages more slowly than himself. The situation appears to be symmetrical from 
either twin’s point of view. Which twin actually ages more slowly?
	 The situation is actually not symmetrical. Consider a third observer moving at 
a constant speed relative to Goslo. According to the third observer, Goslo never 
changes inertial frames. Goslo’s speed relative to the third observer is always the 
same. The third observer notes, however, that Speedo accelerates during his jour-
ney when he slows down and starts moving back toward the Earth, changing reference 
frames in the process. From the third observer’s perspective, there is something very 
different about the motion of Goslo when compared to Speedo. Therefore, there is 
no paradox: only Goslo, who is always in a single inertial frame, can make correct 
predictions based on special relativity. Goslo finds that instead of aging 42 years, 
Speedo ages only (1 2 v 2/c 2)1/2(42 years) 5 13 years. Of these 13 years, Speedo 
spends 6.5 years traveling to Planet X and 6.5 years returning.

Q	 uick Quiz 39.5 ​ Suppose astronauts are paid according to the amount of time 
they spend traveling in space. After a long voyage traveling at a speed approach-
ing c, would a crew rather be paid according to (a) an Earth-based clock, (b) their 
spacecraft’s clock, or (c) either clock?

Length Contraction
The measured distance between two points in space also depends on the frame of 
reference of the observer. The proper length Lp of an object is the length measured 
by an observer at rest relative to the object. The length of an object measured by some-
one in a reference frame that is moving with respect to the object is always less than 
the proper length. This effect is known as length contraction.
	 To understand length contraction, consider a spacecraft traveling with a speed v 
from one star to another. There are two observers: one on the Earth and the other in 
the spacecraft. The observer at rest on the Earth (and also assumed to be at rest with 

a b

As Speedo (on the
left) leaves his brother
on Earth, both twins
are the same age.

When Speedo returns
from his journey, Goslo
(on the right) is much
older than Speedo.

Figure 39.9  ​The twin paradox. 
Speedo takes a journey to a star 
20 light-years away and returns to 
the Earth.
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1206	C hapter 39 R elativity

respect to the two stars) measures the distance between the stars to be the proper 
length Lp. According to this observer, the time interval required for the spacecraft 
to complete the voyage is given by the particle under constant velocity model as Dt 5  
Lp /v. The passages of the two stars by the spacecraft occur at the same position 
for the space traveler. Therefore, the space traveler measures the proper time inter-
val Dtp. Because of time dilation, the proper time interval is related to the Earth- 
measured time interval by Dtp 5 Dt/g. Because the space traveler reaches the second 
star in the time Dtp, he or she concludes that the distance L between the stars is

L 5 v Dtp 5 v 
Dt
g

Because the proper length is Lp 5 v Dt, we see that

	 L 5
Lp

g
5 Lp Å1 2

v2

c 2 	 (39.9)

where !1 2 v2/c 2 is a factor less than unity. If an object has a proper length Lp 
when it is measured by an observer at rest with respect to the object, its length  
L when it moves with speed v in a direction parallel to its length is measured to be 
shorter according to Equation 39.9.
	 For example, suppose a meterstick moves past a stationary Earth-based observer 
with speed v as in Figure 39.10. The length of the meterstick as measured by an 
observer in a frame attached to the stick is the proper length Lp shown in Figure 
39.10a. The length of the stick L measured by the Earth observer is shorter than Lp 
by the factor (1 2 v 2/c 2)1/2 as suggested in Figure 39.10b. Notice that length con-
traction takes place only along the direction of motion.
	 The proper length and the proper time interval are defined differently. The 
proper length is measured by an observer for whom the endpoints of the length 
remain fixed in space. The proper time interval is measured by someone for whom 
the two events take place at the same position in space. As an example of this point, 
let’s return to the decaying muons moving at speeds close to the speed of light. An 
observer in the muon’s reference frame measures the proper lifetime, whereas an 
Earth-based observer measures the proper length (the distance between the cre-
ation point and the decay point in Fig. 39.8b). In the muon’s reference frame, there 
is no time dilation, but the distance of travel to the surface is shorter when mea-
sured in this frame. Likewise, in the Earth observer’s reference frame, there is time 
dilation, but the distance of travel is measured to be the proper length. Therefore, 
when calculations on the muon are performed in both frames, the outcome of the 
experiment in one frame is the same as the outcome in the other frame: more 
muons reach the surface than would be predicted without relativistic effects.

Q	 uick Quiz 39.6  ​You are packing for a trip to another star. During the journey, 
you will be traveling at 0.99c. You are trying to decide whether you should buy 
smaller sizes of your clothing because you will be thinner on your trip due to 
length contraction. You also plan to save money by reserving a smaller cabin 
to sleep in because you will be shorter when you lie down. Should you (a) buy 
smaller sizes of clothing, (b) reserve a smaller cabin, (c) do neither of these 
things, or (d) do both of these things?

Q	 uick Quiz 39.7 ​ You are observing a spacecraft moving away from you. You mea-
sure it to be shorter than when it was at rest on the ground next to you. You also 
see a clock through the spacecraft window, and you observe that the passage of 
time on the clock is measured to be slower than that of the watch on your wrist. 
Compared with when the spacecraft was on the ground, what do you measure 
if the spacecraft turns around and comes toward you at the same speed? (a) The 
spacecraft is measured to be longer, and the clock runs faster. (b) The space-
craft is measured to be longer, and the clock runs slower. (c) The spacecraft is 

Length contraction 

Pitfall Prevention 39.4
The Proper Length  As with the 
proper time interval, it is very 
important in relativistic calcula-
tions to correctly identify the 
observer who measures the proper 
length. The proper length between 
two points in space is always the 
length measured by an observer 
at rest with respect to the points. 
Often, the proper time interval 
and the proper length are not mea-
sured by the same observer.

vS

A meterstick measured by an 
observer in a frame attached 
to the stick has its proper 
length Lp.

A meterstick measured by an 
observer in a frame in which 
the stick has a velocity relative 
to the frame is measured to be 
shorter than its proper length.

a

b

Lp

y�

O �
x�

L

y

O
x

Figure 39.10  The length of a 
meterstick is measured by two 
observers.
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	 39.4  Consequences of the Special Theory of Relativity	 1207

measured to be shorter, and the clock runs faster. (d) The spacecraft is mea-
sured to be shorter, and the clock runs slower.

Space–Time Graphs
It is sometimes helpful to represent a physical situation with a space–time graph, 
in which ct is the ordinate and position x is the abscissa. The twin paradox is dis-
played in such a graph in Figure 39.11 from Goslo’s point of view. A path through 
space–time is called a world-line. At the origin, the world-lines of Speedo (blue) 
and Goslo (green) coincide because the twins are in the same location at the 
same time. After Speedo leaves on his trip, his world-line diverges from that of 
his brother. Goslo’s world-line is vertical because he remains fixed in location. At 
Goslo and Speedo’s reunion, the two world-lines again come together. It would be 
impossible for Speedo to have a world-line that crossed the path of a light beam 
that left the Earth when he did. To do so would require him to have a speed greater 
than c (which, as shown in Sections 39.6 and 39.7, is not possible).
	 World-lines for light beams are diagonal lines on space–time graphs, typically 
drawn at 45° to the right or left of vertical (assuming the x and ct axes have the 
same scales), depending on whether the light beam is traveling in the direction 
of increasing or decreasing x. All possible future events for Goslo and Speedo lie 
above the x axis and between the red-brown lines in Figure 39.11 because neither 
twin can travel faster than light. The only past events that Goslo and Speedo could 
have experienced occur between two similar 45° world-lines that approach the ori-
gin from below the x axis.
	 If Figure 39.11 is rotated about the ct axis, the red-brown lines sweep out a cone, 
called the light cone, which generalizes Figure 39.11 to two space dimensions. The 
y axis can be imagined coming out of the page. All future events for an observer 
at the origin must lie within the light cone. We can imagine another rotation that 
would generalize the light cone to three space dimensions to include z, but because 
of the requirement for four dimensions (three space dimensions and time), we can-
not represent this situation in a two-dimensional drawing on paper.

World-line of Speedo

World-line of 
light beam

World-line
of Goslo

ct

x

Figure 39.11  ​The twin paradox 
on a space–time graph. The twin 
who stays on the Earth has a world-
line along the ct axis (green). The 
path of the traveling twin through 
space–time is represented by a 
world-line that changes direction 
(blue). The red-brown lines are 
world-lines for light beams travel-
ing in the positive x direction (on 
the right) or the negative x direc-
tion (on the left).

Example 39.3	     A Voyage to Sirius 

An astronaut takes a trip to Sirius, which is located a distance of 8 light-years from the Earth. The astronaut measures 
the time of the one-way journey to be 6 years. If the spaceship moves at a constant speed of 0.8c, how can the 8-ly dis-
tance be reconciled with the 6-year trip time measured by the astronaut?

Conceptualize  ​An observer on the Earth measures light to require 8 years to travel between Sirius and the Earth. The 
astronaut measures a time interval for his travel of only 6 years. Is the astronaut traveling faster than light?

Categorize  ​Because the astronaut is measuring a length of space between the Earth and Sirius that is in motion with 
respect to her, we categorize this example as a length contraction problem. We also model the astronaut as a particle 
under constant velocity.

Analyze  ​The distance of 8 ly represents the proper length from the Earth to Sirius measured by an observer on the 
Earth seeing both objects nearly at rest.

AM

S o l u tio   n

Use the particle under constant velocity model to find 
the travel time measured on the astronaut’s clock:

Dt 5
L
v

5
5 ly

0.8c
5

5 ly

0.8 11 ly/yr 2 5 6 yr

Calculate the contracted length measured by the astro-
naut using Equation 39.9:

L 5
8 ly
g

5 18 ly 2 Å1 2
v2

c 2 5 18 ly 2 Å1 2
10.8c 22

c 2 5 5 ly

continued
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1208	C hapter 39 R elativity

Finalize  ​Notice that we have used the value for the speed of light as c 5 1 ly/yr. The trip takes a time interval shorter 
than 8 years for the astronaut because, to her, the distance between the Earth and Sirius is measured to be shorter.

What if this trip is observed with a very powerful telescope by a technician in Mission Control on the 
Earth? At what time will this technician see that the astronaut has arrived at Sirius?

Answer  ​The time interval the technician measures for the astronaut to arrive is

Dt 5
Lp

v
5

8 ly

0.8c
5 10 yr

For the technician to see the arrival, the light from the scene of the arrival must travel back to the Earth and enter the 
telescope. This travel requires a time interval of

Dt 5
Lp

v
5

8 ly
c

5 8 yr

Therefore, the technician sees the arrival after 10 yr 1 8 yr 5 18 yr. If the astronaut immediately turns around and 
comes back home, she arrives, according to the technician, 20 years after leaving, only 2 years after the technician saw her 
arrive! In addition, the astronaut would have aged by only 12 years.

What If ?

Analyze  Use Equation 39.9 to find the contracted length 
of the pole according to the ground observer:

Lpole 5 Lp Å1 2
v 2

c 2 5 115 m 2 "1 2 10.75 22 5 9.9 m

Therefore, the ground observer measures the pole to be slightly shorter than the barn and there is no problem with 
momentarily capturing the pole inside it. The “paradox” arises when we consider the runner’s point of view.

Use Equation 39.9 to find the contracted length of the 
barn according to the running observer:

L barn 5 Lp Å1 2
v2

c 2 5 110 m 2 "1 2 10.75 22 5 6.6 m

	

▸ 39.3 c o n t i n u e d

Example 39.4	     The Pole-in-the-Barn Paradox 

The twin paradox, discussed earlier, is a classic “paradox” in relativity. Another classic “paradox” is as follows. Suppose 
a runner moving at 0.75c carries a horizontal pole 15 m long toward a barn that is 10 m long. The barn has front and 
rear doors that are initially open. An observer on the ground can instantly and simultaneously close and open the 
two doors by remote control. When the runner and the pole are inside the barn, the ground observer closes and then 
opens both doors so that the runner and pole are momentarily captured inside the barn and then proceed to exit 
the barn from the back doorway. Do both the runner and the ground observer agree that the runner makes it safely 
through the barn?

Conceptualize  ​From your everyday experience, you would be surprised to see a 15-m pole fit inside a 10-m barn, but 
we are becoming used to surprising results in relativistic situations.

Categorize  ​The pole is in motion with respect to the ground observer so that the observer measures its length to be 
contracted, whereas the stationary barn has a proper length of 10 m. We categorize this example as a length contrac-
tion problem. The runner carrying the pole is modeled as a particle under constant velocity.

AM

S o l u tio   n

Because the pole is in the rest frame of the runner, the runner measures it to have its proper length of 15 m. Now the 
situation looks even worse: How can a 15-m pole fit inside a 6.6-m barn? Although this question is the classic one that 
is often asked, it is not the question we have asked because it is not the important one. We asked, “Does the runner make 
it safely through the barn?”
	 The resolution of the “paradox” lies in the relativity of simultaneity. The closing of the two doors is measured to be 
simultaneous by the ground observer. Because the doors are at different positions, however, they do not close simulta-
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	 39.4  Consequences of the Special Theory of Relativity	 1209

neously as measured by the runner. The rear door closes and 
then opens first, allowing the leading end of the pole to exit. 
The front door of the barn does not close until the trailing end 
of the pole passes by.
	 We can analyze this “paradox” using a space–time graph. 
Figure 39.12a is a space–time graph from the ground observ-
er’s point of view. We choose x 5 0 as the position of the front 
doorway of the barn and t 5 0 as the instant at which the lead-
ing end of the pole is located at the front doorway of the barn. 
The world-lines for the two doorways of the barn are separated 
by 10 m and are vertical because the barn is not moving rela-
tive to this observer. For the pole, we follow two tilted world-
lines, one for each end of the moving pole. These world-lines 
are 9.9 m apart horizontally, which is the contracted length 
seen by the ground observer. As seen in Figure 39.12a, the pole 
is entirely within the barn at some time.
	 Figure 39.12b shows the space–time graph according to 
the runner. Here, the world-lines for the pole are separated by 
15 m and are vertical because the pole is at rest in the runner’s 
frame of reference. The barn is hurtling toward the runner, so 
the world-lines for the front and rear doorways of the barn are 
tilted to the left. The world-lines for the barn are separated by 
6.6 m, the contracted length as seen by the runner. The lead-
ing end of the pole leaves the rear doorway of the barn long 
before the trailing end of the pole enters the barn. Therefore, 
the opening of the rear door occurs before the closing of the 
front door.

a

b

10

20

Front
doorway

Rear
doorway

Pole is
entirely
in barn

Leading
end of
pole

Trailing
end of
pole

�10
x (m)

x (m)

Front
doorway
arrives at
trailing end
of pole 10

20

10�10 0

Rear doorway
arrives at leading 
end of pole

ct (m)

ct (m)

Leading
end of
pole

Trailing
end of
pole

Rear
doorway

Front
doorway

0 10

Figure 39.12  ​(Example 39.4) Space–time graphs for the 
pole-in-the-barn paradox (a) from the ground observer’s 
point of view and (b) from the runner’s point of view.

From the ground observer’s point of view, use the particle 
under constant velocity model to find the time after  
t 5 0 at which the trailing end of the pole enters the barn:

(1)   t 5
Dx
v

5
9.9 m
0.75c

5
13.2 m

c

	

▸ 39.4 c o n t i n u e d

Find the time at which the trailing end of the pole enters 
the front door of the barn:

(3)   t 5
Dx
v

5
15 m
0.75c

5
20 m

c

From the runner’s point of view, use the particle under 
constant velocity model to find the time at which the lead-
ing end of the pole leaves the barn:

(2)   t 5
Dx
v

5
6.6 m
0.75c

5
8.8 m

c

Finalize  ​From Equation (1), the pole should be completely inside the barn at a time corresponding to ct 5 13.2 m. This 
situation is consistent with the point on the ct axis in Figure 39.12a where the pole is inside the barn. From Equation 
(2), the leading end of the pole leaves the barn at ct 5 8.8 m. This situation is consistent with the point on the ct axis 
in Figure 39.12b where the rear doorway of the barn arrives at the leading end of the pole. Equation (3) gives ct 5  
20 m, which agrees with the instant shown in Figure 39.12b at which the front doorway of the barn arrives at the trail-
ing end of the pole.

The Relativistic Doppler Effect
Another important consequence of time dilation is the shift in frequency observed 
for light emitted by atoms in motion as opposed to light emitted by atoms at rest. 
This phenomenon, known as the Doppler effect, was introduced in Chapter 17 as 
it pertains to sound waves. In the case of sound, the velocity vS of the source with 
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1210	C hapter 39 R elativity

respect to the medium of propagation can be distinguished from the velocity vO of 
the observer with respect to the medium (the air). Light waves must be analyzed dif-
ferently, however, because they require no medium of propagation, and no method exists 
for distinguishing the velocity of a light source from the velocity of the observer. The 
only measurable velocity is the relative velocity v between the source and the observer.
	 If a light source and an observer approach each other with a relative speed v, the 
frequency f 9 measured by the observer is

	 f r 5
"1 1 v/c

"1 2 v/c
 f 	 (39.10)

where f is the frequency of the source measured in its rest frame. This relativistic 
Doppler shift equation, unlike the Doppler shift equation for sound, depends only 
on the relative speed v of the source and observer and holds for relative speeds as 
great as c. As you might expect, the equation predicts that f 9 . f when the source 
and observer approach each other. We obtain the expression for the case in which 
the source and observer recede from each other by substituting negative values for 
v in Equation 39.10.
	 The most spectacular and dramatic use of the relativistic Doppler effect is the 
measurement of shifts in the frequency of light emitted by a moving astronomical 
object such as a galaxy. Light emitted by atoms and normally found in the extreme 
violet region of the spectrum is shifted toward the red end of the spectrum for 
atoms in other galaxies, indicating that these galaxies are receding from us. Ameri-
can astronomer Edwin Hubble (1889–1953) performed extensive measurements of 
this red shift to confirm that most galaxies are moving away from us, indicating that 
the Universe is expanding.

39.5	 The Lorentz Transformation Equations
Suppose two events occur at points P and Q and are reported by two observers, one 
at rest in a frame S and another in a frame S9 that is moving to the right with speed 
v as in Figure 39.13. The observer in S reports the events with space–time coordi-
nates (x, y, z, t), and the observer in S9 reports the same events using the coordi-
nates (x 9, y 9, z 9, t 9). Equation 39.1 predicts that the distance between the two points 
in space at which the events occur does not depend on motion of the observer:  
Dx 5 Dx9. Because this prediction is contradictory to the notion of length contrac-
tion, the Galilean transformation is not valid when v approaches the speed of light. 
In this section, we present the correct transformation equations that apply for all 
speeds in the range 0 , v , c.
	 The equations that are valid for all speeds and that enable us to transform coor-
dinates from S to S9 are the Lorentz transformation equations:

	 x r 5 g 1x 2 vt 2  y r 5 y  z r 5 z  t r 5 gat 2
v
c 2 xb 	 (39.11)

These transformation equations were developed by Hendrik A. Lorentz (1853– 
1928) in 1890 in connection with electromagnetism. It was Einstein, however, who 
recognized their physical significance and took the bold step of interpreting them 
within the framework of the special theory of relativity.
	 Notice the difference between the Galilean and Lorentz time equations. In the 
Galilean case, t 5 t9. In the Lorentz case, however, the value for t 9 assigned to an 
event by an observer O9 in the S9 frame in Figure 39.13 depends both on the time 
t and on the coordinate x as measured by an observer O in the S frame, which is 
consistent with the notion that an event is characterized by four space–time coor-
dinates (x, y, z, t). In other words, in relativity, space and time are not separate con-
cepts but rather are closely interwoven with each other.

�L orentz transformation 
for S S S9

y y� S�S

O
x�

P (event)

O�

Q (event)

vt
x

x� �x�
�x

vS

x

Figure 39.13  ​Events occur at 
points P and Q and are observed 
by an observer at rest in the S 
frame and another in the S9 
frame, which is moving to the 
right with a speed v.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 39.5  The Lorentz Transformation Equations	 1211

	 If you wish to transform coordinates in the S9 frame to coordinates in the S 
frame, simply replace v by 2v and interchange the primed and unprimed coordi-
nates in Equations 39.11:

	 x 5 g 1x r 1 vt r 2  y 5 y r  z 5 z r  t 5 g at r 1
v
c2 x rb 	 (39.12)

When v ,, c, the Lorentz transformation equations should reduce to the Galilean 
equations. As v approaches zero, v/c ,, 1; therefore, g S 1 and Equations 39.11 
indeed reduce to the Galilean space–time transformation equations in Equation 39.1.
	 In many situations, we would like to know the difference in coordinates between 
two events or the time interval between two events as seen by observers O and O9. 
From Equations 39.11 and 39.12, we can express the differences between the four 
variables x, x 9, t, and t 9 in the form

	
Dx r 5 g 1Dx 2 v Dt 2
Dt r 5 gaDt 2

v
c 2 DxbsS   S   Sr	 (39.13)

	

Dx 5 g 1Dx r 1 v Dt r 2
Dt 5 gaDt r 1

v
c 2 Dx rbsS r    S   S	 (39.14)

where Dx9 5 x92 2 x91 and Dt 9 5 t92 2 t 91 are the differences measured by observer O9 
and Dx 5 x2 2 x1 and Dt 5 t2 2 t1 are the differences measured by observer O. (We 
have not included the expressions for relating the y and z coordinates because they 
are unaffected by motion along the x direction.5)

WW �Inverse Lorentz transforma-
tion for S9 S S

5Although relative motion of the two frames along the x axis does not change the y and z coordinates of an object, it 
does change the y and z velocity components of an object moving in either frame as noted in Section 39.6.

Example 39.5	     Simultaneity and Time Dilation Revisited

(A)  ​Use the Lorentz transformation equations in difference form to show that simultaneity is not an absolute concept.

Conceptualize  ​Imagine two events that are simultaneous and separated in space as measured in the S9 frame such that 
Dt 9 5 0 and Dx 9 2 0. These measurements are made by an observer O9 who is moving with speed v relative to O.

Categorize  ​The statement of the problem tells us to categorize this example as one involving the use of the Lorentz 
transformation.

S o l u tio   n

Analyze  ​From the expression for Dt given in Equation 
39.14, find the time interval Dt measured by observer O:

Dt 5 gaDt r 1
v
c 2 Dx rb 5 ga0 1

v
c 2 Dx rb 5 g 

v
c 2 Dx r

Finalize  ​The time interval for the same two events as measured by O is nonzero, so the events do not appear to be 
simultaneous to O.

(B)  ​Use the Lorentz transformation equations in difference form to show that a moving clock is measured to run more 
slowly than a clock that is at rest with respect to an observer.

Conceptualize  ​Imagine that observer O 9 carries a clock that he uses to measure a time interval Dt 9. He finds that two 
events occur at the same place in his reference frame (Dx9 5 0) but at different times (Dt 9 2 0). Observer O9 is moving 
with speed v relative to O.

S o l u tio   n

continued
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1212	C hapter 39 R elativity

39.6	 The Lorentz Velocity Transformation Equations
Suppose two observers in relative motion with respect to each other are both 
observing an object’s motion. Previously, we defined an event as occurring at an 
instant of time. Now let’s interpret the “event” as the object’s motion. We know that 
the Galilean velocity transformation (Eq. 39.2) is valid for low speeds. How do the 
observers’ measurements of the velocity of the object relate to each other if the 
speed of the object or the relative speed of the observers is close to that of light? 
Once again, S9 is our frame moving at a speed v relative to S. Suppose an object has 
a velocity component u9x measured in the S9 frame, where

	 u rx 5
dx r
dt r

	 (39.15)

Using Equation 39.11, we have

dx9 5 g(dx 2 v dt)

dt r 5 gadt 2
v
c 2 dxb

Substituting these values into Equation 39.15 gives

u rx 5
dx 2 v dt

dt 2
v
c 2 dx

5

dx
dt

2 v

1 2
v
c 2  

dx
dt

The term dx/dt, however, is simply the velocity component ux of the object mea-
sured by an observer in S, so this expression becomes

	 u rx 5
ux 2 v

1 2
uxv

c 2

	 (39.16)

	 If the object has velocity components along the y and z axes, the components as 
measured by an observer in S9 are

	 u ry 5
uy

ga1 2
uxv

c 2 b
 and u rz 5

uz

g a1 2
uxv

c 2 b
	 (39.17)

	 Notice that u9y and u9z do not contain the parameter v in the numerator because 
the relative velocity is along the x axis.
	 When v is much smaller than c (the nonrelativistic case), the denominator of 
Equation 39.16 approaches unity and so u9x < ux 2 v, which is the Galilean veloc-

�L orentz velocity trans- 
formation for S S S9

Analyze  ​From the expression for Dt given in Equation 
39.14, find the time interval Dt measured by observer O:

Dt 5 gaDt r 1
v
c 2 Dx rb 5 g cDt r 1

v
c 2 10 2 d 5 g Dt r

Finalize  ​This result is the equation for time dilation found earlier (Eq. 39.7), where Dt 9 5 Dtp is the proper time inter-
val measured by the clock carried by observer O 9. Therefore, O measures the moving clock to run slow.

	

▸ 39.5 c o n t i n u e d

Categorize  ​The statement of the problem tells us to categorize this example as one involving the use of the Lorentz 
transformation.
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	 39.6  The Lorentz Velocity Transformation Equations	 1213

ity transformation equation. In another extreme, when ux 5 c, Equation 39.16 
becomes

u rx 5
c 2 v

1 2
cv
c 2

5

c a1 2
v
c b

1 2
v
c

5 c

This result shows that a speed measured as c by an observer in S is also measured 
as c by an observer in S9, independent of the relative motion of S and S9. This con-
clusion is consistent with Einstein’s second postulate: the speed of light must be c 
relative to all inertial reference frames. Furthermore, we find that the speed of an 
object can never be measured as larger than c. That is, the speed of light is the ulti-
mate speed. We shall return to this point later.
	 To obtain ux in terms of u9x, we replace v by 2v in Equation 39.16 and inter-
change the roles of ux and u9x:

	 ux 5
u rx 1 v

1 1
u rx v

c 2

	 (39.18)

Q	 uick Quiz 39.8 ​ You are driving on a freeway at a relativistic speed. (i) Straight 
ahead of you, a technician standing on the ground turns on a searchlight and a 
beam of light moves exactly vertically upward as seen by the technician. As you 
observe the beam of light, do you measure the magnitude of the vertical compo- 
nent of its velocity as (a) equal to c, (b) greater than c, or (c) less than c? (ii) If 
the technician aims the searchlight directly at you instead of upward, do you 
measure the magnitude of the horizontal component of its velocity as (a) equal 
to c, (b) greater than c, or (c) less than c?

Pitfall Prevention 39.5
What Can the Observers Agree 
On?  We have seen several mea-
surements that the two observers 
O and O9 do not agree on: (1) the  
time interval between events that 
take place in the same position in 
one of their frames, (2) the dis-
tance between two points that  
remain fixed in one of their 
frames, (3) the velocity compo-
nents of a moving particle, and  
(4) whether two events occurring 
at different locations in both 
frames are simultaneous or not. 
The two observers can agree on 
(1) their relative speed of motion v 
with respect to each other, (2) the 
speed c of any ray of light, and  
(3) the simultaneity of two events 
that take place at the same posi-
tion and time in some frame.

Example 39.6	     Relative Velocity of Two Spacecraft

Two spacecraft A and B are moving in opposite directions as 
shown in Figure 39.14. An observer on the Earth measures the 
speed of spacecraft A to be 0.750c and the speed of spacecraft B 
to be 0.850c. Find the velocity of spacecraft B as observed by the 
crew on spacecraft A.

Conceptualize  ​There are two observers, one (O) on the Earth and 
one (O9) on spacecraft A. The event is the motion of spacecraft B.

Categorize  ​Because the problem asks to find an observed veloc-
ity, we categorize this example as one requiring the Lorentz velocity transformation.

Analyze  ​The Earth-based observer at rest in the S frame makes two measurements, one of each spacecraft. We want 
to find the velocity of spacecraft B as measured by the crew on spacecraft A. Therefore, ux 5 20.850c. The velocity of 
spacecraft A is also the velocity of the observer at rest in spacecraft A (the S9 frame) relative to the observer at rest on 
the Earth. Therefore, v 5 0.750c.

S o l u tio   n

S� (attached to A)y�

0.750c �0.850c

BA
x�

O�

S (attached
to the Earth)

y

x
O

Figure 39.14  ​(Example 39.6) Two spacecraft A and 
B move in opposite directions. The speed of spacecraft 
B relative to spacecraft A is less than c and is obtained 
from the relativistic velocity transformation equation.

Obtain the velocity u9x of spacecraft B relative to space-
craft A using Equation 39.16:

u rx 5
ux 2 v

1 2
uxv

c 2

5
20.850c 2 0.750c

1 2
120.850c 2 10.750c 2

c 2

5 20.977c

Finalize  ​The negative sign indicates that spacecraft B is moving in the negative x direction as observed by the crew on 
spacecraft A. Is that consistent with your expectation from Figure 39.14? Notice that the speed is less than c. That is, an 

continued
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1214	C hapter 39 R elativity

	

Example 39.7	     Relativistic Leaders of the Pack

Two motorcycle pack leaders named David and Emily are racing at relativistic 
speeds along perpendicular paths as shown in Figure 39.15. How fast does 
Emily recede as seen by David over his right shoulder?

Conceptualize  ​The two observers are David and the police officer in Figure 
39.15. The event is the motion of Emily. Figure 39.15 represents the situa-
tion as seen by the police officer at rest in frame S. 
Frame S9 moves along with David.

Categorize  ​Because the problem asks to find an 
observed velocity, we categorize this problem as 
one requiring the Lorentz velocity transforma-
tion. The motion takes place in two dimensions.

S o l u tio   n

Emily
0.75c

x

y

David

Police officer
at rest in S

�0.90c

Figure 39.15  ​(Example 
39.7) David moves east with 
a speed 0.75c relative to the 
police officer, and Emily 
travels south at a speed 0.90c 
relative to the officer.

Using the Pythagorean theorem, find the speed of 
Emily as measured by David:

u r 5 "1u rx 22 1 1u ry 22 5 "120.75c 22 1 120.60c 22 5 0.96c

Using Equations 39.16 and 39.17, calculate u9x and u9y 
for Emily as measured by David:

u rx 5
ux 2 v

1 2
uxv

c 2

5
0 2 0.75c

1 2
10 2 10.75c 2

c 2

5 20.75c

u ry 5
uy

ga1 2
uxv

c 2 b
5

Å1 2
10.75c 22

c 2  120.90c 2

1 2
10 2 10.75c 2

c 2

5 20.60c

Analyze  ​Identify the velocity components for David 
and Emily according to the police officer:

David: vx 5 v 5 0.75c ​ ​  vy 5 0

Emily: ux 5 0 ​ ​  uy 5 20.90c

Finalize  ​This speed is less than c, as required by the special theory of relativity.

object whose speed is less than c in one frame of reference must have a speed less than c in any other frame. (Had you 
used the Galilean velocity transformation equation in this example, you would have found that u9x 5 ux 2 v 5 20.850c 2  
0.750c 5 21.60c, which is impossible. The Galilean transformation equation does not work in relativistic situations.)

​What if the two spacecraft pass each other? What is their relative speed now?

Answer  ​The calculation using Equation 39.16 involves only the velocities of the two spacecraft and does not depend on 
their locations. After they pass each other, they have the same velocities, so the velocity of spacecraft B as observed by 
the crew on spacecraft A is the same, 20.977c. The only difference after they pass is that spacecraft B is receding from 
spacecraft A, whereas it was approaching spacecraft A before it passed.

What If ?

	

▸ 39.6 c o n t i n u e d

39.7	 Relativistic Linear Momentum
To describe the motion of particles within the framework of the special theory 
of relativity properly, you must replace the Galilean transformation equations by 
the Lorentz transformation equations. Because the laws of physics must remain 
unchanged under the Lorentz transformation, we must generalize Newton’s laws 
and the definitions of linear momentum and energy to conform to the Lorentz 
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	 39.7  Relativistic Linear Momentum	 1215

transformation equations and the principle of relativity. These generalized defini-
tions should reduce to the classical (nonrelativistic) definitions for v ,, c.
	 First, recall from the isolated system model that when two particles (or objects 
that can be modeled as particles) collide, the total momentum of the isolated sys-
tem of the two particles remains constant. Suppose we observe this collision in a 
reference frame S and confirm that the momentum of the system is conserved. 
Now imagine that the momenta of the particles are measured by an observer in a 
second reference frame S9 moving with velocity vS relative to the first frame. Using 
the Lorentz velocity transformation equation and the classical definition of lin-
ear momentum, pS 5 muS (where uS is the velocity of a particle), we find that lin-
ear momentum of the system is not measured to be conserved by the observer in 
S9. Because the laws of physics are the same in all inertial frames, however, linear 
momentum of the system must be conserved in all frames. We have a contradic-
tion. In view of this contradiction and assuming the Lorentz velocity transforma-
tion equation is correct, we must modify the definition of linear momentum so that 
the momentum of an isolated system is conserved for all observers. For any particle, 
the correct relativistic equation for linear momentum that satisfies this condition is

	 pS ;
muS

Å1 2
u2

c 2

5 gmuS 	 (39.19)

where m is the mass of the particle and uS is the velocity of the particle. When u 
is much less than c, g 5 (1 2 u2/c 2)21/2 approaches unity and pS approaches muS. 
Therefore, the relativistic equation for pS reduces to the classical expression when u 
is much smaller than c, as it should.
	 The relativistic force F

S
 acting on a particle whose linear momentum is pS is 

defined as

	 F
S

;
d pS

dt
	 (39.20)

where pS is given by Equation 39.19. This expression, which is the relativistic form of 
Newton’s second law, is reasonable because it preserves classical mechanics in the 
limit of low velocities and is consistent with conservation of linear momentum for 
an isolated system ( F

S

ext 5 0) both relativistically and classically.
	 It is left as an end-of-chapter problem (Problem 88) to show that under rela-
tivistic conditions, the acceleration aS of a particle decreases under the action of  
a constant force, in which case a ~ 11 2 u2/c 2 23/2. This proportionality shows that 
as the particle’s speed approaches c, the acceleration caused by any finite force 
approaches zero. Hence, it is impossible to accelerate a particle from rest to a speed 
u $ c. This argument reinforces that the speed of light is the ultimate speed, the 
speed limit of the Universe. It is the maximum possible speed for energy transfer 
and for information transfer. Any object with mass must move at a lower speed.

WW �Definition of relativistic 
linear momentum

Pitfall Prevention 39.6
Watch Out for “Relativistic Mass”  
Some older treatments of relativ-
ity maintained the conservation 
of momentum principle at high 
speeds by using a model in which 
a particle’s mass increases with 
speed. You might still encounter 
this notion of “relativistic mass” 
in your outside reading, especially 
in older books. Be aware that 
this notion is no longer widely 
accepted; today, mass is consid-
ered as invariant, independent of 
speed. The mass of an object in 
all frames is considered to be the 
mass as measured by an observer 
at rest with respect to the object.

Example 39.8	     Linear Momentum of an Electron

An electron, which has a mass of 9.11 3 10231 kg, moves with a speed of 0.750c. Find the magnitude of its relativistic 
momentum and compare this value with the momentum calculated from the classical expression.

Conceptualize  ​Imagine an electron moving with high speed. The electron carries momentum, but the magnitude of 
its momentum is not given by p 5 mu because the speed is relativistic.

Categorize  ​We categorize this example as a substitution problem involving a relativistic equation.

S o l u tio   n

continued
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1216	C hapter 39 R elativity

Use Equation 39.19 with u 5 0.750c to find the magni-
tude of the momentum:

p 5
meu

Å1 2
u2

c 2

p 5
19.11 3 10231 kg 2 10.750 2 13.00 3 108 m/s 2

Å1 2
10.750c 22

c 2

5 3.10 3 10222 kg # m/s

The classical expression (used incorrectly here) gives pclassical 5 meu 5 2.05 3 10222 kg ? m/s. Hence, the correct relativ-
istic result is 50% greater than the classical result!

39.8	 Relativistic Energy
We have seen that the definition of linear momentum requires generalization to 
make it compatible with Einstein’s postulates. This conclusion implies that the defi-
nition of kinetic energy must most likely be modified also.
	 To derive the relativistic form of the work–kinetic energy theorem, imagine a 
particle moving in one dimension along the x axis. A force in the x direction causes 
the momentum of the particle to change according to Equation 39.20. In what fol-
lows, we assume the particle is accelerated from rest to some final speed u. The 
work done by the force F on the particle is

	 W 5 3
x2

x1

 F dx 5 3
x2

x1

dp

dt
 dx 	 (39.21)

To perform this integration and find the work done on the particle and the relativ-
istic kinetic energy as a function of u, we first evaluate dp/dt:

dp

dt
5

d
dt

 
mu

Å1 2
u2

c 2

5
m

a1 2
u2

c 2 b
3/2 

du
dt

Substituting this expression for dp/dt and dx 5 u dt into Equation 39.21 gives

W 5 3
t

0
 

m

a1 2
u2

c 2 b
3/2  

du
dt

1u dt 2 5 m 3
u

0
 

u

a1 2
u2

c 2 b
3/2 du

where we use the limits 0 and u in the integral because the integration variable has 
been changed from t to u. Evaluating the integral gives

	 W 5
mc 2

Å1 2
u2

c 2

2 mc2 	 (39.22)

Recall from Chapter 7 that the work done by a force acting on a system consist-
ing of a single particle equals the change in kinetic energy of the particle: W 5 
DK. Because we assumed the initial speed of the particle is zero, its initial kinetic 
energy is zero, so W 5 K 2 Ki 5 K 2 0 5 K. Therefore, the work W in Equation 
39.22 is equivalent to the relativistic kinetic energy K :

	 K 5
mc 2

Å1 2
u2

c 2

2 mc 2 5 gmc 2 2 mc 2 5 1g 2 1 2mc 2 	 (39.23)Relativistic kinetic energy 

	

▸ 39.8 c o n t i n u e d
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	 39.8  Relativistic Energy	 1217

This equation is routinely confirmed by experiments using high-energy particle 
accelerators.
	 At low speeds, where u/c ,, 1, Equation 39.23 should reduce to the classi-
cal expression K 5 1

2mu2. We can check that by using the binomial expansion 
11 2 b2 221/2 < 1 1 1

2 b2 1 c  for b ,, 1, where the higher-order powers of b are 
neglected in the expansion. (In treatments of relativity, b is a common symbol used 
to represent u/c or v/c.) In our case, b 5 u/c, so

g 5
1

Å1 2
u2

c 2

5 a1 2
u2

c 2 b
21/2

< 1 1 1
2 

u2

c 2

Substituting this result into Equation 39.23 gives

K < c a1 1 1
2 

u2

c 2 b 2 1 dmc 2 5 1
2mu2 1 for u/c ,, 1 2

which is the classical expression for kinetic energy. A graph comparing the relativ-
istic and nonrelativistic expressions is given in Figure 39.16. In the relativistic case, 
the particle speed never exceeds c, regardless of the kinetic energy. The two curves 
are in good agreement when u ,, c.
	 The constant term mc 2 in Equation 39.23, which is independent of the speed of 
the particle, is called the rest energy ER of the particle:

	 ER 5 mc 2	 (39.24)

Equation 39.24 shows that mass is a form of energy, where c 2 is simply a constant 
conversion factor. This expression also shows that a small mass corresponds to an 
enormous amount of energy, a concept fundamental to nuclear and elementary-
particle physics.
	 The term gmc 2 in Equation 39.23, which depends on the particle speed, is the 
sum of the kinetic and rest energies. It is called the total energy E :

Total energy 5 kinetic energy 1 rest energy

	 E 5 K 1 mc 2	 (39.25)

or

	 E 5
mc 2

Å1 2
u2

c 2

5 gmc 2 	 (39.26)

	 In many situations, the linear momentum or energy of a particle rather than its 
speed is measured. It is therefore useful to have an expression relating the total 
energy E to the relativistic linear momentum p, which is accomplished by using the 
expressions E 5 gmc 2 and p 5 gmu. By squaring these equations and subtracting, 
we can eliminate u (Problem 58). The result, after some algebra, is6

	 E 2 5 p2c 2 1 (mc 2)2	 (39.27)

When the particle is at rest, p 5 0, so E 5 ER 5 mc 2.
	 In Section 35.1, we introduced the concept of a particle of light, called a photon. 
For particles that have zero mass, such as photons, we set m 5 0 in Equation 39.27 
and find that

	 E 5 pc	 (39.28)

WW �Total energy of a relativistic 
particle

WW �Energy–momentum relation-
ship for a relativistic particle

The relativistic 
calculation, 
using 
Equation 
39.23, shows 
correctly that 
u is always less 
than c.

K/mc 

2

0.5c 1.0c 1.5c 2.0c

0.5

0

1.0

1.5

2.0

u

The 
nonrelativistic 
calculation,
using K �   mu2, 
predicts a
parabolic curve 
and the speed
u grows without 
limit.

2
1

Figure 39.16  ​A graph compar-
ing relativistic and nonrelativistic 
kinetic energy of a moving par-
ticle. The energies are plotted as a 
function of particle speed u.

6One way to remember this relationship is to draw a right triangle having a hypotenuse of length E and legs of 
lengths pc and mc 2.
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1218	C hapter 39 R elativity

Example 39.9	     The Energy of a Speedy Proton

(A)  ​Find the rest energy of a proton in units of electron volts.

Conceptualize  ​Even if the proton is not moving, it has energy associated with its mass. If it moves, the proton possesses 
more energy, with the total energy being the sum of its rest energy and its kinetic energy.

Categorize  ​The phrase “rest energy” suggests we must take a relativistic rather than a classical approach to this problem.

S o l u tio   n

This equation is an exact expression relating total energy and linear momentum 
for photons, which always travel at the speed of light (in vacuum).
	 Finally, because the mass m of a particle is independent of its motion, m must 
have the same value in all reference frames. For this reason, m is often called the 
invariant mass. On the other hand, because the total energy and linear momen-
tum of a particle both depend on velocity, these quantities depend on the reference 
frame in which they are measured.
	 When dealing with subatomic particles, it is convenient to express their energy 
in electron volts (Section 25.1) because the particles are usually given this energy 
by acceleration through a potential difference. The conversion factor, as you recall 
from Equation 25.5, is

1 eV 5 1.602 3 10219 J

For example, the mass of an electron is 9.109 3 10231 kg. Hence, the rest energy of 
the electron is

mec 2 5 (9.109 3 10231 kg)(2.998 3 108 m/s)2 5 8.187 3 10214 J

5 (8.187 3 10214 J)(1 eV/1.602 3 10219 J) 5 0.511 MeV

Q	 uick Quiz 39.9 ​ The following pairs of energies—particle 1: E, 2E; particle 2: E, 
3E; particle 3: 2E, 4E—represent the rest energy and total energy of three dif-
ferent particles. Rank the particles from greatest to least according to their  
(a) mass, (b) kinetic energy, and (c) speed.

Analyze  ​Use Equation 39.24 to find the rest energy: ER 5 mpc 2 5 (1.672 6 3 10227 kg)(2.998 3 108 m/s)2

5 11.504 3 10210 J 2 a 1.00 eV
1.602 3 10219 J

b 5 938 MeV

(B)  ​If the total energy of a proton is three times its rest energy, what is the speed of the proton?

S o l u tio   n

Use Equation 39.26 to relate the total energy of the pro-
ton to the rest energy:

E 5 3mpc
2 5

mpc
2

Å1 2
u2

c 2

   S   3 5
1

Å1 2
u2

c 2

(C)  ​Determine the kinetic energy of the proton in units of electron volts.

Solve for u: 1 2
u2

c 2 5 1
9   S   

u2

c 2 5 8
9

u 5
"8

3
 c 5 0.943c 5 2.83 3 108 m/s
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	 39.8  Relativistic Energy	 1219

Use Equation 39.25 to find the kinetic energy of the 
proton:

K 5 E 2 mpc 2 5 3mpc 2 2 mpc 2 5 2mpc 2

5 2(938 MeV) 5 1.88 3 103 MeV

(D)  ​What is the proton’s momentum?

S o l u tio   n

Use Equation 39.27 to calculate the momentum: E 2 5 p2c 2 1 (mpc 2)2 5 (3mpc 2)2

p 2c 2 5 9(mpc 2)2 2 (mpc 2)2 5 8(mpc 2)2

p 5 "8 
mpc

2

c
5 "8 

938 MeV
c

5 2.65 3 103 MeV/c

Finalize  ​The unit of momentum in part (D) is written MeV/c, which is a common unit in particle physics. For compari-
son, you might want to solve this example using classical equations.

In classical physics, if the momentum of a particle doubles, the kinetic energy increases by a factor of 4. 
What happens to the kinetic energy of the proton in this example if its momentum doubles?

Answer  ​Based on what we have seen so far in relativity, it is likely you would predict that its kinetic energy does not 
increase by a factor of 4.

Find the new doubled momentum: pnew 5 2 a"8 
mpc

2

c
b 5 4"2 

mpc
2

c

S o l u tio   n

	

▸ 39.9 c o n t i n u e d

What If ?

Use Equation 39.25 to find the new kinetic energy: K new 5 E new 2 mpc 2 5 5.7mpc 2 2 mpc 2 5 4.7mpc 2

Use this result in Equation 39.27 to find the new total 
energy:

E 2
new 5 p2

newc 2 1 (mpc 2)2

E 2
new 5 a4"2 

mpc
2

c
b

2

c 2 1 1mpc
2 22 5 33 1mpc

2 22

Enew 5 "33mpc
2 5 5.7mpc

2

This value is a little more than twice the kinetic energy found in part (C), not four times. In general, the factor by 
which the kinetic energy increases if the momentum doubles depends on the initial momentum, but it approaches 4 as 
the momentum approaches zero. In this latter situation, classical physics correctly describes the situation.

	 Equation 39.26, E 5 gmc 2, represents the total energy of a particle. This impor-
tant equation suggests that even when a particle is at rest (g 5 1), it still possesses 
enormous energy through its mass. The clearest experimental proof of the equiva-
lence of mass and energy occurs in nuclear and elementary-particle interactions 
in which the conversion of mass into kinetic energy takes place. Consequently, we 
cannot use the principle of conservation of energy in relativistic situations as it was 
outlined in Chapter 8. We must modify the principle by including rest energy as 
another form of energy storage.
	 This concept is important in atomic and nuclear processes, in which the change 
in mass is a relatively large fraction of the initial mass. In a conventional nuclear 
reactor, for example, the uranium nucleus undergoes fission, a reaction that results 
in several lighter fragments having considerable kinetic energy. In the case of 235U, 
which is used as fuel in nuclear power plants, the fragments are two lighter nuclei 
and a few neutrons. The total mass of the fragments is less than that of the 235U by an 
amount Dm. The corresponding energy Dmc 2 associated with this mass difference is 
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1220	C hapter 39 R elativity

	

exactly equal to the sum of the kinetic energies of the fragments. The kinetic energy 
is absorbed as the fragments move through water, raising the internal energy of the 
water. This internal energy is used to produce steam for the generation of electricity.
	 Next, consider a basic fusion reaction in which two deuterium atoms combine to 
form one helium atom. The decrease in mass that results from the creation of one 
helium atom from two deuterium atoms is Dm 5 4.25 3 10229 kg. Hence, the cor-
responding energy that results from one fusion reaction is Dmc 2 5 3.83 3 10212 J 5 
23.9 MeV. To appreciate the magnitude of this result, consider that if only 1 g of 
deuterium were converted to helium, the energy released would be on the order of 
1012 J! In 2013’s cost of electrical energy, this energy would be worth approximately 
$35 000. We shall present more details of these nuclear processes in Chapter 45 of 
the extended version of this textbook.

Example 39.10	     Mass Change in a Radioactive Decay

The 216Po nucleus is unstable and exhibits radioactivity (Chapter 44). It decays to 212Pb by emitting an alpha particle, 
which is a helium nucleus, 4He. The relevant masses, in atomic mass units (see Table A.1 in Appendix A), are mi 5 
m(216Po) 5 216.001 915 u and mf 5 m(212Pb) 1 m(4He) 5 211.991 898 u 1 4.002 603 u.

(A)  ​Find the mass change of the system in this decay.

Conceptualize  ​The initial system is the 216Po nucleus. Imagine the mass of the system decreasing during the decay and 
transforming to kinetic energy of the alpha particle and the 212Pb nucleus after the decay.

Categorize  ​We use concepts discussed in this section, so we categorize this example as a substitution problem.

S o l u tio   n

Calculate the change in mass using the mass 
values given in the problem statement. Dm 5 216.001 915 u 2 (211.991 898 u 1 4.002 603 u)

5 0.007 414 u 5 1.23 3 10229 kg

Use Equation 39.24 to find the energy associated with 
this mass change:

E 5 Dmc 2 5 (1.23 3 10229 kg)(3.00 3 108 m/s)2

5 1.11 3 10212 J 5 6.92 MeV

(B)  ​Find the energy this mass change represents.

S o l u tio   n

39.9	 The General Theory of Relativity
Up to this point, we have sidestepped a curious puzzle. Mass has two seemingly dif-
ferent properties: a gravitational attraction for other masses and an inertial property 
that represents a resistance to acceleration. We first discussed these two attributes 
for mass in Section 5.5. To designate these two attributes, we use the subscripts g 
and i and write

	 Gravitational property:	​ Fg 5 mg g

	 Inertial property:	 o F 5 mia

The value for the gravitational constant G was chosen to make the magnitudes of 
mg and mi numerically equal. Regardless of how G is chosen, however, the strict 
proportionality of mg and mi has been established experimentally to an extremely 
high degree: a few parts in 1012. Therefore, it appears that gravitational mass and 
inertial mass may indeed be exactly proportional.
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	 39.9  The General Theory of Relativity	 1221

	 Why, though? They seem to involve two entirely different concepts: a force of 
mutual gravitational attraction between two masses and the resistance of a single 
mass to being accelerated. This question, which puzzled Newton and many other 
physicists over the years, was answered by Einstein in 1916 when he published his 
theory of gravitation, known as the general theory of relativity. Because it is a math-
ematically complex theory, we offer merely a hint of its elegance and insight.
	 In Einstein’s view, the dual behavior of mass was evidence for a very intimate and 
basic connection between the two behaviors. He pointed out that no mechanical 
experiment (such as dropping an object) could distinguish between the two situa-
tions illustrated in Figures 39.17a and 39.17b. In Figure 39.17a, a person standing in 
an elevator on the surface of a planet feels pressed into the floor due to the gravi-
tational force. If he releases his briefcase, he observes it moving toward the floor 
with acceleration gS 5 2g ĵ. In Figure 39.17b, the person is in an elevator in empty 
space accelerating upward with aSel 5 1g ĵ. The person feels pressed into the floor 
with the same force as in Figure 39.17a. If he releases his briefcase, he observes it 
moving toward the floor with acceleration g, exactly as in the previous situation. In 
each situation, an object released by the observer undergoes a downward accelera-
tion of magnitude g relative to the floor. In Figure 39.17a, the person is at rest in 
an inertial frame in a gravitational field due to the planet. In Figure 39.17b, the 
person is in a noninertial frame accelerating in gravity-free space. Einstein’s claim 
is that these two situations are completely equivalent.
	 Einstein carried this idea further and proposed that no experiment, mechani-
cal or otherwise, could distinguish between the two situations. This extension to 
include all phenomena (not just mechanical ones) has interesting consequences. 
For example, suppose a light pulse is sent horizontally across the elevator as in Fig-
ure 39.17c, in which the elevator is accelerating upward in empty space. From the 
point of view of an observer in an inertial frame outside the elevator, the light trav-
els in a straight line while the floor of the elevator accelerates upward. According to 
the observer on the elevator, however, the trajectory of the light pulse bends down-
ward as the floor of the elevator (and the observer) accelerates upward. Therefore, 
based on the equality of parts (a) and (b) of the figure, Einstein proposed that a 

a b

vel � 0 S

ael � 0 S

vel � 0 S

ael � 0 S

ael � �gˆ  S
j

g � �g jS

The observer in the 
nonaccelerating elevator 
drops his briefcase, 
which he observes to 
move downward with 
acceleration g.

The observer in the 
accelerating elevator drops 
his briefcase, which he 
observes to move downward 
with acceleration g.

dc

ael � �gˆ   S
j

In an accelerating 
elevator, the observer 
sees a light beam bend 
downward.

Because of the equivalence 
in  a  and  b  ,  we expect a 
light ray to bend downward 
in a gravitational field.     

a b

ˆ g � �g jS ˆ

Figure 39.17  ​(a) The observer is at rest in an elevator in a uniform gravitational field gS 5 2g ĵ, 
directed downward. (b) The observer is in a region where gravity is negligible, but the elevator moves 
upward with an acceleration aSel 5 1g ĵ. According to Einstein, the frames of reference in (a) and 
(b) are equivalent in every way. No local experiment can distinguish any difference between the two 
frames. (c) An observer watches a beam of light in an accelerating elevator. (d) Einstein’s prediction 
of the behavior of a beam of light in a gravitational field.
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1222	C hapter 39 R elativity

beam of light should also be bent downward by a gravitational field as in Figure 
39.17d. Experiments have verified the effect, although the bending is small. A laser 
aimed at the horizon falls less than 1 cm after traveling 6 000 km. (No such bend-
ing is predicted in Newton’s theory of gravitation.)
	 Einstein’s general theory of relativity has two postulates:

•	 All the laws of nature have the same form for observers in any frame of refer-
ence, whether accelerated or not.

•	 In the vicinity of any point, a gravitational field is equivalent to an accelerated 
frame of reference in gravity-free space (the principle of equivalence).

	 One interesting effect predicted by the general theory is that time is altered by 
gravity. A clock in the presence of gravity runs slower than one located where grav-
ity is negligible. Consequently, the frequencies of radiation emitted by atoms in the 
presence of a strong gravitational field are redshifted to lower frequencies when com-
pared with the same emissions in the presence of a weak field. This gravitational 
redshift has been detected in spectral lines emitted by atoms in massive stars. It has 
also been verified on the Earth by comparing the frequencies of gamma rays emit-
ted from nuclei separated vertically by about 20 m.
	 The second postulate suggests a gravitational field may be “transformed away” at 
any point if we choose an appropriate accelerated frame of reference, a freely falling 
one. Einstein developed an ingenious method of describing the acceleration neces-
sary to make the gravitational field “disappear.” He specified a concept, the curva-
ture of space–time, that describes the gravitational effect at every point. In fact, the 
curvature of space–time completely replaces Newton’s gravitational theory. Accord-
ing to Einstein, there is no such thing as a gravitational force. Rather, the presence 
of a mass causes a curvature of space–time in the vicinity of the mass, and this cur-
vature dictates the space–time path that all freely moving objects must follow.
	 As an example of the effects of curved space–time, imagine two travelers moving 
on parallel paths a few meters apart on the surface of the Earth and maintaining an 
exact northward heading along two longitude lines. As they observe each other near 
the equator, they will claim that their paths are exactly parallel. As they approach 
the North Pole, however, they notice that they are moving closer together and will 
meet at the North Pole. Therefore, they claim that they moved along parallel paths, 
but moved toward each other, as if there were an attractive force between them. The trav-
elers make this conclusion based on their everyday experience of moving on flat 
surfaces. From our mental representation, however, we realize they are walking on 
a curved surface, and it is the geometry of the curved surface, rather than an attrac-
tive force, that causes them to converge. In a similar way, general relativity replaces 
the notion of forces with the movement of objects through curved space–time.
	 One prediction of the general theory of relativity is that a light ray passing near 
the Sun should be deflected in the curved space–time created by the Sun’s mass. 
This prediction was confirmed when astronomers detected the bending of starlight 
near the Sun during a total solar eclipse that occurred shortly after World War I 
(Fig. 39.18). When this discovery was announced, Einstein became an international 
celebrity.

Einstein’s cross. The four outer 
bright spots are images of the 
same galaxy that have been bent 
around a massive object located 
between the galaxy and the Earth. 
The massive object acts like a lens, 
causing the rays of light that were 
diverging from the distant galaxy 
to converge on the Earth. (If the 
intervening massive object had 
a uniform mass distribution, we 
would see a bright ring instead of 
four spots.)
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In his general 
theory of 
relativity, Einstein 
calculated that 
starlight just 
grazing the Sun’s 
surface should be 
deflected by an 
angle of 1.75 s of 
arc.

1.75"

Sun

Light from star
(actual
direction)

Apparent
direction to star

Deflected path of 
light from star

Earth
Figure 39.18  ​Deflection of 
starlight passing near the Sun. 
Because of this effect, the Sun or 
some other remote object can act 
as a gravitational lens.
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	 If the concentration of mass becomes very great as is believed to occur when 
a large star exhausts its nuclear fuel and collapses to a very small volume, a black 
hole may form as discussed in Chapter 13. Here, the curvature of space–time is so 
extreme that within a certain distance from the center of the black hole all matter 
and light become trapped as discussed in Section 13.6.

  Three consequences of the special theory of relativity are as follows:

•	 Events that are measured to be simultaneous for one observer 
are not necessarily measured to be simultaneous for another 
observer who is in motion relative to the first.

•	 Clocks in motion relative to an observer are measured to run 
slower by a factor g 5 (1 2 v 2/c 2)21/2. This phenomenon is 
known as time dilation.

•	 The lengths of objects in motion are measured to be shorter in 
the direction of motion by a factor 1/g 5 (1 2 v 2/c 2)1/2. This 
phenomenon is known as length contraction.

  The relativistic expression for the kinetic energy of a particle is

	 K 5
mc 2

Å1 2
u2

c 2

2 mc 2 5 1g 2 1 2mc 2 	 (39.23)

  The total energy E of a particle is given by

	 E 5
mc 2

Å1 2
u2

c 2

5 gmc 2 	 (39.26)

  The two basic postulates of the special 
theory of relativity are as follows:

•	 The laws of physics must be the same 
in all inertial reference frames.

•	 The speed of light in vacuum has 
the same value, c 5 3.00 3 108 m/s, 
in all inertial frames, regardless of 
the velocity of the observer or the 
velocity of the source emitting the 
light.

  The constant term mc 2 in Equation 
39.23 is called the rest energy ER of the 
particle:

	 ER 5 mc 2	 (39.24)

  The relativistic linear momentum of a particle is 
related to its total energy through the equation

	 E 2 5 p2c 2 1 (mc 2)2	 (39.27)

Summary

Definitions

Concepts and Principles

  The relativistic force F
S

 acting on a particle whose 
linear momentum is pS is defined as

	 F
S

;
d pS

dt
	 (39.20)

  The relativistic form of the Lorentz velocity 
transformation equation is

	 u rx 5
ux 2 v

1 2
uxv

c 2

	 (39.16)

where u9x is the x component of the velocity of an 
object as measured in the S9 frame and ux is its 
component as measured in the S frame.

  The relativistic expression for the linear momentum 
of a particle moving with a velocity uS is

	 pS ;
muS

Å1 2
u2

c 2

5 gm uS 	 (39.19)

  To satisfy the postulates of special relativity, the Galilean 
transformation equations must be replaced by the Lorentz 
transformation equations:

	x r 5 g 1x 2 vt 2 y r 5 y z r 5 z t r 5 gat 2
v
c 2 xb 	 (39.11)

where g 5 (1 2 v 2/c 2)21/2 and the S9 frame moves in the x 
direction at speed v relative to the S frame.www.as
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of the dimensions of her spacecraft would be shorter.  
(e) None of those answers is correct.

	 6.	 You measure the volume of a cube at rest to be V0. You 
then measure the volume of the same cube as it passes 
you in a direction parallel to one side of the cube. The 
speed of the cube is 0.980c, so g < 5. Is the volume you 
measure close to (a) V0/25, (b) V0/5, (c) V0, (d) 5V0, or 
(e) 25V0?

	 7.	 Two identical clocks are set side by side and synchro-
nized. One remains on the Earth. The other is put into 
orbit around the Earth moving rapidly toward the east. 
(i) As measured by an observer on the Earth, does the 
orbiting clock (a) run faster than the Earth-based clock, 
(b) run at the same rate, or (c) run slower? (ii) The 
orbiting clock is returned to its original location and 
brought to rest relative to the Earth-based clock. There-
after, what happens? (a) Its reading lags farther and far-
ther behind the Earth-based clock. (b) It lags behind 
the Earth-based clock by a constant amount. (c) It is syn-
chronous with the Earth-based clock. (d) It is ahead of 
the Earth-based clock by a constant amount. (e) It gets 
farther and farther ahead of the Earth-based clock.

	 8.	 The following three particles all have the same total 
energy E: (a) a photon, (b) a proton, and (c) an elec-
tron. Rank the magnitudes of the particles’ momenta 
from greatest to smallest.

	 9.	 Which of the following statements are fundamental 
postulates of the special theory of relativity? More than 
one statement may be correct. (a) Light moves through 
a substance called the ether. (b) The speed of light 
depends on the inertial reference frame in which it is 
measured. (c) The laws of physics depend on the iner-
tial reference frame in which they are used. (d) The 
laws of physics are the same in all inertial reference 
frames. (e) The speed of light is independent of the 
inertial reference frame in which it is measured.

	10.	 A distant astronomical object (a quasar) is moving away 
from us at half the speed of light. What is the speed of 
the light we receive from this quasar? (a) greater than c 
(b) c (c) between c/2 and c (d) c/2 (e) between 0 and c/2

	 1.	 (i) Does the speed of an electron have an upper limit? 
(a) yes, the speed of light c (b) yes, with another value 
(c) no (ii) Does the magnitude of an electron’s momen-
tum have an upper limit? (a) yes, mec (b) yes, with 
another value (c)  no (iii) Does the electron’s kinetic 
energy have an upper limit? (a) yes, mec 2 (b) yes, 1

2mec
2 

(c) yes, with another value (d) no

	 2.	 A spacecraft zooms past the Earth with a constant 
velocity. An observer on the Earth measures that an 
undamaged clock on the spacecraft is ticking at one-
third the rate of an identical clock on the Earth. What 
does an observer on the spacecraft measure about 
the Earth-based clock’s ticking rate? (a) It runs more 
than three times faster than his own clock. (b) It runs 
three times faster than his own. (c) It runs at the same 
rate as his own. (d) It runs at one-third the rate of 
his own. (e) It runs at less than one-third the rate of  
his own.

	 3.	 As a car heads down a highway traveling at a speed v 
away from a ground observer, which of the following 
statements are true about the measured speed of the 
light beam from the car’s headlights? More than one 
statement may be correct. (a) The ground observer 
measures the light speed to be c 1 v. (b) The driver 
measures the light speed to be c. (c) The ground 
observer measures the light speed to be c. (d) The 
driver measures the light speed to be c 2 v. (e) The 
ground observer measures the light speed to be c 2 v.

	 4.	 A spacecraft built in the shape of a sphere moves past 
an observer on the Earth with a speed of 0.500c. What 
shape does the observer measure for the spacecraft as 
it goes by? (a) a sphere (b) a cigar shape, elongated 
along the direction of motion (c) a round pillow shape, 
flattened along the direction of motion (d) a conical 
shape, pointing in the direction of motion

	 5.	 An astronaut is traveling in a spacecraft in outer space 
in a straight line at a constant speed of 0.500c. Which 
of the following effects would she experience? (a) She 
would feel heavier. (b) She would find it harder to 
breathe. (c) Her heart rate would change. (d) Some 

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 In several cases, a nearby star has been found to have a 
large planet orbiting about it, although light from the 
planet could not be seen separately from the starlight. 
Using the ideas of a system rotating about its center of 
mass and of the Doppler shift for light, explain how an 
astronomer could determine the presence of the invis-
ible planet.

	 2.	 Explain why, when defining the length of a rod, it is 
necessary to specify that the positions of the ends of 
the rod are to be measured simultaneously.

	 3.	 A train is approaching you at very high speed as you 
stand next to the tracks. Just as an observer on the 
train passes you, you both begin to play the same 

recorded version of a Beethoven symphony on identi-
cal iPods. (a) According to you, whose iPod finishes 
the symphony first? (b) What If? According to the 
observer on the train, whose iPod finishes the sym-
phony first? (c) Whose iPod actually finishes the sym-
phony first?

	 4.	 List three ways our day-to-day lives would change if the 
speed of light were only 50 m/s.

	 5.	 How is acceleration indicated on a space–time graph?

	 6.	 (a) “Newtonian mechanics correctly describes objects 
moving at ordinary speeds, and relativistic mechanics 
correctly describes objects moving very fast.” (b) “Rela-
tivistic mechanics must make a smooth transition as 
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	 2.	 In a laboratory frame of reference, an observer notes 
that Newton’s second law is valid. Assume forces and 
masses are measured to be the same in any reference 
frame for speeds small compared with the speed of 
light. (a) Show that Newton’s second law is also valid 
for an observer moving at a constant speed, small 
compared with the speed of light, relative to the  
laboratory frame. (b) Show that Newton’s second law 
is not valid in a reference frame moving past the labo-
ratory frame with a con-
stant acceleration.

	 3.	 The speed of the Earth in 
its orbit is 29.8 km/s. If that 
is the magnitude of the 
velocity vS of the ether wind 
in Figure P39.3, find the 
angle f between the velocity  
of light cS in vacuum and 
the resultant velocity of 
light if there were an ether.

Section 39.1 ​ The Principle of Galilean Relativity

Problems 46–48, 50, 51, 53–54, and 79 in Chapter 4 can 
be assigned with this section.

	 1.	 The truck in Figure P39.1 is moving at a speed of  
10.0 m/s relative to the ground. The person on the 
truck throws a baseball in the backward direction at a 
speed of 20.0 m/s relative to the truck. What is the 
velocity of the baseball as measured by the observer on 
the ground?

vtruck

vS
S

Figure P39.1

light. (ii) A laser pointer is suspended in a horizontal 
plane and set into rapid rotation as shown in Figure 
CQ39.12b. Show that the spot of light it produces on 
a distant screen can move across the screen at a speed 
greater than the speed of light. (If you carry out this 
experiment, make sure the direct laser light cannot 
enter a person’s eyes.) (iii) Argue that the experiments 
in parts (i) and (ii) do not invalidate the principle that 
no material, no energy, and no information can move 
faster than light moves in a vacuum.

a

p

f

F

b

Figure CQ39.12

	13.	With regard to reference frames, how does general rel-
ativity differ from special relativity?

	14.	Two identical clocks are in the same house, one 
upstairs in a bedroom and the other downstairs in the 
kitchen. Which clock runs slower? Explain.

it reduces to Newtonian mechanics in a case in which 
the speed of an object becomes small compared with 
the speed of light.” Argue for or against statements (a) 
and (b).

	 7.	 The speed of light in water is 230 Mm/s. Suppose an 
electron is moving through water at 250 Mm/s. Does 
that violate the principle of relativity? Explain.

	 8.	 A particle is moving at a speed less than c/2. If the 
speed of the particle is doubled, what happens to its 
momentum?

	 9.	 Give a physical argument that shows it is impossible to 
accelerate an object of mass m to the speed of light, 
even with a continuous force acting on it.

	10.	Explain how the Doppler effect with microwaves is 
used to determine the speed of an automobile.

	11.	 It is said that Einstein, in his teenage years, asked the 
question, “What would I see in a mirror if I carried it in 
my hands and ran at a speed near that of light?” How 
would you answer this question?

	12.	(i) An object is placed at a position p . f from a con-
cave mirror as shown in Figure CQ39.12a, where f is 
the focal length of the mirror. In a finite time inter-
val, the object is moved to the right to a position at 
the focal point F of the mirror. Show that the image of 
the object moves at a speed greater than the speed of 

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C

S

vS

cSMagnitude: c2 � v2 

f

Figure P39.3
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1226	C hapter 39 R elativity

	 4.	 A car of mass 2 000 kg moving with a speed of 20.0 m/s 
collides and locks together with a 1 500-kg car at rest 
at a stop sign. Show that momentum is conserved in a 
reference frame moving at 10.0 m/s in the direction of 
the moving car.

Section 39.2 ​ The Michelson–Morley Experiment

Section 39.3 ​ Einstein’s Principle of Relativity

Section 39.4 ​ Consequences of the Special Theory of Relativity

Problem 82 in Chapter 4 can be assigned with this section.

	 5.	 A star is 5.00 ly from the Earth. At what speed must 
a spacecraft travel on its journey to the star such that 
the Earth–star distance measured in the frame of the 
spacecraft is 2.00 ly?

	 6.	 A meterstick moving at 0.900c relative to the Earth’s 
surface approaches an observer at rest with respect to 
the Earth’s surface. (a) What is the meterstick’s length 
as measured by the observer? (b) Qualitatively, how 
would the answer to part (a) change if the observer 
started running toward the meterstick?

	 7.	 At what speed does a clock move if it is measured to 
run at a rate one-half the rate of a clock at rest with 
respect to an observer?

	 8.	 A muon formed high in the Earth’s atmosphere is mea-
sured by an observer on the Earth’s surface to travel 
at speed v 5 0.990c for a distance of 4.60 km before 
it decays into an electron, a neutrino, and an antineu-
trino (m2  S  e2 1 n 1 n). (a) For what time interval 
does the muon live as measured in its reference frame? 
(b) How far does the Earth travel as measured in the 
frame of the muon?

	 9.	 How fast must a meterstick be moving if its length is 
measured to shrink to 0.500 m?

	10.	An astronaut is traveling in a space vehicle moving at 
0.500c relative to the Earth. The astronaut measures 
her pulse rate at 75.0 beats per minute. Signals gen-
erated by the astronaut’s pulse are radioed to the 
Earth when the vehicle is moving in a direction per-
pendicular to the line that connects the vehicle with 
an observer on the Earth. (a)  What pulse rate does 
the Earth-based observer measure? (b) What If? What 
would be the pulse rate if the speed of the space vehi-
cle were increased to 0.990c?

	11.	 A physicist drives through a stop light. When he is pulled 
over, he tells the police officer that the Doppler shift 
made the red light of wavelength 650 nm appear green 
to him, with a wavelength of 520 nm. The police officer 
writes out a traffic citation for speeding. How fast was 
the physicist traveling, according to his own testimony?

	12.	A fellow astronaut passes by you in a spacecraft trav-
eling at a high speed. The astronaut tells you that his 
craft is 20.0 m long and that the identical craft you are 
sitting in is 19.0 m long. According to your observa-
tions, (a) how long is your craft, (b) how long is the 
astronaut’s craft, and (c) what is the speed of the astro-
naut’s craft relative to your craft?

AMT

Q/C

W

W

BIO

W

	13.	A deep-space vehicle moves away from the Earth with a 
speed of 0.800c. An astronaut on the vehicle measures 
a time interval of 3.00 s to rotate her body through 
1.00 rev as she floats in the vehicle. What time interval 
is required for this rotation according to an observer 
on the Earth?

	14.	For what value of v does g 5 1.010 0? Observe that for 
speeds lower than this value, time dilation and length 
contraction are effects amounting to less than 1%.

	15.	A supertrain with a proper length of 100 m travels at 
a speed of 0.950c as it passes through a tunnel hav-
ing a proper length of 50.0 m. As seen by a trackside 
observer, is the train ever completely within the tun-
nel? If so, by how much do the train’s ends clear the 
ends of the tunnel?

	16.	The average lifetime of a pi meson in its own frame of 
reference (i.e., the proper lifetime) is 2.6 3 1028 s. If 
the meson moves with a speed of 0.98c, what is (a) its 
mean lifetime as measured by an observer on Earth, 
and (b) the average distance it travels before decay-
ing, as measured by an observer on Earth? (c) What 
distance would it travel if time dilation did not occur?

	17.	 An astronomer on the Earth observes a meteoroid in 
the southern sky approaching the Earth at a speed of 
0.800c. At the time of its discovery the meteoroid is 
20.0 ly from the Earth. Calculate (a) the time interval 
required for the meteoroid to reach the Earth as mea-
sured by the Earthbound astronomer, (b) this time 
interval as measured by a tourist on the meteoroid, 
and (c) the distance to the Earth as measured by the 
tourist.

	18.	A cube of steel has a volume of 1.00 cm3 and a mass 
of 8.00 g when at rest on the Earth. If this cube is now 
given a speed u 5 0.900c, what is its density as mea-
sured by a stationary observer? Note that relativistic 
density is defined as ER/c2V.

	19.	A spacecraft with a proper length of 300 m passes by 
an observer on the Earth. According to this observer, it 
takes 0.750 ms for the spacecraft to pass a fixed point. 
Determine the speed of the spacecraft as measured by 
the Earth-based observer.

	20.	A spacecraft with a proper length of Lp passes by an 
observer on the Earth. According to this observer, it 
takes a time interval Dt for the spacecraft to pass a 
fixed point. Determine the speed of the object as mea-
sured by the Earth-based observer.

	21.	 A light source recedes from an observer with a speed 
vS that is small compared with c. (a) Show that the frac-
tional shift in the measured wavelength is given by the 
approximate expression

Dl

l
<

vS

c
		  This phenomenon is known as the redshift because the 

visible light is shifted toward the red. (b) Spectroscopic 
measurements of light at l 5 397 nm coming from a 
galaxy in Ursa Major reveal a redshift of 20.0 nm. What 
is the recessional speed of the galaxy?

M
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end of the 1.00-h interval, how many nanoseconds slow 
will the moving clock be compared with the Earth-
based clock?

	26.	Review. An alien civilization occupies a planet circling 
a brown dwarf, several light-years away. The plane of 
the planet’s orbit is perpendicular to a line from the 
brown dwarf to the Sun, so the planet is at nearly a 
fixed position relative to the Sun. The extraterrestrials 
have come to love broadcasts of MacGyver, on television 
channel 2, at carrier frequency 57.0 MHz. Their line of 
sight to us is in the plane of the Earth’s orbit. Find the 
difference between the highest and lowest frequencies 
they receive due to the Earth’s orbital motion around 
the Sun.

Section 39.5 ​ The Lorentz Transformation Equations

	27.	A red light flashes at position x R 5 3.00 m and time  
t R 5 1.00 3 1029 s, and a blue light flashes at x B 5  
5.00 m and t B 5 9.00 3 1029 s, all measured in the S 
reference frame. Reference frame S9 moves uniformly 
to the right and has its origin at the same point as S at 
t 5 t 9 5 0. Both flashes are observed to occur at the 
same place in S9. (a) Find the relative speed between 
S and S9. (b) Find the location of the two flashes in 
frame S9. (c) At what time does the red flash occur in 
the S9 frame?

	28.	Shannon observes two light pulses to be emitted from 
the same location, but separated in time by 3.00 ms. 
Kimmie observes the emission of the same two pulses 
to be separated in time by 9.00 ms. (a) How fast is Kim-
mie moving relative to Shannon? (b) According to Kim-
mie, what is the separation in space of the two pulses?

	29.	A moving rod is observed 
to have a length of , 5 
2.00  m and to be ori-
ented at an angle of u 5 
30.0° with respect to the 
direction of motion as 
shown in Figure P39.29. 
The rod has a speed of 
0.995c. (a)  What is the 
proper length of the rod? 
(b) What is the orientation angle in the proper frame?

	30.	A rod moving with a speed v along the horizontal direc-
tion is observed to have length , and to make an angle 
u with respect to the direction of motion as shown in 
Figure P39.29. (a) Show that the length of the rod as 
measured by an observer at rest with respect to the rod 
is ,p 5 ,[1 2 (v2/c 2) cos2 u]1/2. (b) Show that the angle 
up that the rod makes with the x axis according to an 
observer at rest with respect to the rod can be found 
from tan up 5 g tan u. These results show that the rod is 
observed to be both contracted and rotated. (Take the 
lower end of the rod to be at the origin of the coordi-
nate system in which the rod is at rest.)

	31.	 Keilah, in reference frame S, measures two events to be 
simultaneous. Event A occurs at the point (50.0 m, 0, 
0) at the instant 9:00:00 Universal time on January 15, 

W

Direction of motion

u

,

Figure P39.29

S

	22.	Review. In 1963, astronaut Gordon Cooper orbited the 
Earth 22 times. The press stated that for each orbit, 
he aged two-millionths of a second less than he would 
have had he remained on the Earth. (a) Assuming 
Cooper was 160 km above the Earth in a circular orbit, 
determine the difference in elapsed time between 
someone on the Earth and the orbiting astronaut for 
the 22 orbits. You may use the approximation

	
1

"1 2 x
< 1 1

x
2

		  for small x. (b) Did the press report accurate informa-
tion? Explain.

	23.	Police radar detects the speed of a car (Fig. P39.23) as 
follows. Microwaves of a precisely known frequency are 
broadcast toward the car. The moving car reflects the 
microwaves with a Doppler shift. The reflected waves 
are received and combined with an attenuated version 
of the transmitted wave. Beats occur between the two 
microwave signals. The beat frequency is measured. 
(a) For an electromagnetic wave reflected back to its 
source from a mirror approaching at speed v, show 
that the reflected wave has frequency

f r 5
c 1 v
c 2 v

 f

		  where f is the source frequency. (b) Noting that v is 
much less than c, show that the beat frequency can 
be written as fbeat 5 2v/l. (c) What beat frequency is 
measured for a car speed of 30.0 m/s if the microwaves 
have frequency 10.0 GHz? (d) If the beat frequency 
measurement in part (c) is accurate to 65.0 Hz, how 
accurate is the speed measurement?

Figure P39.23
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	24.	The identical twins Speedo and Goslo join a migration 
from the Earth to Planet X, 20.0 ly away in a reference 
frame in which both planets are at rest. The twins, of 
the same age, depart at the same moment on different 
spacecraft. Speedo’s spacecraft travels steadily at 0.950c 
and Goslo’s at 0.750c. (a) Calculate the age difference 
between the twins after Goslo’s spacecraft lands on 
Planet X. (b) Which twin is older?

	25.	An atomic clock moves at 1 000 km/h for 1.00 h as 
measured by an identical clock on the Earth. At the 
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1228	C hapter 39 R elativity

2013. Event B occurs at the point (150 m, 0, 0) at the 
same moment. Torrey, moving past with a velocity of 
0.800c î, also observes the two events. In her reference 
frame S9, which event occurred first and what time 
interval elapsed between the events?

Section 39.6 The Lorentz Velocity Transformation Equations

	32.	Figure P39.32 shows a jet of material (at the upper 
right) being ejected by galaxy M87 (at the lower left). 
Such jets are believed to be evidence of supermassive 
black holes at the center of a galaxy. Suppose two jets 
of material from the center of a galaxy are ejected in 
opposite directions. Both jets move at 0.750c relative to 
the galaxy center. Determine the speed of one jet rela-
tive to the other.

Figure P39.32
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	33.	An enemy spacecraft moves away from the Earth at a 
speed of v 5 0.800c (Fig. P39.33). A galactic patrol 
spacecraft pursues at a speed of u 5 0.900c relative to 
the Earth. Observers on the Earth measure the patrol 
craft to be overtaking the enemy craft at a relative speed 
of 0.100c. With what speed is the patrol craft overtaking 
the enemy craft as measured by the patrol craft’s crew?

S

Galactic patrol
spacecraft

Enemy spacecraft

x

S �

x �

vS

uS

Figure P39.33

	34.	A spacecraft is launched from the surface of the Earth 
with a velocity of 0.600c at an angle of 50.0° above the 
horizontal positive x axis. Another spacecraft is mov-
ing past with a velocity of 0.700c in the negative x direc-
tion. Determine the magnitude and direction of the 
velocity of the first spacecraft as measured by the pilot 
of the second spacecraft.

	35.	A rocket moves with a velocity of 0.92c to the right 
with respect to a stationary observer A. An observer 
B moving relative to observer A finds that the rocket 
is moving with a velocity of 0.95c to the left. What is 
the velocity of observer B relative to observer A? (Hint: 

M

M

Consider observer B’s velocity in the frame of refer-
ence of the rocket.)

Section 39.7 ​ Relativistic Linear Momentum

	36.	Calculate the momentum of an electron moving with a 
speed of (a) 0.010 0c, (b) 0.500c, and (c) 0.900c.

	37.	 An electron has a momentum that is three times larger 
than its classical momentum. (a) Find the speed of the 
electron. (b) What If? How would your result change if 
the particle were a proton?

	38.	Show that the speed of an object having momentum of 
magnitude p and mass m is 

		  u 5
c

"1 1 1mc/p 22

	39.	(a) Calculate the classical momentum of a proton travel-
ing at 0.990c, neglecting relativistic effects. (b) Repeat 
the calculation while including relativistic effects.  
(c) Does it make sense to neglect relativity at such 
speeds?

	40.	The speed limit on a certain roadway is 90.0 km/h. 
Suppose speeding fines are made proportional to 
the amount by which a vehicle’s momentum exceeds 
the momentum it would have when traveling at the 
speed limit. The fine for driving at 190 km/h (that is,  
100 km/h over the speed limit) is $80.0. What, then, 
is the fine for traveling (a) at 1 090 km/h? (b) At 
1 000 000 090 km/h?

	41.	A golf ball travels with a speed of 90.0 m/s. By what 
fraction does its relativistic momentum magnitude p 
differ from its classical value mu? That is, find the ratio 
(p 2 mu)/mu.

	42.	The nonrelativistic expression for the momentum of a 
particle, p 5 mu, agrees with experiment if u ,, c. For 
what speed does the use of this equation give an error in 
the measured momentum of (a) 1.00% and (b) 10.0%?

	43.	An unstable particle at rest spontaneously breaks into 
two fragments of unequal mass. The mass of the first 
fragment is 2.50 3 10228 kg, and that of the other is 
1.67 3 10227  kg. If the lighter fragment has a speed 
of 0.893c after the breakup, what is the speed of the 
heavier fragment?

Section 39.8 ​ Relativistic Energy

	44.	Determine the energy required to accelerate an elec-
tron from (a) 0.500c to 0.900c and (b) 0.900c to 0.990c.

	45.	An electron has a kinetic energy five times greater than 
its rest energy. Find (a) its total energy and (b) its speed.

	46.	Protons in an accelerator at the Fermi National Labo-
ratory near Chicago are accelerated to a total energy 
that is 400 times their rest energy. (a) What is the 
speed of these protons in terms of c? (b) What is their 
kinetic energy in MeV?

	47.	 A proton moves at 0.950c. Calculate its (a) rest energy, 
(b) total energy, and (c) kinetic energy.

	48.	(a) Find the kinetic energy of a 78.0-kg spacecraft 
launched out of the solar system with speed 106 km/s 
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(c) assuming both particles have kinetic energies of  
2 000 MeV.

	60.	Consider a car moving at highway speed u. Is its actual 
kinetic energy larger or smaller than 1

2mu2? Make an 
order-of-magnitude estimate of the amount by which 
its actual kinetic energy differs from 12mu2. In your solu-
tion, state the quantities you take as data and the val-
ues you measure or estimate for them. You may find 
Appendix B.5 useful.

	61.	 A pion at rest (m p 5 273me) decays to a muon (mm 5 
207me) and an antineutrino (mn– < 0). The reaction is 
written p2  S  m2 1 n. Find (a) the kinetic energy of 
the muon and (b) the energy of the antineutrino in 
electron volts.

	62.	An unstable particle with mass m 5 3.34 3 10227 kg is 
initially at rest. The particle decays into two fragments 
that fly off along the x axis with velocity components 
u1 5 0.987c and u2 5 20.868c. From this information, 
we wish to determine the masses of fragments 1 and 2. 
(a) Is the initial system of the unstable particle, which 
becomes the system of the two fragments, isolated or 
nonisolated? (b) Based on your answer to part (a), what 
two analysis models are appropriate for this situation? 
(c) Find the values of g for the two fragments after the 
decay. (d) Using one of the analysis models in part (b), 
find a relationship between the masses m 1 and m 2 of 
the fragments. (e) Using the second analysis model in 
part (b), find a second relationship between the masses 
m 1 and m 2. (f) Solve the relationships in parts (d) and 
(e) simultaneously for the masses m 1 and m 2.

	63.	Massive stars ending their lives in supernova explo-
sions produce the nuclei of all the atoms in the bottom 
half of the periodic table by fusion of smaller nuclei. 
This problem roughly models that process. A particle 
of mass m 5 1.99 3 10226 kg moving with a velocity 
uS 5 0.500c î collides head-on and sticks to a particle of 
mass m9 5 m/3 moving with the velocity uS 5 20.500c î. 
What is the mass of the resulting particle?

	64.	Massive stars ending their lives in supernova explosions 
produce the nuclei of all the atoms in the bottom half 
of the periodic table by fusion of smaller nuclei. This 
problem roughly models that process. A particle of mass 
m moving along the x axis with a velocity component 
1u collides head-on and sticks to a particle of mass m/3 
moving along the x axis with the velocity component 
2u. (a) What is the mass M of the resulting particle? 
(b) Evaluate the expression from part (a) in the limit 
u S 0. (c) Explain whether the result agrees with what 
you should expect from nonrelativistic physics.

Section 39.9 ​ The General Theory of Relativity

	65.	Review. A global positioning system (GPS) satellite 
moves in a circular orbit with period 11 h 58 min.  
(a) Determine the radius of its orbit. (b) Determine its 
speed. (c) The nonmilitary GPS signal is broadcast at 
a frequency of 1 575.42 MHz in the reference frame of 
the satellite. When it is received on the Earth’s surface 
by a GPS receiver (Fig. P39.65 on page 1230), what is 

M
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by using the classical equation K 5 1
2mu2. (b) What If? 

Calculate its kinetic energy using the relativistic equa-
tion. (c) Explain the result of comparing the answers 
of parts (a) and (b).

	49.	A proton in a high-energy accelerator moves with a 
speed of c/2. Use the work–kinetic energy theorem 
to find the work required to increase its speed to  
(a) 0.750c and (b) 0.995c.

	50.	Show that for any object moving at less than one-tenth 
the speed of light, the relativistic kinetic energy agrees  
with the result of the classical equation K 5 1

2mu2 to 
within less than 1%. Therefore, for most purposes, the 
classical equation is sufficient to describe these objects.

	51.	 The total energy of a proton is twice its rest energy. 
Find the momentum of the proton in MeV/c units.

	52.	Consider electrons accelerated to a total energy of 
20.0  GeV in the 3.00-km-long Stanford Linear Accel-
erator. (a) What is the factor g for the electrons?  
(b) What is the electrons’ speed at the given energy? 
(c) What is the length of the accelerator in the elec-
trons’ frame of reference when they are moving at 
their highest speed?

	53.	When 1.00 g of hydrogen combines with 8.00 g of 
oxygen, 9.00 g of water is formed. During this chemi-
cal reaction, 2.86 3 105 J of energy is released. (a) Is 
the mass of the water larger or smaller than the mass 
of the reactants? (b) What is the difference in mass? 
(c) Explain whether the change in mass is likely to be 
detectable.

	54.	In a nuclear power plant, the fuel rods last 3 yr before 
they are replaced. The plant can transform energy at a 
maximum possible rate of 1.00 GW. Supposing it oper-
ates at 80.0% capacity for 3.00 yr, what is the loss of 
mass of the fuel?

	55.	The power output of the Sun is 3.85 3 1026 W. By how 
much does the mass of the Sun decrease each second?

	56.	A gamma ray (a high-energy photon) can produce an 
electron (e2) and a positron (e1) of equal mass when it 
enters the electric field of a heavy nucleus: g S e1 1 e2.  
What minimum gamma-ray energy is required to 
accomplish this task?

	57.	 A spaceship of mass 2.40 3 106 kg is to be accelerated 
to a speed of 0.700c. (a) What minimum amount of 
energy does this acceleration require from the space-
ship’s fuel, assuming perfect efficiency? (b) How much 
fuel would it take to provide this much energy if all the 
rest energy of the fuel could be transformed to kinetic 
energy of the spaceship?

	58.	Show that the energy–momentum relationship in 
Equation 39.27, E 2 5 p2c 2 1 (mc 2)2, follows from the 
expressions E 5 gmc 2 and p 5 gmu.

	59.	The rest energy of an electron is 0.511 MeV. The rest 
energy of a proton is 938 MeV. Assume both particles 
have kinetic energies of 2.00 MeV. Find the speed of 
(a) the electron and (b) the proton. (c) By what factor 
does the speed of the electron exceed that of the pro-
ton? (d) Repeat the calculations in parts (a) through 
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1230	C hapter 39 R elativity

delay, with a frequency shifted downward by 254 Hz. 
These pulses have the highest and lowest frequencies 
the station receives. (a) Calculate the radial velocity 
components of both batches of raindrops. (b) Assume 
that these raindrops are swirling in a uniformly rotat-
ing vortex. Find the angular speed of their rotation.

	70.	An object having mass 900 kg and traveling at speed 
0.850c collides with a stationary object having mass 
1 400 kg. The two objects stick together. Find (a) the 
speed and (b) the mass of the composite object.

	71.	An astronaut wishes to visit the Andromeda galaxy, 
making a one-way trip that will take 30.0 years in the 
spaceship’s frame of reference. Assume the galaxy is 
2.00 million light-years away and his speed is constant. 
(a) How fast must he travel relative to Earth? (b) What 
will be the kinetic energy of his spacecraft, which 
has mass of 1.00 3 106 kg? (c) What is the cost of this 
energy if it is purchased at a typical consumer price for 
electric energy, 13.0¢ per kWh? The following approxi-
mation will prove useful:

		
1

"1 1 x
< 1 2

x
2

  for x ,, 1

	72.	A physics professor on the Earth gives an exam to her 
students, who are in a spacecraft traveling at speed v 
relative to the Earth. The moment the craft passes the 
professor, she signals the start of the exam. She wishes 
her students to have a time interval T0 (spacecraft 
time) to complete the exam. Show that she should wait 
a time interval (Earth time) of

		  T 5 T0 Å
1 2 v/c
1 1 v/c

		  before sending a light signal telling them to stop. (Sug-
gestion: Remember that it takes some time for the second 
light signal to travel from the professor to the students.)

	73.	An interstellar space probe is launched from Earth. 
After a brief period of acceleration, it moves with 
a constant velocity, 70.0% of the speed of light. Its 
nuclear-powered batteries supply the energy to keep 
its data transmitter active continuously. The batter-
ies have a lifetime of 15.0 years as measured in a rest 
frame. (a) How long do the batteries on the space 
probe last as measured by mission control on Earth? 
(b) How far is the probe from Earth when its batter-
ies fail as measured by mission control? (c) How far is 
the probe from Earth as measured by its built-in trip 
odometer when its batteries fail? (d) For what total 
time after launch are data received from the probe 
by mission control? Note that radio waves travel at the 
speed of light and fill the space between the probe and 
Earth at the time the battery fails.

	74.	The equation

K 5 a 1

"1 2 u2/c 2
2 1bmc 2

		  gives the kinetic energy of a particle moving at speed 
u. (a) Solve the equation for u. (b) From the equation 
for u, identify the minimum possible value of speed 
and the corresponding kinetic energy. (c) Identify 
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the fractional change in this frequency due to time 
dilation as described by special relativity? (d)  The 
gravitational “blueshift” of the frequency according to  
general relativity is a separate effect. It is called a blue-
shift to indicate a change to a higher frequency. The 
magnitude of that fractional change is given by

	
Df

f
5

DUg

mc 2

		  where Ug is the change in gravitational potential 
energy of an object–Earth system when the object of 
mass m is moved between the two points where the 
signal is observed. Calculate this fractional change 
in frequency due to the change in position of the sat-
ellite from the Earth’s surface to its orbital position.  
(e) What is the overall fractional change in frequency 
due to both time dilation and gravitational blueshift?

Figure P39.65
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Additional Problems

	66.	An electron has a speed of 0.750c. (a) Find the speed of 
a proton that has the same kinetic energy as the elec-
tron. (b) What If? Find the speed of a proton that has 
the same momentum as the electron.

	67.	 The net nuclear fusion reaction inside the Sun can 
be written as 41H S 4He 1 E. The rest energy of each 
hydrogen atom is 938.78 MeV, and the rest energy of 
the helium-4 atom is 3 728.4 MeV. Calculate the per-
centage of the starting mass that is transformed to 
other forms of energy.

	68.	Why is the following situation impossible? On their 40th 
birthday, twins Speedo and Goslo say good-bye as 
Speedo takes off for a planet that is 50 ly away. He trav-
els at a constant speed of 0.85c and immediately turns 
around and comes back to the Earth after arriving at 
the planet. Upon arriving back at the Earth, Speedo 
has a joyous reunion with Goslo.

	69.	A Doppler weather radar station broadcasts a pulse of 
radio waves at frequency 2.85 GHz. From a relatively 
small batch of raindrops at bearing 38.6° east of north, 
the station receives a reflected pulse after 180 ms with 
a frequency shifted upward by 254 Hz. From a similar 
batch of raindrops at bearing 39.6° east of north, the 
station receives a reflected pulse after the same time 
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the maximum possible speed and the correspond-
ing kinetic energy. (d) Differentiate the equation for 
u with respect to time to obtain an equation describ-
ing the acceleration of a particle as a function of its 
kinetic energy and the power input to the particle.  
(e) Observe that for a nonrelativistic particle we have  
u 5 (2K/m)1/2 and that differentiating this equa-
tion with respect to time gives a 5 P/(2mK )1/2. State 
the limiting form of the expression in part (d) at low 
energy. State how it compares with the nonrelativistic 
expression. (f) State the limiting form of the expres-
sion in part (d) at high energy. (g) Consider a particle 
with constant input power. Explain how the answer to 
part (f) helps account for the answer to part (c).

	75.	Consider the astronaut planning the trip to Androm-
eda in Problem 71. (a) To three significant figures, 
what is the value for g for the speed found in part  
(a) of Problem 71? (b) Just as the astronaut leaves on 
his constant-speed trip, a light beam is also sent in 
the direction of Andromeda. According to the Earth 
observer, how much later does the astronaut arrive at 
Andromeda after the arrival of the light beam?

	76.	An object disintegrates into two fragments. One frag-
ment has mass 1.00 MeV/c 2 and momentum 1.75 MeV/c 
in the positive x direction, and the other has mass  
1.50 MeV/c 2 and momentum 2.00 MeV/c in the positive 
y direction. Find (a) the mass and (b) the speed of the 
original object.

	77.	 The cosmic rays of highest energy are protons that 
have kinetic energy on the order of 1013 MeV. (a) As 
measured in the proton’s frame, what time interval 
would a proton of this energy require to travel across 
the Milky Way galaxy, which has a proper diameter  
, 105 ly? (b) From the point of view of the proton, how 
many kilometers across is the galaxy?

	78.	Spacecraft I, containing students taking a physics 
exam, approaches the Earth with a speed of 0.600c 
(relative to the Earth), while spacecraft II, containing 
professors proctoring the exam, moves at 0.280c (rela-
tive to the Earth) directly toward the students. If the 
professors stop the exam after 50.0 min have passed on 
their clock, for what time interval does the exam last as 
measured by (a)  the students and (b) an observer on 
the Earth?

	79.	Review. Around the core of a nuclear reactor shielded 
by a large pool of water, Cerenkov radiation appears as 
a blue glow. (See Fig. P17.38 on page 528.) Cerenkov 
radiation occurs when a particle travels faster through 
a medium than the speed of light in that medium. It is 
the electromagnetic equivalent of a bow wave or a sonic 
boom. An electron is traveling through water at a speed 
10.0% faster than the speed of light in water. Deter-
mine the electron’s (a) total energy, (b) kinetic energy, 
and (c) momentum. (d)  Find the angle between the 
shock wave and the electron’s direction of motion.

	80.	The motion of a transparent medium influences the 
speed of light. This effect was first observed by Fizeau 
in 1851. Consider a light beam in water. The water 
moves with speed v in a horizontal pipe. Assume the 
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light travels in the same direction as the water moves. 
The speed of light with respect to the water is c/n, 
where n 5 1.33 is the index of refraction of water. 
(a) Use the velocity transformation equation to show 
that the speed of the light measured in the laboratory 
frame is

u 5
c
n
a1 1 nv/c

1 1 v/nc
b

		  (b) Show that for v ,, c, the expression from part (a) 
becomes, to a good approximation,

u <
c
n

1 v 2
v
n2

		  (c) Argue for or against the view that we should expect 
the result to be u 5 (c/n) 1 v according to the Gali-
lean transformation and that the presence of the term 
2v/n2 represents a relativistic effect appearing even at 
“nonrelativistic” speeds. (d) Evaluate u in the limit as 
the speed of the water approaches c.

	81.	 Imagine that the entire Sun, of mass MS , collapses 
to a sphere of radius Rg such that the work required 
to remove a small mass m from the surface would be 
equal to its rest energy mc2. This radius is called the 
gravitational radius for the Sun. (a) Use this approach 
to show that Rg 5 GMS/c2. (b) Find a numerical value 
for Rg.

	82.	Why is the following situation impossible? An experimenter 
is accelerating electrons for use in probing a material. 
She finds that when she accelerates them through a 
potential difference of 84.0 kV, the electrons have half 
the speed she wishes. She quadruples the potential 
difference to 336 kV, and the electrons accelerated 
through this potential difference have her desired 
speed.

	83.	An alien spaceship traveling at 0.600c toward the Earth 
launches a landing craft. The landing craft travels 
in the same direction with a speed of 0.800c relative 
to the mother ship. As measured on the Earth, the 
spaceship is 0.200 ly from the Earth when the landing 
craft is launched. (a) What speed do the Earth-based 
observers measure for the approaching landing craft? 
(b) What is the distance to the Earth at the moment of 
the landing craft’s launch as measured by the aliens? 
(c) What travel time is required for the landing craft 
to reach the Earth as measured by the aliens on the 
mother ship? (d) If the landing craft has a mass of  
4.00 3 105 kg, what is its kinetic energy as measured in 
the Earth reference frame?

	84.	(a) Prepare a graph of the relativistic kinetic energy 
and the classical kinetic energy, both as a function of 
speed, for an object with a mass of your choice. (b) At 
what speed does the classical kinetic energy underesti-
mate the experimental value by 1%? (c) By 5%? (d) By 
50%?

	85.	An observer in a coasting spacecraft moves toward a 
mirror at speed v 5 0.650c relative to the reference 
frame labeled S in Figure P39.85 (page 1232). The mir-
ror is stationary with respect to S. A light pulse emit-
ted by the spacecraft travels toward the mirror and is 
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1232	C hapter 39 R elativity

momentum requires that the system as a whole still must 
have some kinetic energy after the collision. Therefore, 
only a fraction of the energy of the incident particle 
is available to create a new particle. (a) Show that the 
energy available to create a product particle is given by

Mc 2 5 2mpc
2

Å1 1
K

2mpc
2

		  This result shows that when the kinetic energy K of the 
incident proton is large compared with its rest energy 
mpc2, then M approaches (2mpK)1/2/c. Therefore, if the 
energy of the incoming proton is increased by a fac-
tor of 9, the mass you can create increases only by a 
factor of 3, not by a factor of 9 as would be expected.  
(b) This problem can be alleviated by using colliding 
beams as is the case in most modern accelerators. Here 
the total momentum of a pair of interacting particles 
can be zero. The center of mass can be at rest after the 
collision, so, in principle, all the initial kinetic energy 
can be used for particle creation. Show that

Mc 2 5 2mc 2a1 1
K

mc 2b
		  where K is the kinetic energy of each of the two identi-

cal colliding particles. Here, if K .. mc2, we have M 
directly proportional to K as we would desire.

	90.	Suppose our Sun is about to explode. In an effort to 
escape, we depart in a spacecraft at v 5 0.800c and head 
toward the star Tau Ceti, 12.0 ly away. When we reach 
the midpoint of our journey from the Earth, we see our 
Sun explode, and, unfortunately, at the same instant, 
we see Tau Ceti explode as well. (a) In the spacecraft’s 
frame of reference, should we conclude that the two 
explosions occurred simultaneously? If not, which 
occurred first? (b) What If? In a frame of reference in 
which the Sun and Tau Ceti are at rest, did they explode 
simultaneously? If not, which exploded first?

	91.	 Owen and Dina are at rest in frame S9, which is moving 
at 0.600c with respect to frame S. They play a game of 
catch while Ed, at rest in frame S, watches the action 
(Fig. P39.91). Owen throws the ball to Dina at 0.800c 
(according to Owen), and their separation (measured 
in S9) is equal to 1.80 3 1012 m. (a) According to Dina, 
how fast is the ball moving? (b) According to Dina, 
what time interval is required for the ball to reach her? 
According to Ed, (c) how far apart are Owen and Dina, 
(d) how fast is the ball moving, and (e) what time inter-
val is required for the ball to reach Dina?

0.600c

Owen

Ed

Dina

0.800c
1.80 � 1012 m

x �

x

S�

S

Figure P39.91

Q/C

reflected back to the spacecraft. The spacecraft is a 
distance d 5 5.66 3 1010 m from the mirror (as mea-
sured by observers in S) at the moment the light pulse 
leaves the spacecraft. What is the total travel time of 
the pulse as measured by observers in (a) the S frame 
and (b) the spacecraft?

Mirror
S

vS

d

O

Figure P39.85  Problems 85 and 86.

	86.	An observer in a coasting spacecraft moves toward a 
mirror at speed v relative to the reference frame 
labeled S in Figure P39.85. The mirror is stationary 
with respect to S. A light pulse emitted by the space-
craft travels toward the mirror and is reflected back to 
the spacecraft. The spacecraft is a distance d from the 
mirror (as measured by observers in S) at the moment 
the light pulse leaves the spacecraft. What is the total 
travel time of the pulse as measured by observers in  
(a) the S frame and (b) the spacecraft?

	87.	 A 57Fe nucleus at rest emits a 14.0-keV photon. Use con-
servation of energy and momentum to find the kinetic 
energy of the recoiling nucleus in electron volts. Use 
Mc2 5 8.60 3 1029 J for the final state of the 57Fe 
nucleus.

Challenge Problems

	88.	A particle with electric charge q moves along a straight 
line in a uniform electric field E

S
 with speed u. The  

electric force exerted on the charge is q E
S

. The velocity 
of the particle and the electric field are both in the x 
direction. (a) Show that the acceleration of the particle 
in the x direction is given by

a 5
du
dt

5
qE

m
a1 2

u2

c 2b
3/2

		  (b) Discuss the significance of the dependence of the 
acceleration on the speed. (c) What If? If the particle 
starts from rest at x 5 0 at t 5 0, how would you pro-
ceed to find the speed of the particle and its position at 
time t?

	89.	The creation and study of new and very massive elemen-
tary particles is an important part of contemporary phys-
ics. To create a particle of mass M requires an energy 
Mc2. With enough energy, an exotic particle can be cre-
ated by allowing a fast-moving proton to collide with a 
similar target particle. Consider a perfectly inelastic 
collision between two protons: an incident proton with 
mass mp , kinetic energy K, and momentum magnitude  
p joins with an originally stationary target proton to 
form a single product particle of mass M. Not all the 
kinetic energy of the incoming proton is available to 
create the product particle because conservation of 
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This lightbulb filament glows with 
an orange color. Why? Classical 
physics is unable to explain the 
experimentally observed wavelength 
distribution of electromagnetic 
radiation from a hot object. A theory 
proposed in 1900 and describing 
the radiation from such objects 
represents the dawn of quantum 
physics. (Steve Cole/Getty Images)

40.1	 Blackbody Radiation and 
Planck’s Hypothesis

40.2	 The Photoelectric Effect

40.3	 The Compton Effect

40.4	 The Nature of 
Electromagnetic Waves

40.5	 The Wave Properties  
of Particles

40.6	 A New Model: The 
Quantum Particle

40.7	 The Double-Slit Experiment 
Revisited

40.8	 The Uncertainty Principle

c h a p t e r 

40

In Chapter 39, we discussed that Newtonian mechanics must be replaced by Einstein’s 
special theory of relativity when dealing with particle speeds comparable to the speed of 
light. As the 20th century progressed, many experimental and theoretical problems were 
resolved by the special theory of relativity. For many other problems, however, neither rela-
tivity nor classical physics could provide a theoretical answer. Attempts to apply the laws 
of classical physics to explain the behavior of matter on the atomic scale were consistently 
unsuccessful. For example, the emission of discrete wavelengths of light from atoms in a 
high-temperature gas could not be explained within the framework of classical physics.
	 As physicists sought new ways to solve these puzzles, another revolution took place in 
physics between 1900 and 1930. A new theory called quantum mechanics was highly success-
ful in explaining the behavior of particles of microscopic size. Like the special theory of rela-
tivity, the quantum theory requires a modification of our ideas concerning the physical world.
	 The first explanation of a phenomenon using quantum theory was introduced by Max 
Planck. Many subsequent mathematical developments and interpretations were made by 
a number of distinguished physicists, including Einstein, Bohr, de Broglie, Schrödinger, and 

Introduction to  
Quantum Physics
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Heisenberg. Despite the great success of the quantum theory, Einstein frequently played the 
role of its critic, especially with regard to the manner in which the theory was interpreted.
	 Because an extensive study of quantum theory is beyond the scope of this book, this 
chapter is simply an introduction to its underlying principles.

40.1	 Blackbody Radiation and Planck’s Hypothesis
An object at any temperature emits electromagnetic waves in the form of thermal 
radiation from its surface as discussed in Section 20.7. The characteristics of this 
radiation depend on the temperature and properties of the object’s surface. Careful 
study shows that the radiation consists of a continuous distribution of wavelengths 
from all portions of the electromagnetic spectrum. If the object is at room temper-
ature, the wavelengths of thermal radiation are mainly in the infrared region and 
hence the radiation is not detected by the human eye. As the surface temperature 
of the object increases, the object eventually begins to glow visibly red, like the coils 
of a toaster. At sufficiently high temperatures, the glowing object appears white, as 
in the hot tungsten filament of an incandescent lightbulb.
	 From a classical viewpoint, thermal radiation originates from accelerated 
charged particles in the atoms near the surface of the object; those charged par-
ticles emit radiation much as small antennas do. The thermally agitated particles 
can have a distribution of energies, which accounts for the continuous spectrum of 
radiation emitted by the object. By the end of the 19th century, however, it became 
apparent that the classical theory of thermal radiation was inadequate. The basic 
problem was in understanding the observed distribution of wavelengths in the 
radiation emitted by a black body. As defined in Section 20.7, a black body is an 
ideal system that absorbs all radiation incident on it. The electromagnetic radiation 
emitted by the black body is called blackbody radiation.
	 A good approximation of a black body is a small hole leading to the inside of 
a hollow object as shown in Figure 40.1. Any radiation incident on the hole from 
outside the cavity enters the hole and is reflected a number of times on the interior 
walls of the cavity; hence, the hole acts as a perfect absorber. The nature of the 
radiation leaving the cavity through the hole depends only on the temperature of 
the cavity walls and not on the material of which the walls are made. The spaces 
between lumps of hot charcoal (Fig. 40.2) emit light that is very much like black-
body radiation.
	 The radiation emitted by oscillators in the cavity walls in Figure 40.1 experi-
ences boundary conditions and can be analyzed using the waves under boundary 
conditions analysis model. As the radiation reflects from the cavity’s walls, standing 
electromagnetic waves are established within the three-dimensional interior of the 
cavity. Many standing-wave modes are possible, and the distribution of the energy 
in the cavity among these modes determines the wavelength distribution of the 
radiation leaving the cavity through the hole.
	 The wavelength distribution of radiation from cavities was studied experimen-
tally in the late 19th century. Figure 40.3 shows how the intensity of blackbody 
radiation varies with temperature and wavelength. The following two consistent 
experimental findings were seen as especially significant:

	 1.	 The total power of the emitted radiation increases with temperature.  
We discussed this behavior briefly in Chapter 20, where we introduced Ste-
fan’s law:

	 P 5 sAeT 4	 (40.1)

		  where P is the power in watts radiated at all wavelengths from the  surface  
of an object, s 5 5.670 3 1028 W/m2 ? K4 is the Stefan–Boltzmann constant, 
A is the surface area of the object in square meters, e is the emissivity of the 

Stefan’s law 

Pitfall Prevention 40.1
Expect to Be Challenged  If the 
discussions of quantum physics 
in this and subsequent chapters 
seem strange and confusing to 
you, it’s because your whole life 
experience has taken place in the 
macroscopic world, where quan-
tum effects are not evident.

Figure 40.2  ​The glow emanat-
ing from the spaces between these 
hot charcoal briquettes is, to a 
close approximation, blackbody 
radiation. The color of the light 
depends only on the temperature 
of the briquettes.
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The opening to a cavity 
inside a hollow object is a 
good approximation of a 
black body: the hole acts as 
a perfect absorber.

Figure 40.1  ​A physical model of 
a black body.
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	 40.1  Blackbody Radiation and Planck’s Hypothesis	 1235

surface, and T is the surface temperature in kelvins. For a black body, the 
emissivity is e 5 1 exactly.

	 2.	 The peak of the wavelength distribution shifts to shorter wavelengths as 
the temperature increases. This behavior is described by the following rela-
tionship, called Wien’s displacement law:

	 lmax T 5 2.898 3 1023 m ? K	 (40.2)

		  where lmax is the wavelength at which the curve peaks and T is the absolute 
temperature of the surface of the object emitting the radiation. The wave-
length at the curve’s peak is inversely proportional to the absolute tempera-
ture; that is, as the temperature increases, the peak is “displaced” to shorter 
wavelengths (Fig. 40.3).

	 Wien’s displacement law is consistent with the behavior of the object mentioned 
at the beginning of this section. At room temperature, the object does not appear 
to glow because the peak is in the infrared region of the electromagnetic spectrum. 
At higher temperatures, it glows red because the peak is in the near infrared with 
some radiation at the red end of the visible spectrum, and at still higher tempera-
tures, it glows white because the peak is in the visible so that all colors are emitted.

Q	 uick Quiz 40.1 ​ Figure 40.4 shows two stars in the constellation Orion. Betelgeuse 
appears to glow red, whereas Rigel looks blue in color. Which star has a higher 
surface temperature? (a) Betelgeuse (b) Rigel (c) both the same (d) impossible to 
determine

WW Wien’s displacement law

Betelgeuse

Rigel
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Figure 40.4  ​(Quick Quiz 40.1) 
Which star is hotter, Betelgeuse 
or Rigel?
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4 000 K

3 000 K

2 000 K

The 4 000-K curve has a peak 
near the visible range. This curve 
represents an object that would 
glow with a yellowish-white 
appearance.

Figure 40.3  Intensity of black-
body radiation versus wavelength 
at three temperatures. The visible 
range of wavelengths is between 
0.4 mm and 0.7 mm. At approxi-
mately 6 000 K, the peak is in the 
center of the visible wavelengths 
and the object appears white.

	 A successful theory for blackbody radiation must predict the shape of the curves 
in Figure 40.3, the temperature dependence expressed in Stefan’s law, and the shift 
of the peak with temperature described by Wien’s displacement law. Early attempts 
to use classical ideas to explain the shapes of the curves in Figure 40.3 failed.
	 Let’s consider one of these early attempts. To describe the distribution of energy 
from a black body, we define I(l,T ) dl to be the intensity, or power per unit area, 
emitted in the wavelength interval dl. The result of a calculation based on a classi-
cal theory of blackbody radiation known as the Rayleigh–Jeans law is

	 I 1l,T 2 5
2pckBT

l4 	 (40.3)

where kB is Boltzmann’s constant. The black body is modeled as the hole leading 
into a cavity (Fig. 40.1), resulting in many modes of oscillation of the electromag-
netic field caused by accelerated charges in the cavity walls and the emission of 
electromagnetic waves at all wavelengths. In the classical theory used to derive 

WW Rayleigh–Jeans law
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1236	C hapter 40  Introduction to Quantum Physics

Equation 40.3, the average energy for each wavelength of the standing-wave modes 
is assumed to be proportional to kBT, based on the theorem of equipartition of 
energy discussed in Section 21.1.
	 An experimental plot of the blackbody radiation spectrum, together with the 
theoretical prediction of the Rayleigh–Jeans law, is shown in Figure 40.5. At long 
wavelengths, the Rayleigh–Jeans law is in reasonable agreement with experimental 
data, but at short wavelengths, major disagreement is apparent.
	 As l approaches zero, the function I(l,T ) given by Equation 40.3 approaches 
infinity. Hence, according to classical theory, not only should short wavelengths 
predominate in a blackbody spectrum, but also the energy emitted by any black 
body should become infinite in the limit of zero wavelength. In contrast to this 
prediction, the experimental data plotted in Figure 40.5 show that as l approaches 
zero, I(l,T ) also approaches zero. This mismatch of theory and experiment was 
so disconcerting that scientists called it the ultraviolet catastrophe. (This “catastro-
phe”—infinite energy—occurs as the wavelength approaches zero; the word ultra-
violet was applied because ultraviolet wavelengths are short.)
	 In 1900, Max Planck developed a theory of blackbody radiation that leads to an 
equation for I(l,T ) that is in complete agreement with experimental results at all 
wavelengths. In discussing this theory, we use the outline of properties of structural 
models introduced in Chapter 21:

	 1.	 Physical components: 
		  Planck assumed the cavity radiation came from atomic oscillators in the 

cavity walls in Figure 40.1. 
	 2.	 Behavior of the components: 
		  (a)	The energy of an oscillator can have only certain discrete values En:

	 En 5 nhf	 (40.4)

			�   where n is a positive integer called a quantum number,1 f is the oscil-
lator’s frequency, and h is a parameter Planck introduced that is now 
called Planck’s constant. Because the energy of each oscillator can have 
only discrete values given by Equation 40.4, we say the energy is quan-
tized. Each discrete energy value corresponds to a different quantum 
state, represented by the quantum number n. When the oscillator is in 
the n 5 1 quantum state, its energy is hf ; when it is in the n 5 2 quan-
tum state, its energy is 2hf ; and so on.

		  (b)	�The oscillators emit or absorb energy when making a transition from 
one quantum state to another. The entire energy difference between the 
initial and final states in the transition is emitted or absorbed as a single 
quantum of radiation. If the transition is from one state to a lower adja-
cent state—say, from the n 5 3 state to the n 5 2 state—Equation 40.4 
shows that the amount of energy emitted by the oscillator and carried by 
the quantum of radiation is

	 E 5 hf	 (40.5)

	 According to property 2(b), an oscillator emits or absorbs energy only when it 
changes quantum states. If it remains in one quantum state, no energy is absorbed 
or emitted. Figure 40.6 is an energy-level diagram showing the quantized energy 
levels and allowed transitions proposed by Planck. This important semigraphi-
cal representation is used often in quantum physics.2 The vertical axis is linear 
in energy, and the allowed energy levels are represented as horizontal lines. The 
quantized system can have only the energies represented by the horizontal lines.

Wavelength

In
te

ns
ity

The classical theory 
(red-brown curve) shows 
intensity growing without 
bound for short wavelengths, 
unlike the experimental data 
(blue curve).

Figure 40.5  ​Comparison of 
experimental results and the 
curve predicted by the Rayleigh–
Jeans law for the distribution of 
blackbody radiation.

Max Planck
German Physicist (1858–1947)
Planck introduced the concept of 
“quantum of action” (Planck’s constant, 
h) in an attempt to explain the spectral 
distribution of blackbody radiation, 
which laid the foundations for quantum 
theory. In 1918, he was awarded the 
Nobel Prize in Physics for this discovery 
of the quantized nature of energy.
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1A quantum number is generally an integer (although half-integer quantum numbers can occur) that describes an 
allowed state of a system, such as the values of n describing the normal modes of oscillation of a string fixed at both 
ends, as discussed in Section 18.3.
2We first saw an energy-level diagram in Section 21.3.
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	 40.1  Blackbody Radiation and Planck’s Hypothesis	 1237

	 The key point in Planck’s theory is the radical assumption of quantized energy 
states. This development—a clear deviation from classical physics—marked the 
birth of the quantum theory.
	 In the Rayleigh–Jeans model, the average energy associated with a particular 
wavelength of standing waves in the cavity is the same for all wavelengths and is 
equal to kBT. Planck used the same classical ideas as in the Rayleigh–Jeans model 
to arrive at the energy density as a product of constants and the average energy for 
a given wavelength, but the average energy is not given by the equipartition theo-
rem. A wave’s average energy is the average energy difference between levels of the 
oscillator, weighted according to the probability of the wave being emitted. This weighting 
is based on the occupation of higher-energy states as described by the Boltzmann 
distribution law, which was discussed in Section 21.5. According to this law, the 
probability of a state being occupied is proportional to the factor e2E/kBT, where E is 
the energy of the state.
	 At low frequencies (long wavelengths), according to property 2(a), the energy 
levels are close together as on the right in Figure 40.7, and many of the energy 
states are excited because the Boltzmann factor e2E/kBT is relatively large for these 
states. Therefore, there are many contributions to the outgoing radiation, although 
each contribution has very low energy. Now, consider high-frequency radiation, 
that is, radiation with short wavelength. To obtain this radiation, the allowed ener-
gies are very far apart as on the left in Figure 40.7. The probability of thermal agi-
tation exciting these high energy levels is small because of the small value of the 
Boltzmann factor for large values of E. At high frequencies, the low probability of 
excitation results in very little contribution to the total energy, even though each 
quantum is of large energy. This low probability “turns the curve over” and brings 
it down to zero again at short wavelengths.
	 Using this approach, Planck generated a theoretical expression for the wave-
length distribution that agreed remarkably well with the experimental curves in 
Figure 40.3:

	 I 1l,T 2 5
2phc 2

l5 1ehc/lkBT 2 1 2 	 (40.6) WW �Planck’s wavelength distri-
bution function

Pitfall Prevention 40.2
n Is Again an Integer  In the 
preceding chapters on optics, we 
used the symbol n for the index of 
refraction, which was not an inte-
ger. Here we are again using n as 
we did in Chapter 18 to indicate the 
standing-wave mode on a string or 
in an air column. In quantum phys-
ics, n is often used as an integer 
quantum number to identify a par-
ticular quantum state of a system.

0
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hf

2hf

3hf

4hf

nE

The double-headed arrows 
indicate allowed transitions.

E
N

E
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G
Y

Figure 40.6  ​Allowed energy 
levels for an oscillator with fre-
quency f. 
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n � 2

n � 1

n � 7

n � 1
n � 2
n � 3
n � 4
n � 5
n � 6

Somewhere between very short and 
very long wavelengths, the product of 
increasing probability of transitions and 
decreasing energy per transition results 
in a maximum in the intensity.

At long wavelengths, there is a small 
separation between energy levels, 
leading to a high probability of 
excited states and many downward 
transitions. The low energy in each 
transition leads to low intensity.

At short wavelengths, there is a 
large separation between energy 
levels, leading to a low probability 
of excited states and few downward 
transitions.  The low probability of 
transitions leads to low intensity.
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Figure 40.7  In Planck’s model, 
the average energy associated with 
a given wavelength is the product 
of the energy of a transition and a 
factor related to the probability of 
the transition occurring. 
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1238	C hapter 40  Introduction to Quantum Physics

Example 40.1	     Thermal Radiation from Different Objects

(A)  ​Find the peak wavelength of the blackbody radiation emitted by the human body when the skin temperature  
is 35°C.

Conceptualize  ​Thermal radiation is emitted from the surface of any object. The peak wavelength is related to the sur-
face temperature through Wien’s displacement law (Eq. 40.2).

Categorize  ​We evaluate results using an equation developed in this section, so we categorize this example as a substi-
tution problem.

S o l u t i o n

	 This function includes the parameter h, which Planck adjusted so that his curve 
matched the experimental data at all wavelengths. The value of this parameter is 
found to be independent of the material of which the black body is made and inde-
pendent of the temperature; it is a fundamental constant of nature. The value of h, 
Planck’s constant, which was first introduced in Chapter 35, is

	 h 5 6.626 3 10234 J ? s	 (40.7)

At long wavelengths, Equation 40.6 reduces to the Rayleigh–Jeans expression, 
Equation 40.3 (see Problem 14), and at short wavelengths, it predicts an exponen-
tial decrease in I(l,T ) with decreasing wavelength, in agreement with experimen-
tal results.
	 When Planck presented his theory, most scientists (including Planck!) did not 
consider the quantum concept to be realistic. They believed it was a mathematical 
trick that happened to predict the correct results. Hence, Planck and others con-
tinued to search for a more “rational” explanation of blackbody radiation. Subse-
quent developments, however, showed that a theory based on the quantum concept 
(rather than on classical concepts) had to be used to explain not only blackbody 
radiation but also a number of other phenomena at the atomic level.
	 In 1905, Einstein rederived Planck’s results by assuming the oscillations of the 
electromagnetic field were themselves quantized. In other words, he proposed that 
quantization is a fundamental property of light and other electromagnetic radia-
tion, which led to the concept of photons as shall be discussed in Section 40.2. 
Critical to the success of the quantum or photon theory was the relation between 
energy and frequency, which classical theory completely failed to predict.
	 You may have had your body temperature measured at the doctor’s office by an 
ear thermometer, which can read your temperature very quickly (Fig. 40.8). In a frac-
tion of a second, this type of thermometer measures the amount of infrared radia-
tion emitted by the eardrum. It then converts the amount of radiation into a tem-
perature reading. This thermometer is very sensitive because temperature is raised 
to the fourth power in Stefan’s law. Suppose you have a fever 1°C above normal. 
Because absolute temperatures are found by adding 273 to Celsius temperatures, 
the ratio of your fever temperature to normal body temperature of 37°C is

Tfever

Tnormal
5

388C 1 2738C
378C 1 2738C

5 1.003 2

which is only a 0.32% increase in temperature. The increase in radiated power, 
however, is proportional to the fourth power of temperature, so

Pfever

Pnormal
5 a388C 1 2738C

378C 1 2738C
b

4

5 1.013

The result is a 1.3% increase in radiated power, which is easily measured by modern 
infrared radiation sensors.

Planck’s constant 

Figure 40.8  ​An ear thermom-
eter measures a patient’s tempera-
ture by detecting the intensity of 
infrared radiation leaving the 
eardrum.

©
 C

en
ga

ge
 L

ea
rn

in
g/

Ed
w

ar
d 

L.
 D

od
d,

 J
r.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 40.1  Blackbody Radiation and Planck’s Hypothesis	 1239

Substitute the surface temperature: lmax 5
2.898 3 1023 m # K

308 K
5 9.41 mm

Solve Equation 40.2 for lmax: (1)   lmax 5
2.898 3 1023 m # K

T

This radiation is in the infrared region of the spectrum and is invisible to the human eye. Some animals (pit vipers, for 
instance) are able to detect radiation of this wavelength and therefore can locate warm-blooded prey even in the dark.

(B)  ​Find the peak wavelength of the blackbody radiation emitted by the tungsten filament of a lightbulb, which oper-
ates at 2 000 K.

S o l u t i o n

Substitute the filament temperature into Equation (1): lmax 5
2.898 3 1023 m # K

2 000 K
5 1.45 mm

This radiation is also in the infrared, meaning that most of the energy emitted by a lightbulb is not visible to us.

(C)  ​Find the peak wavelength of the blackbody radiation emitted by the Sun, which has a surface temperature of 
approximately 5 800 K.

S o l u t i o n

Substitute the surface temperature into Equation (1): lmax 5
2.898 3 1023 m # K

5 800 K
5 0.500 mm

This radiation is near the center of the visible spectrum, near the color of a yellow-green tennis ball. Because it is the 
most prevalent color in sunlight, our eyes have evolved to be most sensitive to light of approximately this wavelength.

Example 40.2	     The Quantized Oscillator 

A 2.00-kg block is attached to a massless spring that has a force constant of k 5 25.0 N/m. The spring is stretched 
0.400 m from its equilibrium position and released from rest.

(A)  ​Find the total energy of the system and the frequency of oscillation according to classical calculations.

Conceptualize  ​We understand the details of the block’s motion from our study of simple harmonic motion in Chapter 
15. Review that material if you need to.

Categorize  ​The phrase “according to classical calculations” tells us to categorize this part of the problem as a classical 
analysis of the oscillator. We model the block as a particle in simple harmonic motion.

Analyze  ​Based on the way the block is set into motion, its amplitude is 0.400 m.

AM

S o l u t i o n

continued

Evaluate the total energy of the block–spring system 
using Equation 15.21:

E 5 1
2kA2 5 1

2 125.0 N/m 2 10.400 m 22 5 2.00 J

Evaluate the frequency of oscillation from 
Equation 15.14: f 5

1
2p Å

k
m

5
1

2p Å
25.0 N/m

2.00 kg
5 0.563 Hz

	

▸ 40.1 c o n t i n u e d

(B)  ​Assuming the energy of the oscillator is quantized, find the quantum number n for the system oscillating with 
this amplitude.
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1240	C hapter 40  Introduction to Quantum Physics

Substitute numerical values: n 5
2.00 J

16.626 3 10234 J # s 2 10.563 Hz 2 5 5.36 3 1033

Analyze  ​Solve Equation 40.4 for the quantum number n: n 5
En

hf

Finalize  ​Notice that 5.36 3 1033 is a very large quantum number, which is typical for macroscopic systems. Changes 
between quantum states for the oscillator are explored next.

​Suppose the oscillator makes a transition from the n 5 5.36 3 1033 state to the state corresponding to n 5 
5.36 3 1033 2 1. By how much does the energy of the oscillator change in this one-quantum change?

Answer  ​From Equation 40.5 and the result to part (A), the energy carried away due to the transition between states 
differing in n by 1 is

E 5 hf 5 16.626 3 10234 J # s 2 10.563 Hz 2 5 3.73 3 10234 J

This energy change due to a one-quantum change is fractionally equal to 3.73 3 10234 J/2.00 J, or on the order of one 
part in 1034! It is such a small fraction of the total energy of the oscillator that it cannot be detected. Therefore, even 
though the energy of a macroscopic block–spring system is quantized and does indeed decrease by small quantum 
jumps, our senses perceive the decrease as continuous. Quantum effects become important and detectable only on the 
submicroscopic level of atoms and molecules.

What If ?

40.2	 The Photoelectric Effect
Blackbody radiation was the first phenomenon to be explained with a quantum 
model. In the latter part of the 19th century, at the same time that data were taken 
on thermal radiation, experiments showed that light incident on certain metallic 
surfaces causes electrons to be emitted from those surfaces. This phenomenon, 
which was first discussed in Section 35.1, is known as the photoelectric effect, and 
the emitted electrons are called photoelectrons.3

	 Figure 40.9 is a diagram of an apparatus for studying the photoelectric effect. An 
evacuated glass or quartz tube contains a metallic plate E (the emitter) connected 
to the negative terminal of a battery and another metallic plate C (the collector) 
that is connected to the positive terminal of the battery. When the tube is kept in 
the dark, the ammeter reads zero, indicating no current in the circuit. However, 
when plate E is illuminated by light having an appropriate wavelength, a current 
is detected by the ammeter, indicating a flow of charges across the gap between 
plates E and C. This current arises from photoelectrons emitted from plate E and 
collected at plate C.
	 Figure 40.10 is a plot of photoelectric current versus potential difference DV 
applied between plates E and C for two light intensities. At large values of DV, the 
current reaches a maximum value; all the electrons emitted from E are collected 
at C, and the current cannot increase further. In addition, the maximum cur-
rent increases as the intensity of the incident light increases, as you might expect, 

3Photoelectrons are not different from other electrons. They are given this name solely because of their ejection 
from a metal by light in the photoelectric effect.

C

Light

E

A

V

When light strikes plate E (the 
emitter), photoelectrons are 
ejected from the plate. 

Variable power
supply

Electrons moving from 
plate E to plate C (the 
collector) constitute a 
current in the circuit.

Figure 40.9  A circuit diagram 
for studying the photoelectric 
effect. 

	

▸ 40.2 c o n t i n u e d

Categorize  ​This part of the problem is categorized as a quantum analysis of the oscillator. We model the block–spring 
system as a Planck oscillator.

S o l u t i o n
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	 40.2  The Photoelectric Effect	 1241

because more electrons are ejected by the higher-intensity light. Finally, when DV 
is negative—that is, when the battery in the circuit is reversed to make plate E 
positive and plate C negative—the current drops because many of the photoelec-
trons emitted from E are repelled by the now negative plate C. In this situation, 
only those photoelectrons having a kinetic energy greater than e |DV | reach plate 
C, where e is the magnitude of the charge on the electron. When DV is equal to or 
more negative than 2DVs , where DVs is the stopping potential, no photoelectrons 
reach C and the current is zero.
	 Let’s model the combination of the electric field between the plates and an elec-
tron ejected from plate E as an isolated system. Suppose this electron stops just as it 
reaches plate C. Because the system is isolated, the appropriate reduction of Equa-
tion 8.2 is

DK 1 DU 5 0

where the initial configuration is at the instant the electron leaves the metal with 
kinetic energy Ki and the final configuration is when the electron stops just before 
touching plate C. If we define the electric potential energy of the system in the ini-
tial configuration to be zero, we have

(0 2 Ki) 1 [(q)(DV ) 2 0] 5 0   S    Ki 5 qDV  5 2eDV

Now suppose the potential difference DV is increased in the negative direction just 
until the current is zero at DV  5 2DVs. In this case, the electron that stops immedi-
ately before reaching plate C has the maximum possible kinetic energy upon leav-
ing the metal surface. The previous equation can then be written as

	 Kmax 5 e DVs	 (40.8)

This equation allows us to measure Kmax experimentally by determining the magni-
tude of the voltage DVs at which the current drops to zero.
	 Several features of the photoelectric effect are listed below. For each feature, we 
compare the predictions made by a classical approach, using the wave model for 
light, with the experimental results.

	 1.	 Dependence of photoelectron kinetic energy on light intensity

		  Classical prediction: Electrons should absorb energy continuously from 
the electromagnetic waves. As the light intensity incident on a metal is 
increased, energy should be transferred into the metal at a higher rate and 
the electrons should be ejected with more kinetic energy.

		  Experimental result: The maximum kinetic energy of photoelectrons is inde-
pendent of light intensity as shown in Figure 40.10 with both curves falling 
to zero at the same negative voltage. (According to Equation 40.8, the maxi-
mum kinetic energy is proportional to the stopping potential.)

High intensity

Low intensity

Applied
voltage

CurrentAt voltages 
equal to or 
more negative 
than ��Vs,  the 
current is zero.

The current increases with 
intensity but reaches a 
saturation level for large 
values of �V.

��Vs

Figure 40.10  Photoelectric cur-
rent versus applied potential dif-
ference for two light intensities. 
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1242	C hapter 40  Introduction to Quantum Physics

	 2.	 Time interval between incidence of light and ejection of photoelectrons
		  Classical prediction: At low light intensities, a measurable time interval should 

pass between the instant the light is turned on and the time an electron is 
ejected from the metal. This time interval is required for the electron to 
absorb the incident radiation before it acquires enough energy to escape 
from the metal.

		  Experimental result: Electrons are emitted from the surface of the metal 
almost instantaneously (less than 1029 s after the surface is illuminated), 
even at very low light intensities.

	 3.	 Dependence of ejection of electrons on light frequency
		  Classical prediction: Electrons should be ejected from the metal at any inci-

dent light frequency, as long as the light intensity is high enough, because 
energy is transferred to the metal regardless of the incident light frequency.

		  Experimental result: No electrons are emitted if the incident light frequency 
falls below some cutoff frequency fc , whose value is characteristic of the 
material being illuminated. No electrons are ejected below this cutoff fre-
quency regardless of the light intensity.

	 4.	 Dependence of photoelectron kinetic energy on light frequency
		  Classical prediction: There should be no relationship between the frequency 

of the light and the electron kinetic energy. The kinetic energy should be 
related to the intensity of the light.

		  Experimental result: The maximum kinetic energy of the photoelectrons 
increases with increasing light frequency.

	 For these features, experimental results contradict all four classical predictions. A 
successful explanation of the photoelectric effect was given by Einstein in 1905, the 
same year he published his special theory of relativity. As part of a general paper on 
electromagnetic radiation, for which he received a Nobel Prize in Physics in 1921, 
Einstein extended Planck’s concept of quantization to electromagnetic waves as 
mentioned in Section 40.1. Einstein assumed light (or any other electromagnetic 
wave) of frequency f from any source can be considered a stream of quanta. Today 
we call these quanta photons. Each photon has an energy E given by Equation 40.5, 
E 5 hf, and each moves in a vacuum at the speed of light c, where c 5 3.00 3 108 m/s.

Q	 uick Quiz 40.2 ​ While standing outdoors one evening, you are exposed to the 
following four types of electromagnetic radiation: yellow light from a sodium 
street lamp, radio waves from an AM radio station, radio waves from an FM 
radio station, and microwaves from an antenna of a communications system. 
Rank these types of waves in terms of photon energy from highest to lowest.

	 Let us organize Einstein’s model for the photoelectric effect using the properties 
of structural models: 

	 1.	 Physical components: 
		  We imagine the system to consist of two physical components: (1) an elec-

tron that is to be ejected by an incoming photon and (2) the remainder of 
the metal.

	 2.	 Behavior of the components: 
		  (a)	�In Einstein’s model, a photon of the incident light gives all its energy 

hf to a single electron in the metal. Therefore, the absorption of energy 
by the electrons is not a continuous process as envisioned in the wave 
model, but rather a discontinuous process in which energy is delivered 
to the electrons in bundles. The energy transfer is accomplished via a 
one-photon/one-electron event.4

4In principle, two photons could combine to provide an electron with their combined energy. That is highly improb-
able, however, without the high intensity of radiation available from very strong lasers.
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		  (b)	�We can describe the time evolution of the system by applying the non-
isolated system model for energy over a time interval that includes the 
absorption of one photon and the ejection of the corresponding elec-
tron. Energy is transferred into the system by electromagnetic radiation, 
the photon. The system has two types of energy: the potential energy of 
the metal–electron system and the kinetic energy of the ejected electron. 
Therefore, we can write the conservation of energy equation (Eq. 8.2) as

	 DK 1 DU 5 TER	 (40.9)

The energy transfer into the system is that of the photon, TER 5 hf. Dur-
ing the process, the kinetic energy of the electron increases from zero 
to its final value, which we assume to be the maximum possible value 
K max. The potential energy of the system increases because the electron is 
pulled away from the metal to which it is attracted. We define the poten-
tial energy of the system when the electron is outside the metal as zero. 
The potential energy of the system when the electron is in the metal is  
U 5 2f, where f is called the work function of the metal. The work func-
tion represents the minimum energy with which an electron is bound 
in the metal and is on the order of a few electron volts. Table 40.1 lists 
selected values. The increase in potential energy of the system when the 
electron is removed from the metal is the work function f. Substituting 
these energies into Equation 40.9, we have

	 (K max 2 0) 1 [0 2 (2f)] 5 hf	

	 K max 1 f 5 hf	 (40.10)

If the electron makes collisions with other electrons or metal ions as it is 
being ejected, some of the incoming energy is transferred to the metal 
and the electron is ejected with less kinetic energy than K max.

	 The prediction made by Einstein is an equation for the maximum kinetic energy 
of an ejected electron as a function of frequency of the illuminating radiation. This 
equation can be found by rearranging Equation 40.10:

	 K max 5 hf 2 f	 (40.11)

	 With Einstein’s structural model, one can explain the observed features of the 
photoelectric effect that cannot be understood using classical concepts:

	 1.	 Dependence of photoelectron kinetic energy on light intensity

		  Equation 40.11 shows that K max is independent of the light intensity. The 
maximum kinetic energy of any one electron, which equals hf 2 f, depends 
only on the light frequency and the work function. If the light intensity is 
doubled, the number of photons arriving per unit time is doubled, which 
doubles the rate at which photoelectrons are emitted. The maximum 
kinetic energy of any one photoelectron, however, is unchanged.

	 2.	 Time interval between incidence of light and ejection of photoelectrons

		  Near-instantaneous emission of electrons is consistent with the photon 
model of light. The incident energy appears in small packets, and there is a 
one-to-one interaction between photons and electrons. If the incident light 
has very low intensity, there are very few photons arriving per unit time 
interval; each photon, however, can have sufficient energy to eject an elec-
tron immediately.

	 3.	 Dependence of ejection of electrons on light frequency

		  Because the photon must have energy greater than the work function f  
to eject an electron, the photoelectric effect cannot be observed below a 

WW Photoelectric effect equation

Table 40.1 Work 
Functions of Selected 
Metals
Metal	 f (eV)

Na	 2.46
Al	 4.08
Fe	 4.50
Cu	 4.70
Zn	 4.31
Ag	 4.73
Pt	 6.35
Pb	 4.14

Note: Values are typical for metals listed. 
Actual values may vary depending on 
whether the metal is a single crystal or 
polycrystalline. Values may also depend 
on the face from which electrons 
are ejected from crystalline metals. 
Furthermore, different experimental 
procedures may produce differing 
values.
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1244	C hapter 40  Introduction to Quantum Physics

certain cutoff frequency. If the energy of an incoming photon does not 
satisfy this requirement, an electron cannot be ejected from the surface, 
even though many photons per unit time are incident on the metal in a  
very intense light beam.

	 4.	 Dependence of photoelectron kinetic energy on light frequency
		  A photon of higher frequency carries more energy and therefore ejects a pho-

toelectron with more kinetic energy than does a photon of lower frequency.

	 Einstein’s model predicts a linear relationship (Eq. 40.11) between the maxi-
mum electron kinetic energy Kmax and the light frequency f. Experimental observa-
tion of a linear relationship between Kmax and f would be a final confirmation of 
Einstein’s theory. Indeed, such a linear relationship was observed experimentally 
within a few years of Einstein’s theory and is sketched in Figure 40.11. The slope of 
the lines in such a plot is Planck’s constant h. The intercept on the horizontal axis 
gives the cutoff frequency below which no photoelectrons are emitted. The cutoff 
frequency is related to the work function through the relationship fc 5 f/h. The 
cutoff frequency corresponds to a cutoff wavelength lc , where

	 lc 5
c
fc

5
c

f/h
5

hc
f

	 (40.12)

and c is the speed of light. Wavelengths greater than lc incident on a material hav-
ing a work function f do not result in the emission of photoelectrons.
	 The combination hc in Equation 40.12 often occurs when relating a photon’s 
energy to its wavelength. A common shortcut when solving problems is to express 
this combination in useful units according to the following approximation:

hc 5 1 240 eV ? nm

	 One of the first practical uses of the photoelectric effect was as the detector in 
a camera’s light meter. Light reflected from the object to be photographed strikes 
a photoelectric surface in the meter, causing it to emit photoelectrons that then 
pass through a sensitive ammeter. The magnitude of the current in the ammeter 
depends on the light intensity.
	 The phototube, another early application of the photoelectric effect, acts much 
like a switch in an electric circuit. It produces a current in the circuit when light of 
sufficiently high frequency falls on a metal plate in the phototube, but produces no 
current in the dark. Phototubes were used in burglar alarms and in the detection 
of the soundtrack on motion picture film. Modern semiconductor devices have now 
replaced older devices based on the photoelectric effect.

Cutoff wavelength 

Figure 40.11  A plot of Kmax for 
photoelectrons versus frequency 
of incident light in a typical photo-
electric effect experiment. 

Metal 1 Metal 2 Metal 3Kmax

f0

� 3

� 1

� 2

f

f

f

The data show a 
linear relationship 
between Kmax and f, 
with the slope the 
same for all metals.

Photons with frequency less than 
the cutoff frequency for a given 
metal do not have sufficient energy 
to eject an electron from the metal.
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	 Today, the photoelectric effect is used in the operation of photomultiplier tubes. 
Figure 40.12 shows the structure of such a device. A photon striking the photocath-
ode ejects an electron by means of the photoelectric effect. This electron acceler-
ates across the potential difference between the photocathode and the first dynode, 
shown as being at 1200 V relative to the photocathode in Figure 40.12. This high-
energy electron strikes the dynode and ejects several more electrons. The same 
process is repeated through a series of dynodes at ever higher potentials until an 
electrical pulse is produced as millions of electrons strike the last dynode. The tube 
is therefore called a multiplier: one photon at the input has resulted in millions of 
electrons at the output.
	 The photomultiplier tube is used in nuclear detectors to detect photons pro-
duced by the interaction of energetic charged particles or gamma rays with certain 
materials. It is also used in astronomy in a technique called photoelectric photometry. 
In that technique, the light collected by a telescope from a single star is allowed 
to fall on a photomultiplier tube for a time interval. The tube measures the total 
energy transferred by light during the time interval, which can then be converted 
to a luminosity of the star.
	 The photomultiplier tube is being replaced in many astronomical observations 
with a charge-coupled device (CCD), which is the same device used in a digital cam-
era (Section 36.6). Half of the 2009 Nobel Prize in Physics was awarded to Willard 
S. Boyle (b. 1924) and George E. Smith (b. 1930) for their 1969 invention of the 
charge-coupled device. In a CCD, an array of pixels is formed on the silicon sur-
face of an integrated circuit (Section 43.7). When the surface is exposed to light 
from an astronomical scene through a telescope or a terrestrial scene through a 
digital camera, electrons generated by the photoelectric effect are caught in “traps” 
beneath the surface. The number of electrons is related to the intensity of the light 
striking the surface. A signal processor measures the number of electrons associ-
ated with each pixel and converts this information into a digital code that a com-
puter can use to reconstruct and display the scene.
	 The electron bombardment CCD camera allows higher sensitivity than a conventional 
CCD. In this device, electrons ejected from a photocathode by the photoelectric 
effect are accelerated through a high voltage before striking a CCD array. The 
higher energy of the electrons results in a very sensitive detector of low-intensity 
radiation.

Q	 uick Quiz 40.3  ​Consider one of the curves in Figure 40.10. Suppose the inten-
sity of the incident light is held fixed but its frequency is increased. Does the 
stopping potential in Figure 40.10 (a) remain fixed, (b) move to the right, or  
(c) move to the left?

Q	 uick Quiz 40.4 ​ Suppose classical physicists had the idea of plotting Kmax versus 
f as in Figure 40.11. Draw a graph of what the expected plot would look like, 
based on the wave model for light.

An incoming particle enters the 
scintillation crystal, where a 
collision results in a photon. The 
photon strikes the photocathode, 
which emits an electron by the 
photoelectric effect. 

Scintillation
crystal

Photocathode

0 V

�400 V

�800 V

�1 200 V

�1 600 V

�200 V

�600 V

�1 000 V

�1 400 V

Vacuum
Output
to counter

Figure 40.12  ​The multiplica-
tion of electrons in a photomulti-
plier tube.

Example 40.3	     The Photoelectric Effect for Sodium

A sodium surface is illuminated with light having a wavelength of 300 nm. As indicated in Table 40.1, the work func-
tion for sodium metal is 2.46 eV.

(A)  Find the maximum kinetic energy of the ejected photoelectrons.

Conceptualize  ​Imagine a photon striking the metal surface and ejecting an electron. The electron with the maximum 
energy is one near the surface that experiences no interactions with other particles in the metal that would reduce its 
energy on its way out of the metal.

S o l u t i o n

continued

www.as
warp

hy
sic

s.w
ee

bly
.co

m



1246	C hapter 40  Introduction to Quantum Physics

40.3	 The Compton Effect
In 1919, Einstein concluded that a photon of energy E travels in a single direction 
and carries a momentum equal to E/c 5 hf/c. In 1923, Arthur Holly Compton 
(1892–1962) and Peter Debye (1884–1966) independently carried Einstein’s idea of 
photon momentum further.
	 Prior to 1922, Compton and his coworkers had accumulated evidence showing 
that the classical wave theory of light failed to explain the scattering of x-rays from 
electrons. According to classical theory, electromagnetic waves of frequency f inci-
dent on electrons should have two effects: (1) radiation pressure (see Section 34.5) 
should cause the electrons to accelerate in the direction of propagation of the waves, 
and (2) the oscillating electric field of the incident radiation should set the electrons 
into oscillation at the apparent frequency f 9, where f 9 is the frequency in the frame 
of the moving electrons. This apparent frequency is different from the frequency 
f of the incident radiation because of the Doppler effect (see Section 17.4). Each 
electron first absorbs radiation as a moving particle and then reradiates as a moving 
particle, thereby exhibiting two Doppler shifts in the frequency of radiation.
	 Because different electrons move at different speeds after the interaction, depend-
ing on the amount of energy absorbed from the electromagnetic waves, the scattered 
wave frequency at a given angle to the incoming radiation should show a distribu-
tion of Doppler-shifted values. Contrary to this prediction, Compton’s experiments 
showed that at a given angle only one frequency of radiation is observed. Compton 
and his coworkers explained these experiments by treating photons not as waves but 
rather as point-like particles having energy hf and momentum hf/c and by assuming 
the energy and momentum of the isolated system of the colliding photon–electron 
pair are conserved. Compton adopted a particle model for something that was well 
known as a wave, and today this scattering phenomenon is known as the Compton 
effect. Figure 40.13 shows the quantum picture of the collision between an indi-
vidual x-ray photon of frequency f0 and an electron. In the quantum model, the elec-
tron is scattered through an angle f with respect to this direction as in a billiard-ball 
type of collision. (The symbol f used here is an angle and is not to be confused with 
the work function, which was discussed in the preceding section.) Compare Figure 
40.13 with the two-dimensional collision shown in Figure 9.11.
	 Figure 40.14 is a schematic diagram of the apparatus used by Compton. The 
x-rays, scattered from a carbon target, were diffracted by a rotating crystal spec-
trometer, and the intensity was measured with an ionization chamber that gen-
erated a current proportional to the intensity. The incident beam consisted of 
monochromatic x-rays of wavelength l0 5 0.071 nm. The experimental intensity-

Arthur Holly Compton
American Physicist (1892–1962)
Compton was born in Wooster, Ohio, and 
attended Wooster College and Princeton 
University. He became the director of the 
laboratory at the University of Chicago, 
where experimental work concerned 
with sustained nuclear chain reactions 
was conducted. This work was of central 
importance to the construction of the 
first nuclear weapon. His discovery of 
the Compton effect led to his sharing 
of the 1927 Nobel Prize in Physics with 
Charles Wilson.
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The electron recoils just as if 
struck by a classical particle, 
revealing the particle-like 
nature of the photon.

Figure 40.13  ​The quantum model 
for x-ray scattering from an electron. 

Categorize  ​We evaluate the results using equations developed in this section, so we categorize this example as a sub-
stitution problem.

From Equation 40.11, find the maximum kinetic energy 
of an electron:

K max 5
hc
l

2 f 5
1 240 eV # nm

300 nm
2 2.46 eV 5 1.67 eV

Calculate lc using Equation 40.12: lc 5
hc
f

5
1 240 eV # nm

2.46 eV
5 504 nm

Find the energy of each photon in the illuminating light 
beam from Equation 40.5:

E 5 hf 5
hc
l

(B)  ​Find the cutoff wavelength lc for sodium.

S o l u t i o n

	

▸ 40.3 c o n t i n u e d
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versus-wavelength plots observed by Compton for four scattering angles (corre-
sponding to u in Fig. 40.13) are shown in Figure 40.15. The graphs for the three 
nonzero angles show two peaks, one at l0 and one at l9 . l0. The shifted peak at 
l9 is caused by the scattering of x-rays from free electrons, which was predicted by 
Compton to depend on scattering angle as

	 l r 2 l0 5
h

mec
11 2 cos u 2  	 (40.13)

where me is the mass of the electron. This expression is known as the Compton 
shift equation and correctly describes the positions of the peaks in Figure 40.15. 
The factor h/mec, called the Compton wavelength of the electron, has a currently 
accepted value of

lC 5
h

mec
5 0.002 43 nm

	 The unshifted peak at l0 in Figure 40.15 is caused by x-rays scattered from elec-
trons tightly bound to the target atoms. This unshifted peak also is predicted by 
Equation 40.13 if the electron mass is replaced with the mass of a carbon atom, 
which is approximately 23 000 times the mass of the electron. Therefore, there is a 
wavelength shift for scattering from an electron bound to an atom, but it is so small 
that it was undetectable in Compton’s experiment.
	 Compton’s measurements were in excellent agreement with the predictions of 
Equation 40.13. These results were the first to convince many physicists of the fun-
damental validity of quantum theory.

Q	 uick Quiz 40.5 ​ For any given scattering angle u, Equation 40.13 gives the same 
value for the Compton shift for any wavelength. Keeping that in mind, for which of 
the following types of radiation is the fractional shift in wavelength at a given scat-
tering angle the largest? (a) radio waves (b) microwaves (c) visible light (d) x-rays

Derivation of the Compton Shift Equation
We can derive the Compton shift equation by assuming the photon behaves like a 
particle and collides elastically with a free electron initially at rest as shown in Fig-
ure 40.13. The photon is treated as a particle having energy E 5 hf 5 hc/l and zero 
rest energy. We apply the isolated system analysis models for energy and momen-
tum to the photon and the electron. In the scattering process, the total energy and 
total linear momentum of the system are conserved. Applying the isolated system 
model for energy to this process gives

DK photon 1 DKe 5 0   S   
hc
l0

5
hc
lr

1 Ke

WW Compton shift equation

WW Compton wavelength

The target scatters 
x-rays from the source 
through an angle u. 

X-ray
source

Ionization
chamber

Crystal 
spectrometer

Target

From Bragg’s law, the crystal 
spectrometer determines 
the wavelength of the 
scattered radiation by 
measuring the angle a. 

u

a

l0

l�

Figure 40.14  ​Schematic dia-
gram of Compton’s apparatus. 
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Figure 40.15  ​Scattered x-ray 
intensity versus wavelength for 
Compton scattering at u 5 0°, 45°, 
90°, and 135°.
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where hc/l0 is the energy of the incident photon, hc/l9 is the energy of the scat-
tered photon, and Ke is the kinetic energy of the recoiling electron. Because the 
electron may recoil at a speed comparable to that of light, we must use the relativis-
tic expression Ke 5 (g 2 1)mec2 (Eq. 39.23). Therefore,

	
hc
l0

5
hc
lr

1 1g 2 1 2mec
2 	 (40.14)

where g 5 1/!1 2 1u2 /c 2 2  and u is the speed of the electron.
	 Next, let’s apply the isolated system model for momentum to this collision, not-
ing that the x and y components of momentum are each conserved independently. 
Equation 39.28 shows that the momentum of a photon has a magnitude p 5 E/c, 
and we know from Equation 40.5 that E 5 hf. Therefore, p 5 hf/c. Substituting  
lf for c (Eq. 34.20) in this expression gives p 5 h/l. Because the relativistic expres-
sion for the momentum of the recoiling electron is pe 5 gmeu (Eq. 39.19), we obtain 
the following expressions for the x and y components of linear momentum, where 
the angles are as described in Figure 40.13:

	 x component: 
h
l0

5
h
l r

  cos u 1 gmeu cos f 	 (40.15)

	 y component: 0 5
h
l r

  sin u 2 gmeu sin f 	 (40.16)

Eliminating u and f from Equations 40.14 through 40.16 gives a single expression 
that relates the remaining three variables (l9, l0, and u). After some algebra (see 
Problem 64), we obtain Equation 40.13.

Example 40.4	     Compton Scattering at 45°

X-rays of wavelength l0 5 0.200 000 nm are scattered from a block of material. The scattered x-rays are observed at an 
angle of 45.0° to the incident beam. Calculate their wavelength.

Conceptualize  ​Imagine the process in Figure 40.13, with the photon scattered at 45° to its original direction.

Categorize  ​We evaluate the result using an equation developed in this section, so we categorize this example as a sub-
stitution problem.

S o l u t i o n

Substitute numerical values: l r 5 0.200 000 3 1029 m 1
16.626 3 10234 J # s 2 11 2 cos 45.08 2
19.11 3 10231 kg 2 13.00 3 108 m/s 2

5 0.200 000 3 1029 m 1 7.10 3 10213 m 5 0.200 710 nm

Solve Equation 40.13 for the wavelength of the 
scattered x-ray:

(1)   l r 5 l0 1
h 11 2 cos u 2

mec

What if the detector is moved so that scattered x-rays are detected at an angle larger than 45°? Does the 
wavelength of the scattered x-rays increase or decrease as the angle u increases?

Answer  ​In Equation (1), if the angle u increases, cos u decreases. Consequently, the factor (1 2 cos u) increases. There-
fore, the scattered wavelength increases.
	 We could also apply an energy argument to achieve this same result. As the scattering angle increases, more energy 
is transferred from the incident photon to the electron. As a result, the energy of the scattered photon decreases with 
increasing scattering angle. Because E 5 hf, the frequency of the scattered photon decreases, and because l 5 c/f, the 
wavelength increases.

What If ?
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40.4	 The Nature of Electromagnetic Waves
In Section 35.1, we introduced the notion of competing models of light: particles 
and waves. Let’s expand on that earlier discussion. Phenomena such as the photo-
electric effect and the Compton effect offer ironclad evidence that when light (or 
other forms of electromagnetic radiation) and matter interact, the light behaves 
as if it were composed of particles having energy hf and momentum h/l. How can 
light be considered a photon (in other words, a particle) when we know it is a wave? 
On the one hand, we describe light in terms of photons having energy and momen-
tum. On the other hand, light and other electromagnetic waves exhibit interfer-
ence and diffraction effects, which are consistent only with a wave interpretation.
	 Which model is correct? Is light a wave or a particle? The answer depends on 
the phenomenon being observed. Some experiments can be explained either bet-
ter or solely with the photon model, whereas others are explained either better or 
solely with the wave model. We must accept both models and admit that the true 
nature of light is not describable in terms of any single classical picture. The same 
light beam that can eject photoelectrons from a metal (meaning that the beam 
consists of photons) can also be diffracted by a grating (meaning that the beam 
is a wave). In other words, the particle model and the wave model of light comple-
ment each other.
	 The success of the particle model of light in explaining the photoelectric effect 
and the Compton effect raises many other questions. If light is a particle, what is 
the meaning of the “frequency” and “wavelength” of the particle, and which of 
these two properties determines its energy and momentum? Is light simultaneously a 
wave and a particle? Although photons have no rest energy (a nonobservable quan-
tity because a photon cannot be at rest), is there a simple expression for the effective 
mass of a moving photon? If photons have effective mass, do they experience gravi-
tational attraction? What is the spatial extent of a photon, and how does an elec-
tron absorb or scatter one photon? Some of these questions can be answered, but 
others demand a view of atomic processes that is too pictorial and literal. Many of 
them stem from classical analogies such as colliding billiard balls and ocean waves 
breaking on a seashore. Quantum mechanics gives light a more flexible nature 
by treating the particle model and the wave model of light as both necessary and 
complementary. Neither model can be used exclusively to describe all properties of 
light. A complete understanding of the observed behavior of light can be attained 
only if the two models are combined in a complementary manner.

40.5	 The Wave Properties of Particles
Students introduced to the dual nature of light often find the concept difficult 
to accept. In the world around us, we are accustomed to regarding such things as 
baseballs solely as particles and other things such as sound waves solely as forms 
of wave motion. Every large-scale observation can be interpreted by considering 
either a wave explanation or a particle explanation, but in the world of photons and 
electrons, such distinctions are not as sharply drawn.
	 Even more disconcerting is that, under certain conditions, the things we unam-
biguously call “particles” exhibit wave characteristics. In his 1923 doctoral dis-
sertation, Louis de Broglie postulated that because photons have both wave and  
particle characteristics, perhaps all forms of matter have both properties. This highly 
revolutionary idea had no experimental confirmation at the time. According to  
de Broglie, electrons, just like light, have a dual particle–wave nature.
	 In Section 40.3, we found that the momentum of a photon can be expressed as

p 5
h
l

Louis de Broglie
French Physicist (1892–1987)
De Broglie was born in Dieppe, France. 
At the Sorbonne in Paris, he studied 
history in preparation for what he 
hoped would be a career in the dip-
lomatic service. The world of science 
is lucky he changed his career path 
to become a theoretical physicist. De 
Broglie was awarded the Nobel Prize 
in Physics in 1929 for his prediction of 
the wave nature of electrons.
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1250	C hapter 40  Introduction to Quantum Physics

This equation shows that the photon wavelength can be specified by its momen-
tum: l 5 h/p. De Broglie suggested that material particles of momentum p have 
a characteristic wavelength that is given by the same expression. Because the magni-
tude of the momentum of a particle of mass m and speed u is p 5 mu, the de Bro-
glie wavelength of that particle is5

	 l 5
h
p

5
h

mu
	 (40.17)

	 Furthermore, in analogy with photons, de Broglie postulated that particles obey 
the Einstein relation E 5 hf, where E is the total energy of the particle. The fre-
quency of a particle is then

	 f 5
E
h

	 (40.18)

The dual nature of matter is apparent in Equations 40.17 and 40.18 because each 
contains both particle quantities (p and E) and wave quantities (l and f ).
	 The problem of understanding the dual nature of matter and radiation is con-
ceptually difficult because the two models seem to contradict each other. This 
problem as it applies to light was discussed earlier. The principle of complementar-
ity states that 

the wave and particle models of either matter or radiation complement each 
other.

Neither model can be used exclusively to describe matter or radiation adequately. 
Because humans tend to generate mental images based on their experiences 
from the everyday world, we use both descriptions in a complementary manner to 
explain any given set of data from the quantum world.

The Davisson–Germer Experiment
De Broglie’s 1923 proposal that matter exhibits both wave and particle properties 
was regarded as pure speculation. If particles such as electrons had wave proper-
ties, under the correct conditions they should exhibit diffraction effects. Only three 
years later, C. J. Davisson (1881–1958) and L. H. Germer (1896–1971) succeeded in 
observing electron diffraction and measuring the wavelength of electrons. Their 
important discovery provided the first experimental confirmation of the waves pro-
posed by de Broglie.
	 Interestingly, the intent of the initial Davisson–Germer experiment was not to 
confirm the de Broglie hypothesis. In fact, their discovery was made by accident (as 
is often the case). The experiment involved the scattering of low-energy electrons 
(approximately 54 eV) from a nickel target in a vacuum. During one experiment, 
the nickel surface was badly oxidized because of an accidental break in the vacuum 
system. After the target was heated in a flowing stream of hydrogen to remove the 
oxide coating, electrons scattered by it exhibited intensity maxima and minima at 
specific angles. The experimenters finally realized that the nickel had formed large 
crystalline regions upon heating and that the regularly spaced planes of atoms in 
these regions served as a diffraction grating for electrons. (See the discussion of 
diffraction of x-rays by crystals in Section 38.5.)
	 Shortly thereafter, Davisson and Germer performed more extensive diffrac-
tion measurements on electrons scattered from single-crystal targets. Their results 
showed conclusively the wave nature of electrons and confirmed the de Broglie 
relationship p 5 h/l. In the same year, G. P. Thomson (1892–1975) of Scotland also 
observed electron diffraction patterns by passing electrons through very thin gold 

Pitfall Prevention 40.3
What’s Waving?  If particles have 
wave properties, what’s waving? 
You are familiar with waves on 
strings, which are very concrete. 
Sound waves are more abstract, 
but you are likely comfortable 
with them. Electromagnetic waves 
are even more abstract, but at least 
they can be described in terms 
of physical variables and electric 
and magnetic fields. In contrast, 
waves associated with particles are 
completely abstract and cannot be 
associated with a physical variable. 
In Chapter 41, we describe the 
wave associated with a particle in 
terms of probability.

5The de Broglie wavelength for a particle moving at any speed u is l 5 h/gmu, where g 5 [1 2 (u2/c2)]21/2.
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Evaluate the de Broglie wavelength using 
Equation 40.17: l 5

h
meu

5
6.626 3 10234 J # s

19.11 3 10231 kg 2 11.00 3 107 m/s 2 5 7.27 3 10211 m

Evaluate the de Broglie wavelength using 
Equation 40.17:

l 5
h

mu
5

6.626 3 10234 J # s
150 3 1023 kg 2 140 m/s 2 5 3.3 3 10234 m

The wave nature of this electron could be detected by diffraction techniques such as those in the Davisson–Germer 
experiment.

(B)  ​A rock of mass 50 g is thrown with a speed of 40 m/s. What is its de Broglie wavelength?

S o l u t i o n

This wavelength is much smaller than any aperture through which the rock could possibly pass. Hence, we could not 
observe diffraction effects, and as a result, the wave properties of large-scale objects cannot be observed.

foils. Diffraction patterns were subsequently observed in the scattering of helium 
atoms, hydrogen atoms, and neutrons. Hence, the wave nature of particles has been 
established in various ways.

Q	 uick Quiz 40.6 ​ An electron and a proton both moving at nonrelativistic speeds 
have the same de Broglie wavelength. Which of the following quantities are 
also the same for the two particles? (a) speed (b) kinetic energy (c) momentum 
(d) frequency

Example 40.5	     Wavelengths for Microscopic and Macroscopic Objects

(A)  ​Calculate the de Broglie wavelength for an electron (me 5 9.11 3 10231 kg) moving at 1.00 3 107 m/s.

Conceptualize  ​Imagine the electron moving through space. From a classical viewpoint, it is a particle under constant 
velocity. From the quantum viewpoint, the electron has a wavelength associated with it.

Categorize  ​We evaluate the result using an equation developed in this section, so we categorize this example as a sub-
stitution problem.

S o l u t i o n

The Electron Microscope
A practical device that relies on the wave characteristics of electrons is the elec-
tron microscope. A transmission electron microscope, used for viewing flat, thin 
samples, is shown in Figure 40.16 on page 1252. In many respects, it is similar to an 
optical microscope; the electron microscope, however, has a much greater resolv-
ing power because it can accelerate electrons to very high kinetic energies, giving 
them very short wavelengths. No microscope can resolve details that are signifi-
cantly smaller than the wavelength of the waves used to illuminate the object. The 
shorter wavelengths of electrons gives an electron microscope a resolution that can 
be 1 000 times better than that from the visible light used in optical microscopes. 
As a result, an electron microscope with ideal lenses would be able to distinguish 
details approximately 1 000 times smaller than those distinguished by an optical 
microscope. (Electromagnetic radiation of the same wavelength as the electrons in 
an electron microscope is in the x-ray region of the spectrum.)
	 The electron beam in an electron microscope is controlled by electrostatic or 
magnetic deflection, which acts on the electrons to focus the beam and form an 
image. Rather than examining the image through an eyepiece as in an optical 
microscope, the viewer looks at an image formed on a monitor or other type of 
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1252	C hapter 40  Introduction to Quantum Physics

display screen. Figure 40.17 shows the amazing detail available with an electron 
microscope.

40.6	 A New Model: The Quantum Particle
Because in the past we considered the particle and wave models to be distinct, the 
discussions presented in previous sections may be quite disturbing. The notion that 
both light and material particles have both particle and wave properties does not 
fit with this distinction. Experimental evidence shows, however, that this conclu-
sion is exactly what we must accept. The recognition of this dual nature leads to 
a new model, the quantum particle, which is a combination of the particle model 
introduced in Chapter 2 and the wave model discussed in Chapter 16. In this new 
model, entities have both particle and wave characteristics, and we must choose one 
appropriate behavior—particle or wave—to understand a particular phenomenon.
	 In this section, we shall explore this model in a way that might make you more 
comfortable with this idea. We shall do so by demonstrating that an entity that 
exhibits properties of a particle can be constructed from waves.
	 Let’s first recall some characteristics of ideal particles and ideal waves. An ideal 
particle has zero size. Therefore, an essential feature of a particle is that it is local-
ized in space. An ideal wave has a single frequency and is infinitely long as suggested 
by Figure 40.18a. Therefore, an ideal wave is unlocalized in space. A localized entity 
can be built from infinitely long waves as follows. Imagine drawing one wave along 
the x axis, with one of its crests located at x 5 0, as at the top of Figure 40.18b. Now 
draw a second wave, of the same amplitude but a different frequency, with one of its 

Figure 40.17  ​A scanning elec-
tron microscope photograph 
shows significant detail of a 
cheese mite, Tyrolichus casei. The 
mite is so small, with a maximum 
length of 0.70 mm, that ordinary 
microscopes do not reveal minute 
anatomical details. 
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Figure 40.16  ​(a) Diagram of a transmission electron microscope for viewing a thinly sectioned 
sample. The “lenses” that control the electron beam are magnetic deflection coils. (b) An electron 
microscope in use.
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	 40.6  A New Model: The Quantum Particle	 1253

crests also at x 5 0. As a result of the superposition of these two waves, 
beats exist as the waves are alternately in phase and out of phase. (Beats 
were discussed in Section 18.7.) The bottom curve in Figure 40.18b 
shows the results of superposing these two waves.
	 Notice that we have already introduced some localization by super-
posing the two waves. A single wave has the same amplitude everywhere 
in space; no point in space is any different from any other point. By add-
ing a second wave, however, there is something different about the in-
phase points compared with the out-of-phase points.
	 Now imagine that more and more waves are added to our original 
two, each new wave having a new frequency. Each new wave is added 
so that one of its crests is at x 5 0 with the result that all the waves add 
constructively at x 5 0. When we add a large number of waves, the prob-
ability of a positive value of a wave function at any point x 2 0 is equal 
to the probability of a negative value, and there is destructive interfer-
ence everywhere except near x 5 0, where all the crests are superposed. 
The result is shown in Figure 40.19. The small region of constructive 
interference is called a wave packet. This localized region of space is 
different from all other regions. We can identify the wave packet as a 
particle because it has the localized nature of a particle! The location of 
the wave packet corresponds to the particle’s position.
	 The localized nature of this entity is the only characteristic of a parti-
cle that was generated with this process. We have not addressed how the 
wave packet might achieve such particle characteristics as mass, electric 
charge, and spin. Therefore, you may not be completely convinced that 
we have built a particle. As further evidence that the wave packet can represent the 
particle, let’s show that the wave packet has another characteristic of a particle.
	 To simplify the mathematical representation, we return to our combination of 
two waves. Consider two waves with equal amplitudes but different angular fre-
quencies v1 and v2. We can represent the waves mathematically as

y1 5 A cos (k1x 2 v1t) ​ ​  and ​ ​  y2 5 A cos (k 2x 2 v2t)

where, as in Chapter 16, k 5 2p/l and v 5 2pf. Using the superposition principle, 
let’s add the waves:

y 5 y1 1 y2 5 A cos (k1x 2 v1t) 1 A cos (k 2x 2 v2t)

It is convenient to write this expression in a form that uses the trigonometric 
identity

cos a 1 cos b 5 2 cos aa 2 b
2

b cos aa 1 b
2

b

Letting a 5 k1x 2 v1t and b 5 k 2x 2 v2t gives

y 5 2A cos c 1k1x 2 v1t 2 2 1k 2x 2 v2t 2
2

d  cos c 1k1x 2 v1t 2 1 1k 2x 2 v2t 2
2

d

	 y 5 c2A cos aDk
2

 x 2
Dv

2
 tb d  cos ak1 1 k 2

2
 x 2

v1 1 v2

2
 tb 	 (40.19)

x

Wave 1:

Wave 2:

Superposition:

x

x

x

The regions of space at which 
there is constructive interference 
are different from those at which 
there is destructive interference.

a

b

Figure 40.18  ​(a) An idealized wave of an 
exact single frequency is the same throughout 
space and time. (b)  If two ideal waves with 
slightly different frequencies are combined, 
beats result (Section 18.7). 

x
Figure 40.19  If a large number 
of waves are combined, the result 
is a wave packet, which represents 
a particle.
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1254	C hapter 40  Introduction to Quantum Physics

where Dk 5 k1 2 k 2 and Dv 5 v1 2 v2. The second cosine factor represents a wave 
with a wave number and frequency that are equal to the averages of the values for 
the individual waves.
	 In Equation 40.19, the factor in square brackets represents the envelope of the 
wave as shown by the dashed curve in Figure 40.20. This factor also has the math-
ematical form of a wave. This envelope of the combination can travel through space 
with a different speed than the individual waves. As an extreme example of this 
possibility, imagine combining two identical waves moving in opposite directions. 
The two waves move with the same speed, but the envelope has a speed of zero 
because we have built a standing wave, which we studied in Section 18.2.
	 For an individual wave, the speed is given by Equation 16.11,

	 vphase 5
v

k
	 (40.20)

This speed is called the phase speed because it is the rate of advance of a crest on 
a single wave, which is a point of fixed phase. Equation 40.20 can be interpreted as 
follows: the phase speed of a wave is the ratio of the coefficient of the time variable 
t to the coefficient of the space variable x in the equation representing the wave,  
y 5 A cos (kx 2 vt).
	 The factor in brackets in Equation 40.19 is of the form of a wave, so it moves with 
a speed given by this same ratio:

vg 5
coefficient of time variable t

coefficient of space variable x
5

1Dv/2 2
1Dk/2 2 5

Dv

Dk

The subscript g on the speed indicates that it is commonly called the group speed, 
or the speed of the wave packet (the group of waves) we have built. We have gener-
ated this expression for a simple addition of two waves. When a large number of 
waves are superposed to form a wave packet, this ratio becomes a derivative:

	 vg 5
dv

dk
	 (40.21)

Multiplying the numerator and the denominator by U, where U 5 h/2p, gives

	 vg 5
Udv

Udk
5

d 1U v 2
d 1Uk 2 	 (40.22)

Let’s look at the terms in the parentheses of Equation 40.22 separately. For the 
numerator,

U v 5
h

2p
12pf 2 5 hf 5 E

For the denominator,

U k 5
h

2p
a2p

l
b 5

h
l

5 p

Phase speed of a wave  
in a wave packet

Group speed of a wave packet 

x

The envelope function 
is described by

–
2
k( x )2

ωt2A cos .� �

Figure 40.20  The beat pat-
tern of Figure 40.18b, with an 
envelope function (dashed curve) 
superimposed.
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	 40.7  The Double-Slit Experiment Revisited	 1255

Therefore, Equation 40.22 can be written as

	 vg 5
d 1U v 2
d 1Uk 2 5

dE
dp

	 (40.23)

Because we are exploring the possibility that the envelope of the combined waves 
represents the particle, consider a free particle moving with a speed u that is small 
compared with the speed of light. The energy of the particle is its kinetic energy:

E 5 1
2mu2 5

p2

2m

Differentiating this equation with respect to p gives

	 vg 5
dE
dp

5
d
dp

a p2

2m
b 5

1
2m

12p 2 5 u 	 (40.24)

Therefore, the group speed of the wave packet is identical to the speed of the par-
ticle that it is modeled to represent, giving us further confidence that the wave 
packet is a reasonable way to build a particle.

Q	 uick Quiz 40.7 ​ As an analogy to wave packets, consider an “automobile packet” 
that occurs near the scene of an accident on a freeway. The phase speed is analo-
gous to the speed of individual automobiles as they move through the backup 
caused by the accident. The group speed can be identified as the speed of the 
leading edge of the packet of cars. For the automobile packet, is the group speed 
(a) the same as the phase speed, (b) less than the phase speed, or (c) greater 
than the phase speed?

40.7	 The Double-Slit Experiment Revisited
Wave–particle duality is now a firmly accepted concept reinforced by experimental 
results, including those of the Davisson–Germer experiment. As with the postu-
lates of special relativity, however, this concept often leads to clashes with familiar 
thought patterns we hold from everyday experience.
	 One way to crystallize our ideas about the electron’s wave–particle duality is 
through an experiment in which electrons are fired at a double slit. Consider a par-
allel beam of mono-energetic electrons incident on a double slit as in Figure 40.21. 
Let’s assume the slit widths are small compared with the electron wavelength so that 
we need not worry about diffraction maxima and minima as discussed for light in 
Section 38.2. An electron detector screen is positioned far from the slits at a distance 
much greater than d, the separation distance of the slits. If the detector screen col-
lects electrons for a long enough time, we find a typical wave interference pattern for 
the counts per minute, or probability of arrival of electrons. Such an interference 

Detector
screen

d

Electrons

u

u

The curve 
represents 
the number 
of electrons 
detected per 
unit time.

Figure 40.21  ​Electron inter-
ference. The slit separation d is 
much greater than the individual 
slit widths and much less than the 
distance between the slit and the 
detector screen.
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1256	C hapter 40  Introduction to Quantum Physics

pattern would not be expected if the electrons behaved as classical particles, giving 
clear evidence that electrons are interfering, a distinct wave-like behavior.
	 If we measure the angles u at which the maximum intensity of electrons arrives at 
the detector screen in Figure 40.21, we find they are described by exactly the same 
equation as that for light, d sin u 5 ml (Eq. 37.2), where m is the order number and 
l is the electron wavelength. Therefore, the dual nature of the electron is clearly 
shown in this experiment: the electrons are detected as particles at a localized spot 
on the detector screen at some instant of time, but the probability of arrival at that 
spot is determined by finding the intensity of two interfering waves.
	 Now imagine that we lower the beam intensity so that one electron at a time 
arrives at the double slit. It is tempting to assume the electron goes through either 
slit 1 or slit 2. You might argue that there are no interference effects because there 
is not a second electron going through the other slit to interfere with the first. 
This assumption places too much emphasis on the particle model of the electron, 
however. The interference pattern is still observed if the time interval for the mea-
surement is sufficiently long for many electrons to pass one at a time through the 
slits and arrive at the detector screen! This situation is illustrated by the computer-
simulated patterns in Figure 40.22 where the interference pattern becomes clearer 
as the number of electrons reaching the detector screen increases. Hence, our 
assumption that the electron is localized and goes through only one slit when both 
slits are open must be wrong (a painful conclusion!).
	 To interpret these results, we are forced to conclude that an electron interacts with 
both slits simultaneously. If you try to determine experimentally which slit the electron 
goes through, the act of measuring destroys the interference pattern. It is impossible 
to determine which slit the electron goes through. In effect, we can say only that the 
electron passes through both slits! The same arguments apply to photons.
	 If we restrict ourselves to a pure particle model, it is an uncomfortable notion 
that the electron can be present at both slits at once. From the quantum particle 
model, however, the particle can be considered to be built from waves that exist 
throughout space. Therefore, the wave components of the electron are present at 
both slits at the same time, and this model leads to a more comfortable interpreta-
tion of this experiment.

40.8	 The Uncertainty Principle
Whenever one measures the position or velocity of a particle at any instant, exper-
imental uncertainties are built into the measurements. According to classical 
mechanics, there is no fundamental barrier to an ultimate refinement of the appa-
ratus or experimental procedures. In other words, it is possible, in principle, to 
make such measurements with arbitrarily small uncertainty. Quantum theory pre-
dicts, however, that it is fundamentally impossible to make simultaneous measure-
ments of a particle’s position and momentum with infinite accuracy.
	 In 1927, Werner Heisenberg (1901–1976) introduced this notion, which is now 
known as the Heisenberg uncertainty principle:

If a measurement of the position of a particle is made with uncertainty Dx and 
a simultaneous measurement of its x component of momentum is made with 
uncertainty Dpx , the product of the two uncertainties can never be smaller 
than U/2:

	 Dx Dpx $
U

2
	 (40.25)

That is, it is physically impossible to measure simultaneously the exact position and 
exact momentum of a particle. Heisenberg was careful to point out that the inescap-
able uncertainties Dx and Dpx do not arise from imperfections in practical measuring 
instruments. Rather, the uncertainties arise from the quantum structure of matter.

After just 28 electrons, no 
regular pattern appears

After 1 000 electrons, a pattern 
of fringes begins to appear.

Two-slit electron pattern
(experimental results)

After 10 000 electrons, the 
pattern looks very much 
like the experimental 
results shown in      .d

a

b

c

d

Figure 40.22  (a)–(c) Computer- 
simulated interference patterns 
for a small number of electrons 
incident on a double slit. (d) Com-
puter simulation of a double-slit 
interference pattern produced by 
many electrons.
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	 40.8  The Uncertainty Principle	 1257

	 To understand the uncertainty principle, imagine that a particle has a single 
wavelength that is known exactly. According to the de Broglie relation, l 5 h/p, we 
would therefore know the momentum to be precisely p 5 h/l. In reality, a single-
wavelength wave would exist throughout space. Any region along this wave is the 
same as any other region (Fig. 40.18a). Suppose we ask, Where is the particle this 
wave represents? No special location in space along the wave could be identified with 
the particle; all points along the wave are the same. Therefore, we have infinite uncer-
tainty in the position of the particle, and we know nothing about its location. Perfect 
knowledge of the particle’s momentum has cost us all information about its location.
	 In comparison, now consider a particle whose momentum is uncertain so that it 
has a range of possible values of momentum. According to the de Broglie relation, 
the result is a range of wavelengths. Therefore, the particle is not represented by 
a single wavelength, but rather by a combination of wavelengths within this range. 
This combination forms a wave packet as we discussed in Section 40.6 and illus-
trated in Figure 40.19. If you were asked to determine the location of the particle, 
you could only say that it is somewhere in the region defined by the wave packet 
because there is a distinct difference between this region and the rest of space. 
Therefore, by losing some information about the momentum of the particle, we 
have gained information about its position.
	 If you were to lose all information about the momentum, you would be adding 
together waves of all possible wavelengths, resulting in a wave packet of zero length. 
Therefore, if you know nothing about the momentum, you know exactly where the 
particle is.
	 The mathematical form of the uncertainty principle states that the product of 
the uncertainties in position and momentum is always larger than some minimum 
value. This value can be calculated from the types of arguments discussed above, 
and the result is the value of U/2 in Equation 40.25.
	 Another form of the uncertainty principle can be generated by reconsidering 
Figure 40.19. Imagine that the horizontal axis is time rather than spatial position x. 
We can then make the same arguments that were made about knowledge of wave-
length and position in the time domain. The corresponding variables would be 
frequency and time. Because frequency is related to the energy of the particle by  
E 5 hf, the uncertainty principle in this form is

	 DE Dt $
U

2
	 (40.26)

	 The form of the uncertainty principle given in Equation 40.26 suggests that 
energy conservation can appear to be violated by an amount DE as long as it is only 
for a short time interval Dt consistent with that equation. We shall use this notion to 
estimate the rest energies of particles in Chapter 46.

Q	 uick Quiz 40.8 ​ A particle’s location is measured and specified as being exactly 
at x 5 0, with zero uncertainty in the x direction. How does that location affect 
the uncertainty of its velocity component in the y direction? (a) It does not affect 
it. (b) It makes it infinite. (c) It makes it zero.

Werner Heisenberg
German Theoretical Physicist 
(1901–1976)
Heisenberg obtained his Ph.D. in 1923 
at the University of Munich. While other 
physicists tried to develop physical 
models of quantum phenomena, Heisen-
berg developed an abstract mathemati-
cal model called matrix mechanics. The 
more widely accepted physical models 
were shown to be equivalent to matrix 
mechanics. Heisenberg made many 
other significant contributions to phys-
ics, including his famous uncertainty 
principle for which he received a Nobel 
Prize in Physics in 1932, the prediction 
of two forms of molecular hydrogen, 
and theoretical models of the nucleus.
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Pitfall Prevention 40.4
The Uncertainty Principle  Some 
students incorrectly interpret the 
uncertainty principle as meaning 
that a measurement interferes 
with the system. For example, 
if an electron is observed in a 
hypothetical experiment using an 
optical microscope, the photon 
used to see the electron collides 
with it and makes it move, giving 
it an uncertainty in momentum. 
This scenario does not represent 
the basis of the uncertainty prin-
ciple. The uncertainty principle is 
independent of the measurement 
process and is based on the wave 
nature of matter.

Example 40.6	     Locating an Electron

The speed of an electron is measured to be 5.00 3 103 m/s to an accuracy of 0.003 00%. Find the minimum uncer-
tainty in determining the position of this electron.

Conceptualize  ​The fractional value given for the accuracy of the electron’s speed can be interpreted as the fractional 
uncertainty in its momentum. This uncertainty corresponds to a minimum uncertainty in the electron’s position 
through the uncertainty principle.

S o l u t i o n

continued
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1258	C hapter 40  Introduction to Quantum Physics

Solve Equation 40.25 for the uncertainty 
in the electron’s position and substitute 
numerical values:

Dx $
U

2 Dpx
5

U

2mfvx
5

1.055 3 10234 J # s

2 19.11 3 10231 kg 2 10.000 030 0 2 15.00 3 103 m/s 2
5 3.86 3 1024 m 5  0.386 mm

Assume the electron is moving along the 
x axis and find the uncertainty in px , let-
ting f represent the accuracy of the mea-
surement of its speed:

Dpx 5 m Dvx 5 mfvx

Example 40.7	     The Line Width of Atomic Emissions

Atoms have quantized energy levels similar to those of Planck’s oscillators, although the energy levels of an atom are 
usually not evenly spaced. When an atom makes a transition between states separated in energy by DE, energy is emit-
ted in the form of a photon of frequency f 5 DE/h. Although an excited atom can radiate at any time from t 5 0 to t 5 

,̀ the average time interval after excitation during which an atom radiates is called the lifetime t. If t 5 1.0 3 1028 s, 
use the uncertainty principle to compute the line width Df produced by this finite lifetime.

Conceptualize  ​The lifetime t given for the excited state can be interpreted as the uncertainty Dt in the time at which 
the transition occurs. This uncertainty corresponds to a minimum uncertainty in the frequency of the radiated pho-
ton through the uncertainty principle.

Categorize  ​We evaluate the result using concepts developed in this section, so we categorize this example as a substitu-
tion problem.

S o l u t i o n

Substitute for the lifetime of the excited state: Df $
1

4p 11.0 3 1028 s 2 5 8.0 3 106 Hz

Use Equation 40.26 to substitute for the uncertainty in 
the photon’s energy, giving the minimum value of Df :

Df $
1
h

  
U

2 Dt
5

1
h

  
h/2p

2 Dt
5

1
4p Dt

5
1

4pt

Use Equation 40.5 to relate the uncertainty in the pho-
ton’s frequency to the uncertainty in its energy:

E 5 hf    S   DE 5 h Df    S   Df 5
DE
h

​What if this same lifetime were associated with a transition that emits a radio wave rather than a visible 
light wave from an atom? Is the fractional line width Df/f larger or smaller than for the visible light?

Answer  ​Because we are assuming the same lifetime for both transitions, Df is independent of the frequency of radia-
tion. Radio waves have lower frequencies than light waves, so the ratio Df/f will be larger for the radio waves. Assuming 
a light-wave frequency f of 6.00 3 1014 Hz, the fractional line width is

Df

f
 5

8.0 3 106 Hz
6.00 3 1014 Hz

5 1.3 3 1028

This narrow fractional line width can be measured with a sensitive interferometer. Usually, however, temperature and 
pressure effects overshadow the natural line width and broaden the line through mechanisms associated with the Dop-
pler effect and collisions.
	 Assuming a radio-wave frequency f of 94.7 3 106 Hz, the fractional line width is

Df

f
5

8.0 3 106 Hz
94.7 3 106 Hz

5 8.4 3 1022

Therefore, for the radio wave, this same absolute line width corresponds to a fractional line width of more than 8%.

What If ?

	

▸ 40.6 c o n t i n u e d

Categorize  ​We evaluate the result using concepts developed in this section, so we categorize this example as a substitu-
tion problem.
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	   Objective Questions	 1259

  The photoelectric effect is a process whereby electrons are ejected 
from a metal surface when light is incident on that surface. In Ein-
stein’s model, light is viewed as a stream of particles, or photons, each 
having energy E 5 hf, where h is Planck’s constant and f is the fre-
quency. The maximum kinetic energy of the ejected photoelectron is

	 K max 5 hf 2 f	 (40.11)

where f is the work function of the metal.

  X-rays are scattered at various angles by electrons in a target. In 
such a scattering event, a shift in wavelength is observed for the scat-
tered x-rays, a phenomenon known as the Compton effect. Classical 
physics does not predict the correct behavior in this effect. If the x-ray 
is treated as a photon, conservation of energy and linear momentum 
applied to the photon–electron collisions yields, for the Compton shift,

	 lr 2 l0 5
h

mec
11 2 cos u 2 	 (40.13)

where me is the mass of the electron, c is the speed of light, and u is the 
scattering angle.

  The characteristics of blackbody 
radiation cannot be explained using 
classical concepts. Planck introduced 
the quantum concept and Planck’s 
constant h when he assumed atomic 
oscillators existing only in discrete 
energy states were responsible for this 
radiation. In Planck’s model, radiation 
is emitted in single quantized packets 
whenever an oscillator makes a transi-
tion between discrete energy states. 
The energy of a packet is

	 E 5 hf	 (40.5)

where f is the frequency of the oscil-
lator. Einstein successfully extended 
Planck’s quantum hypothesis to the 
standing waves of electromagnetic radi-
ation in a cavity used in the blackbody 
radiation model.

Summary

Concepts and Principles

  Every object of mass m and momentum p 5 mu has 
wave properties, with a de Broglie wavelength given by

	 l 5
h
p

5
h

mu
	 (40.17)

  Light has a dual nature in that it has both wave 
and particle characteristics. Some experiments can be 
explained either better or solely by the particle model, 
whereas others can be explained either better or solely 
by the wave model.

  The Heisenberg uncertainty principle states 
that if a measurement of the position of a particle 
is made with uncertainty Dx and a simultaneous 
measurement of its linear momentum is made 
with uncertainty Dpx , the product of the two 
uncertainties is restricted to

	 Dx Dpx $
U

2
	 (40.25)

Another form of the uncertainty principle relates 
measurements of energy and time:

	 DE Dt $
U

2
	 (40.26)

  By combining a large number of waves, a single region of 
constructive interference, called a wave packet, can be cre-
ated. The wave packet carries the characteristic of localiza-
tion like a particle does, but it has wave properties because 
it is built from waves. For an individual wave in the wave 
packet, the phase speed is

	 vphase 5
v

k
	 (40.20)

For the wave packet as a whole, the group speed is

	 vg 5
dv

dk
	 (40.21)

For a wave packet representing a particle, the group speed 
can be shown to be the same as the speed of the particle.

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 Rank the wavelengths of the following quantum par-
ticles from the largest to the smallest. If any have equal 

wavelengths, display the equality in your ranking.  
(a) a photon with energy 3 eV (b) an electron with 
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1260	C hapter 40  Introduction to Quantum Physics

beam? (a) 355 nm (b) 497 nm (c) 744 nm (d) 1.42 pm 
(e) none of those answers

	 7.	 Which of the following is most likely to cause sunburn 
by delivering more energy to individual molecules in 
skin cells? (a) infrared light (b) visible light (c) ultra-
violet light (d) microwaves (e) Choices (a) through  
(d) are equally likely.

	 8.	 Which of the following phenomena most clearly 
demonstrates the wave nature of electrons? (a) the 
photoelectric effect (b) blackbody radiation (c) the 
Compton effect (d) diffraction of electrons by crystals  
(e) none of those answers

	 9.	 What is the de Broglie wavelength of an electron 
accelerated from rest through a potential difference 
of 50.0  V? (a)  0.100 nm (b) 0.139 nm (c) 0.174 nm  
(d) 0.834 nm (e) none of those answers

	10.	A proton, an electron, and a helium nucleus all move 
at speed v. Rank their de Broglie wavelengths from 
largest to smallest.

	11.	 Consider (a) an electron, (b) a photon, and (c) a pro-
ton, all moving in vacuum. Choose all correct answers 
for each question. (i) Which of the three possess rest 
energy? (ii)  Which have charge? (iii) Which carry 
energy? (iv) Which carry momentum? (v) Which move 
at the speed of light? (vi)  Which have a wavelength 
characterizing their motion?

	12.	An electron and a proton, moving in opposite direc-
tions, are accelerated from rest through the same 
potential difference. Which particle has the longer 
wavelength? (a) The electron does. (b) The pro-
ton does. (c) Both are the same. (d) Neither has a 
wavelength.

	13.	Which of the following phenomena most clearly 
demonstrates the particle nature of light? (a) diffrac-
tion (b)  the photoelectric effect (c)  polarization 
(d)  interference (e) refraction

	14.	Both an electron and a proton are accelerated to the 
same speed, and the experimental uncertainty in the 
speed is the same for the two particles. The positions 
of the two particles are also measured. Is the minimum 
possible uncertainty in the electron’s position (a) less 
than the minimum possible uncertainty in the proton’s 
position, (b) the same as that for the proton, (c) more 
than that for the proton, or (d) impossible to tell from 
the given information?

kinetic energy 3 eV (c) a proton with kinetic energy  
3 eV (d) a photon with energy 0.3 eV (e) an electron 
with momentum 3 eV/c

	 2.	 An x-ray photon is scattered by an originally stationary 
electron. Relative to the frequency of the incident pho-
ton, is the frequency of the scattered photon (a) lower, 
(b) higher, or (c) unchanged?

	 3.	 In a Compton scattering experiment, a photon of 
energy E is scattered from an electron at rest. After 
the scattering event occurs, which of the following 
statements is true? (a) The frequency of the photon is 
greater than E/h. (b) The energy of the photon is less 
than E. (c) The wavelength of the photon is less than 
hc/E. (d) The momentum of the photon increases.  
(e) None of those statements is true.

	 4.	 In a certain experiment, a filament in an evacu-
ated lightbulb carries a current I1 and you measure 
the spectrum of light emitted by the filament, which 
behaves as a black body at temperature T1. The wave-
length emitted with highest intensity (symbolized by 
lmax) has the value l1. You then increase the poten-
tial difference across the filament by a factor of 8, and 
the current increases by a factor of 2. (i)  After this 
change, what is the new value of the temperature of 
the filament? (a) 16T1 (b) 8T1 (c) 4T1 (d) 2T1 (e) still 
T1 (ii) What is the new value of the wavelength emit-
ted with highest intensity? (a) 4l1 (b) 2l1 (c) l1 (d) 12l1  
(e) 1

4l1

	 5.	 Which of the following statements are true according 
to the uncertainty principle? More than one statement 
may be correct. (a) It is impossible to simultaneously 
determine both the position and the momentum of a 
particle along the same axis with arbitrary accuracy. 
(b) It is impossible to simultaneously determine both 
the energy and momentum of a particle with arbitrary 
accuracy. (c) It is impossible to determine a particle’s 
energy with arbitrary accuracy in a finite amount of 
time. (d) It is impossible to measure the position of a 
particle with arbitrary accuracy in a finite amount of 
time. (e) It is impossible to simultaneously measure 
both the energy and position of a particle with arbi-
trary accuracy.

	 6.	 A monochromatic light beam is incident on a barium 
target that has a work function of 2.50 eV. If a poten-
tial difference of 1.00 V is required to turn back all the 
ejected electrons, what is the wavelength of the light 

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 The opening photograph for this chapter shows a fila-
ment of a lightbulb in operation. Look carefully at the 
last turns of wire at the upper and lower ends of the fil-
ament. Why are these turns dimmer than the others?

	 2.	 How does the Compton effect differ from the photo-
electric effect?

	 3.	 If matter has a wave nature, why is this wave-like char-
acteristic not observable in our daily experiences?

	 4.	 If the photoelectric effect is observed for one metal, 
can you conclude that the effect will also be observed 

for another metal under the same conditions? 
Explain.

	 5.	 In the photoelectric effect, explain why the stopping 
potential depends on the frequency of light but not on 
the intensity.

	 6.	 Why does the existence of a cutoff frequency in the 
photoelectric effect favor a particle theory for light 
over a wave theory?

	 7.	 Which has more energy, a photon of ultraviolet radia-
tion or a photon of yellow light? Explain.
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invention of the electron microscope. Explain why 
light microscopes cannot reveal them.

Figure CQ40.15
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	16.	In describing the passage of electrons through a slit 
and arriving at a screen, physicist Richard Feynman 
said that “electrons arrive in lumps, like particles, but 
the probability of arrival of these lumps is determined 
as the intensity of the waves would be. It is in this sense 
that the electron behaves sometimes like a particle and 
sometimes like a wave.” Elaborate on this point in your 
own words. For further discussion, see R. Feynman, 
The Character of Physical Law (Cambridge, MA: MIT 
Press, 1980), chap. 6.

	17.	 The classical model of blackbody radiation given by the 
Rayleigh–Jeans law has two major flaws. (a) Identify the 
flaws and (b) explain how Planck’s law deals with them.

	 8.	 All objects radiate energy. Why, then, are we not able 
to see all objects in a dark room?

	 9.	 Is an electron a wave or a particle? Support your answer 
by citing some experimental results.

	10.	Suppose a photograph were made of a person’s face 
using only a few photons. Would the result be simply a 
very faint image of the face? Explain your answer.

	11.	 Why is an electron microscope more suitable than an 
optical microscope for “seeing” objects less than 1 mm 
in size?

	12.	Is light a wave or a particle? Support your answer by cit-
ing specific experimental evidence.

	13.	(a) What does the slope of the lines in Figure 40.11 
represent? (b) What does the y intercept represent? 
(c) How would such graphs for different metals com-
pare with one another?

	14.	Why was the demonstration of electron diffraction by 
Davisson and Germer an important experiment?

	15.	Iridescence is the phenomenon that gives shining colors 
to the feathers of peacocks, hummingbirds (see page 
1134), resplendent quetzals, and even ducks and grack-
les. Without pigments, it colors Morpho butterflies 
(Fig. CQ40.15), Urania moths, some beetles and flies, 
rainbow trout, and mother-of-pearl in abalone shells. 
Iridescent colors change as you turn an object. They 
are produced by a wide variety of intricate structures in 
different species. Problem 64 in Chapter 38 describes 
the structures that produce iridescence in a peacock 
feather. These structures were all unknown until the 

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign
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Section 40.1 ​ Blackbody Radiation and Planck’s Hypothesis

	 1.	 The temperature of an electric heating element is 
150°C. At what wavelength does the radiation emitted 
from the heating element reach its peak?

	 2.	 Model the tungsten filament of a lightbulb as a black 
body at temperature 2 900 K. (a) Determine the wave-
length of light it emits most strongly. (b) Explain why 
the answer to part (a) suggests that more energy from 
the lightbulb goes into infrared radiation than into vis-
ible light.

	 3.	 Lightning produces a maximum air temperature on 
the order of 104 K, whereas a nuclear explosion pro-
duces a temperature on the order of 107 K. (a) Use 
Wien’s displacement law to find the order of magni-
tude of the wavelength of the thermally produced 

Q/C

W

photons radiated with greatest intensity by each 
of these sources. (b) Name the part of the electro-
magnetic spectrum where you would expect each to  
radiate most strongly.

	 4.	 Figure P40.4 shows 
the spectrum of light 
emitted by a firefly.  
(a) Determine the tem- 
perature of a black 
body that would emit 
radiation peaked at 
the same wavelength. 
(b)  Based on your 
result, explain whether 
firefly radiation is 
blackbody radiation.
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1262	C hapter 40  Introduction to Quantum Physics

assume its power output is carried by photons of wave-
length lmax. Find (e) the energy of one photon and  
(f) the number of photons it emits each second.

	14.	Show that at long wavelengths, Planck’s radiation law 
(Eq. 40.6) reduces to the Rayleigh–Jeans law (Eq. 40.3).

	15.	A simple pendulum has a length of 1.00 m and a mass 
of 1.00 kg. The maximum horizontal displacement of 
the pendulum bob from equilibrium is 3.00 cm. Calcu-
late the quantum number n for the pendulum.

	16.	A pulsed ruby laser emits light at 694.3 nm. For a  
14.0-ps pulse containing 3.00 J of energy, find (a) the 
physical length of the pulse as it travels through space 
and (b) the number of photons in it. (c) Assuming that 
the beam has a circular cross-section of 0.600 cm diam-
eter, find the number of photons per cubic millimeter. 

Section 40.2 ​ The Photoelectric Effect

	17.	 Molybdenum has a work function of 4.20 eV. (a) Find 
the cutoff wavelength and cutoff frequency for the 
photoelectric effect. (b) What is the stopping potential 
if the incident light has a wavelength of 180 nm?

	18.	The work function for zinc is 4.31 eV. (a) Find the 
cutoff wavelength for zinc. (b) What is the lowest fre-
quency of light incident on zinc that releases photo-
electrons from its surface? (c) If photons of energy  
5.50 eV are incident on zinc, what is the maximum 
kinetic energy of the ejected photoelectrons?

	19.	Two light sources are used in a photoelectric experi-
ment to determine the work function for a particu-
lar metal surface. When green light from a mercury 
lamp (l 5 546.1 nm) is used, a stopping potential of  
0.376 V reduces the photocurrent to zero. (a) Based on 
this measurement, what is the work function for this 
metal? (b) What stopping potential would be observed 
when using the yellow light from a helium discharge 
tube (l 5 587.5 nm)?

	20.	Lithium, beryllium, and mercury have work functions 
of 2.30 eV, 3.90 eV, and 4.50 eV, respectively. Light with 
a wavelength of 400 nm is incident on each of these 
metals. (a) Determine which of these metals exhibit 
the photoelectric effect for this incident light. Explain 
your reasoning. (b) Find the maximum kinetic energy 
for the photoelectrons in each case.

	21.	 Electrons are ejected from a metallic surface with 
speeds of up to 4.60 3 105 m/s when light with a wave-
length of 625 nm is used. (a) What is the work function 
of the surface? (b) What is the cutoff frequency for this 
surface?

	22.	From the scattering of sunlight, J. J. Thomson cal-
culated the classical radius of the electron as having 
the value 2.82 3 10215 m. Sunlight with an intensity 
of 500 W/m2 falls on a disk with this radius. Assume 
light is a classical wave and the light striking the disk 
is completely absorbed. (a) Calculate the time interval 
required to accumulate 1.00 eV of energy. (b) Explain 
how your result for part (a) compares with the observa-
tion that photoelectrons are emitted promptly (within 
1029 s).
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	 5.	 The average threshold of dark-adapted (scotopic) 
vision is 4.00 3 10211 W/m2 at a central wavelength 
of 500 nm. If light with this intensity and wavelength 
enters the eye and the pupil is open to its maximum 
diameter of 8.50 mm, how many photons per second 
enter the eye?

	 6.	 (i) Calculate the energy, in electron volts, of a pho-
ton whose frequency is (a) 620 THz, (b) 3.10 GHz, 
and (c)  46.0  MHz. (ii) Determine the correspond-
ing wavelengths for the photons listed in part (i) and  
(iii) state the classification of each on the electromag-
netic spectrum.

	 7.	 (a) What is the surface temperature of Betelgeuse, a 
red giant star in the constellation Orion (Fig. 40.4), 
which radiates with a peak wavelength of about  
970 nm? (b) Rigel, a bluish-white star in Orion, radi-
ates with a peak wavelength of 145 nm. Find the tem-
perature of Rigel’s surface.

	 8.	 An FM radio transmitter has a power output of 150 kW 
and operates at a frequency of 99.7 MHz. How many 
photons per second does the transmitter emit?

	 9.	 The human eye is most sensitive to 560-nm (green) 
light. What is the temperature of a black body that 
would radiate most intensely at this wavelength?

	10.	The radius of our Sun is 6.96 3 108 m, and its total 
power output is 3.85 3 1026 W. (a) Assuming the Sun’s 
surface emits as a black body, calculate its surface tem-
perature. (b) Using the result of part (a), find lmax for 
the Sun.

	11.	 A black body at 7 500 K consists of an opening of diam-
eter 0.050 0 mm, looking into an oven. Find the num-
ber of photons per second escaping the opening and 
having wavelengths between 500 nm and 501 nm.

	12.	Consider a black body of surface area 20.0 cm2 and tem-
perature 5 000 K. (a) How much power does it radiate? 
(b) At what wavelength does it radiate most intensely? 
Find the spectral power per wavelength interval at 
(c)  this wavelength and at wavelengths of (d) 1.00 nm 
(an x- or gamma ray), (e) 5.00 nm (ultraviolet light 
or an x-ray), (f)  400  nm (at the boundary between 
UV and visible light), (g) 700  nm (at the bound-
ary between visible and infrared light), (h)  1.00 mm  
(infrared light or a microwave), and (i)  10.0  cm (a 
microwave or radio wave). ( j) Approximately how much 
power does the object radiate as visible light?

	13.	Review. This problem is about how strongly matter is 
coupled to radiation, the subject with which quantum 
mechanics began. For a simple model, consider a solid 
iron sphere 2.00 cm in radius. Assume its temperature 
is always uniform throughout its volume. (a) Find the 
mass of the sphere. (b) Assume the sphere is at 20.0°C 
and has emissivity 0.860. Find the power with which it 
radiates electromagnetic waves. (c) If it were alone in 
the Universe, at what rate would the sphere’s tempera-
ture be changing? (d) Assume Wien’s law describes the 
sphere. Find the wavelength lmax of electromagnetic 
radiation it emits most strongly. Although it emits a 
spectrum of waves having all different wavelengths, 
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is the Compton shift in the photon’s wavelength?  
(b) Through what angle is the photon scattered?

	31.	 A photon having energy E 0 5 0.880 MeV is scattered 
by a free electron initially at rest such that the scat-
tering angle of the scattered electron is equal to that 
of the scattered photon as shown in Figure P40.31.  
(a) Determine the scattering angle of the photon and 
the electron. (b) Determine the energy and momen-
tum of the scattered photon. (c) Determine the kinetic 
energy and momentum of the scattered electron.

u

u

E0

Figure P40.31  Problems 31 and 32.

	32.	A photon having energy E 0 is scattered by a free elec-
tron initially at rest such that the scattering angle of 
the scattered electron is equal to that of the scattered 
photon as shown in Figure P40.31. (a) Determine the 
angle u. (b) Determine the energy and momentum of 
the scattered photon. (c) Determine the kinetic energy 
and momentum of the scattered electron.

	33.	X-rays having an energy of 300 keV undergo Comp-
ton scattering from a target. The scattered rays are 
detected at 37.0° relative to the incident rays. Find 
(a) the Compton shift at this angle, (b) the energy of 
the scattered x-ray, and (c) the energy of the recoiling 
electron.

	34.	In a Compton scattering experiment, a photon is scat-
tered through an angle of 90.0° and the electron is set 
into motion in a direction at an angle of 20.0° to the 
original direction of the photon. (a) Explain how this 
information is sufficient to determine uniquely the 
wavelength of the scattered photon and (b) find this 
wavelength.

	35.	In a Compton scattering experiment, an x-ray photon 
scatters through an angle of 17.4° from a free electron 
that is initially at rest. The electron recoils with a speed 
of 2 180 km/s. Calculate (a) the wavelength of the inci-
dent photon and (b) the angle through which the elec-
tron scatters.

	36.	Find the maximum fractional energy loss for a  
0.511-MeV gamma ray that is Compton scattered from 
(a) a free electron and (b) a free proton.

Section 40.4 ​ The Nature of Electromagnetic Waves

	37.	 An electromagnetic wave is called ionizing radiation if 
its photon energy is larger than, say, 10.0 eV so that 
a single photon has enough energy to break apart an 
atom. With reference to Figure P40.37 (page 1264), 
explain what region or regions of the electromagnetic 
spectrum fit this definition of ionizing radiation and 
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	23.	Review. An isolated copper sphere of radius 5.00 cm, 
initially uncharged, is illuminated by ultraviolet light 
of wavelength 200 nm. The work function for copper 
is 4.70 eV. What charge does the photoelectric effect 
induce on the sphere?

	24.	The work function for platinum is 6.35 eV. Ultraviolet 
light of wavelength 150 nm is incident on the clean sur-
face of a platinum sample. We wish to predict the stop-
ping voltage we will need for electrons ejected from the 
surface. (a) What is the photon energy of the ultravio-
let light? (b) How do you know that these photons will 
eject electrons from platinum? (c) What is the maxi-
mum kinetic energy of the ejected photoelectrons?  
(d) What stopping voltage would be required to arrest 
the current of photoelectrons?

Section 40.3 ​ The Compton Effect
	25.	X-rays are scattered from a target at an angle of 55.0° 

with the direction of the incident beam. Find the wave-
length shift of the scattered x-rays.

	26.	A photon having wavelength l scatters off a free elec-
tron at A (Fig. P40.26), producing a second photon 
having wavelength l9. This photon then scatters off 
another free electron at B, producing a third pho-
ton having wavelength l0 and moving in a direction 
directly opposite the original photon as shown in the 
figure. Determine the value of Dl 5 l0 2 l.

�

Electron 1

Electron 2

A

B

�

u

a

l

l

l

b

Figure P40.26

	27.	A 0.110-nm photon collides with a stationary electron. 
After the collision, the electron moves forward and the 
photon recoils backward. Find the momentum and the 
kinetic energy of the electron.

	28.	X-rays with a wavelength of 120.0 pm undergo Comp-
ton scattering. (a) Find the wavelengths of the photons 
scattered at angles of 30.0°, 60.0°, 90.0°, 120°, 150°, and 
180°. (b) Find the energy of the scattered electron in 
each case. (c) Which of the scattering angles provides 
the electron with the greatest energy? Explain whether 
you could answer this question without doing any 
calculations.

	29.	A 0.001 60-nm photon scatters from a free electron. 
For what (photon) scattering angle does the recoiling 
electron have kinetic energy equal to the energy of the 
scattered photon?

	30.	After a 0.800-nm x-ray photon scatters from a free elec-
tron, the electron recoils at 1.40 3 106 m/s. (a) What 
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1264	C hapter 40  Introduction to Quantum Physics

	44.	The nucleus of an atom is on the order of 10214 m in 
diameter. For an electron to be confined to a nucleus, 
its de Broglie wavelength would have to be on this 
order of magnitude or smaller. (a) What would be the 
kinetic energy of an electron confined to this region? 
(b) Make an order-of-magnitude estimate of the elec-
tric potential energy of a system of an electron inside 
an atomic nucleus. (c) Would you expect to find an 
electron in a nucleus? Explain.

	45.	Robert Hofstadter won the 1961 Nobel Prize in Phys-
ics for his pioneering work in studying the scattering 
of 20-GeV electrons from nuclei. (a) What is the g  
factor for an electron with total energy 20.0 GeV, 
defined by g 5 1/!1 2 u 2/c 2? (b) Find the momentum 
of the electron. (c) Find the wavelength of the electron.  
(d) State how the wavelength compares with the diam-
eter of an atomic nucleus, typically on the order of 
10214 m.

	46.	Why is the following situation impossible? After learning 
about de Broglie’s hypothesis that material particles of 
momentum p move as waves with wavelength l 5 h/p, 
an 80-kg student has grown concerned about being dif-
fracted when passing through a doorway of width w 5 
75 cm. Assume significant diffraction occurs when the 
width of the diffraction aperture is less than ten times 
the wavelength of the wave being diffracted. Together 
with his classmates, the student performs precision 
experiments and finds that he does indeed experience 
measurable diffraction.

	47.	 A photon has an energy equal to the kinetic energy of 
an electron with speed u, which may be close to the 
speed of light c. (a) Calculate the ratio of the wave-
length of the photon to the wavelength of the electron. 
(b) Evaluate the ratio for the particle speed u 5 0.900c. 
(c) What If? What would happen to the answer to part 
(b) if the material particle were a proton instead of an 
electron? (d) Evaluate the ratio for the particle speed  
u 5 0.001 00c. (e) What value does the ratio of the wave-
lengths approach at high particle speeds? (f) At low 
particle speeds?

	48.	(a) Show that the frequency f and wavelength l of a 
freely moving quantum particle with mass are related 
by the expression

a f

c
b

2

5
1
l2 1

1
lC

2

		  where lC 5 h/mc is the Compton wavelength of the 
particle. (b) Is it ever possible for a particle having 
nonzero mass to have the same wavelength and fre-
quency as a photon? Explain.

Section 40.6 ​ A New Model: The Quantum Particle
	49.	Consider a freely moving quantum particle with mass  

m and speed u. Its energy is E 5 K 5 1
2mu2. (a) Deter-

mine the phase speed of the quantum wave represent-
ing the particle and (b) show that it is different from the 
speed at which the particle transports mass and energy.

	50.	For a free relativistic quantum particle moving with 
speed u, the total energy of the particle is E 5 hf 5 Uv 5 
!p 2c 2 1 m2c 4 and the momentum is p 5 h/l 5 Uk 5
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what do not. (If you wish to consult a larger version of 
Fig. P40.37, see Fig. 34.13.)
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Figure P40.37

	38.	Review. A helium–neon laser produces a beam of 
diameter 1.75 mm, delivering 2.00 3 1018 photons/s. 
Each photon has a wavelength of 633 nm. Calculate 
the amplitudes of (a) the electric fields and (b) the 
magnetic fields inside the beam. (c) If the beam shines 
perpendicularly onto a perfectly reflecting surface, 
what force does it exert on the surface? (d) If the beam 
is absorbed by a block of ice at 0°C for 1.50 h, what 
mass of ice is melted?

Section 40.5 ​ The Wave Properties of Particles
	39.	(a) Calculate the momentum of a photon whose wave-

length is 4.00 3 1027 m. (b) Find the speed of an elec-
tron having the same momentum as the photon in 
part (a).

	40.	(a) An electron has a kinetic energy of 3.00 eV. Find its 
wavelength. (b) What If? A photon has energy 3.00 eV. 
Find its wavelength.

	41.	The resolving power of a microscope depends on 
the wavelength used. If you wanted to “see” an atom, 
a wavelength of approximately 1.00 3 10211 m would 
be required. (a) If electrons are used (in an electron 
microscope), what minimum kinetic energy is required 
for the electrons? (b) What If? If photons are used, 
what minimum photon energy is needed to obtain the 
required resolution?

	42.	Calculate the de Broglie wavelength for a proton mov-
ing with a speed of 1.00 3 106 m/s.

	43.	In the Davisson–Germer experiment, 54.0-eV elec-
trons were diffracted from a nickel lattice. If the first 
maximum in the diffraction pattern was observed  
at f 5 50.0° (Fig. P40.43), what was the lattice spacing 
a between the vertical columns of atoms in the figure?
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Figure P40.43
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many firings, the diameter of the spray of pellets on a 
paper target is 1.00 cm.

	59.	Use the uncertainty principle to show that if an elec-
tron were confined inside an atomic nucleus of diame-
ter on the order of 10214 m, it would have to be moving 
relativistically, whereas a proton confined to the same 
nucleus can be moving nonrelativistically.

Additional Problems

	60.	The accompanying table shows data obtained in a pho-
toelectric experiment. (a) Using these data, make a 
graph similar to Figure 40.11 that plots as a straight line. 
From the graph, determine (b) an experimental value 
for Planck’s constant (in joule-seconds) and (c) the  
work function (in electron volts) for the surface. (Two 
significant figures for each answer are sufficient.)

	 Wavelength	 Maximum Kinetic Energy
	 (nm)	 of Photoelectrons (eV)

	 588	 0.67
	 505	 0.98
	 445	 1.35
	 399	 1.63

	61.	 Photons of wavelength 450 nm are incident on a metal. 
The most energetic electrons ejected from the metal 
are bent into a circular arc of radius 20.0 cm by a mag-
netic field with a magnitude of 2.00 3 1025 T. What is 
the work function of the metal?

	62.	Review. Photons of wavelength l are incident on a 
metal. The most energetic electrons ejected from the 
metal are bent into a circular arc of radius R by a mag-
netic field having a magnitude B. What is the work 
function of the metal?

	63.	Review. Design an incandescent lamp filament. A 
tungsten wire radiates electromagnetic waves with 
power 75.0 W when its ends are connected across a 
120-V power supply. Assume its constant operating 
temperature is 2 900 K and its emissivity is 0.450. Also 
assume it takes in energy only by electric transmission 
and emits energy only by electromagnetic radiation. 
You may take the resistivity of tungsten at 2 900 K as 
7.13 3 1027 V ? m. Specify (a) the radius and (b) the 
length of the filament.

	64.	Derive the equation for the Compton shift (Eq. 40.13) 
from Equations 40.14 through 40.16.

	65.	Figure P40.65 shows the stopping potential versus the 
incident photon frequency for the photoelectric effect 
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gmu.  For the quantum wave representing the particle, 
the group speed is vg 5 dv/dk. Prove that the group 
speed of the wave is the same as the speed of the particle.

Section 40.7 ​ The Double-Slit Experiment Revisited

	51.	 Neutrons traveling at 0.400 m/s are directed through 
a pair of slits separated by 1.00 mm. An array of detec-
tors is placed 10.0 m from the slits. (a) What is the de 
Broglie wavelength of the neutrons? (b) How far off 
axis is the first zero-intensity point on the detector 
array? (c) When a neutron reaches a detector, can we 
say which slit the neutron passed through? Explain.

	52.	In a certain vacuum tube, electrons evaporate from a 
hot cathode at a slow, steady rate and accelerate from 
rest through a potential difference of 45.0 V. Then they 
travel 28.0 cm as they pass through an array of slits and 
fall on a screen to produce an interference pattern. 
If the beam current is below a certain value, only one 
electron at a time will be in flight in the tube. In this 
situation, the interference pattern still appears, show-
ing that each individual electron can interfere with 
itself. What is the maximum value for the beam cur-
rent that will result in only one electron at a time in 
flight in the tube?

	53.	A modified oscilloscope is used to perform an elec-
tron interference experiment. Electrons are incident 
on a pair of narrow slits 0.060 0 mm apart. The bright 
bands in the interference pattern are separated by  
0.400 mm on a screen 20.0 cm from the slits. Deter-
mine the potential difference through which the elec-
trons were accelerated to give this pattern.

Section 40.8 ​ The Uncertainty Principle

	54.	Suppose a duck lives in a universe in which h 5 2p J ? s.  
The duck has a mass of 2.00 kg and is initially known 
to be within a pond 1.00 m wide. (a) What is the mini-
mum uncertainty in the component of the duck’s 
velocity parallel to the pond’s width? (b) Assuming 
this uncertainty in speed prevails for 5.00 s, determine 
the uncertainty in the duck’s position after this time 
interval.

	55.	An electron and a 0.020 0-kg bullet each have a 
velocity of magnitude 500 m/s, accurate to within  
0.010 0%. Within what lower limit could we determine 
the position of each object along the direction of the 
velocity?

	56.	A 0.500-kg block rests on the frictionless, icy surface 
of a frozen pond. If the location of the block is mea-
sured to a precision of 0.150 cm and its mass is known 
exactly, what is the minimum uncertainty in the 
block’s speed?

	57.	 The average lifetime of a muon is about 2 ms. Estimate 
the minimum uncertainty in the rest energy of a muon.

	58.	Why is the following situation impossible? An air rifle 
is used to shoot 1.00-g particles at a speed of vx 5  
100 m/s. The rifle’s barrel has a diameter of 2.00 mm.  
The rifle is mounted on a perfectly rigid support 
so that it is fired in exactly the same way each time. 
Because of the uncertainty principle, however, after 
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1266	C hapter 40  Introduction to Quantum Physics

Challenge Problems

	72.	A woman on a ladder drops small pellets toward a 
point target on the floor. (a) Show that, according to 
the uncertainty principle, the average miss distance 
must be at least

		  Dxf 5 a2U

m
b

1/2

a2H
g
b

1/4

		  where H is the initial height of each pellet above the 
floor and m is the mass of each pellet. Assume that the 
spread in impact points is given by Dxf 5 Dxi 1 (Dvx)t. 
(b) If H 5 2.00 m and m = 0.500 g, what is Dxf ?

	73.	Review. A light source emitting radiation at frequency 
7.00 3 1014 Hz is incapable of ejecting photoelectrons 
from a certain metal. In an attempt to use this source 
to eject photoelectrons from the metal, the source is 
given a velocity toward the metal. (a) Explain how this 
procedure can produce photoelectrons. (b) When the 
speed of the light source is equal to 0.280c, photoelec-
trons just begin to be ejected from the metal. What is 
the work function of the metal? (c) When the speed of 
the light source is increased to 0.900c, determine the 
maximum kinetic energy of the photoelectrons.

	74.	Using conservation principles, prove that a photon 
cannot transfer all its energy to a free electron.

	75.	The total power per unit area radiated by a black body 
at a temperature T is the area under the I(l,T )-versus-
l curve as shown in Figure 40.3. (a) Show that this 
power per unit area is

3
`

0
 I 1l,T 2  dl 5 sT 4

		  where I(l,T ) is given by Planck’s radiation law and s 
is a constant independent of T. This result is known as 
Stefan’s law. (See Section 20.7.) To carry out the inte-
gration, you should make the change of variable x 5 
hc/lkBT and use

3
`

0

x 3 dx
e x 2 1

5
p4

15

		  (b) Show that the Stefan–Boltzmann constant s has 
the value

s 5
2p5k B

4

15c 2h3 5 5.67 3 1028 W/m2 # K4

	76.	(a) Derive Wien’s displacement law from Planck’s law. 
Proceed as follows. In Figure 40.3, notice that the 
wavelength at which a black body radiates with great-
est intensity is the wavelength for which the graph of 
I(l,T ) versus l has a horizontal tangent. From Equa-
tion 40.6, evaluate the derivative dI/dl. Set it equal 
to zero. Solve the resulting transcendental equation 
numerically to prove that hc/lmaxkBT 5 4.965 . . . or 
lmaxT 5 hc/4.965kB. (b) Evaluate the constant as pre-
cisely as possible and compare it with Wien’s experi-
mental value.

Q/C

S

S

for sodium. Use the graph to find (a) the work func-
tion of sodium, (b) the ratio h/e, and (c) the cutoff 
wavelength. The data are taken from R. A. Millikan, 
Physical Review 7:362 (1916).

	66.	A photon of initial energy E 0 undergoes Compton scat-
tering at an angle u from a free electron (mass me) ini-
tially at rest. Derive the following relationship for the 
final energy E 9 of the scattered photon:

E r 5
E 0

1 1 a E 0

mec
2b 11 2 cos u 2

	67.	 A daredevil’s favorite trick is to step out of a 16th-story 
window and fall 50.0 m into a pool. A news reporter 
takes a picture of the 75.0-kg daredevil just before he 
makes a splash, using an exposure time of 5.00 ms. 
Find (a) the daredevil’s de Broglie wavelength at this 
moment, (b) the uncertainty of his kinetic energy mea-
surement during the 5.00-ms time interval, and (c) the 
percent error caused by such an uncertainty.

	68.	Show that the ratio of the Compton wavelength lC  
to the de Broglie wavelength l 5 h/p for a relativistic 
electron is

lC

l
5 c a E

mec
2b

2

2 1 d
1/2

		  where E is the total energy of the electron and me is its 
mass.

	69.	Monochromatic ultraviolet light with intensity  
550 W/m2 is incident normally on the surface of a 
metal that has a work function of 3.44 eV. Photoelec-
trons are emitted with a maximum speed of 420 km/s. 
(a) Find the maximum possible rate of photoelec-
tron emission from 1.00 cm2 of the surface by imag-
ining that every photon produces one photoelectron.  
(b) Find the electric current these electrons constitute. 
(c) How do you suppose the actual current compares 
with this maximum possible current?

	70.	A p0 meson is an unstable particle produced in high-
energy particle collisions. Its rest energy is approxi-
mately 135 MeV, and it exists for a lifetime of only  
8.70 3 10217  s before decaying into two gamma rays. 
Using the uncertainty principle, estimate the frac-
tional uncertainty Dm/m in its mass determination.

	71.	The neutron has a mass of 1.67 3 10227 kg. Neutrons 
emitted in nuclear reactions can be slowed down by 
collisions with matter. They are referred to as thermal 
neutrons after they come into thermal equilibrium 
with the environment. The average kinetic energy 
13

2k BT 2  of a thermal neutron is approximately 0.04 eV. 
(a) Calculate the de Broglie wavelength of a neutron 
with a kinetic energy of 0.040 0 eV. (b) How does your 
answer compare with the characteristic atomic spacing 
in a crystal? (c) Explain whether you expect thermal 
neutrons to exhibit diffraction effects when scattered 
by a crystal.
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An opened flash drive of the type 
used as an external data storage 
device for a computer. Flash 
drives are employed extensively 
in computers, digital cameras, cell 
phones, and other devices. Writing 
data to and erasing data from flash 
drives incorporate the phenomenon 
of quantum tunneling, which we 
explore in this chapter. (Image 

copyright Vasilius, 2009. Used under 

license from Shutterstock.com)

41.1	 The Wave Function

41.2	 Analysis Model: Quantum 
Particle Under Boundary 
Conditions

41.3	 The Schrödinger Equation

41.4	 A Particle in a Well of 
Finite Height

41.5	 Tunneling Through a 
Potential Energy Barrier

41.6	 Applications of Tunneling

41.7	 The Simple Harmonic 
Oscillator

c h a p t e r 

41

In this chapter, we introduce quantum mechanics, an extremely successful theory for 
explaining the behavior of microscopic particles. This theory, developed in the 1920s by 
Erwin Schrödinger, Werner Heisenberg, and others, enables us to understand a host of phe-
nomena involving atoms, molecules, nuclei, and solids. The discussion in this chapter follows 
from the quantum particle model that was developed in Chapter 40 and incorporates some 
of the features of the waves under boundary conditions model that was explored in Chapter 
18. We also discuss practical applications of quantum mechanics, including the scanning 
tunneling microscope and nanoscale devices that may be used in future quantum comput-
ers. Finally, we shall return to the simple harmonic oscillator that was introduced in Chapter 
15 and examine it from a quantum mechanical point of view.

41.1	 The Wave Function
In Chapter 40, we introduced some new and strange ideas. In particular, we con-
cluded on the basis of experimental evidence that both matter and electromag-
netic radiation are sometimes best modeled as particles and sometimes as waves, 
depending on the phenomenon being observed. We can improve our understand-
ing of quantum physics by making another connection between particles and waves 
using the notion of probability, a concept that was introduced in Chapter 40.
	 We begin by discussing electromagnetic radiation using the particle model. The 
probability per unit volume of finding a photon in a given region of space at an 
instant of time is proportional to the number of photons per unit volume at that 
time:

Probability

V
~

N
V

Quantum Mechanics
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1268	C hapter 41  Quantum Mechanics

The number of photons per unit volume is proportional to the intensity of the 
radiation:

N
V

~ I

Now, let’s form a connection between the particle model and the wave model by 
recalling that the intensity of electromagnetic radiation is proportional to the 
square of the electric field amplitude E for the electromagnetic wave (Eq. 34.24):

I ~ E 2

Equating the beginning and the end of this series of proportionalities gives

	
Probability

V
~ E 2 	 (41.1)

Therefore, for electromagnetic radiation, the probability per unit volume of find-
ing a particle associated with this radiation (the photon) is proportional to the 
square of the amplitude of the associated electromagnetic wave.
	 Recognizing the wave–particle duality of both electromagnetic radiation and 
matter, we should suspect a parallel proportionality for a material particle: the 
probability per unit volume of finding the particle is proportional to the square of 
the amplitude of a wave representing the particle. In Chapter 40, we learned that 
there is a de Broglie wave associated with every particle. The amplitude of the de 
Broglie wave associated with a particle is not a measurable quantity because the 
wave function representing a particle is generally a complex function as we discuss 
below. In contrast, the electric field for an electromagnetic wave is a real function. 
The matter analog to Equation 41.1 relates the square of the amplitude of the wave 
to the probability per unit volume of finding the particle. Hence, the amplitude 
of the wave associated with the particle is called the probability amplitude, or the 
wave function, and it has the symbol C.
	 In general, the complete wave function C for a system depends on the posi-
tions of all the particles in the system and on time; therefore, it can be written 
C 1 rS1, rS2, rS3, c, rSj , c, t 2 , where rSj is the position vector of the j th particle in the 
system. For many systems of interest, including all those we study in this text, the 
wave function C is mathematically separable in space and time and can be written 
as a product of a space function c for one particle of the system and a complex time 
function:1

	 C 1 rS1, rS2, rS3, c, rSj , c, t 2 5 c 1 rSj 2e2ivt 	 (41.2)

where v (5 2pf ) is the angular frequency of the wave function and i 5 !21.
	 For any system in which the potential energy is time-independent and depends 
only on the positions of particles within the system, the important information 
about the system is contained within the space part of the wave function. The time 
part is simply the factor e2ivt. Therefore, an understanding of c is the critical aspect 
of a given problem.
	 The wave function c is often complex-valued. The absolute square |c|2 5 c*c, 
where c* is the complex conjugate2 of c, is always real and positive and is propor-
tional to the probability per unit volume of finding a particle at a given point at 
some instant. The wave function contains within it all the information that can be 
known about the particle.

Space- and time-dependent  
wave function C

1The standard form of a complex number is a 1 ib. The notation e iu is equivalent to the standard form as follows:

e iu 5 cos u 1 i sin u

Therefore, the notation e2ivt in Equation 41.2 is equivalent to cos (2vt) 1 i sin (2vt) 5 cos vt 2 i sin vt.
2For a complex number z 5 a 1 ib, the complex conjugate is found by changing i to 2i : z* 5 a 2 ib. The product of a 
complex number and its complex conjugate is always real and positive. That is, z*z 5 (a 2 ib)(a 1 ib) 5 a 2 2 (ib)2 5 
a 2 2 (i)2b 2 5 a 2 1 b 2.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 41.1  The Wave Function	 1269

	 Although c cannot be measured, we can measure the real quantity |c|2, which 
can be interpreted as follows. If c represents a single particle, then |c|2—called the 
probability density—is the relative probability per unit volume that the particle 
will be found at any given point in the volume. This interpretation can also be 
stated in the following manner. If dV is a small volume element surrounding some 
point, the probability of finding the particle in that volume element is

	 P(x, y, z) dV 5 |c|2 dV	 (41.3)

	 This probabilistic interpretation of the wave function was first suggested by Max 
Born (1882–1970) in 1928. In 1926, Erwin Schrödinger proposed a wave equation 
that describes the manner in which the wave function changes in space and time. 
The Schrödinger wave equation, which we shall examine in Section 41.3, represents a 
key element in the theory of quantum mechanics.
	 The concepts of quantum mechanics, strange as they sometimes may seem, 
developed from classical ideas. In fact, when the techniques of quantum mechanics 
are applied to macroscopic systems, the results are essentially identical to those of 
classical physics. This blending of the two approaches occurs when the de Broglie 
wavelength is small compared with the dimensions of the system. The situation is 
similar to the agreement between relativistic mechanics and classical mechanics 
when v ,, c.
	 In Section 40.5, we found that the de Broglie equation relates the momentum 
of a particle to its wavelength through the relation p 5 h/l. If an ideal free particle 
has a precisely known momentum px, its wave function is an infinitely long sinusoi-
dal wave of wavelength l 5 h/px and the particle has equal probability of being at 
any point along the x axis (Fig. 40.18a). The wave function c for such a free particle 
moving along the x axis can be written as

	 c(x) 5 Aeikx	 (41.4)

where A is a constant amplitude and k 5 2p/l is the angular wave number (Eq. 
16.8) of the wave representing the particle.3

One-Dimensional Wave Functions and Expectation Values
This section discusses only one-dimensional systems, where the particle must be 
located along the x axis, so the probability |c|2 dV in Equation 41.3 is modified to 
become |c|2 dx. The probability that the particle will be found in the infinitesimal 
interval dx around the point x is

	 P(x) dx 5 |c|2 dx	 (41.5)

	 Although it is not possible to specify the position of a particle with complete cer-
tainty, it is possible through |c|2 to specify the probability of observing it in a region 
surrounding a given point x. The probability of finding the particle in the arbitrary 
interval a # x # b is

	 Pab 5 3
b

a

0c 0 2dx 	 (41.6)

The probability Pab is the area under the curve of |c|2 versus x between the points 
x 5 a and x 5 b as in Figure 41.1.
	 Experimentally, there is a finite probability of finding a particle in an interval 
near some point at some instant. The value of that probability must lie between the 

WW Probability density |c|2

WW �Wave function for a free 
particle

3For the free particle, the full wave function, based on Equation 41.2, is

C(x, t) 5 Aeikxe2ivt 5 Aei(kx2vt) 5 A[cos (kx 2 vt) 1 i sin (kx 2 vt)]

The real part of this wave function has the same form as the waves we added together to form wave packets in Section 
40.6.

Pitfall Prevention 41.1
The Wave Function Belongs  
to a System  The common lan-
guage in quantum mechanics is 
to associate a wave function with 
a particle. The wave function, 
however, is determined by the 
particle and its interaction with 
its environment, so it more right-
fully belongs to a system. In many 
cases, the particle is the only part 
of the system that experiences 
a change, which is why the com-
mon language has developed. You 
will see examples in the future in 
which it is more proper to think 
of the system wave function rather 
than the particle wave function.

x
ba

ψ2c

The probability of a particle 
being in the interval a  � x � b 
is the area under the probability 
density curve from a to b.

Figure 41.1  ​An arbitrary prob-
ability density curve for a particle.
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1270	C hapter 41  Quantum Mechanics

limits 0 and 1. For example, if the probability is 0.30, there is a 30% chance of find-
ing the particle in the interval.
	 Because the particle must be somewhere along the x axis, the sum of the prob-
abilities over all values of x must be 1:

	 3
`

2`

0c 0 2 dx 5 1 	 (41.7)

Any wave function satisfying Equation 41.7 is said to be normalized. Normalization 
is simply a statement that the particle exists at some point in space.
	 Once the wave function for a particle is known, it is possible to calculate the 
average position at which you would expect to find the particle after many measure-
ments. This average position is called the expectation value of x and is defined by 
the equation

	 8x 9 ; 3
`

2`

c*x c dx 	 (41.8)

(Brackets, k. . .l, are used to denote expectation values.) Furthermore, one can find 
the expectation value of any function f(x) associated with the particle by using the 
following equation:4

	 8 f 1x 2 9 ; 3
`

2`

c*f 1x 2c dx	 (41.9)

Q	 uick Quiz 41.1 ​ Consider the wave function for the free particle, Equation 41.4. 
At what value of x is the particle most likely to be found at a given time? (a) at  
x 5 0 (b) at small nonzero values of x (c) at large values of x (d) anywhere along 
the x axis

Normalization condition on c 

Expectation value  
for position x

Expectation value for  
a function f (x)

4Expectation values are analogous to “weighted averages,” in which each possible value of a function is multiplied 
by the probability of the occurrence of that value before summing over all possible values. We write the expectation 
value as e

`

2`
 c*f 1x 2c dx rather than e

`

2`
 f 1x 2c2 dx because f(x) may be represented by an operator (such as a deriva-

tive) rather than a simple multiplicative function in more advanced treatments of quantum mechanics. In these situ-
ations, the operator is applied only to c and not to c*.

Analyze  ​Apply the normalization condition, Equation 
41.7, to the wave function:

3
`

2`

0c 0 2 dx 5 3
`

2`

1Ae2ax 2 22 dx 5 A2 3
`

2`

e22ax 2

 dx 5 1

Example 41.1	     A Wave Function for a Particle

Consider a particle whose wave function is graphed in Figure 41.2 and is given by

c(x) 5 Ae2ax 2

(A)  ​What is the value of A if this wave function is normalized?

Conceptualize  ​The particle is not a free particle because the wave function is 
not a sinusoidal function. Figure 41.2 indicates that the particle is constrained 
to remain close to x 5 0 at all times. Think of a physical system in which the par-
ticle always stays close to a given point. Examples of such systems are a block on a 
spring, a marble at the bottom of a bowl, and the bob of a simple pendulum.

Categorize  ​Because the statement of the problem describes the wave nature of a 
particle, this example requires a quantum approach rather than a classical approach.

S o l u ti  o n

0
x

(x)

(x)� Ae�ax2
c

c

Figure 41.2  ​(Example 41.1) A 
symmetric wave function for a par-
ticle, given by c(x) 5 Ae2ax 2.www.as
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Express the integral as the sum of two integrals: (1)   A2 3
`

2`

e22ax 2

 dx 5 A2 a3
`

0
e22ax 2

 dx 1 3
0

2`

e22ax 2

 dxb 5 1

Change the integration variable from x to 2x in the 
second integral:

3
0

2`

e22ax 2

 dx 5 3
0

`

e22a 12x2 2

 12dx 2 5 23
0

`

e22ax 2

 dx

Reverse the order of the limits, which introduces a 
negative sign:

23
0

`

e22ax 2

 dx 5 3
`

0
e22ax 2

 dx

Substitute this expression for the second integral in 
Equation (1):

A2 a3
`

0
e22ax 2

 dx 1 3
`

0
e22ax 2

 dxb 5 1

(2)   2A2 3
`

0
e22ax 2

 dx 5 1

Evaluate the integral with the help of Table B.6 in 
Appendix B:

3
`

0
e22ax 2

 dx 5 1
2 Å

p

2a

Substitute this result into Equation (2) and solve for A: 2A2 a1
2 Å

p

2a
b 5 1   S   A 5  a2a

p
b

1/4

	

▸ 41.1 c o n t i n u e d

Evaluate the expectation value using Equation 41.8:
8x 9 ; 3

`

2`

c*x c dx 5 3
`

2`

1Ae2ax 2 2x 1Ae2ax 2 2  dx 

5 A23
`

2`

 xe22ax 2

dx

As in part (A), express the integral as a sum of two 
integrals:

(3)   8x 9 5 A2 a3
`

0
xe22ax 2

 dx 1 3
0

2`

xe22ax 2

 dxb

(B)  ​What is the expectation value of x for this particle?

S o l u ti  o n

Substitute this expression for the second integral in 
Equation (3):

8x 9 5 A2 a3
`

0
xe22ax 2

 dx 2 3
`

0
xe22ax 2

 dxb 5  0

Reverse the order of the limits, which introduces a nega-
tive sign:

3
0

`

xe22ax 2

 dx 5 23
`

0
xe22ax 2

 dx

Finalize  ​Given the symmetry of the wave function around x 5 0 in Figure 41.2, it is not surprising that the average 
position of the particle is at x 5 0. In Section 41.7, we show that the wave function studied in this example represents 
the lowest-energy state of the quantum harmonic oscillator.

Change the integration variable from x to 2x in the sec-
ond integral:

3
0

2`

xe22ax 2

 dx 5 3
0

`

2xe22a 12x2 2

 12dx 2 5 3
0

`

xe22ax 2

 dx

41.2	 �Analysis Model: Quantum Particle Under 
Boundary Conditions 

The free particle discussed in Section 41.1 has no boundary conditions; it can be 
anywhere in space. The particle in Example 41.1 is not a free particle. Figure 41.2 
shows that the particle is always restricted to positions near x 5 0. In this section, 
we shall investigate the effects of restrictions on the motion of a quantum particle.
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1272	C hapter 41  Quantum Mechanics

A Particle in a Box
We begin by applying some of the ideas we have developed to a simple physical 
problem, a particle confined to a one-dimensional region of space, called the  
particle-in-a-box problem (even though the “box” is one-dimensional!). From a clas-
sical viewpoint, if a particle is bouncing elastically back and forth along the x axis 
between two impenetrable walls separated by a distance L as in Figure 41.3a, it can 
be modeled as a particle under constant speed. If the speed of the particle is u, 
the magnitude of its momentum mu remains constant as does its kinetic energy. 
(Recall that in Chapter 39 we used u for particle speed to distinguish it from v, the 
speed of a reference frame.) Classical physics places no restrictions on the values 
of a particle’s momentum and energy. The quantum-mechanical approach to this 
problem is quite different and requires that we find the appropriate wave function 
consistent with the conditions of the situation.
	 Because the walls are impenetrable, there is zero probability of finding the par-
ticle outside the box, so the wave function c(x) must be zero for x , 0 and x . L. 
To be a mathematically well-behaved function, c(x) must be continuous in space. 
There must be no discontinuous jumps in the value of the wave function at any 
point.5 Therefore, if c is zero outside the walls, it must also be zero at the walls; that 
is, c(0) 5 0 and c(L) 5 0. Only those wave functions that satisfy these boundary 
conditions are allowed.
	 Figure 41.3b, a graphical representation of the particle-in-a-box problem, shows 
the potential energy of the particle–environment system as a function of the posi-
tion of the particle. As long as the particle is inside the box, the potential energy 
of the system does not depend on the location of the particle and we can choose its 
constant value to be zero. Outside the box, we must ensure that the wave function 
is zero. We can do so by defining the system’s potential energy as infinitely large if 
the particle were outside the box. Therefore, the only way a particle could be out-
side the box is if the system has an infinite amount of energy, which is impossible.
	 The wave function for a particle in the box can be expressed as a real sinusoidal 
function:6

	 c 1x 2 5 A sin a2px
l

b 	 (41.10)

where l is the de Broglie wavelength associated with the particle. This wave func-
tion must satisfy the boundary conditions at the walls. The boundary condition 
c(0) 5 0 is satisfied already because the sine function is zero when x 5 0. The 
boundary condition c(L) 5 0 gives

c 1L 2 5 0 5 A sin a2pL
l

b

which can only be true if

	
2pL

l
5 np   S   l 5

2L
n

	 (41.11)

where n 5 1, 2, 3, . . . . Therefore, only certain wavelengths for the particle are 
allowed! Each of the allowed wavelengths corresponds to a quantum state for the 
system, and n is the quantum number. Incorporating Equation 41.11 in Equation 
41.10 gives

	 cn 1x 2 5 A sin a 2px
2L/n

b 5 A sin anpx
L

 b 	 (41.12)Wave functions for 
a particle in a box

x
0

U

L

m

L

��

a

b

uS

This figure is a pictorial 
representation showing a particle 
of mass m and speed u 
bouncing between two 
impenetrable walls separated 
by a distance L.

This figure is a graphical 
representation showing the 
potential energy of the 
particle–box system.  The blue 
areas are classically forbidden.

Figure 41.3  ​(a) The particle in 
a box. (b) The potential energy 
function for the system.

5If the wave function were not continuous at a point, the derivative of the wave function at that point would be 
infinite. This result leads to difficulties in the Schrödinger equation, for which the wave function is a solution as 
discussed in Section 41.3.
6We shall show this result explicitly in Section 41.3.
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	 41.2  Analysis Model: Quantum Particle Under Boundary Conditions	 1273

Normalizing this wave function shows that A 5 !2/L. (See Problem 18.) There-
fore, the normalized wave function for the particle in a box is

	 cn 1x 2 5 Å
2
L

  sin anpx
L

b 	 (41.13)

	 Figures 41.4a and b are graphical representations of cn versus x and |cn|2 versus 
x for n 5 1, 2, and 3 for the particle in a box.7 Although a general wave function 
c can have positive and negative values, |c|2 is always positive. Because |c|2 repre-
sents a probability density, a negative value for |c|2 would be meaningless.
	 Further inspection of Figure 41.4b shows that |c|2 is zero at the boundaries, sat-
isfying our boundary conditions. In addition, |c|2 is zero at other points, depend-
ing on the value of n. For n 5 2, |c2|2 5 0 at x 5 L/2; for n 5 3, |c3|2 5 0 at x 5 
L/3 and at x 5 2L/3. The number of zero points increases by one each time the 
quantum number increases by one.
	 Because the wavelengths of the particle are restricted by the condition l 5 2L/n, 
the magnitude of the momentum of the particle is also restricted to specific values, 
which can be found from the expression for the de Broglie wavelength, Equation 
40.17:

p 5
h
l

5
h

2L/n
5

nh
2L

We have chosen the potential energy of the system to be zero when the particle is 
inside the box. Therefore, the energy of the system is simply the kinetic energy of 
the particle and the allowed values are given by

En 5 1
2mu 2 5

p2

2m
5

1nh/2L 22

2m

	 En 5 a h2

8mL2bn 2 n 5 1, 2, 3, c 	 (41.14)

This expression shows that the energy of the particle is quantized. The lowest 
allowed energy corresponds to the ground state, which is the lowest energy state 
for any system. For the particle in a box, the ground state corresponds to n 5 1, for 
which E1 5 h 2/8mL2. Because En 5 n2E1, the excited states corresponding to n 5 
2, 3, 4, . . . have energies given by 4E1, 9E1, 16E1, . . . .

WW �Normalized wave function  
for a particle in a box

WW �Quantized energies for a 
particle in a box

7Note that n 5 0 is not allowed because, according to Equation 41.12, the wave function would be c 5 0, which is not 
a physically reasonable wave function. For example, it cannot be normalized because e

`

2`
 0c 0 2 dx 5 e

`

2`
 10 2  dx 5 0, 

but Equation 41.7 tells us that this integral must equal 1.

0 L
x x

n � 1

n � 2

n � 3

2

1

3

0 L
n � 1

n � 2

n � 33
2

2
2

1�

� �

� �

�
2

����

c

c

c c

c

c

The wave functions cn 
for a particle in a box 
with n � 1, 2, and 3

The probability densities �cn�2  
for a particle in a box with 
n � 1, 2, and 3

a b

Figure 41.4  The first three 
allowed states for a particle con-
fined to a one-dimensional box. 
The states are shown superim-
posed on the potential energy 
function of Figure 41.3b. The 
wave functions and probability 
densities are plotted vertically 
from separate axes that are offset 
vertically for clarity. The positions 
of these axes on the potential 
energy function suggest the rela-
tive energies of the states.

Pitfall Prevention 41.2
Reminder: Energy Belongs  
to a System  We often refer to 
the energy of a particle in com-
monly used language. As in Pitfall 
Prevention 41.1, we are actually 
describing the energy of the sys-
tem of the particle and whatever 
environment is establishing the 
impenetrable walls. For the par-
ticle in a box, the only type of 
energy is kinetic energy belonging 
to the particle, which is the origin 
of the common description.
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1274	C hapter 41  Quantum Mechanics

	 Figure 41.5 is an energy-level diagram describing the energy values of the 
allowed states. Because the lowest energy of the particle in a box is not zero, then, 
according to quantum mechanics, the particle can never be at rest! The smallest 
energy it can have, corresponding to n 5 1, is called the ground-state energy. This 
result contradicts the classical viewpoint, in which E 5 0 is an acceptable state, as 
are all positive values of E.

Q	 uick Quiz 41.2  ​Consider an electron, a proton, and an alpha particle (a helium 
nucleus), each trapped separately in identical boxes. (i) Which particle corre-
sponds to the highest ground-state energy? (a) the electron (b) the proton  
(c) the alpha particle (d) The ground-state energy is the same in all three cases. 
(ii) Which particle has the longest wavelength when the system is in the ground 
state? (a) the electron (b) the proton (c) the alpha particle (d) All three par-
ticles have the same wavelength.

Q	 uick Quiz 41.3 ​ A particle is in a box of length L. Suddenly, the length of the 
box is increased to 2L. What happens to the energy levels shown in Figure 41.5? 
(a) nothing; they are unaffected. (b) They move farther apart. (c) They move 
closer together.

4

1

2

3

E4 � 16E1

E3 � 9E1

E2 � 4E1

E1
E � 0

n

E
N

E
R

G
Y

The ground-state energy, 
which is the lowest allowed 
energy, is E1 � h2/8mL2.

Figure 41.5  Energy-level dia-
gram for a particle confined to a 
one-dimensional box of length L. 

Using En 5 n2E1, find the energies of the n 5 2 and  
n 5 3 states:

E 2 5 (2)2E1 5 4(9.42 eV) 5  37.7 eV

E3 5 (3)2E1 5 9(9.42 eV) 5  84.8 eV

Substitute numerical values from part (A): u 5 Å
2 11.51 3 10218 J 2
9.11 3 10231 kg

 5 1.82 3 106 m/s

Use Equation 41.14 for the n 5 1 state: E 1 5
h2

8meL
2
11 22 5

16.63 3 10234 J # s 22

8 19.11 3 10231 kg 2 12.00 3 10210 m 22

5 1.51 3 10218 J 5  9.42 eV

Recognize that the kinetic energy of the particle is equal 
to the system energy and substitute En for K:

(1)   u 5 Å
2En

me

Solve the classical expression for kinetic energy for the 
particle speed:

K 5 1
2meu

2   S   u 5 Å
2K
me

(B)  ​Find the speed of the electron in the n 5 1 state.

S o l u ti  o n

Simply placing the electron in the box results in a minimum speed of the electron equal to 0.6% of the speed of light!

(C)  ​A 0.500-kg baseball is confined between two rigid walls of a stadium that can be modeled as a box of length  
100 m. Calculate the minimum speed of the baseball.

Example 41.2	     Microscopic and Macroscopic Particles in Boxes

(A)  ​An electron is confined between two impenetrable walls 0.200 nm apart. Determine the energy levels for the 
states n 5 1, 2, and 3.

Conceptualize  ​In Figure 41.3a, imagine that the particle is an electron and the walls are very close together.

Categorize  ​We evaluate the energy levels using an equation developed in this section, so we categorize this example 
as a substitution problem.

S o l u ti  o n
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	 41.2  Analysis Model: Quantum Particle Under Boundary Conditions	 1275

Use Equation (1) to find the speed: u 5 Å
2 11.10 3 10271 J 2

0.500 kg
5 6.63 3 10236 m/s

Use Equation 41.14 for the n 5 1 state: E 1 5
h2

8mL2
11 22 5

16.63 3 10234 J # s 22

8 10.500 kg 2 1100 m 22 5 1.10 3 10271 J

This speed is so small that the object can be considered to be at rest, which is what one would expect for the minimum 
speed of a macroscopic object.

What if a sharp line drive is hit so that the baseball is moving with a speed of 150 m/s? What is the quan-
tum number of the state in which the baseball now resides?

Answer  ​We expect the quantum number to be very large because the baseball is a macroscopic object.

What If ?

Conceptualize  ​In Figure 41.3a, imagine that the particle is a baseball and the walls are those of the stadium.

Categorize  ​This part of the example is a substitution problem in which we apply a quantum approach to a macro-
scopic object.

S o l u ti  o n

	

▸ 41.2 c o n t i n u e d

From Equation 41.14, calculate the quantum 
number n:

n 5 Å
8mL2En

h2 5 Å
8 10.500 kg 2 1100 m 22 15.62 3 103 J 2

16.63 3 10234  J # s 22 5 2.26 3 1037

This result is a tremendously large quantum number. As the baseball pushes air out of the way, hits the ground, and 
rolls to a stop, it moves through more than 1037 quantum states. These states are so close together in energy that 
we cannot observe the transitions from one state to the next. Rather, we see what appears to be a smooth variation 
in the speed of the ball. The quantum nature of the universe is simply not evident in the motion of macroscopic 
objects.

Evaluate the kinetic energy of the baseball: 1
2mu 2 5 1

2 10.500 kg 2 1150 m/s 22 5 5.62 3 103 J

Example 41.3	     The Expectation Values for the Particle in a Box

A particle of mass m is confined to a one-dimensional box between x 5 0 and x 5 L. Find the expectation value of the 
position x of the particle in the state characterized by quantum number n.

Conceptualize  ​Figure 41.4b shows that the probability for the particle to be at a given location varies with position 
within the box. Can you predict what the expectation value of x will be from the symmetry of the wave functions?

Categorize  ​The statement of the example categorizes the problem for us: we focus on a quantum particle in a box and 
on the calculation of its expectation value of x.

Analyze  ​In Equation 41.8, the integration from 2` to ` reduces to the limits 0 to L because c 5 0 everywhere except 
in the box.

S o l u ti  o n

Substitute Equation 41.13 into Equation 41.8 to find the 
expectation value for x:

8x9 5 3
`

2`

cn *x cn dx 5 3
L

0
x cÅ

2
L

 sin anpx
L

b d
2

 dx

5
2
L

 3
L

0
x sin2 anpx

L
b dx

continued
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1276	C hapter 41  Quantum Mechanics

8To integrate this function, first replace sin2 (npx/L) with 1
2 11 2 cos 2npx/L 2  (refer to Table B.3 in Appendix B), 

which allows kxl to be expressed as two integrals. The second integral can then be evaluated by partial integration 
(Section B.7 in Appendix B).

Evaluate the integral by consulting an integral table or 
by mathematical integration:8

8x 9 5
2
L

 ≥ x2

4
2

x sin a2 
npx

L
b

4 
np

L

2

cos a2 
npx

L
b

8anp

L
b

2 ¥

L

0

5
2
L
cL

2

4
d 5

L
2

Finalize  ​This result shows that the expectation value of x is at the center of the box for all values of n, which you would 
expect from the symmetry of the square of the wave functions (the probability density) about the center (Fig. 41.4b).
	 The n 5 2 wave function in Figure 41.4b has a value of zero at the midpoint of the box. Can the expectation value 
of the particle be at a position at which the particle has zero probability of existing? Remember that the expectation 
value is the average position. Therefore, the particle is as likely to be found to the right of the midpoint as to the left, 
so its average position is at the midpoint even though its probability of being there is zero. As an analogy, consider a 
group of students for whom the average final examination score is 50%. There is no requirement that some student 
achieve a score of exactly 50% for the average of all students to be 50%.

	

▸ 41.3 c o n t i n u e d

Boundary Conditions on Particles in General
The discussion of the particle in a box is very similar to the discussion in Chapter 
18 of standing waves on strings:

•	Because the ends of the string must be nodes, the wave functions for allowed 
waves must be zero at the boundaries of the string. Because the particle in a 
box cannot exist outside the box, the allowed wave functions for the particle 
must be zero at the boundaries.

•	The boundary conditions on the string waves lead to quantized wavelengths 
and frequencies of the waves. The boundary conditions on the wave function 
for the particle in a box lead to quantized wavelengths and frequencies of the 
particle.

	 In quantum mechanics, it is very common for particles to be subject to bound-
ary conditions. We therefore introduce a new analysis model, the quantum par-
ticle under boundary conditions. In many ways, this model is similar to the waves 
under boundary conditions model studied in Section 18.3. In fact, the allowed 
wavelengths for the wave function of a particle in a box (Eq. 41.11) are identical 
in form to the allowed wavelengths for mechanical waves on a string fixed at both 
ends (Eq. 18.4).
	 The quantum particle under boundary conditions model differs in some ways 
from the waves under boundary conditions model:

•	 In most cases of quantum particles, the wave function is not a simple sinusoi-
dal function like the wave function for waves on strings. Furthermore, the 
wave function for a quantum particle may be a complex function.

•	 For a quantum particle, frequency is related to energy through E 5 hf, so the 
quantized frequencies lead to quantized energies.

•	There may be no stationary “nodes” associated with the wave function of a 
quantum particle under boundary conditions. Systems more complicated than 
the particle in a box have more complicated wave functions, and some bound-
ary conditions may not lead to zeroes of the wave function at fixed points.
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	 41.3  The Schrödinger Equation	 1277

In general,

an interaction of a quantum particle with its environment represents one or 
more boundary conditions, and, if the interaction restricts the particle to a 
finite region of space, results in quantization of the energy of the system.

	 Boundary conditions on quantum wave functions are related to the coordinates 
describing the problem. For the particle in a box, the wave function must be zero 
at two values of x. In the case of a three-dimensional system such as the hydrogen 
atom we shall discuss in Chapter 42, the problem is best presented in spherical coor-
dinates. These coordinates, an extension of the plane polar coordinates introduced 
in Section 3.1, consist of a radial coordinate r and two angular coordinates. The 
generation of the wave function and application of the boundary conditions for 
the hydrogen atom are beyond the scope of this book. We shall, however, examine  
the behavior of some of the hydrogen-atom wave functions in Chapter 42.
	 Boundary conditions on wave functions that exist for all values of x require that 
the wave function approach zero as x S ` (so that the wave function can be normal-
ized) and remain finite as x S 0. One boundary condition on any angular parts of 
wave functions is that adding 2p radians to the angle must return the wave function 
to the same value because an addition of 2p results in the same angular position.

Imagine a particle 
described by quantum 
physics that is subject to 
one or more boundary 
conditions. If the particle is 
restricted to a finite region 
of space by the boundary 
conditions, the energy of 
the system is quantized. 
Associated with each quan-
tized energy is a quantum state characterized by a wave 
function and a quantum number.

Analysis Model	    Quantum Particle Under Boundary Conditions

Examples: 

•	 an electron in a quantum dot cannot escape, quan-
tizing the energies of the electron (Section 41.4)

•	 an electron in a hydrogen atom is restricted to stay 
near the nucleus of the atom, quantizing the ener-
gies of the atom (Chapter 42)

•	 two atoms are bound to form a diatomic molecule, 
quantizing the energies of vibration and rotation of 
the molecule (Chapter 43)

•	 a proton is trapped in a nucleus, quantizing its 
energy levels (Chapter 44)

0 L
x

n � 1

n � 2

n � 3

2

1

3

��

c

c

c

41.3	 The Schrödinger Equation
In Section 34.3, we discussed a linear wave equation for electromagnetic radiation 
that follows from Maxwell’s equations. The waves associated with particles also sat-
isfy a wave equation. The wave equation for material particles is different from that 
associated with photons because material particles have a nonzero rest energy. The 
appropriate wave equation was developed by Schrödinger in 1926. In analyzing 
the behavior of a quantum system, the approach is to determine a solution to this 
equation and then apply the appropriate boundary conditions to the solution. This 
process yields the allowed wave functions and energy levels of the system under 
consideration. Proper manipulation of the wave function then enables one to cal-
culate all measurable features of the system.
	 The Schrödinger equation as it applies to a particle of mass m confined to mov-
ing along the x axis and interacting with its environment through a potential 
energy function U(x) is

	 2
U2

2m
  

d 2c

dx2 1 Uc 5 Ec	 (41.15) WW �Time-independent 
Schrödinger equation
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1278	 Chapter 41  Quantum Mechanics

where E is a constant equal to the total energy of the system (the particle and 
its environment). Because this equation is independent of time, it is commonly 
referred to as the time-independent Schrödinger equation. (We shall not discuss 
the time-dependent Schrödinger equation in this book.)
	 The Schrödinger equation is consistent with the principle of conservation of 
mechanical energy for an isolated system with no nonconservative forces acting. 
Problem 44 shows, both for a free particle and a particle in a box, that the first 
term in the Schrödinger equation reduces to the kinetic energy of the particle 
multiplied by the wave function. Therefore, Equation 41.15 indicates that the total 
energy of the system is the sum of the kinetic energy and the potential energy and 
that the total energy is a constant: K 1 U 5 E 5 constant.
	 In principle, if the potential energy function U for a system is known, one can 
solve Equation 41.15 and obtain the wave functions and energies for the allowed 
states of the system. In addition, in many cases, the wave function c must sat-
isfy boundary conditions. Therefore, once we have a preliminary solution to the 
Schrödinger equation, we impose the following conditions to find the exact solu-
tion and the allowed energies:

•	c must be normalizable. That is, Equation 41.7 must be satisfied.
•	c must go to 0 as x S 6` and remain finite as x S 0.
•	c must be continuous in x and be single-valued everywhere; solutions to Equa-

tion 41.15 in different regions must join smoothly at the boundaries between 
the regions.

•	 dc/dx must be finite, continuous, and single-valued everywhere for finite val-
ues of U. If dc/dx were not continuous, we would not be able to evaluate the 
second derivative d 2c/dx 2 in Equation 41.15 at the point of discontinuity.

	 The task of solving the Schrödinger equation may be very difficult, depending 
on the form of the potential energy function. As it turns out, the Schrödinger equa-
tion is extremely successful in explaining the behavior of atomic and nuclear sys-
tems, whereas classical physics fails to explain this behavior. Furthermore, when 
quantum mechanics is applied to macroscopic objects, the results agree with classi-
cal physics.

The Particle in a Box Revisited
To see how the quantum particle under boundary conditions model is applied to a 
problem, let’s return to our particle in a one-dimensional box of length L (see Fig. 
41.3) and analyze it with the Schrödinger equation. Figure 41.3b is the potential-
energy diagram that describes this problem. Potential-energy diagrams are a use-
ful representation for understanding and solving problems with the Schrödinger 
equation.
	 Because of the shape of the curve in Figure 41.3b, the particle in a box is some-
times said to be in a square well,9 where a well is an upward-facing region of the 
curve in a potential-energy diagram. (A downward-facing region is called a barrier, 
which we investigate in Section 41.5.) Figure 41.3b shows an infinite square well.
	 In the region 0 , x , L, where U 5 0, we can express the Schrödinger equation 
in the form

	
d2c

dx2 5 2
2mE

U2  c 5 2k2c	 (41.16)

where

k 5
"2mE

U

Erwin Schrödinger
Austrian Theoretical Physicist 
(1887–1961)
Schrödinger is best known as one of 
the creators of quantum mechanics. His 
approach to quantum mechanics was 
demonstrated to be mathematically 
equivalent to the more abstract matrix 
mechanics developed by Heisenberg. 
Schrödinger also produced impor-
tant papers in the fields of statistical 
mechanics, color vision, and general 
relativity.
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9It is called a square well even if it has a rectangular shape in a potential-energy diagram.

Pitfall Prevention 41.3
Potential Wells  A potential well 
such as that in Figure 41.3b is 
a graphical representation of 
energy, not a pictorial representa-
tion, so you would not see this 
shape if you were able to observe 
the situation. A particle moves 
only horizontally at a fixed vertical 
position in a potential-energy dia-
gram, representing the conserved 
energy of the system of the par-
ticle and its environment.
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	 41.4  A Particle in a Well of Finite Height	 1279

The solution to Equation 41.16 is a function c whose second derivative is the nega-
tive of the same function multiplied by a constant k2. Both the sine and cosine func-
tions satisfy this requirement. Therefore, the most general solution to the equation 
is a linear combination of both solutions:

c(x) 5 A sin kx 1 B cos kx

where A and B are constants that are determined by the boundary and normaliza-
tion conditions.
	 The first boundary condition on the wave function is that c(0) 5 0:

c(0) 5 A sin 0 1 B cos 0 5 0 1 B 5 0

which means that B 5 0. Therefore, our solution reduces to

c(x) 5 A sin kx

The second boundary condition, c(L) 5 0, when applied to the reduced solution gives

c(L) 5 A sin kL 5 0

This equation could be satisfied by setting A 5 0, but that would mean that c 5 
0 everywhere, which is not a valid wave function. The boundary condition is also 
satisfied if kL is an integral multiple of p, that is, if kL 5 np, where n is an integer. 
Substituting k 5 !2mE/U into this expression gives

kL 5
"2mE

U
 L 5 np

Each value of the integer n corresponds to a quantized energy that we call En. Solv-
ing for the allowed energies En gives

	 En 5 a h2

8mL2bn2 	 (41.17)

which are identical to the allowed energies in Equation 41.14.
	 Substituting the values of k in the wave function, the allowed wave functions 
cn(x) are given by

	 cn 1x 2 5 A sin anpx
L

b 	 (41.18)

which is the wave function (Eq. 41.12) used in our initial discussion of the particle 
in a box.

41.4	 A Particle in a Well of Finite Height 
Now consider a particle in a finite potential well, that is, a system having a potential 
energy that is zero when the particle is in the region 0 , x , L and a finite value 
U when the particle is outside this region as in Figure 41.6. Classically, if the total 
energy E of the system is less than U, the particle is permanently bound in the 
potential well. If the particle were outside the well, its kinetic energy would have to 
be negative, which is an impossibility. According to quantum mechanics, however, 
a finite probability exists that the particle can be found outside the well even if  
E , U. That is, the wave function c is generally nonzero outside the well—regions 
I and III in Figure 41.6—so the probability density |c|2 is also nonzero in these 
regions. Although this notion may be uncomfortable to accept, the uncertainty 
principle indicates that the energy of the system is uncertain. This uncertainty 
allows the particle to be outside the well as long as the apparent violation of conser-
vation of energy does not exist in any measurable way.
	 In region II, where U 5 0, the allowed wave functions are again sinusoidal because 
they represent solutions of Equation 41.16. The boundary conditions, however,  

I

E

L

U

II III

0

x

If the total energy E of the 
particle–well system is less than U, 
the particle is trapped in the well.

Figure 41.6  ​Potential-energy 
diagram of a well of finite height 
U and length L. 
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1280	C hapter 41  Quantum Mechanics

no longer require that c be zero at the ends of the well, as was the case with the 
infinite square well.
	 The Schrödinger equation for regions I and III may be written

	
d 2c

dx2 5
2m 1U 2 E 2

U2  c 	 (41.19)

Because U . E, the coefficient of c on the right-hand side is necessarily positive. 
Therefore, we can express Equation 41.19 as

	
d 2c

dx2 5 C 2c 	 (41.20)

where C 2 5 2m 1U 2 E 2/U2 is a positive constant in regions I and III. As you can 
verify by substitution, the general solution of Equation 41.20 is

	 c 5 AeCx 1 Be2Cx	 (41.21)

where A and B are constants.
	 We can use this general solution as a starting point for determining the appro-
priate solution for regions I and III. The solution must remain finite as x S 6 .̀ 
Therefore, in region I, where x , 0, the function c cannot contain the term Be2Cx. 
This requirement is handled by taking B 5 0 in this region to avoid an infinite 
value for c for large negative values of x. Likewise, in region III, where x . L, the 
function c cannot contain the term AeCx. This requirement is handled by taking  
A 5 0 in this region to avoid an infinite value for c for large positive x values. 
Hence, the solutions in regions I and III are

	 cI 5 AeCx	​ for x , 0

	 cIII 5 Be2Cx	 for x . L

	 In region II, the wave function is sinusoidal and has the general form

cII(x) 5 F sin kx 1 G cos kx

where F and G are constants.
	 These results show that the wave functions outside the potential well (where 
classical physics forbids the presence of the particle) decay exponentially with dis-
tance. At large negative x values, cI approaches zero; at large positive x values, cIII 
approaches zero. These functions, together with the sinusoidal solution in region 
II, are shown in Figure 41.7a for the first three energy states. In evaluating the com-
plete wave function, we impose the following boundary conditions:

	 cI 5 cII	 and	
dcI 
dx

5
dcII

dx
	 at x 5 0

	 cII 5 cIII	 and	  
dcII

dx
5

dcIII

dx
	 at x 5 L

	 These four boundary conditions and the normalization condition (Eq. 41.7) are 
sufficient to determine the four constants A, B, F, and G and the allowed values of 
the energy E. Figure 41.7b plots the probability densities for these states. In each 
case, the wave functions inside and outside the potential well join smoothly at the 
boundaries.
	 The notion of trapping particles in potential wells is used in the burgeoning 
field of nanotechnology, which refers to the design and application of devices hav-
ing dimensions ranging from 1 to 100 nm. The fabrication of these devices often 
involves manipulating single atoms or small groups of atoms to form very tiny struc-
tures or mechanisms.
	 One area of nanotechnology of interest to researchers is the quantum dot, a 
small region that is grown in a silicon crystal and acts as a potential well. This 
region can trap electrons into states with quantized energies. The wave functions 
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Figure 41.7  The first three 
allowed states for a particle in a 
potential well of finite height. The 
states are shown superimposed on 
the potential energy function of 
Figure 41.6. The wave functions 
and probability densities are plot-
ted vertically from separate axes 
that are offset vertically for clarity. 
The positions of these axes on the 
potential energy function suggest 
the relative energies of the states.www.as
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for a particle in a quantum dot look similar to those in Figure 41.7a if L is on the 
order of nanometers. The storage of binary information using quantum dots is an 
active field of research. A simple binary scheme would involve associating a one 
with a quantum dot containing an electron and a zero with an empty dot. Other 
schemes involve cells of multiple dots such that arrangements of electrons among 
the dots correspond to ones and zeroes. Several research laboratories are studying 
the properties and potential applications of quantum dots. Information should be 
forthcoming from these laboratories at a steady rate in the next few years.

41.5	 Tunneling Through a Potential Energy Barrier
Consider the potential energy function shown in Figure 41.8. In this situation, the 
potential energy has a constant value of U in the region of width L and is zero in all 
other regions.10 A potential energy function of this shape is called a square barrier, 
and U is called the barrier height. A very interesting and peculiar phenomenon 
occurs when a moving particle encounters such a barrier of finite height and width. 
Suppose a particle of energy E , U is incident on the barrier from the left (Fig. 
41.8). Classically, the particle is reflected by the barrier. If the particle were located 
in region II, its kinetic energy would be negative, which is not classically allowed. 
Consequently, region II and therefore region III are both classically forbidden to 
the particle incident from the left. According to quantum mechanics, however, all 
regions are accessible to the particle, regardless of its energy. (Although all regions 
are accessible, the probability of the particle being in a classically forbidden region 
is very low.) According to the uncertainty principle, the particle could be within 
the barrier as long as the time interval during which it is in the barrier is short and 
consistent with Equation 40.26. If the barrier is relatively narrow, this short time 
interval can allow the particle to pass through the barrier.
	 Let’s approach this situation using a mathematical representation. The Schrö­
dinger equation has valid solutions in all three regions. The solutions in regions I 
and III are sinusoidal like Equation 41.18. In region II, the solution is exponential 
like Equation 41.21. Applying the boundary conditions that the wave functions in 
the three regions and their derivatives must join smoothly at the boundaries, a full 
solution, such as the one represented by the curve in Figure 41.8, can be found. 
Because the probability of locating the particle is proportional to |c|2, the proba­
bility of finding the particle beyond the barrier in region III is nonzero. This result 
is in complete disagreement with classical physics. The movement of the particle to 
the far side of the barrier is called tunneling or barrier penetration.
	 The probability of tunneling can be described with a transmission coefficient T 
and a reflection coefficient R. The transmission coefficient represents the proba­
bility that the particle penetrates to the other side of the barrier, and the reflection 
coefficient is the probability that the particle is reflected by the barrier. Because 
the incident particle is either reflected or transmitted, we require that T 1 R 5 1. 
An approximate expression for the transmission coefficient that is obtained in the 
case of T ,, 1 (a very wide barrier or a very high barrier, that is, U .. E) is

	 T < e22CL	 (41.22)

where

	 C 5
"2m 1U 2 E 2

U
	 (41.23)

This quantum model of barrier penetration and specifically Equation 41.22 show 
that T can be nonzero. That the phenomenon of tunneling is observed experimen­
tally provides further confidence in the principles of quantum physics.

Pitfall Prevention 41.4
“Height” on an Energy Dia-
gram  The word height (as in barrier 
height) refers to an energy in dis­
cussions of barriers in potential-
energy diagrams. For example, we 
might say the height of the barrier 
is 10 eV. On the other hand, the 
barrier width refers to the tradi­
tional usage of such a word and is 
an actual physical length measure­
ment between the locations of the 
two vertical sides of the barrier.

x
L

U

EI II III

I

II
III

U

c

c
c

The wave function is 
sinusoidal in regions I and 
III, but is exponentially 
decaying in region II.

Figure 41.8  ​Wave function c for 
a particle incident from the left on 
a barrier of height U and width L. 
The wave function is plotted verti­
cally from an axis positioned at 
the energy of the particle.

10It is common in physics to refer to L as the length of a well but the width of a barrier.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



1282	C hapter 41  Quantum Mechanics

Q	 uick Quiz 41.4 ​ Which of the following changes would increase the probability 
of transmission of a particle through a potential barrier? (You may choose more 
than one answer.) (a) decreasing the width of the barrier (b) increasing the 
width of the barrier (c) decreasing the height of the barrier (d) increasing the 
height of the barrier (e) decreasing the kinetic energy of the incident particle 
(f) increasing the kinetic energy of the incident particle

Evaluate the quantity U 2 E that 
appears in Equation 41.23:

U 2 E 5 40 eV 2 30 eV 5 10 eV a1.6 3 10219 J

1 eV
b 5 1.6 3 10218 J

Evaluate the quantity 2CL using Equa-
tion 41.23:

11 2 2CL 5 2 
"2 19.11 3 10231 kg 2 11.6 3 10218 J 2

1.055 3 10234 J # s
 11.0 3 1029 m 2 5 32.4

From Equation 41.22, find the proba-
bility of tunneling through the barrier:

T < e22CL 5 e232.4 5 8.5 3 10215

From Equation 41.22, find the new probability of tunnel-
ing through the barrier:

T < e22CL 5 e23.24 5 0.039

In this case, the width L in Equation (1) is one-tenth as 
large, so evaluate the new value of 2CL:

2CL 5 (0.1)(32.4) 5 3.24

In part (A), the electron has approximately 1 chance in 1014 of tunneling through the barrier. In part (B), however, the 
electron has a much higher probability (3.9%) of penetrating the barrier. Therefore, reducing the width of the barrier 
by only one order of magnitude increases the probability of tunneling by about 12 orders of magnitude!

41.6	 Applications of Tunneling
As we have seen, tunneling is a quantum phenomenon, a manifestation of the wave 
nature of matter. Many examples exist (on the atomic and nuclear scales) for which 
tunneling is very important.

Alpha Decay
One form of radioactive decay is the emission of alpha particles (the nuclei of 
helium atoms) by unstable, heavy nuclei (Chapter 44). To escape from the nucleus, 
an alpha particle must penetrate a barrier whose height is several times larger than 

	

Example 41.4	     Transmission Coefficient for an Electron

A 30-eV electron is incident on a square barrier of height 40 eV.

(A)  ​What is the probability that the electron tunnels through the barrier if its width is 1.0 nm?

Conceptualize  ​Because the particle energy is smaller than the height of the potential barrier, we expect the electron 
to reflect from the barrier with a probability of 100% according to classical physics. Because of the tunneling phenom-
enon, however, there is a finite probability that the particle can appear on the other side of the barrier.

Categorize  ​We evaluate the probability using an equation developed in this section, so we categorize this example as 
a substitution problem.

S o l u ti  o n

(B)  ​What is the probability that the electron tunnels through the barrier if its width is 0.10 nm?

S o l u ti  o n
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the energy of the nucleus–alpha particle system as shown in Figure 41.9. The bar-
rier results from a combination of the attractive nuclear force (discussed in Chapter 
44) and the Coulomb repulsion (discussed in Chapter 23) between the alpha parti-
cle and the rest of the nucleus. Occasionally, an alpha particle tunnels through the 
barrier, which explains the basic mechanism for this type of decay and the large 
variations in the mean lifetimes of various radioactive nuclei.
	 Figure 41.8 shows the wave function of a particle tunneling through a barrier 
in one dimension. A similar wave function having spherical symmetry describes 
the barrier penetration of an alpha particle leaving a radioactive nucleus. The 
wave function exists both inside and outside the nucleus, and its amplitude is 
constant in time. In this way, the wave function correctly describes the small but 
constant probability that the nucleus will decay. The moment of decay cannot 
be predicted. In general, quantum mechanics implies that the future is indeter-
minate. This feature is in contrast to classical mechanics, from which the tra-
jectory of an object can be calculated to arbitrarily high precision from precise 
knowledge of its initial position and velocity and of the forces exerted on it. Do 
not think that the future is undetermined simply because we have incomplete 
information about the present. The wave function contains all the information 
about the state of a system. Sometimes precise predictions can be made, such as 
the energy of a bound system, but sometimes only probabilities can be calculated 
about the future. The fundamental laws of nature are probabilistic. Therefore, it 
appears that Einstein’s famous statement about quantum mechanics, “God does 
not roll dice,” was wrong.
	 A radiation detector can be used to show that a nucleus decays by emitting a par-
ticle at a particular moment and in a particular direction. To point out the contrast 
between this experimental result and the wave function describing it, Schrödinger 
imagined a box containing a cat, a radioactive sample, a radiation counter, and 
a vial of poison. When a nucleus in the sample decays, the counter triggers the 
administration of lethal poison to the cat. Quantum mechanics correctly predicts 
the probability of finding the cat dead when the box is opened. Before the box is 
opened, does the cat have a wave function describing it as fractionally dead, with 
some chance of being alive?
	 This question is under continuing investigation, never with actual cats but some-
times with interference experiments building upon the experiment described in 
Section 40.7. Does the act of measurement change the system from a probabilistic 
to a definite state? When a particle emitted by a radioactive nucleus is detected at 
one particular location, does the wave function describing the particle drop instan-
taneously to zero everywhere else in the Universe? (Einstein called such a state 
change a “spooky action at a distance.”) Is there a fundamental difference between 
a quantum system and a macroscopic system? The answers to these questions are 
unknown.

Nuclear Fusion
The basic reaction that powers the Sun and, indirectly, almost everything else in the 
solar system is fusion, which we shall study in Chapter 45. In one step of the process 
that occurs at the core of the Sun, protons must approach one another to within 
such a small distance that they fuse and form a deuterium nucleus. (See Section 
45.4.) According to classical physics, these protons cannot overcome and penetrate 
the barrier caused by their mutual electrical repulsion. Quantum mechanically, 
however, the protons are able to tunnel through the barrier and fuse together.

Scanning Tunneling Microscopes
The scanning tunneling microscope (STM) enables scientists to obtain highly 
detailed images of surfaces at resolutions comparable to the size of a single atom. 
Figure 41.10 (page 1284), showing the surface of a piece of graphite, demonstrates 
what STMs can do. What makes this image so remarkable is that its resolution is 

U(r)

� 30 MeV

E

0
r

� �40 MeV

The alpha particle can tunnel 
through the barrier and escape 
from the nucleus even though 
its energy is lower than the 
height of the well.

Figure 41.9  ​The potential well 
for an alpha particle in a nucleus.
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1284	C hapter 41  Quantum Mechanics

approximately 0.2 nm. For an optical microscope, the resolution is limited 
by the wavelength of the light used to make the image. Therefore, an optical 
microscope has a resolution no better than 200 nm, about half the wavelength 
of visible light, and so could never show the detail displayed in Figure 41.10.
	 Scanning tunneling microscopes achieve such high resolution by using the 
basic idea shown in Figure 41.11. An electrically conducting probe with a very 
sharp tip is brought near the surface to be studied. The empty space between 
tip and surface represents the “barrier” we have been discussing, and the 
tip and surface are the two walls of the “potential well.” Because electrons 
obey quantum rules rather than Newtonian rules, they can “tunnel” across 
the barrier of empty space. If a voltage is applied between surface and tip, 
electrons in the atoms of the surface material can tunnel preferentially from 
surface to tip to produce a tunneling current. In this way, the tip samples the 
distribution of electrons immediately above the surface.
	 In the empty space between tip and surface, the electron wave function 
falls off exponentially (see region II in Fig. 41.8 and Example 41.4). For tip-to-
surface distances z . 1 nm (that is, beyond a few atomic diameters), essentially 
no tunneling takes place. This exponential behavior causes the current of 
electrons tunneling from surface to tip to depend very strongly on z. By moni-
toring the tunneling current as the tip is scanned over the surface, scientists 
obtain a sensitive measure of the topography of the electron distribution on 

the surface. The result of this scan is used to make images like that in Figure 41.10. 
In this way, the STM can measure the height of surface features to within 0.001 nm, 
approximately 1/100 of an atomic diameter!
	 You can appreciate the sensitivity of STMs by examining Figure 41.10. Of the 
six carbon atoms in each ring, three appear lower than the other three. In fact, 
all six atoms are at the same height, but all have slightly different electron distri-
butions. The three atoms that appear lower are bonded to other carbon atoms 
directly beneath them in the underlying atomic layer; as a result, their electron dis-
tributions, which are responsible for the bonding, extend downward beneath the 
surface. The atoms in the surface layer that appear higher do not lie directly over 
subsurface atoms and hence are not bonded to any underlying atoms. For these 
higher-appearing atoms, the electron distribution extends upward into the space 
above the surface. Because STMs map the topography of the electron distribution, 
this extra electron density makes these atoms appear higher in Figure 41.10.
	 The STM has one serious limitation: Its operation depends on the electrical 
conductivity of the sample and the tip. Unfortunately, most materials are not elec-
trically conductive at their surfaces. Even metals, which are usually excellent elec-
trical conductors, are covered with nonconductive oxides. A newer microscope, the 
atomic force microscope, or AFM, overcomes this limitation.

Resonant Tunneling Devices
Let’s expand on the quantum-dot discussion in Section 41.4 by exploring the 
resonant tunneling device. Figure 41.12a shows the physical construction of such 
a device. The island of gallium arsenide in the center is a quantum dot located 
between two barriers formed from the thin extensions of aluminum arsenide. Fig-
ure 41.12b shows both the potential barriers encountered by electrons incident 
from the left and the quantized energy levels in the quantum dot. This situation 
differs from the one shown in Figure 41.8 in that there are quantized energy levels 
on the right of the first barrier. In Figure 41.8, an electron that tunnels through 
the barrier is considered a free particle and can have any energy. In contrast, the 
second barrier in Figure 41.12b imposes boundary conditions on the particle and 
quantizes its energy in the quantum dot. In Figure 41.12b, as the electron with the 
energy shown encounters the first barrier, it has no matching energy levels available 
on the right side of the barrier, which greatly reduces the probability of tunneling.

Figure 41.10  ​The surface of graphite 
as “viewed” with a scanning tunneling 
microscope. This type of microscope 
enables scientists to see details with a  
lateral resolution of about 0.2 nm and  
a vertical resolution of 0.001 nm. 

The contours seen here represent 
the ring-like arrangement of 
individual carbon atoms on the 
crystal surface.
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Figure 41.11  ​Schematic view of 
a scanning tunneling microscope. 
A scan of the tip over the sample 
can reveal surface contours down 
to the atomic level. An STM image 
is composed of a series of scans dis-
placed laterally from one another. 
(Based on a drawing from P. K. 
Hansma, V. B. Elings, O. Marti, 
and C. Bracker, Science 242:209, 
1988. . 1988 by the AAAS.)www.as
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	 Figure 41.12c shows the effect of applying a voltage: the potential decreases with 
position as we move to the right across the device. The deformation of the potential 
barrier results in an energy level in the quantum dot coinciding with the energy 
of the incident electrons. This “resonance” of energies gives the device its name. 
When the voltage is applied, the probability of tunneling increases tremendously 
and the device carries current. In this manner, the device can be used as a very fast 
switch on a nanotechnological scale.

Resonant Tunneling Transistors
Figure 41.13a shows the addition of a gate electrode at the top of the resonant tun-
neling device over the quantum dot. This electrode turns the device into a resonant 

Electron
energy

Energy levels in
quantum dot

U U

x
x

The distortion of the potential energy curve 
causes one of the states in the quantum dot to 
resonate with the incident electron energy.

a

b c

The quantum dot is an 
island of gallium arsenide.

Gallium arsenide
electron channel Structural

substrate

Aluminum
arsenide

Metal contact (�) Metal contact (�)

Figure 41.12  (a) The physical 
structure of a resonant tunneling 
device. (b) A potential-energy 
diagram showing the double 
barrier representing the walls of 
the quantum dot. (c) A voltage is 
applied across the device.

Electron
energy

Energy levels in
quantum dotU U

x x

The potential in the region of the 
quantum dot drops, along with the 
quantized energy levels.

a

b c

A gate electrode is added to the 
structure in Figure 41.12 and 
given a positive potential.

Gallium arsenide
electron channel

Metal contact
source (�)

Metal contact
drain (�)

Quantum
dot

Structural
substrate

Aluminum
arsenide

Figure 41.13  ​(a) A resonant tun-
neling transistor. (b) A potential-
energy diagram showing the double 
barrier representing the walls of 
the quantum dot. (c) A voltage is 
applied to the gate electrode.
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1286	C hapter 41  Quantum Mechanics

tunneling transistor. The basic function of a transistor is amplification, converting 
a small varying voltage into a large varying voltage. Figure 41.13b, representing the 
potential-energy diagram for the tunneling transistor, has a slope at the bottom of 
the quantum dot due to the differing voltages at the source and drain electrodes. 
In this configuration, there is no resonance between the electron energies outside 
the quantum dot and the quantized energies within the dot. By applying a small 
voltage to the gate electrode as in Figure 41.13c, the quantized energies can be 
brought into resonance with the electron energy outside the well and resonant tun-
neling occurs. The resulting current causes a voltage across an external resistor 
that is much larger than that of the gate voltage; hence, the device amplifies the 
input signal to the gate electrode.

41.7	 The Simple Harmonic Oscillator
Consider a particle that is subject to a linear restoring force F 5 2kx, where k is a 
constant and x is the position of the particle relative to equilibrium (x 5 0). The 
classical description of such a situation is provided by the particle in simple har-
monic motion analysis model, which was discussed in Chapter 15. The potential 
energy of the system is, from Equation 15.20,

U 5 1
2kx2 5 1

2mv2x2

where the angular frequency of vibration is v 5 !k/m. Classically, if the particle 
is displaced from its equilibrium position and released, it oscillates between the 
points x 5 2A and x 5 A, where A is the amplitude of the motion. Furthermore, its 
total energy E is, from Equation 15.21,

E 5 K 1 U 5 1
2kA2 5 1

2mv2A2

In the classical model, any value of E is allowed, including E 5 0, which is the total 
energy when the particle is at rest at x 5 0.
	 Let’s investigate how the simple harmonic oscillator is treated from a quantum 
point of view. The Schrödinger equation for this problem is obtained by substitut-
ing U 5 1

2mv2x2 into Equation 41.15:

	 2
U2

2m
  

d2c

dx2 1 1
2mv2x 2c 5 E c	 (41.24)

The mathematical technique for solving this equation is beyond the level of this 
book; nonetheless, it is instructive to guess at a solution. We take as our guess the 
following wave function:

	 c 5 Be2Cx 2	 (41.25)

Substituting this function into Equation 41.24 shows that it is a satisfactory solution 
to the Schrödinger equation, provided that

C 5
mv

2U
 and E 5 1

2 Uv

It turns out that the solution we have guessed corresponds to the ground state of 
the system, which has an energy 12 Uv. Because C 5 mv/2U, it follows from Equation 
41.25 that the wave function for this state is

	 c 5 Be21m v/2U2x 2

	 (41.26)

where B is a constant to be determined from the normalization condition. This 
result is but one solution to Equation 41.24. The remaining solutions that describe 
the excited states are more complicated, but all solutions include the exponential 
factor e2Cx2.

� Wave function for the 
ground state of a simple  

harmonic oscillator
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Figure 41.14  ​Energy-level 
diagram for a simple harmonic 
oscillator, superimposed on the 
potential energy function.

	 The energy levels of a harmonic oscillator are quantized as we would expect 
because the oscillating particle is bound to stay near x 5 0. The energy of a state 
having an arbitrary quantum number n is

	 En 5 1n 1 1
2 2 Uv     n 5 0, 1, 2, c 	 (41.27)

The state n 5 0 corresponds to the ground state, whose energy is E0 5 1
2 Uv; the 

state n 5 1 corresponds to the first excited state, whose energy is E1 5 3
2 Uv; and so 

on. The energy-level diagram for this system is shown in Figure 41.14. The separa-
tions between adjacent levels are equal and given by

	 DE 5 Uv 	 (41.28)

	 Notice that the energy levels for the harmonic oscillator in Figure 41.14 are 
equally spaced, just as Planck proposed for the oscillators in the walls of the cavity 
that was used in the model for blackbody radiation in Section 40.1. Planck’s Equa-
tion 40.4 for the energy levels of the oscillators differs from Equation 41.27 only in 
the term 1

2 added to n. This additional term does not affect the energy emitted in 
a transition, given by Equation 40.5, which is equivalent to Equation 41.28. That 
Planck generated these concepts without the benefit of the Schrödinger equation is 
testimony to his genius.

Example 41.5	     Molar Specific Heat of Hydrogen Gas

In Figure 21.6 (Section 21.3), which shows the molar specific heat of hydrogen as a function of temperature, vibration 
does not contribute to the molar specific heat at room temperature. Explain why, modeling the hydrogen molecule as 
a simple harmonic oscillator. The effective spring constant for the bond in the hydrogen molecule is 573 N/m.

Conceptualize  ​Imagine the only mode of vibration available to a diatomic molecule. This mode (shown in Fig. 21.5c) 
consists of the two atoms always moving in opposite directions with equal speeds.

Categorize  ​We categorize this example as a quantum harmonic oscillator problem, with the molecule modeled as a 
two-particle system.

Analyze  ​The motion of the particles relative to the center of mass can be analyzed by considering the oscillation of a 
single particle with reduced mass m. (See Problem 40.)

S o l u ti  o n

Substitute numerical values, noting that m is the 
mass of a hydrogen atom:

DE 5 11.055 3 10234 J # s 2 Å
2 1573 N/m 2

1.67 3 10227 kg
5 8.74 3 10220 J

Set this energy equal to 32kBT  from Equation 21.19 and 
find the temperature at which the average molecular 
translational kinetic energy is equal to that required to 
excite the first vibrational state of the molecule:

3
2kBT 5 DE

T 5 2
3 a

DE
kB

b 5 2
3 a

8.74 3 10220 J

1.38 3 10223 J/K
b 5 4.22 3 103 K

Using Equation 41.28, calculate the energy neces-
sary to excite the molecule from its ground vibra-
tional state to its first excited vibrational state:

DE 5 Uv 5 U Å
k
m

5 U Å
k

1
2m

5 U Å
2k
m

Use the result of Problem 40 to evaluate the 
reduced mass of the hydrogen molecule, in which 
the masses of the two particles are the same:

m 5
m 1 m 2

m 1 1 m 2
5

m 2

2m
5 1

2m

Finalize  ​The temperature of the gas must be more than 4 000 K for the translational kinetic energy to be comparable 
to the energy required to excite the first vibrational state. This excitation energy must come from collisions between 

continued
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1288	C hapter 41  Quantum Mechanics

molecules, so if the molecules do not have sufficient translational kinetic energy, they cannot be excited to the first 
vibrational state and vibration does not contribute to the molar specific heat. Hence, the curve in Figure 21.6 does 
not rise to a value corresponding to the contribution of vibration until the hydrogen gas has been raised to thou-
sands of kelvins.
	 Figure 21.6 shows that rotational energy levels must be more closely spaced in energy than vibrational levels 
because they are excited at a lower temperature than the vibrational levels. The translational energy levels are those 
of a particle in a three-dimensional box, where the box is the container holding the gas. These levels are given by an 
expression similar to Equation 41.14. Because the box is macroscopic in size, L is very large and the energy levels are 
very close together. In fact, they are so close together that translational energy levels are excited at the temperature 
at which liquid hydrogen becomes a gas shown in Figure 21.6.

	

▸ 41.5 c o n t i n u e d

  If a particle of mass m is confined to moving in a  
one-dimensional box of length L whose walls are 
impenetrable, then c must be zero at the walls and 
outside the box. The wave functions for this system  
are given by

	 c 1x 2 5 A sin anpx
L

b n 5 1, 2, 3, c 	 (41.12)

where A is the maximum value of c. The allowed states 
of a particle in a box have quantized energies given by

	 En 5 a h2

8mL2bn2 n 5 1, 2, 3, c 	 (41.14)

  The wave function for a system must satisfy the Schrödinger equation. The time-independent Schrödinger equa-
tion for a particle confined to moving along the x axis is

	 2
U2

2m
  

d 2c

dx2 1 U c 5 E c	 (41.15)

where U is the potential energy of the system and E is the total energy.

  In quantum mechanics, a particle in a system can 
be represented by a wave function c(x, y, z). The prob-
ability per unit volume (or probability density) that a 
particle will be found at a point is |c |2 5 c*c, where 
c* is the complex conjugate of c. If the particle is con-
fined to moving along the x axis, the probability that 
it is located in an interval dx is |c |2 dx. Furthermore, 
the sum of all these probabilities over all values of x 
must be 1:

	 3
`

2`

0c 0 2 dx 5 1 	 (41.7)

This expression is called the normalization condition.

Summary

Definitions

Concepts and Principles 

  The measured position x of a particle, 
averaged over many trials, is called the 
expectation value of x and is defined by

	 8x 9 ; 3
`

2`

c*x c dx	 (41.8)

  The wave function C for a system is a mathematical function 
that can be written as a product of a space function c for one par-
ticle of the system and a complex time function:

	 C 1 rS1, rS2, rS3, c, rSj , c, t 2 5 c 1 rSj 2e2ivt 	 (41.2)

where v (5 2pf ) is the angular frequency of the wave function 
and i 5 !21. The wave function contains within it all the infor-
mation that can be known about the particle.
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  Quantum Particle Under Boundary Conditions. An interaction of a quantum 
particle with its environment represents one or more boundary conditions. If the 
interaction restricts the particle to a finite region of space, the energy of the system 
is quantized. All wave functions must satisfy the following four boundary condi-
tions: (1) c(x) must remain finite as x approaches 0, (2) c(x) must approach zero as x 
approaches 6 ,̀ (3) c(x) must be continuous for all values of x, and (4) dc/dx must be 
continuous for all finite values of U(x). If the solution to Equation 41.15 is piecewise, 
conditions (3) and (4) must be applied at the boundaries between regions of x in 
which Equation 41.15 has been solved.

Analysis Models for Problem Solving

III III
0 L

c

c

x

from either end of the box. (e) None of those answers 
is correct.

0 L
x

��

n � 2

Figure OQ41.5

	 6.	 Two square wells have the same length. Well 1 has walls 
of finite height, and well 2 has walls of infinite height. 
Both wells contain identical quantum particles, one in 
each well. (i) Is the wavelength of the ground-state 
wave function (a) greater for well 1, (b) greater for well 
2, or (c) equal for both wells? (ii) Is the magnitude of 
the ground-state momentum (a) greater for well 1,  
(b) greater for well 2, or (c) equal for both wells? (iii) Is 
the ground-state energy of the particle (a) greater for 
well 1, (b) greater for well 2, or (c) equal for both wells?

	 7.	 The probability of finding a certain quantum parti-
cle in the section of the x axis between x 5 4 nm and  
x 5 7 nm is 48%. The particle’s wave function c(x) is 
constant over this range. What numerical value can be 
attributed to c(x), in units of nm21/2? (a) 0.48 (b) 0.16 
(c) 0.12 (d) 0.69 (e) 0.40

	 8.	 Suppose a tunneling current in an electronic device 
goes through a potential-energy barrier. The tunnel-
ing current is small because the width of the barrier is 
large and the barrier is high. To increase the current 
most effectively, what should you do? (a) Reduce the 
width of the barrier. (b) Reduce the height of the bar-
rier. (c) Either choice (a) or choice (b) is equally effec-
tive. (d) Neither choice (a) nor choice (b) increases 
the current.

	 9.	 Unlike the idealized diagram of Figure 41.11, a typi-
cal tip used for a scanning tunneling microscope is 
rather jagged on the atomic scale, with several irreg-
ularly spaced points. For such a tip, does most of the  

	 1.	 A beam of quantum particles with kinetic energy  
2.00 eV is reflected from a potential barrier of small 
width and original height 3.00 eV. How does the frac-
tion of the particles that are reflected change as the 
barrier height is reduced to 2.01 eV? (a) It increases.  
(b) It decreases. (c) It stays constant at zero. (d) It stays 
constant at 1. (e) It stays constant with some other 
value.

	 2.	 A quantum particle of mass m1 is in a square well with 
infinitely high walls and length 3 nm. Rank the situa-
tions (a) through (e) according to the particle’s energy 
from highest to lowest, noting any cases of equality. 
(a) The particle of mass m1 is in the ground state of 
the well. (b) The same particle is in the n 5 2 excited 
state of the same well. (c) A particle with mass 2m1 is 
in the ground state of the same well. (d) A particle of 
mass m1 in the ground state of the same well, and the 
uncertainty principle has become inoperative; that 
is, Planck’s constant has been reduced to zero. (e) A 
particle of mass m1 is in the ground state of a well of 
length 6 nm.

	 3.	 Is each one of the following statements (a) through 
(e) true or false for an electron? (a) It is a quantum 
particle, behaving in some experiments like a classical 
particle and in some experiments like a classical wave. 
(b) Its rest energy is zero. (c) It carries energy in its 
motion. (d) It carries momentum in its motion. (e) Its 
motion is described by a wave function that has a wave-
length and satisfies a wave equation.

	 4.	 Is each one of the following statements (a) through  
(e) true or false for a photon? (a) It is a quantum par-
ticle, behaving in some experiments like a classical 
particle and in some experiments like a classical wave. 
(b) Its rest energy is zero. (c) It carries energy in its 
motion. (d) It carries momentum in its motion. (e) Its 
motion is described by a wave function that has a wave-
length and satisfies a wave equation.

	 5.	 A particle in a rigid box of length L is in the first 
excited state for which n 5 2 (Fig. OQ41.5). Where is 
the particle most likely to be found? (a) At the center 
of the box. (b) At either end of the box. (c) All points 
in the box are equally likely. (d) One-fourth of the way 

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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1290	C hapter 41  Quantum Mechanics

tunneling current occur between the sample and  
(a) all the points of the tip equally, (b) the most cen-
trally located point, (c) the point closest to the sample, 
or (d) the point farthest from the sample?

	10.	Figure OQ41.10 represents the wave function for a 
hypothetical quantum particle in a given region. From 
the choices a through e, at what value of x is the par-
ticle most likely to be found?

a

b

c

d

e

c(x)

x

Figure OQ41.10

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 Richard Feynman said, “A philosopher once said that 
‘it is necessary for the very existence of science that 
the same conditions always produce the same results.’ 
Well, they don’t!” In view of what has been discussed 
in this chapter, present an argument showing that the 
philosopher’s statement is false. How might the state-
ment be reworded to make it true?

	 2.	 Discuss the relationship between ground-state energy 
and the uncertainty principle.

	 3.	 For a quantum particle in 
a box, the probability den-
sity at certain points is zero 
as seen in Figure CQ41.3. 
Does this value imply 
that the particle cannot 
move across these points? 
Explain.

	 4.	 Why are the following wave functions not physically 
possible for all values of x? (a) c(x) 5 Ae x (b) c(x) 5  
A tan x

	 5.	 What is the significance of the wave function c?

	 6.	 In quantum mechanics, it is possible for the energy E 
of a particle to be less than the potential energy, but 
classically this condition is not possible. Explain.

	 7.	 Consider the wave functions in Figure CQ41.7. Which 
of them are not physically significant in the interval 
shown? For those that are not, state why they fail to 
qualify.

	 8.	 How is the Schrödinger equation useful in describing 
quantum phenomena?

Figure CQ41.7

c

x

a

c

x

b

c

x

c

c

x

e

c

x

d

x
0 L

n � 3

��

Figure CQ41.3

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C
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Section 41.1 ​ The Wave Function

	 1.	 A free electron has a wave function

c(x) 5 Ae i(5.00 3 1010 x)

		  where x is in meters. Find its (a) de Broglie wavelength, 
(b) momentum, and (c) kinetic energy in electron volts.

M

	 2.	 The wave function for a particle is given by c(x) 5 
Ae2|x |/a, where A and a are constants. (a) Sketch this 
function for values of x in the interval 23a , x ,  
3a. (b) Determine the value of A. (c) Find the prob-
ability that the particle will be found in the interval  
2a , x , a.
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(c) How do you account for the great difference in your 
results for parts (a) and (b)?

	13.	An electron is confined to a one-dimensional region 
in which its ground-state (n 5 1) energy is 2.00 eV.  
(a) What is the length L of the region? (b) What energy 
input is required to promote the electron to its first 
excited state?

	14.	A 4.00-g particle confined to a box of length L has a 
speed of 1.00 mm/s. (a) What is the classical kinetic 
energy of the particle? (b) If the energy of the first 
excited state (n  5 2) is equal to the kinetic energy 
found in part (a), what is the value of L? (c) Is the 
result found in part (b) realistic? Explain.

	15.	A photon with wavelength l is absorbed by an electron 
confined to a box. As a result, the electron moves from 
state n 5 1 to n 5 4. (a) Find the length of the box.  
(b) What is the wavelength l9 of the photon emitted in 
the transition of that electron from the state n 5 4 to 
the state n 5 2?

	16.	For a quantum particle of mass m in the ground state 
of a square well with length L and infinitely high walls, 
the uncertainty in position is Dx < L. (a) Use the 
uncertainty principle to estimate the uncertainty in its 
momentum. (b) Because the particle stays inside the 
box, its average momentum must be zero. Its average 
squared momentum is then 8p 2 9 < 1Dp 22. Estimate the 
energy of the particle. (c) State how the result of part 
(b) compares with the actual ground-state energy.

	17.	 A quantum particle is described by the wave function

c 1x 2 5 •A cos a2px
L

b for 2
L
4

# x #
L
4

0 elsewhere

		  (a) Determine the normalization constant A. (b) What 
is the probability that the particle will be found between  
x 5 0 and x 5 L/8 if its position is measured?

	18.	The wave function for a quantum particle confined to 
moving in a one-dimensional box located between x 5 
0 and x 5 L is

c 1x 2 5 A sin anpx
L

b
		  Use the normalization condition on c to show that

A 5 Ä
2
L

	19.	A quantum particle in an infinitely deep square well 
has a wave function given by

c2 1x 2 5 Å
2
L

 sin a2px
L

b

		  for 0 # x # L and zero otherwise. (a) Determine the 
expectation value of x. (b) Determine the probability 
of finding the particle near 1

2L by calculating the prob-
ability that the particle lies in the range 0.490L # x # 
0.510L. (c) What If? Determine the probability of find-
ing the particle near 1

4L by calculating the probability 
that the particle lies in the range 0.240L # x # 0.260L. 

W
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	 3.	 The wave function for a quantum particle is given by 
c(x)  5 Ax between x 5 0 and x 5 1.00, and c(x) 5 
0 elsewhere. Find (a) the value of the normalization 
constant A, (b) the probability that the particle will be 
found between x 5 0.300 and x 5 0.400, and (c) the 
expectation value of the particle’s position.

	 4.	 The wave function for a quantum particle is

c 1x 2 5 Å
a

p 1x 2 1 a 2 2
		  for a . 0 and 2` , x , 1 .̀ Determine the probability 

that the particle is located somewhere between x 5 2a 
and x 5 1a.

Section 41.2 ​ Analysis Model: Quantum Particle  
Under Boundary Conditions

	 5.	 (a) Use the quantum-particle-in-a-box model to calcu-
late the first three energy levels of a neutron trapped 
in an atomic nucleus of diameter 20.0 fm. (b) Explain 
whether the energy-level differences have a realistic 
order of magnitude.

	 6.	 An electron that has an energy of approximately 6 eV 
moves between infinitely high walls 1.00 nm apart. 
Find (a)  the quantum number n for the energy state 
the electron occupies and (b) the precise energy of the 
electron.

	 7.	 An electron is contained in a one-dimensional box of 
length 0.100 nm. (a) Draw an energy-level diagram 
for the electron for levels up to n 5 4. (b) Photons are 
emitted by the electron making downward transitions 
that could eventually carry it from the n 5 4 state to the  
n 5 1 state. Find the wavelengths of all such photons.

	 8.	 Why is the following situation impossible? A proton is in 
an infinitely deep potential well of length 1.00 nm. It 
absorbs a microwave photon of wavelength 6.06 mm 
and is excited into the next available quantum state.

	 9.	 A ruby laser emits 694.3-nm light. Assume light of this 
wavelength is due to a transition of an electron in a 
box from its n 5 2 state to its n 5 1 state. Find the 
length of the box.

	10.	 A laser emits light of wavelength l. Assume this light 
is due to a transition of an electron in a box from its  
n 5 2 state to its n 5 1 state. Find the length of the box.

	11.	 The nuclear potential energy that binds protons and 
neutrons in a nucleus is often approximated by a 
square well. Imagine a proton confined in an infinitely 
high square well of length 10.0 fm, a typical nuclear 
diameter. Assuming the proton makes a transition 
from the n 5 2 state to the ground state, calculate 
(a) the energy and (b) the wavelength of the emitted 
photon. (c) Identify the region of the electromagnetic 
spectrum to which this wavelength belongs.

	12.	A proton is confined to move in a one-dimensional box 
of length 0.200 nm. (a) Find the lowest possible energy 
of the proton. (b) What If? What is the lowest possi-
ble energy of an electron confined to the same box?  

S
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1292	C hapter 41  Quantum Mechanics

(d) Argue that the result of part (a) does not contradict 
the results of parts (b) and (c).

	20.	An electron in an infinitely deep square well has a wave 
function that is given by

c3 1x 2 5 Å
2
L

 sin a3px
L

b
		  for 0 # x # L and is zero otherwise. (a) What are the 

most probable positions of the electron? (b) Explain 
how you identify them.

	21.	 An electron is trapped in an infinitely deep potential 
well 0.300 nm in length. (a) If the electron is in its 
ground state, what is the probability of finding it within 
0.100 nm of the left-hand wall? (b) Identify the classi-
cal probability of finding the electron in this interval 
and state how it compares with the answer to part (a). 
(c) Repeat parts (a) and (b) assuming the particle is in 
the 99th energy state.

	22.	A quantum particle is in the n 5 1 state of an infinitely 
deep square well with walls at x 5 0 and x 5 L. Let , 
be an arbitrary value of x between x 5 0 and x 5 L.  
(a) Find an expression for the probability, as a function 
of ,, that the particle will be found between x 5 0 and 
x 5 ,. (b) Sketch the probability as a function of the 
variable ,/L. Choose values of ,/L ranging from 0 to 
1.00 in steps of 0.100. (c) Explain why the probability 
function must have particular values at ,/L 5 0 and 
at ,/L 5 1. (d) Find the value of , for which the prob-
ability of finding the particle between x 5 0 and x 5 , 
is twice the probability of finding the particle between 
x 5 , and x 5 L. Suggestion: Solve the transcendental 
equation for ,/L numerically.

	23.	A quantum particle in an infinitely deep square well 
has a wave function that is given by

c1 1x 2 5 Å
2
L

 sin apx
L
b

		  for 0 # x # L and is zero otherwise. (a) Determine the 
probability of finding the particle between x 5 0 and 
x 5 1

3L. (b) Use the result of this calculation and a sym-
metry argument to find the probability of finding the 
particle between x 5 1

3L and x 5 2
3L. Do not re-evaluate 

the integral.

Section 41.3 ​ The Schrödinger Equation

	24.	Show that the wave function c 5 Aei(kx2vt) is a solution 
to the Schrödinger equation (Eq. 41.15), where k 5 
2p/l and U 5 0.

	25.	The wave function of a quantum particle of mass m is

c(x) 5 A cos (kx) 1 B sin (kx)

		  where A, B, and k are constants. (a) Assuming the par-
ticle is free (U 5 0), show that c(x) is a solution of the 
Schrödinger equation (Eq. 41.15). (b) Find the corre-
sponding energy E of the particle.

	26.	Consider a quantum particle moving in a one-
dimensional box for which the walls are at x 5 2L/2 and  
x 5 L/2. (a) Write the wave functions and probability 

S
Q/C
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S

S

densities for n 5 1, n 5 2, and n 5 3. (b) Sketch the 
wave functions and probability densities.

	27.	 In a region of space, a quantum particle with zero total 
energy has a wave function

c(x) 5 Axe2x 2/L2

		  (a) Find the potential energy U as a function of x.  
(b) Make a sketch of U(x) versus x.

	28.	A quantum particle of mass m moves in a potential well 
of length 2L. Its potential energy is infinite for x , 2L 
and for x . 1L. In the region 2L , x , L, its potential 
energy is given by

U 1x 2 5
2U2x2

mL2 1L2 2 x2 2
		  In addition, the particle is in a stationary state that is 

described by the wave function c(x) 5 A(1 2 x 2/L2) for  
2L , x , 1L and by c(x) 5 0 elsewhere. (a) Deter-
mine the energy of the particle in terms of U, m, and 
L. (b) Determine the normalization constant A.  
(c) Determine the probability that the particle is 
located between x 5 2L/3 and x 5 1L/3.

Section 41.4 ​ A Particle in a Well of Finite Height

	29.	Sketch (a) the wave function c(x) and (b) the probabil-
ity density |c(x)|2 for the n 5 4 state of a quantum par-
ticle in a finite potential well. (See Fig. 41.7.)

	30.	Suppose a quantum particle is in its ground state in 
a box that has infinitely high walls (see Fig. 41.4a). 
Now suppose the left-hand wall is suddenly lowered to 
a finite height and width. (a) Qualitatively sketch the 
wave function for the particle a short time later. (b) If 
the box has a length L, what is the wavelength of the 
wave that penetrates the left-hand wall?

Section 41.5 ​ Tunneling Through a Potential Energy Barrier

	31.	 An electron with kinetic energy E 5 5.00 eV is incident 
on a barrier of width L 5 0.200 nm and height U 5  
10.0 eV (Fig. P41.31). What is the probability that the elec-
tron (a) tunnels through the barrier? (b) Is reflected?

Energy
L

U

x
0

E

�e

Figure P41.31  Problems 31 and 32.

	32.	An electron having total energy E 5 4.50 eV 
approaches a rectangular energy barrier with U 5 
5.00 eV and L 5 950 pm as shown in Figure P41.31. 
Classically, the electron cannot pass through the bar-
rier because E , U. Quantum-mechanically, however, 
the probability of tunneling is not zero. (a) Calculate 
this probability, which is the transmission coefficient. 
(b) To what value would the width L of the potential 
barrier have to be increased for the chance of an inci-
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1
2m1u1

2 1 1
2m 2u 2

2 1 1
2kx2

		  can be written as 1
2mu2 1 1

2kx2, where u 5 |u1| 1 |u2|  
is the relative speed of the particles and m 5  
m1m2/(m1 1 m2) is the reduced mass of the system. 
This result demonstrates that the pair of freely vibrat-
ing particles can be precisely modeled as a single par-
ticle vibrating on one end of a spring that has its other 
end fixed. (b) Differentiate the equation

1
2mu2 1 1

2kx2 5  constant

		  with respect to x. Proceed to show that the system exe-
cutes simple harmonic motion. (c) Find its frequency.

	41.	The total energy of a particle–spring system in which 
the particle moves with simple harmonic motion along 
the x axis is

E 5
px

2

2m
1

kx2

2
		  where px is the momentum of the quantum particle 

and k is the spring constant. (a) Using the uncertainty 
principle, show that this expression can also be writ-
ten as

E $  
px

2

2m
1

k U2

8px
2

		  (b) Show that the minimum energy of the harmonic 
oscillator is

E min 5 K 1 U 5 1
4 U Ä

k
m

1
Uv

4
5

Uv

2

	42.	Show that Equation 41.26 is a solution of Equation 
41.24 with energy E 5 1

2 Uv.

Additional Problems

	43.	A particle of mass 2.00 3 10228 kg is confined to a one-
dimensional box of length 1.00 3 10210 m. For n 5 1, 
what are (a) the particle’s wavelength, (b) its momen-
tum, and (c) its ground-state energy?

	44.	Prove that the first term in the Schrödinger equation, 
2 1 U2/2m 2 1d 2c/dx 2 2 , reduces to the kinetic energy of 
the quantum particle multiplied by the wave function 
(a) for a freely moving particle, with the wave function 
given by Equation 41.4, and (b) for a particle in a box, 
with the wave function given by Equation 41.13.

	45.	A particle in a one-dimensional box of length L is in its 
first excited state, corresponding to n 5 2. Determine 
the probability of finding the particle between x 5 0 
and x 5 L/4.

	46.	Prove that assuming n 5 0 for a quantum particle in an 
infinitely deep potential well leads to a violation of the 
uncertainty principle Dpx Dx $ U/2.

	47.	 Calculate the transmission probability for quantum-
mechanical tunneling in each of the following cases. 
(a)  An electron with an energy deficit of U 2 E 5  
0.010 0 eV is incident on a square barrier of width L 5  
0.100 nm. (b) An electron with an energy deficit of 
1.00 eV is incident on the same barrier. (c) An alpha 
particle (mass 6.64 3 10227 kg) with an energy deficit 

S

S

W

S

dent 4.50-eV electron tunneling through the barrier 
to be one in one million?

	33.	An electron has a kinetic energy of 12.0 eV. The elec-
tron is incident upon a rectangular barrier of height 
20.0 eV and width 1.00 nm. If the electron absorbed all 
the energy of a photon of green light (with wavelength 
546 nm) at the instant it reached the barrier, by what 
factor would the electron’s probability of tunneling 
through the barrier increase?

Section 41.6 ​ Applications of Tunneling

	34.	A scanning tunneling microscope (STM) can precisely 
determine the depths of surface features because the 
current through its tip is very sensitive to differences 
in the width of the gap between the tip and the sam-
ple surface. Assume the electron wave function falls 
off exponentially in this direction with a decay length 
of 0.100 nm, that is, with C 5 10.0 nm21. Determine 
the ratio of the current when the STM tip is 0.500 nm 
above a surface feature to the current when the tip is 
0.515 nm above the surface.

	35.	The design criterion for a typical scanning tunnel-
ing microscope (STM) specifies that it must be able 
to detect, on the sample below its tip, surface features 
that differ in height by only 0.002 00 nm. Assuming 
the electron transmission coefficient is e22CL with C 5  
10.0 nm21, what percentage change in electron trans-
mission must the electronics of the STM be able to 
detect to achieve this resolution?

Section 41.7 ​ The Simple Harmonic Oscillator

	36.	A one-dimensional harmonic oscillator wave function is

c 5 Axe2bx 2

		  (a) Show that c satisfies Equation 41.24. (b) Find b 
and the total energy E. (c) Is this wave function for the 
ground state or for the first excited state?

	37.	 A quantum simple harmonic oscillator consists of an 
electron bound by a restoring force proportional to its 
position relative to a certain equilibrium point. The 
proportionality constant is 8.99 N/m. What is the lon-
gest wavelength of light that can excite the oscillator?

	38.	A quantum simple harmonic oscillator consists of a par-
ticle of mass m bound by a restoring force proportional 
to its position relative to a certain equilibrium point. 
The proportionality constant is k. What is the longest 
wavelength of light that can excite the oscillator?

	39.	(a) Normalize the wave function for the ground state 
of a simple harmonic oscillator. That is, apply Equa-
tion 41.7 to Equation 41.26 and find the required value 
for the constant B in terms of m, v, and fundamental 
constants. (b) Determine the probability of finding the 
oscillator in a narrow interval 2d/2 , x , d/2 around 
its equilibrium position.

	40.	Two particles with masses m1 and m2 are joined by a 
light spring of force constant k. They vibrate along a 
straight line with their center of mass fixed. (a) Show 
that the total energy
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1294	 Chapter 41  Quantum Mechanics

are different from those of the infinite square well. To 
cause the photons to be absorbed, you move the light 
source at a high speed toward the particle in the finite 
square well. You are able to find a speed at which the 
Doppler-shifted photons are absorbed as the particle 
makes a transition to the first excited state.

	55.	A quantum particle has a wave function

c 1x 2 5 •Å
2
a

 e2x/a for x . 0

0 for x , 0
 

		  (a) Find and sketch the probability density. (b) Find the 
probability that the particle will be at any point where  
x , 0. (c) Show that c is normalized and then (d) find 
the probability of finding the particle between x 5 0 
and x 5 a.

	56.	An electron is confined to move in the xy plane in a 
rectangle whose dimensions are Lx and Ly. That is, 
the electron is trapped in a two-dimensional potential 
well having lengths of Lx and Ly. In this situation, the 
allowed energies of the electron depend on two quan-
tum numbers nx and ny and are given by

E 5
h 2

8me
 anx

2

Lx
2 1

ny
2

L y
2b

		  Using this information, we wish to find the wavelength 
of a photon needed to excite the electron from the 
ground state to the second excited state, assuming Lx 5  
Ly 5 L. (a) Using the assumption on the lengths, write 
an expression for the allowed energies of the electron 
in terms of the quantum numbers nx and ny. (b) What 
values of nx and ny correspond to the ground state?  
(c) Find the energy of the ground state. (d) What are 
the possible values of nx and ny for the first excited 
state, that is, the next-highest state in terms of energy? 
(e) What are the possible values of nx and ny for the sec-
ond excited state? (f) Using the values in part (e), what 
is the energy of the second excited state? (g) What is 
the energy difference between the ground state and 
the second excited state? (h) What is the wavelength 
of a photon that will cause the transition between the 
ground state and the second excited state?

	57.	 The normalized wave functions for the ground state, 
c0(x), and the first excited state, c1(x), of a quantum 
harmonic oscillator are

c0 1x 2 5 aa
p
b

1/4

e2ax 2/2  c1 1x 2 5 a4a 3

p
b

1/4

xe2ax 2/2

		  where a 5 mv/U. A mixed state, c01(x), is constructed 
from these states:

c01 1x 2 5
1
!2

3c0 1x 2 1 c1 1x 2 4

		  The symbol 8q 9s denotes the expectation value of the 
quantity q for the state cs(x). Calculate the expectation 
values (a) 8x 90, (b) 8x 91, and (c) 8x 901.

	58.	A two-slit electron diffraction experiment is done with 
slits of unequal widths. When only slit 1 is open, the 

GP
S

S

of 1.00 MeV is incident on a square barrier of width 
1.00 fm. (d) An 8.00-kg bowling ball with an energy 
deficit of 1.00 J is incident on a square barrier of width 
2.00 cm.

	48.	An electron in an infinitely deep potential well has 
a ground-state energy of 0.300 eV. (a) Show that the 
photon emitted in a transition from the n 5 3 state 
to the n 5 1 state has a wavelength of 517 nm, which 
makes it green visible light. (b) Find the wavelength 
and the spectral region for each of the other five tran-
sitions that take place among the four lowest energy 
levels.

	49.	An atom in an excited state 1.80 eV above the ground 
state remains in that excited state 2.00 ms before mov-
ing to the ground state. Find (a) the frequency and 
(b) the wavelength of the emitted photon. (c) Find the 
approximate uncertainty in energy of the photon.

	50.	A marble rolls back and forth across a shoebox at a con-
stant speed of 0.8 m/s. Make an order-of-magnitude  
estimate of the probability of it escaping through the 
wall of the box by quantum tunneling. State the quan-
tities you take as data and the values you measure or 
estimate for them.

	51.	 An electron confined to a box absorbs a photon with 
wavelength l. As a result, the electron makes a transi-
tion from the n 5 1 state to the n 5 3 state. (a) Find the 
length of the box. (b) What is the wavelength l9 of the 
photon emitted when the electron makes a transition 
from the n 5 3 state to the n 5 2 state?

	52.	For a quantum particle described by a wave function 
c(x), the expectation value of a physical quantity f(x) 
associated with the particle is defined by

8 f 1x 2 9 ; 3
`

2`

c*f 1x 2c dx

		  For a particle in an infinitely deep one-dimensional 
box extending from x 5 0 to x 5 L, show that

8x2 9 5
L2

3
2

L2

2n2p2

	53.	A quantum particle of mass m is placed in a one-
dimensional box of length L. Assume the box is so 
small that the particle’s motion is relativistic and K 5  
p 2/2m is not valid. (a) Derive an expression for the 
kinetic energy levels of the particle. (b) Assume the 
particle is an electron in a box of length L 5 1.00 3 
10212 m. Find its lowest possible kinetic energy. (c) By 
what percent is the nonrelativistic equation in error? 
Suggestion: See Equation 39.23.

	54.	Why is the following situation impossible? A particle is in 
the ground state of an infinite square well of length L. 
A light source is adjusted so that the photons of wave-
length l are absorbed by the particle as it makes a tran-
sition to the first excited state. An identical particle is 
in the ground state of a finite square well of length L. 
The light source sends photons of the same wavelength 
l toward this particle. The photons are not absorbed 
because the allowed energies of the finite square well 

W
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	 Problems	 1295

dimensional box of length 3d, find the minimum 
kinetic energy of the two electrons. (c) Find the value 
of d for which the total energy is a minimum. (d) State 
how this value of d compares with the spacing of atoms 
in lithium, which has a density of 0.530 g/cm3 and a 
molar mass of 6.94 g/mol.

	61.	 An electron is trapped in a quantum dot. The quan-
tum dot may be modeled as a one-dimensional, rigid-
walled box of length 1.00 nm. (a) Taking x 5 0 as the 
left side of the box, calculate the probability of finding 
the electron between x1 5 0.150 nm and x2 5 0.350 nm 
for the n 5 1 state. (b) Repeat part (a) for the n 5 2 
state. Calculate the energies in electron volts of (c) the 
n 5 1 state and (d) the n 5 2 state.

	62.	An electron is represented by the time-independent 
wave function

c 1x 2 5 eAe2ax for x . 0
Ae1ax for x , 0

		  (a) Sketch the wave function as a function of x.  
(b) Sketch the probability density representing the 
likelihood that the electron is found between x and  
x 1 dx. (c) Only an infinite value of potential energy 
could produce the discontinuity in the derivative of 
the wave function at x 5 0. Aside from this feature, 
argue that c(x) can be a physically reasonable wave 
function. (d) Normalize the wave function. (e) Deter-
mine the probability of finding the electron some-
where in the range

2
1

2a
 #  x #  

1
2a

	63.	The wave function

c 1x 2 5 Bxe21mv/2U 2x 2

		  is a solution to the simple harmonic oscillator prob-
lem. (a) Find the energy of this state. (b) At what posi-
tion are you least likely to find the particle? (c) At 
what positions are you most likely to find the particle?  
(d) Determine the value of B required to normalize 
the wave function. (e) What If? Determine the classi-
cal probability of finding the particle in an interval of 
small length d centered at the position x 5 2 1 U/mv 21/2. 
(f) What is the actual probability of finding the par-
ticle in this interval?

	64.	(a) Find the normalization constant A for a wave func-
tion made up of the two lowest states of a quantum par-
ticle in a box extending from x 5 0 to x 5 L:

c 1x 2 5 A csin apx
L
b 1 4 sin a2px

L
b d

		  (b) A particle is described in the space 2a # x # a by 
the wave function

c 1x 2 5 A cos apx
2a

b 1 B sin apx
a
b

		  Determine the relationship between the values of A 
and B required for normalization.

Q/C

S

S

number of electrons reaching the screen per second 
is 25.0 times the number of electrons reaching the 
screen per second when only slit 2 is open. When both 
slits are open, an interference pattern results in which 
the destructive interference is not complete. Find the 
ratio of the probability of an electron arriving at an 
interference maximum to the probability of an elec-
tron arriving at an adjacent interference minimum. 
Suggestion: Use the superposition principle.

Challenge Problems

	59.	Particles incident from the left in Figure P41.59 are 
confronted with a step in potential energy. The step 
has a height U at x 5 0. The particles have energy  
E . U. Classically, all the particles would continue  
moving forward with reduced speed. According to 
quantum mechanics, however, a fraction of the parti-
cles are reflected at the step. (a) Prove that the reflec-
tion coefficient R for this case is

R 5
1k 1 2 k 2 22

1k 1 1 k 2 22

		  where k 1 5 2p/l1 and k 2 5 2p/l2 are the wave num-
bers for the incident and transmitted particles, respec-
tively. Proceed as follows. Show that the wave function  
c1 5 Aeik1x 1 Be2ik1x satisfies the Schrödinger equation 
in region 1, for x , 0. Here Aeik1x  represents the inci-
dent beam and Be2ik1x  represents the reflected par-
ticles. Show that c2 5 Ceik2x  satisfies the Schrödinger 
equation in region 2, for x . 0. Impose the boundary 
conditions c1 5 c2 and dc1/dx 5 dc2/dx, at x 5 0, to 
find the relationship between B and A. Then evalu-
ate R 5 B2/A2. A particle that has kinetic energy E 5  
7.00 eV is incident from a region where the potential 
energy is zero onto one where U 5 5.00 eV. Find (b) its 
probability of being reflected and (c) its probability of 
being transmitted.

Incoming particle

U

U � 0

E

Figure P41.59

	60.	Consider a “crystal” consisting of two fixed ions of 
charge 1e and two electrons as shown in Figure P41.60.  
(a)  Taking into account all the pairs of interactions, 
find the potential energy of the system as a function of 
d. (b) Assuming the electrons to be restricted to a one-

Q/C

d d d

Figure P41.60
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1296  	

In Chapter 41, we introduced some basic concepts and techniques used in quantum 
mechanics along with their applications to various one-dimensional systems. In this chapter, 
we apply quantum mechanics to atomic systems. A large portion of the chapter is focused 
on the application of quantum mechanics to the study of the hydrogen atom. Understanding 
the hydrogen atom, the simplest atomic system, is important for several reasons:

•	 The hydrogen atom is the only atomic system that can be solved exactly.
•	 Much of what was learned in the 20th century about the hydrogen atom, with its 
single electron, can be extended to such single-electron ions as He1 and Li21.

•	 The hydrogen atom is an ideal system for performing precise tests of theory against 
experiment and for improving our overall understanding of atomic structure.

	 42.1	 Atomic Spectra of Gases

	 42.2	 Early Models of the Atom

	 42.3	 Bohr’s Model of the 
Hydrogen Atom

	 42.4	 The Quantum Model of 
the Hydrogen Atom

	 42.5	 The Wave Functions for 
Hydrogen

	 42.6	 Physical Interpretation of 
the Quantum Numbers

	 42.7	 The Exclusion Principle 
and the Periodic Table

	 42.8	 More on Atomic Spectra: 
Visible and X-Ray

	 42.9	 Spontaneous and 
Stimulated Transitions

	42.10	 Lasers

c h a p t e r 

42 Atomic Physics

This street in the Ginza district in 
Tokyo displays many signs formed 
from neon lamps of varying bright 
colors. The light from these lamps 
has its origin in transitions between 
quantized energy states in the 
atoms contained in the lamps. In 
this chapter, we investigate those 
transitions. (© Ken Straiton/Corbis)

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 42.1  Atomic Spectra of Gases	 1297

•	 The quantum numbers that are used to characterize the allowed states of hydro-
gen can also be used to investigate more complex atoms, and such a description 
enables us to understand the periodic table of the elements. This understanding is 
one of the greatest triumphs of quantum mechanics.

•	 The basic ideas about atomic structure must be well understood before we attempt 
to deal with the complexities of molecular structures and the electronic structure 
of solids.

	 The full mathematical solution of the Schrödinger equation applied to the hydrogen atom 
gives a complete and beautiful description of the atom’s properties. Because the mathemati-
cal procedures involved are beyond the scope of this text, however, many details are omitted. 
The solutions for some states of hydrogen are discussed, together with the quantum numbers 
used to characterize various allowed states. We also discuss the physical significance of the 
quantum numbers and the effect of a magnetic field on certain quantum states.
	 A new physical idea, the exclusion principle, is presented in this chapter. This principle 
is extremely important for understanding the properties of multielectron atoms and the 
arrangement of elements in the periodic table.
	 Finally, we apply our knowledge of atomic structure to describe the mechanisms involved 
in the production of x-rays and in the operation of a laser.

42.1	 Atomic Spectra of Gases
As pointed out in Section 40.1, all objects emit thermal radiation characterized 
by a continuous distribution of wavelengths. In sharp contrast to this continuous-
distribution spectrum is the discrete line spectrum observed when a low-pressure 
gas undergoes an electric discharge. (Electric discharge occurs when the gas is sub-
ject to a potential difference that creates an electric field greater than the dielectric 
strength of the gas.) Observation and analysis of these spectral lines is called emis-
sion spectroscopy.
	 When the light from a gas discharge is examined using a spectrometer (see Fig. 
38.15), it is found to consist of a few bright lines of color on a generally dark back-
ground. This discrete line spectrum contrasts sharply with the continuous rainbow 
of colors seen when a glowing solid is viewed through the same instrument. Figure 
42.1a (page 1298) shows that the wavelengths contained in a given line spectrum 
are characteristic of the element emitting the light. The simplest line spectrum is 
that for atomic hydrogen, and we describe this spectrum in detail. Because no two 
elements have the same line spectrum, this phenomenon represents a practical and 
sensitive technique for identifying the elements present in unknown samples.
	 Another form of spectroscopy very useful in analyzing substances is absorption 
spectroscopy. An absorption spectrum is obtained by passing white light from a con-
tinuous source through a gas or a dilute solution of the element being analyzed. The 
absorption spectrum consists of a series of dark lines superimposed on the continu-
ous spectrum of the light source as shown in Figure 42.1b for atomic hydrogen.
	 The absorption spectrum of an element has many practical applications. For 
example, the continuous spectrum of radiation emitted by the Sun must pass 
through the cooler gases of the solar atmosphere. The various absorption lines 
observed in the solar spectrum have been used to identify elements in the solar 
atmosphere. In early studies of the solar spectrum, experimenters found some lines 
that did not correspond to any known element. A new element had been discovered!  

Pitfall Prevention 42.1
Why Lines?  The phrase “spectral 
lines” is often used when discuss-
ing the radiation from atoms. 
Lines are seen because the light 
passes through a long and very 
narrow slit before being separated 
by wavelength. You will see many 
references to these “lines” in both 
physics and chemistry.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



1298	 Chapter 42  Atomic Physics

The new element was named helium, after the Greek word for Sun, helios. Helium 
was subsequently isolated from subterranean gas on the Earth.
	 Using this technique, scientists have examined the light from stars other than 
our Sun and have never detected elements other than those present on the Earth. 
Absorption spectroscopy has also been useful in analyzing heavy-metal contamina-
tion of the food chain. For example, the first determination of high levels of mer-
cury in tuna was made with the use of atomic absorption spectroscopy.
	 The discrete emissions of light from gas discharges are used in “neon” signs such 
as those in the opening photograph of this chapter. Neon, the first gas used in these 
types of signs and the gas after which these signs are named, emits strongly in the 
red region. As a result, a glass tube filled with neon gas emits bright red light when 
an applied voltage causes a continuous discharge. Early signs used different gases to 
provide different colors, although the brightness of these signs was generally very 
low. Many present-day “neon” signs contain mercury vapor, which emits strongly in 
the ultraviolet range of the electromagnetic spectrum. The inside of a present-day 
sign’s glass tube is coated with a material that emits a particular color when it absorbs 
ultraviolet radiation from the mercury. The color of the light from the tube results 
from the particular material chosen. A household fluorescent light operates in the 
same manner, with a white-emitting material coating the inside of the glass tube.
	 From 1860 to 1885, scientists accumulated a great deal of data on atomic emis-
sions using spectroscopic measurements. In 1885, a Swiss schoolteacher, Johann 
Jacob Balmer (1825–1898), found an empirical equation that correctly predicted 
the wavelengths of four visible emission lines of hydrogen: Ha (red), Hb (blue-
green), Hg (blue-violet), and Hd (violet). Figure 42.2 shows these and other lines 
(in the ultraviolet) in the emission spectrum of hydrogen. The four visible lines 
occur at the wavelengths 656.3 nm, 486.1 nm, 434.1 nm, and 410.2 nm. The com-
plete set of lines is called the Balmer series. The wavelengths of these lines can be 
described by the following equation, which is a modification made by Johannes 
Rydberg (1854–1919) of Balmer’s original equation:

	
1
l

5 R H a 1
22 2

1
n2 b n 5 3, 4, 5, c 	 (42.1)

where R H is a constant now called the Rydberg constant with a value of  
1.097 373 2 3 107 m21. The integer values of n from 3 to 6 give the four visible lines 
from 656.3 nm (red) down to 410.2 nm (violet). Equation 42.1 also describes the 
ultraviolet spectral lines in the Balmer series if n is carried out beyond n 5 6. The 
series limit is the shortest wavelength in the series and corresponds to n S ,̀ with 
a wavelength of 364.6 nm as in Figure 42.2. The measured spectral lines agree with 
the empirical equation, Equation 42.1, to within 0.1%.

Balmer series 

400 500 600 700

H

400 500 600 700

Ne

Hg

H

(nm)l

a

b

Figure 42.1  ​(a) Emission line 
spectra for hydrogen, mercury, 
and neon. (b) The absorption 
spectrum for hydrogen. Notice 
that the dark absorption lines 
occur at the same wavelengths as 
the hydrogen emission lines in (a). 
(K. W. Whitten, R. E. Davis, M. L. 
Peck, and G. G. Stanley, General 
Chemistry, 7th ed., Belmont, CA, 
Brooks/Cole, 2004.)

410.2 434.1

Ultraviolet

486.1 656.3

364.6

 (nm)l

The lines shown in color are in 
the visible range of wavelengths.

This line is the shortest wavelength 
line and is in the ultraviolet region 
of the electromagnetic spectrum.

Figure 42.2  ​The Balmer series 
of spectral lines for atomic hydro-
gen, with several lines marked 
with the wavelength in nanome-
ters. (The horizontal wavelength 
axis is not to scale.)
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	 42.2  Early Models of the Atom	 1299

	 Other lines in the spectrum of hydrogen were found following Balmer’s discov-
ery. These spectra are called the Lyman, Paschen, and Brackett series after their 
discoverers. The wavelengths of the lines in these series can be calculated through 
the use of the following empirical equations:

	
1
l

5 R H a1 2
1
n2b n 5 2, 3, 4, c 	 (42.2)

	
1
l

5 R H a 1
32 2

1
n2b n 5 4, 5, 6, c 	 (42.3)

	
1
l

5 R H a 1
42 2

1
n2b n 5 5, 6, 7, c 	 (42.4)

No theoretical basis existed for these equations; they simply worked. The same con-
stant R H appears in each equation, and all equations involve small integers. In Sec-
tion 42.3, we shall discuss the remarkable achievement of a theory for the hydrogen 
atom that provided an explanation for these equations.

42.2	 Early Models of the Atom 
The model of the atom in the days of Newton was a tiny, hard, indestructible sphere. 
Although this model provided a good basis for the kinetic theory of gases (Chapter 
21), new models had to be devised when experiments revealed the electrical nature of 
atoms. In 1897, J. J. Thomson established the charge-to-mass ratio for electrons. (See 
Fig. 29.15 in Section 29.3.) The following year, he suggested a model that describes 
the atom as a region in which positive charge is spread out in space with electrons 
embedded throughout the region, much like the seeds in a watermelon or raisins in 
thick pudding (Fig. 42.3). The atom as a whole would then be electrically neutral.
	 In 1911, Ernest Rutherford (1871–1937) and his students Hans Geiger and Ernest 
Marsden performed a critical experiment that showed that Thomson’s model could 
not be correct. In this experiment, a beam of positively charged alpha particles 
(helium nuclei) was projected into a thin metallic foil such as the target in Figure 
42.4a (page 1300). Most of the particles passed through the foil as if it were empty 
space, but some of the results of the experiment were astounding. Many of the par-
ticles deflected from their original direction of travel were scattered through large 
angles. Some particles were even deflected backward, completely reversing their 
direction of travel! When Geiger informed Rutherford that some alpha particles 
were scattered backward, Rutherford wrote, “It was quite the most incredible event 
that has ever happened to me in my life. It was almost as incredible as if you fired a 
15-inch [artillery] shell at a piece of tissue paper and it came back and hit you.”
	 Such large deflections were not expected on the basis of Thomson’s model. Accord-
ing to that model, the positive charge of an atom in the foil is spread out over such 
a great volume (the entire atom) that there is no concentration of positive charge 
strong enough to cause any large-angle deflections of the positively charged alpha 
particles. Furthermore, the electrons are so much less massive than the alpha par-
ticles that they would not cause large-angle scattering either. Rutherford explained 
his astonishing results by developing a new atomic model, one that assumed the posi-
tive charge in the atom was concentrated in a region that was small relative to the 
size of the atom. He called this concentration of positive charge the nucleus of the 
atom. Any electrons belonging to the atom were assumed to be in the relatively large 
volume outside the nucleus. To explain why these electrons were not pulled into the 
nucleus by the attractive electric force, Rutherford modeled them as moving in orbits 
around the nucleus in the same manner as the planets orbit the Sun (Fig. 42.4b). For 
this reason, this model is often referred to as the planetary model of the atom.
	 Two basic difficulties exist with Rutherford’s planetary model. As we saw in 
Section 42.1, an atom emits (and absorbs) certain characteristic frequencies of  

WW Lyman series

WW Paschen series

WW Brackett series

Joseph John Thomson
English physicist (1856–1940)
The recipient of a Nobel Prize in Physics 
in 1906, Thomson is usually consid-
ered the discoverer of the electron. 
He opened up the field of subatomic 
particle physics with his extensive work 
on the deflection of cathode rays (elec-
trons) in an electric field.
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The electrons 
are small 
negative 
charges at 
various 
locations 
within the 
atom.

The positive 
charge of the 
atom is 
distributed 
continuously in a 
spherical volume.

Figure 42.3  ​Thomson’s model 
of the atom.
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1300	C hapter 42 A tomic Physics

electromagnetic radiation and no others, but the Rutherford model cannot explain 
this phenomenon. A second difficulty is that Rutherford’s electrons are described 
by the particle in uniform circular motion model; they have a centripetal accelera-
tion. According to Maxwell’s theory of electromagnetism, centripetally accelerated 
charges revolving with frequency f should radiate electromagnetic waves of fre-
quency f. Unfortunately, this classical model leads to a prediction of self-destruction 
when applied to the atom. Identifying the electron and the proton as a nonisolated 
system for energy, Equation 8.2 becomes DK 1 DU 5 TER, where K is the kinetic 
energy of the electron, U is the electric potential energy of the electron–nucleus 
system, and TER represents the outgoing electromagnetic radiation. As energy 
leaves the system, the radius of the electron’s orbit steadily decreases (Fig. 42.5). 
The system is an isolated system for angular momentum because there is no torque 
on the system. Therefore, as the electron moves closer to the nucleus, the angular 
speed of the electron will increase, just like the spinning skater in Figure 11.10 in 
Section 11.4. This process leads to an ever-increasing frequency of emitted radia-
tion and an ultimate collapse of the atom as the electron plunges into the nucleus.

42.3	 Bohr’s Model of the Hydrogen Atom
Given the situation described at the end of Section 42.2, the stage was set for Niels 
Bohr in 1913 when he presented a new model of the hydrogen atom that circum-
vented the difficulties of Rutherford’s planetary model. Bohr applied Planck’s ideas 
of quantized energy levels (Section 40.1) to Rutherford’s orbiting atomic electrons. 
Bohr’s theory was historically important to the development of quantum physics, 
and it appeared to explain the spectral line series described by Equations 42.1 
through 42.4. Although Bohr’s model is now considered obsolete and has been 
completely replaced by a probabilistic quantum-mechanical theory, we can use the 
Bohr model to develop the notions of energy quantization and angular momentum 
quantization as applied to atomic-sized systems.
	 Bohr combined ideas from Planck’s original quantum theory, Einstein’s concept 
of the photon, Rutherford’s planetary model of the atom, and Newtonian mechan-
ics to arrive at a semiclassical structural model based on some revolutionary ideas. 
The structural model of the Bohr theory as it applies to the hydrogen atom has the 
following properties:

	 1.	 Physical components:  
The electron moves in circular orbits around the proton under the influence 
of the electric force of attraction as shown in Figure 42.6.

�e

�

Because the accelerating 
electron radiates energy, the 
size of the orbit decreases 
until the electron falls into 
the nucleus.

Figure 42.5  ​The classical model 
of the nuclear atom predicts that 
the atom decays.

�e

r

�e
me

The orbiting electron is allowed 
to be only in specific orbits of 
discrete radii.

vS
F
S

Figure 42.6  ​Diagram represent-
ing Bohr’s model of the hydrogen 
atom. 

Scintillation
screens

Lead
screens

Source of
alpha
particles

a b

�

�

�

Target

Figure 42.4  ​(a) Rutherford’s technique for observing the scattering of alpha particles from a thin 
foil target. The source is a naturally occurring radioactive substance, such as radium. (b) Rutherford’s 
planetary model of the atom.
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	 42.3  Bohr’s Model of the Hydrogen Atom	 1301

	 2.	 Behavior of the components:  
(a)	� Only certain electron orbits are stable. When in one of these station-

ary states, as Bohr called them, the electron does not emit energy in 
the form of radiation, even though it is accelerating. Hence, the total 
energy of the atom remains constant and classical mechanics can be 
used to describe the electron’s motion. Bohr’s model claims that the 
centripetally accelerated electron does not continuously emit radiation, 
losing energy and eventually spiraling into the nucleus, as predicted by 
classical physics in the form of Rutherford’s planetary model.

		  (b)	� The atom emits radiation when the electron makes a transition from a 
more energetic initial stationary state to a lower-energy stationary state. 
This transition cannot be visualized or treated classically. In particular, 
the frequency f of the photon emitted in the transition is related to the 
change in the atom’s energy and is not equal to the frequency of the 
electron’s orbital motion. The frequency of the emitted radiation is 
found from the energy-conservation expression

	 Ei 2 Ef 5 hf	 (42.5)

		  �where Ei is the energy of the initial state, Ef is the energy of the final 
state, and Ei . Ef . In addition, energy of an incident photon can be 
absorbed by the atom, but only if the photon has an energy that exactly 
matches the difference in energy between an allowed state of the atom 
and a higher-energy state. Upon absorption, the photon disappears and 
the atom makes a transition to the higher-energy state.

		  (c)	� The size of an allowed electron orbit is determined by a condition 
imposed on the electron’s orbital angular momentum: the allowed orbits 
are those for which the electron’s orbital angular momentum about the 
nucleus is quantized and equal to an integral multiple of " 5 h/2p,

	 mevr 5 nU n 5 1, 2, 3, c 	 (42.6)

		  	� where me is the electron mass, v is the electron’s speed in its orbit, and r 
is the orbital radius.

	 These postulates are a mixture of established principles and completely new and 
untested ideas at the time. Property 1, from classical mechanics, treats the electron 
in orbit around the nucleus in the same way we treat a planet in a circular orbit 
around a star, using the particle in uniform circular motion analysis model. Prop-
erty 2(a) was a radical new idea in 1913 that was completely at odds with the under-
standing of electromagnetism at the time. Property 2(b) represents the principle 
of conservation of energy as described by the nonisolated system model for energy. 
Property 2(c) is another new idea that had no basis in classical physics.
	 Property 2(b) implies qualitatively the existence of a characteristic discrete 
emission line spectrum and also a corresponding absorption line spectrum of the 
kind shown in Figure 42.1 for hydrogen. Using these postulates, let’s calculate the 
allowed energy levels and find quantitative values of the emission wavelengths of 
the hydrogen atom.
	 The electric potential energy of the system shown in Figure 42.6 is given by 
Equation 25.13, U 5 keq1q2/r 5 2kee 2/r, where ke is the Coulomb constant and the 
negative sign arises from the charge 2e on the electron. Therefore, the total energy 
of the atom, which consists of the electron’s kinetic energy and the system’s poten-
tial energy, is

	 E 5 K 1 U 5 1
2mev

2 2 ke 
e 2

r
	 (42.7)

Niels Bohr
Danish Physicist (1885–1962)
Bohr was an active participant in the 
early development of quantum mechan-
ics and provided much of its philo-
sophical framework. During the 1920s 
and 1930s, he headed the Institute for 
Advanced Studies in Copenhagen. The 
institute was a magnet for many of the 
world’s best physicists and provided a 
forum for the exchange of ideas. Bohr 
was awarded the 1922 Nobel Prize in 
Physics for his investigation of the 
structure of atoms and the radiation 
emanating from them. When Bohr vis-
ited the United States in 1939 to attend 
a scientific conference, he brought news 
that the fission of uranium had been 
observed by Hahn and Strassman in 
Berlin. The results were the foundations 
of the nuclear weapon developed in the 
United States during World War II. 
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1302	C hapter 42 A tomic Physics

The electron is modeled as a particle in uniform circular motion, so the electric 
force kee 2/r 2 exerted on the electron must equal the product of its mass and its cen-
tripetal acceleration (ac 5 v 2/r):

ke e
2

r 2 5
mev

2

r

	 v2 5
ke e

2

mer
	 (42.8)

From Equation 42.8, we find that the kinetic energy of the electron is

K 5 1
2mev

2 5
ke e

2

2r

Substituting this value of K into Equation 42.7 gives the following expression for 
the total energy of the atom:1

	 E 5 2
ke e

2

2r
	 (42.9)

Because the total energy is negative, which indicates a bound electron–proton sys-
tem, energy in the amount of kee 2/2r must be added to the atom to remove the 
electron and make the total energy of the system zero.
	 We can obtain an expression for r, the radius of the allowed orbits, by solving 
Equation 42.6 for v 2 and equating it to Equation 42.8:

v 2 5
n2U2

me
2r 2 5

ke e
2

mer

	 rn 5
n2U2

meke e
2  n 5 1, 2, 3, c 	 (42.10)

Equation 42.10 shows that the radii of the allowed orbits have discrete values: they 
are quantized. The result is based on the assumption that the electron can exist only 
in certain allowed orbits determined by the integer n (Bohr’s Property 2(c)).
	 The orbit with the smallest radius, called the Bohr radius a 0 , corresponds to n 5 1  
and has the value

	 a0 5
U2

meke e
2 5 0.052 9 nm 	 (42.11)

Substituting Equation 42.11 into Equation 42.10 gives a general expression for the 
radius of any orbit in the hydrogen atom:

	 rn 5 n2a0 5 n2(0.052 9 nm)  n 5 1, 2, 3, . . .	 (42.12)

	 Bohr’s theory predicts a value for the radius of a hydrogen atom on the right 
order of magnitude, based on experimental measurements. This result was a strik-
ing triumph for Bohr’s theory. The first three Bohr orbits are shown to scale in 
Figure 42.7.
	 The quantization of orbit radii leads to energy quantization. Substituting rn 5 
n2a0 into Equation 42.9 gives

	 En 5 2
ke e

2

2a0
a 1

n2b ​ ​  n 5 1, 2, 3, . . . 	 (42.13)

Inserting numerical values into this expression, we find that

	 En 5 2
13.606 eV

n 2  ​ ​  n 5 1, 2, 3, . . . 	 (42.14)

Bohr radius 

� Radii of Bohr orbits 
in hydrogen

1Compare Equation 42.9 with its gravitational counterpart, Equation 13.19.

9a0

4a0

� e

a0
� e

The electron is shown in the 
lowest-energy orbit, but it could 
be in any of the allowed orbits.

Figure 42.7  ​The first three cir-
cular orbits predicted by the Bohr 
model of the hydrogen atom.
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	 42.3  Bohr’s Model of the Hydrogen Atom	 1303

Only energies satisfying this equation are permitted. The lowest allowed energy 
level, the ground state, has n 5 1 and energy E1 5 213.606 eV. The next energy 
level, the first excited state, has n 5 2 and energy E 2 5 E1/22 5 23.401 eV. Figure 
42.8 is an energy-level diagram showing the energies of these discrete energy states 
and the corresponding quantum numbers n. The uppermost level corresponds to 
n 5 ` (or r 5 `) and E 5 0.
	 Notice how the allowed energies of the hydrogen atom differ from those 
of the particle in a box. The particle-in-a-box energies (Eq. 41.14) increase as 
n2, so they become farther apart in energy as n increases. On the other hand, 
the energies of the hydrogen atom (Eq. 42.14) are inversely proportional to n2, 
so their separation in energy becomes smaller as n increases. The separation 
between energy levels approaches zero as n approaches infinity and the energy 
approaches zero.
	 Zero energy represents the boundary between a bound system of an electron 
and a proton and an unbound system. If the energy of the atom is raised from that 
of the ground state to any energy larger than zero, the atom is ionized. The mini-
mum energy required to ionize the atom in its ground state is called the ionization 
energy. As can be seen from Figure 42.8, the ionization energy for hydrogen in 
the ground state, based on Bohr’s calculation, is 13.6 eV. This finding constituted 
another major achievement for the Bohr theory because the ionization energy for 
hydrogen had already been measured to be 13.6 eV.
	 Equations 42.5 and 42.13 can be used to calculate the frequency of the pho-
ton emitted when the electron makes a transition from an outer orbit to an inner 
orbit:

	 f 5
Ei 2 Ef

h
5

ke e
2

2a0h
a 1

nf 2
 2

1
ni

2b 	 (42.15)

Because the quantity measured experimentally is wavelength, it is convenient to use 
c 5 fl to express Equation 42.15 in terms of wavelength:

	
1
l

5
f
c

5
ke e

2

2a0hc
 a 1

nf
2 2

1
ni

2b 	 (42.16)

Remarkably, this expression, which is purely theoretical, is identical to the general 
form of the empirical relationships discovered by Balmer and Rydberg and given by 
Equations 42.1 to 42.4:

	
1
l

5 R Ha 1
nf

2 2
1

ni
2b 	 (42.17)

provided the constant kee 2/2a0hc is equal to the experimentally determined Ryd-
berg constant. Soon after Bohr demonstrated that these two quantities agree to 
within approximately 1%, this work was recognized as the crowning achievement 
of his new quantum theory of the hydrogen atom. Furthermore, Bohr showed that 
all the spectral series for hydrogen have a natural interpretation in his theory. The 
different series correspond to transitions to different final states characterized by 
the quantum number nf . Figure 42.8 shows the origin of these spectral series as 
transitions between energy levels.
	 Bohr extended his model for hydrogen to other elements in which all but one 
electron had been removed. These systems have the same structure as the hydro-
gen atom except that the nuclear charge is larger. Ionized elements such as He1, 
Li21, and Be31 were suspected to exist in hot stellar atmospheres, where atomic 
collisions frequently have enough energy to completely remove one or more atomic 
electrons. Bohr showed that many mysterious lines observed in the spectra of the 
Sun and several other stars could not be due to hydrogen but were correctly pre-
dicted by his theory if attributed to singly ionized helium. In general, the number 
of protons in the nucleus of an atom is called the atomic number of the element 

5
4
3

1

2
Balmer
series

Paschen
series

Lyman
series

�3.401

�1.512

�13.606

�0.850 4
�0.544 2

0.00
E (eV)

�
n

The colored arrows for the 
Balmer series indicate that 
this series results in the 
emission of visible light.

E
N

E
R

G
Y

Figure 42.8  An energy-level 
diagram for the hydrogen atom. 
Quantum numbers are given on 
the left, and energies (in electron 
volts) are given on the right. Ver-
tical arrows represent the four 
lowest-energy transitions for each 
of the spectral series shown.
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1304	C hapter 42 A tomic Physics

and is given the symbol Z. To describe a single electron orbiting a fixed nucleus of 
charge 1Ze, Bohr’s theory gives

	 rn 5 1n2 2 a0

Z
	 (42.18)

	 En 5 2
ke e

2

2a0
aZ 2

n2  b n 5 1, 2, 3, c	 (42.19)

	 Although the Bohr theory was triumphant in its agreement with some experi-
mental results on the hydrogen atom, it suffered from some difficulties. One of the 
first indications that the Bohr theory needed to be modified arose when improved 
spectroscopic techniques were used to examine the spectral lines of hydrogen. It 
was found that many of the lines in the Balmer and other series were not single 
lines at all. Instead, each was a group of lines spaced very close together. An addi-
tional difficulty arose when it was observed that in some situations certain single 
spectral lines were split into three closely spaced lines when the atoms were placed 
in a strong magnetic field. Efforts to explain these and other deviations from the 
Bohr model led to modifications in the theory and ultimately to a replacement 
theory that will be discussed in Section 42.4.

Bohr’s Correspondence Principle
In our study of relativity, we found that Newtonian mechanics is a special case of 
relativistic mechanics and is usable only for speeds much less than c. Similarly,

quantum physics agrees with classical physics when the difference between 
quantized levels becomes vanishingly small.

This principle, first set forth by Bohr, is called the correspondence principle.2

	 For example, consider an electron orbiting the hydrogen atom with n . 10 000. 
For such large values of n, the energy differences between adjacent levels approach 
zero; therefore, the levels are nearly continuous. Consequently, the classical model 
is reasonably accurate in describing the system for large values of n. According to 
the classical picture, the frequency of the light emitted by the atom is equal to the 
frequency of revolution of the electron in its orbit about the nucleus. Calculations 
show that for n . 10 000, this frequency is different from that predicted by quan-
tum mechanics by less than 0.015%.

Q	 uick Quiz 42.1  ​A hydrogen atom is in its ground state. Incident on the atom is a 
photon having an energy of 10.5 eV. What is the result? (a) The atom is excited 
to a higher allowed state. (b) The atom is ionized. (c) The photon passes by the 
atom without interaction.

Q	 uick Quiz 42.2 ​ A hydrogen atom makes a transition from the n 5 3 level to the 
n 5 2 level. It then makes a transition from the n 5 2 level to the n 5 1 level. 
Which transition results in emission of the longer-wavelength photon? (a) the 
first transition (b) the second transition (c) neither transition because the wave-
lengths are the same for both

2In reality, the correspondence principle is the starting point for Bohr’s property 2(c) on angular momentum quan-
tization. To see how property 2(c) arises from the correspondence principle, see J. W. Jewett Jr., Physics Begins with 
Another M . . . Mysteries, Magic, Myth, and Modern Physics (Boston: Allyn & Bacon, 1996), pp. 353–356.

Pitfall Prevention 42.2
The Bohr Model Is Great, but . . .   
The Bohr model correctly predicts 
the ionization energy and general 
features of the spectrum for hydro-
gen, but it cannot account for the 
spectra of more complex atoms 
and is unable to predict many 
subtle spectral details of hydrogen 
and other simple atoms. Scattering 
experiments show that the electron 
in a hydrogen atom does not move 
in a flat circle around the nucleus. 
Instead, the atom is spherical. The 
ground-state angular momentum 
of the atom is zero and not ".

Example 42.1	     Electronic Transitions in Hydrogen

(A)  ​The electron in a hydrogen atom makes a transition from the n 5 2 energy level to the ground level (n 5 1). Find 
the wavelength and frequency of the emitted photon.
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	 42.3  Bohr’s Model of the Hydrogen Atom	 1305

Use Equation 42.17 to obtain l, with ni 5 2 and 
nf 5 1:

1
l

5 RH a 1
12 2

1
22b 5

3R H

4

l 5
4

3R H
5

4
3 11.097 3 107 m21 2 5 1.22 3 1027 m 5 122 nm

Use Equation 34.20 to find the frequency of the photon: f 5
c
l

5
3.00 3 108 m/s
1.22 3 1027 m

5 2.47 3 1015 Hz

(B)  ​In interstellar space, highly excited hydrogen atoms called Rydberg atoms have been observed. Find the wave-
length to which radio astronomers must tune to detect signals from electrons dropping from the n 5 273 level to the 
n 5 272 level.

S o l u ti  o n

Solve for l: l 5
1

9.88 3 1028R H
5

1
19.88 3 1028 2 11.097 3 107 m21 2 5 0.922 m

Use Equation 42.17, this time with  
ni 5 273 and nf 5 272:

1
l

5 RH a 1
nf

2 2
1

ni
2b 5 R H a 1

1272 22 2
1

1273 22b 5 9.88 3 1028 R H

(C)  ​What is the radius of the electron orbit for a Rydberg atom for which n 5 273?

S o l u ti  o n

Use Equation 42.12 to find the radius of the orbit: r273 5 (273)2 (0.052 9 nm) 5 3.94 mm

This radius is large enough that the atom is on the verge of becoming macroscopic!

(D)  ​How fast is the electron moving in a Rydberg atom for which n 5 273?

S o l u ti  o n

Solve Equation 42.8 for the electron’s speed: v 5 Å
ke e

2

mer
5 Å

18.99 3 109 N # m2/C2 2 11.60 3 10219 C 22

19.11 3 10231 kg 2 13.94 3 1026 m 2
5 8.01 3 103 m/s

What if radiation from the Rydberg atom in part (B) is treated classically? What is the wavelength of 
radiation emitted by the atom in the n 5 273 level?

Answer  ​Classically, the frequency of the emitted radiation is that of the rotation of the electron around the nucleus.

What If ?

Find the wavelength of the radiation from 
Equation 34.20:

l 5
c
f

5
3.00 3 108 m/s
3.24 3 108 Hz

5 0.927 m

Substitute the radius and speed from parts (C) and (D):   f 5
v

2pr
5

8.02 3 103 m/s
2p 13.94 3 1026 m 2 5 3.24 3 108 Hz

Calculate this frequency using the period defined in 
Equation 4.15:

  f 5
1
T

5
v

2pr

This value is about 0.5% different from the wavelength calculated in part (B). As indicated in the discussion of Bohr’s 
correspondence principle, this difference becomes even smaller for higher values of n.

	

▸ 42.1 c o n t i n u e d

Conceptualize  ​Imagine the electron in a circular orbit about the nucleus as in the Bohr model in Figure 42.6. When 
the electron makes a transition to a lower stationary state, it emits a photon with a given frequency and drops to a cir-
cular orbit of smaller radius.

Categorize  ​We evaluate the results using equations developed in this section, so we categorize this example as a sub-
stitution problem.

S o l u ti  o n
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1306	C hapter 42 A tomic Physics

42.4	 The Quantum Model of the Hydrogen Atom
In the preceding section, we described how the Bohr model views the electron 
as a particle orbiting the nucleus in nonradiating, quantized energy levels. This 
model combines both classical and quantum concepts. Although the model dem-
onstrates excellent agreement with some experimental results, it cannot explain 
others. These difficulties are removed when a full quantum model involving the 
Schrödinger equation is used to describe the hydrogen atom.
	 The formal procedure for solving the problem of the hydrogen atom is to substi-
tute the appropriate potential energy function into the Schrödinger equation, find 
solutions to the equation, and apply boundary conditions as we did for the particle in 
a box in Chapter 41. The potential energy function for the hydrogen atom is that due 
to the electrical interaction between the electron and the proton (see Section 25.3):

	 U 1r 2 5 2ke 
e 2

r
	 (42.20)

where k e is the Coulomb constant and r is the radial distance from the proton (situ-
ated at r 5 0) to the electron.
	 The mathematics for the hydrogen atom is more complicated than that for the 
particle in a box for two primary reasons: (1) the atom is three-dimensional, and 
(2) U is not constant, but rather depends on the radial coordinate r. If the time-
independent Schrödinger equation (Eq. 41.15) is extended to three-dimensional 
rectangular coordinates, the result is

2
U2

2m
a'

2c

'x2 1
'2c

'y2 1
'2c

'z2 b 1 Uc 5 Ec

It is easier to solve this equation for the hydrogen atom if rectangular coordinates 
are converted to spherical polar coordinates, an extension of the plane polar coor-
dinates introduced in Section 3.1. In spherical polar coordinates, a point in space 
is represented by the three variables r, u, and f, where r is the radial distance from 
the origin, r 5 !x2 1 y2 1 z2 . With the point represented at the end of a posi-
tion vector rS as shown in Figure 42.9, the angular coordinate u specifies its angu-
lar position relative to the z axis. Once that position vector is projected onto the 
xy plane, the angular coordinate f specifies the projection’s (and therefore the 
point’s) angular position relative to the x axis.
	 The conversion of the three-dimensional time-independent Schrödinger equa-
tion for c(x, y, z) to the equivalent form for c(r, u, f) is straightforward but very 
tedious, so we omit the details.3 In Chapter 41, we separated the time dependence 
from the space dependence in the general wave function C. In this case of the 
hydrogen atom, the three space variables in c(r, u, f) can be similarly separated by 
writing the wave function as a product of functions of each single variable:

c(r, u, f) 5 R(r)f(u)g(f)

In this way, Schrödinger’s equation, which is a three-dimensional partial differen-
tial equation, can be transformed into three separate ordinary differential equa-
tions: one for R(r), one for f(u), and one for g(f). Each of these functions is subject 
to boundary conditions. For example, R(r) must remain finite as r S 0 and r S `; 
furthermore, g(f) must have the same value as g(f 1 2p).
	 The potential energy function given in Equation 42.20 depends only on the radial 
coordinate r and not on either of the angular coordinates; therefore, it appears only 
in the equation for R(r). As a result, the equations for u and f are independent of the 
particular system and their solutions are valid for any system exhibiting rotation.
	 When the full set of boundary conditions is applied to all three functions, three 
different quantum numbers are found for each allowed state of the hydrogen atom, 

z

y

P

x

f

u
rS 

Figure 42.9  ​A point P in space 
is located by means of a position 
vector rS. In Cartesian coordi-
nates, the components of this 
vector are x, y, and z. In spherical 
polar coordinates, the point is 
described by r, the distance from 
the origin; u, the angle between 
rS and the z axis; and f, the angle 
between the x axis and a projec-
tion of rS onto the xy plane.

3Descriptions of the solutions to the Schrödinger equation for the hydrogen atom are available in modern physics 
textbooks such as R. A. Serway, C. Moses, and C. A. Moyer, Modern Physics, 3rd ed. (Belmont, CA: Brooks/Cole, 2005).
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	 42.4  The Quantum Model of the Hydrogen Atom	 1307

one for each of the separate differential equations. These quantum numbers are 
restricted to integer values and correspond to the three independent degrees of 
freedom (three space dimensions).
	 The first quantum number, associated with the radial function R(r) of the full wave 
function, is called the principal quantum number and is assigned the symbol n. The 
differential equation for R(r) leads to functions giving the probability of finding the 
electron at a certain radial distance from the nucleus. In Section 42.5, we will describe 
two of these radial wave functions. From the boundary conditions, the energies of the 
allowed states for the hydrogen atom are found to be related to n as follows:

	 En 5 2ake e
2

2a0
b 1

n 2 5 2
13.606 eV

n2  n 5 1, 2, 3, c	 (42.21)

This result is in exact agreement with that obtained in the Bohr theory (Eqs. 42.13 
and 42.14)! This agreement is remarkable because the Bohr theory and the full quan-
tum theory arrive at the result from completely different starting points.
	 The orbital quantum number, symbolized ,, comes from the differential equa-
tion for f(u) and is associated with the orbital angular momentum of the electron. 
The orbital magnetic quantum number m, arises from the differential equation 
for g(f). Both , and m, are integers. We will expand our discussion of these two 
quantum numbers in Section 42.6, where we also introduce a fourth (nonintegral) 
quantum number, resulting from a relativistic treatment of the hydrogen atom.
	 The application of boundary conditions on the three parts of the full wave func-
tion leads to important relationships among the three quantum numbers as well as 
certain restrictions on their values:

The values of n are integers that can range from 1 to .̀

The values of , are integers that can range from 0 to n 2 1.

The values of m, are integers that can range from 2, to ,.

For example, if n 5 1, only , 5 0 and m, 5 0 are permitted. If n 5 2, then , may 
be 0 or 1; if , 5 0, then m, 5 0; but if , 5 1, then m, may be 1, 0, or 21. Table 42.1 
summarizes the rules for determining the allowed values of , and m, for a given n.
	 For historical reasons, all states having the same principal quantum number are 
said to form a shell. Shells are identified by the letters K, L, M, . . . , which desig-
nate the states for which n 5 1, 2, 3, . . . . Likewise, all states having the same values 
of n and , are said to form a subshell. The letters4 s, p, d, f, g, h, . . . are used to 
designate the subshells for which , 5 0, 1, 2, 3, . . . . The state designated by 3p, for 
example, has the quantum numbers n 5 3 and , 5 1; the 2s state has the quantum 
numbers n 5 2 and , 5 0. These notations are summarized in Tables 42.2 and 42.3 
(page 1308).
	 States that violate the rules given in Table 42.1 do not exist. (They do not satisfy 
the boundary conditions on the wave function.) For instance, the 2d state, which 

WW �Allowed energies of the 
quantum hydrogen atom

WW �Restrictions on the values 
of hydrogen-atom quantum 
numbers

Table 42.1 Three Quantum Numbers for the Hydrogen Atom
Quantum		  Allowed	 Number of
Number	 Name	 Values	 Allowed States

n	 Principal quantum 	 1, 2, 3, . . .	 Any number
	   number	
,	 Orbital quantum 	 0, 1, 2, . . . , n 2 1	 n
	   number	
m,	 Orbital magnetic 	 2,, 2, 1 1, . . . , 0, . . . , , 2 1, ,	 2, 1 1
	   quantum number	

4The first four of these letters come from early classifications of spectral lines: sharp, principal, diffuse, and funda-
mental. The remaining letters are in alphabetical order.

Pitfall Prevention 42.3
Energy Depends on n Only for 
Hydrogen  The implication in Equa-
tion 42.21 that the energy depends 
only on the quantum number n is 
true only for the hydrogen atom. 
For more complicated atoms, we 
will use the same quantum num-
bers developed here for hydrogen. 
The energy levels for these atoms 
depend primarily on n, but they 
also depend to a lesser degree on 
other quantum numbers.

Pitfall Prevention 42.4
Quantum Numbers Describe a 
System  It is common to assign the 
quantum numbers to an electron. 
Remember, however, that these 
quantum numbers arise from 
the Schrödinger equation, which 
involves a potential energy func-
tion for the system of the electron 
and the nucleus. Therefore, it is 
more proper to assign the quantum 
numbers to the atom, but it is more 
popular to assign them to an elec-
tron. We follow this latter usage 
because it is so common.

Table 42.2 Atomic 
Shell Notations
n	 Shell Symbol

1	 K
2	 L
3	 M
4	 N
5	 O
6	 P
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1308	C hapter 42 A tomic Physics

Table 42.3 Atomic 
Subshell Notations
,	 Subshell Symbol

0	 s
1	 p
2	 d
3	 f
4	 g
5	 h

would have n 5 2 and , 5 2, cannot exist because the highest allowed value of , is 
n 2 1, which in this case is 1. Therefore, for n 5 2, the 2s and 2p states are allowed 
but 2d, 2f, . . . are not. For n 5 3, the allowed subshells are 3s, 3p, and 3d.

Q	 uick Quiz 42.3  ​How many possible subshells are there for the n 5 4 level of 
hydrogen? (a) 5 (b) 4 (c) 3 (d) 2 (e) 1

Q	 uick Quiz 42.4 ​ When the principal quantum number is n 5 5, how many differ-
ent values of (a) , and (b) m, are possible?

	

Example 42.2	     The n 5 2 Level of Hydrogen

For a hydrogen atom, determine the allowed states corresponding to the principal quantum number n 5 2 and calcu-
late the energies of these states.

Conceptualize  ​Think about the atom in the n 5 2 quantum state. There is only one such state in the Bohr theory, but 
our discussion of the quantum theory allows for more states because of the possible values of , and m , .

Categorize  ​We evaluate the results using rules discussed in this section, so we categorize this example as a substitution 
problem.

S o l u ti  o n

From Table 42.1, we find that when n 5 2, , can be 0 or 
1. Find the possible values of m, from Table 42.1:

, 5 0 ​ ​  S ​ ​  m, 5 0

, 5 1 ​ ​  S ​ ​  m, 5 21, 0, or 1

Hence, we have one state, designated as the 2s state, that is associated with the quantum numbers n 5 2, , 5 0, and  
m, 5 0, and we have three states, designated as 2p states, for which the quantum numbers are n 5 2, , 5 1, and m, 5 
21; n 5 2, , 5 1, and m, 5 0; and n 5 2, , 5 1, and m, 5 1.

Find the energy for all four of these states with n 5 2 
from Equation 42.21:

E 2 5 2
13.606 eV

22 5  23.401 eV

42.5	 The Wave Functions for Hydrogen
Because the potential energy of the hydrogen atom depends only on the radial 
distance r between nucleus and electron, some of the allowed states for this atom 
can be represented by wave functions that depend only on r. For these states, f(u) 
and g(f) are constants. The simplest wave function for hydrogen is the one that 
describes the 1s state and is designated c1s(r):

	 c1s 1r 2 5
1

"pa0
3
 e2r/a0 	 (42.22)

where a0 is the Bohr radius. (In Problem 26, you can verify that this function satis-
fies the Schrödinger equation.) Note that c1s approaches zero as r approaches ` 
and is normalized as presented (see Eq. 41.7). Furthermore, because c1s depends 
only on r, it is spherically symmetric. This symmetry exists for all s states.
	 Recall that the probability of finding a particle in any region is equal to an inte-
gral of the probability density u c u2 for the particle over the region. The probability 
density for the 1s state is

	 0 c1s 0 2 5 a 1
pa 0

3b e22r/a0 	 (42.23)

� Wave function for hydrogen 
in its ground state
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	 42.5  The Wave Functions for Hydrogen	 1309

Because we imagine the nucleus to be fixed in space at r 5 0, we can assign this 
probability density to the question of locating the electron. According to Equation 
41.3, the probability of finding the electron in a volume element dV is uc u2 dV. It is 
convenient to define the radial probability density function P(r) as the probability per 
unit radial length of finding the electron in a spherical shell of radius r and thick-
ness dr. Therefore, P(r) dr is the probability of finding the electron in this shell. 
The volume dV of such an infinitesimally thin shell equals its surface area 4pr 2 
multiplied by the shell thickness dr (Fig. 42.10), so we can write this probability as

P(r) dr 5 uc u2 dV 5 uc u2 4pr 2 dr

Therefore, the radial probability density function for an s state is

	 P(r) 5 4pr 2uc u2	 (42.24)

Substituting Equation 42.23 into Equation 42.24 gives the radial probability density 
function for the hydrogen atom in its ground state:

	 P1s 1r 2 5 a4r 2

a0
3  be22r/a0 	 (42.25)

	 A plot of the function P1s(r) versus r is presented in Figure 42.11a. The peak of 
the curve corresponds to the most probable value of r for this particular state. We 
show in Example 42.3 that this peak occurs at the Bohr radius, the radial position 
of the electron when the hydrogen atom is in its ground state in the Bohr theory, 
another remarkable agreement between the Bohr theory and the quantum theory.
	 According to quantum mechanics, the atom has no sharply defined boundary 
as suggested by the Bohr theory. The probability distribution in Figure 42.11a sug-
gests that the charge of the electron can be modeled as being extended throughout 
a region of space, commonly referred to as an electron cloud. Figure 42.11b shows the 
probability density of the electron in a hydrogen atom in the 1s state as a function 
of position in the xy plane. The darkness of the blue color corresponds to the value 
of the probability density. The darkest portion of the distribution appears at r 5 a0, 
corresponding to the most probable value of r for the electron.

WW ��Radial probability density for 
the 1s state of hydrogen

dr

r

Figure 42.10  ​A spherical shell 
of radius r and infinitesimal thick-
ness dr has a volume equal to  
4pr 2 dr.

P 1s(r)

a0 � 0.052 9 nm
r

x

y

r � a0

The probability has 
its maximum value 
when r equals the 
Bohr radius a0.

In this representation, the 
darkest color, representing 
the maximum probability, 
occurs at the Bohr radius.

a b

Figure 42.11  (a) The probability 
of finding the electron as a func-
tion of distance from the nucleus 
for the hydrogen atom in the 1s 
(ground) state. (b) The cross sec-
tion in the xy plane of the spherical 
electronic charge distribution for 
the hydrogen atom in its 1s state.

continued

Example 42.3	     The Ground State of Hydrogen

(A)  ​Calculate the most probable value of r for an electron in the ground state of the hydrogen atom.
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1310	C hapter 42 A tomic Physics

Conceptualize  ​Do not imagine the electron in orbit around the proton as in the Bohr theory of the hydrogen atom. 
Instead, imagine the charge of the electron spread out in space around the proton in an electron cloud with spherical 
symmetry.

Categorize  ​Because the statement of the problem asks for the “most probable value of r,” we categorize this example 
as a problem in which the quantum approach is used. (In the Bohr atom, the electron moves in an orbit with an exact 
value of r.)

Analyze  The most probable value of r corresponds to the maximum in the plot of P1s(r) versus r. We can evaluate the 
most probable value of r by setting dP1s /dr 5 0 and solving for r.

S o l u ti  o n

Set the bracketed expression equal to zero and solve 
for r :

1 2
r
a0

5 0   S    r 5 a0

Differentiate Equation 42.25 and set the result equal to 
zero:

dP1s

dr
5

d
dr

c a4r 2

a0
3 be22r/a0 d 5 0

e22r/a0 
d
dr

1r 2 2 1 r 2 
d
dr

1e22r/a 0 2 5 0

2re22r/a0 1 r 2(22/a0)e22r/a0 5 0

(1)   2r [1 2 (r/a0)]e22r/a0 5 0

Finalize  ​The most probable value of r is the Bohr radius! Equation (1) is also satisfied at r 5 0 and as r S .̀ These 
points are locations of the minimum probability, which is equal to zero as seen in Figure 42.11a.

(B)  ​Calculate the probability that the electron in the ground state of hydrogen will be found outside the Bohr radius.

Analyze  The probability is found by integrating the radial probability density function P1s(r) for this state from the 
Bohr radius a0 to .̀

S o l u ti  o n

Evaluate between the limits: P 5 0 2 321
2 14 1 4 1 2 2e22 4 5 5e22 5 0.677 or 67.7%

Evaluate the integral using partial integration (see 
Appendix B.7):

P 5 2 1
2 1z 2 1 2z 1 2 2e2z  P

`

2

Put the integral in dimensionless form by changing 
variables from r to z 5 2r/a0, noting that z 5 2 when 
r 5 a0 and that dr 5 (a0/2) dz:

P 5
4

a0
3 3

`

2
aza0

2
b

2

e2z aa0

2
b dz 5 1

2 3
`

2
z 2e2z dz

Set up this integral using Equation 42.25: P 5 3
`

a 0

P1s 1r 2  dr 5
4

a 0
3 3

`

a0

r 2e22r/a0 dr

Finalize  ​This probability is larger than 50%. The reason for this value is the asymmetry in the radial probability den-
sity function (Fig. 42.11a), which has more area to the right of the peak than to the left.

What if you were asked for the average value of r for the electron in the ground state rather than the most 
probable value?

Answer  ​The average value of r is the same as the expectation value for r.

What If ?

Use Equation 42.25 to evaluate the average value of r : ravg 5 8r 9 5 3
`

0
rP 1r 2  dr 5 3

`

0
r a4r 2

a0
3 b e22r/a 0 dr

5 a 4
a0

3b3
`

0
r 3e22r/a0 dr

▸ 42.3 c o n t i n u e d
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	 42.6  Physical Interpretation of the Quantum Numbers	 1311

Evaluate the integral with the help of the first integral 
listed in Table B.6 in Appendix B:

ravg 5 a 4
a0

3b a
3!

12/a0 24b 5 3
2a0

Again, the average value is larger than the most probable value because of the asymmetry in the wave function as seen 
in Figure 42.11a.

	 The next-simplest wave function for the hydrogen atom is the one correspond-
ing to the 2s state (n 5 2, , 5 0). The normalized wave function for this state is

	 c2s 1r 2 5
1

4"2p
a 1

a0
b

3/2

a2 2
r

a0
be2r/2a 0 	 (42.26)

Again notice that c2s depends only on r and is spherically symmetric. The energy 
corresponding to this state is E2 5 2(13.606/4) eV 5 23.401 eV. This energy level rep-
resents the first excited state of hydrogen. A plot of the radial probability density func-
tion for this state in comparison to the 1s state is shown in Figure 42.12. The plot for 
the 2s state has two peaks. In this case, the most probable value corresponds to that 
value of r that has the highest value of P (< 5a0). An electron in the 2s state would be 
much farther from the nucleus (on the average) than an electron in the 1s state.

42.6	 �Physical Interpretation of the  
Quantum Numbers

The principal quantum number n of a particular state in the hydrogen atom deter-
mines the energy of the atom according to Equation 42.21. Now let’s see what the 
other quantum numbers in our atomic model correspond to physically.

The Orbital Quantum Number <
We begin this discussion by returning briefly to the Bohr model of the atom. If the 
electron moves in a circle of radius r, the magnitude of its angular momentum rela-
tive to the center of the circle is L 5 mevr. The direction of L

S
 is perpendicular to the 

plane of the circle and is given by a right-hand rule. According to classical physics, 
the magnitude L of the orbital angular momentum can have any value. The Bohr 
model of hydrogen, however, postulates that the magnitude of the angular momen-
tum of the electron is restricted to multiples of "; that is, L 5 n". This model must 
be modified because it predicts (incorrectly) that the ground state of hydrogen has 
one unit of angular momentum. Furthermore, if L is taken to be zero in the Bohr 
model, the electron must be pictured as a particle oscillating along a straight line 
through the nucleus, which is a physically unacceptable situation.
	 These difficulties are resolved with the quantum-mechanical model of the atom, 
although we must give up the convenient mental representation of an electron 
orbiting in a well-defined circular path. Despite the absence of this representation, 
the atom does indeed possess an angular momentum and it is still called orbital 
angular momentum. According to quantum mechanics, an atom in a state whose 
principal quantum number is n can take on the following discrete values of the mag-
nitude of the orbital angular momentum:5

	 L 5 ", 1, 1 1 2 U  , 5 0, 1, 2, c, n 2 1 	 (42.27)

WW �Wave function for hydrogen 
in the 2s state

WW Allowed values of L

0.6
P(r)

1s

2s

0.5

0.4

0.3

0.2

0.1

0.0
0 4 8 12 16 20

r/a0

Figure 42.12    The radial prob-
ability density function versus  
r/a0 for the 1s and 2s states of  
the hydrogen atom.

5Equation 42.27 is a direct result of the mathematical solution of the Schrödinger equation and the application of 
angular boundary conditions. This development, however, is beyond the scope of this book.

	

▸ 42.3 c o n t i n u e d
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1312	C hapter 42 A tomic Physics

Given these allowed values of ,, we see that L 5 0 (corresponding to , 5 0) is an 
acceptable value of the magnitude of the angular momentum. That L can be zero 
in this model serves to point out the inherent difficulties in any attempt to describe 
results based on quantum mechanics in terms of a purely particle-like (classical) 
model. In the quantum-mechanical interpretation, the electron cloud for the L 5 0 
state is spherically symmetric and has no fundamental rotation axis.

The Orbital Magnetic Quantum Number m,

Because angular momentum is a vector, its direction must be specified. Recall 
from Chapter 29 that a current loop has a corresponding magnetic moment mS 5 I A

S
  

(Eq. 29.15), where I  is the current in the loop and A
S

 is a vector perpendicular to the 
loop whose magnitude is the area of the loop. Such a moment placed in a magnetic 
field B

S
 interacts with the field. Suppose a weak magnetic field applied along the z 

axis defines a direction in space. According to classical physics, the energy of the 
loop–field system depends on the direction of the magnetic moment of the loop 
with respect to the magnetic field as described by Equation 29.18, UB 5 2mS ? B

S
. 

Any energy between 2mB and 1mB is allowed by classical physics.
	 In the Bohr theory, the circulating electron represents a current loop. In the 
quantum-mechanical approach to the hydrogen atom, we abandon the circular 
orbit viewpoint of the Bohr theory, but the atom still possesses an orbital angular 
momentum. Therefore, there is some sense of rotation of the electron around the 
nucleus and a magnetic moment is present due to this angular momentum.
	 As mentioned in Section 42.3, spectral lines from some atoms are observed to 
split into groups of three closely spaced lines when the atoms are placed in a mag-
netic field. Suppose the hydrogen atom is located in a magnetic field. According to 
quantum mechanics, there are discrete directions allowed for the magnetic moment 
vector mS with respect to the magnetic field vector B

S
.  This situation is very different 

from that in classical physics, in which all directions are allowed.
	 Because the magnetic moment mS of the atom can be related6 to the angular 
momentum vector L

S
,  the discrete directions of mS translate to the direction of  

L
S

 being quantized. This quantization means that Lz (the projection of L
S

 along the 
z axis) can have only discrete values. The orbital magnetic quantum number m, 
specifies the allowed values of the z component of the orbital angular momentum 
according to the expression7

	 Lz 5 m,"	 (42.28)

The quantization of the possible orientations of L
S

 with respect to an external mag-
netic field is often referred to as space quantization.
	 Let’s look at the possible magnitudes and orientations of L

S
 for a given value of ,. 

Recall that m, can have values ranging from 2, to ,. If , 5 0, then L 5 0; the only 
allowed value of m, is m, 5 0 and Lz 5 0. If , 5 1, then L 5 !2 U from Equation 
42.27. The possible values of m, are 21, 0, and 1, so Equation 42.28 tells us that Lz 
may be 2", 0, or ". If , 5 2, the magnitude of the orbital angular momentum is 
!6 U. The value of m, can be 22, 21, 0, 1, or 2, corresponding to Lz values of 22", 
2", 0, ", or 2", and so on.
	 Figure 42.13a shows a vector model that describes space quantization for the  
case , 5 2. Notice that L

S
 can never be aligned parallel or antiparallel to B

S
  

because the maximum value of Lz is ,", which is less than the magnitude of the angu-
lar momentum L 5 !, 1, 1 1 2 U. The angular momentum vector L

S
 is allowed to be 

perpendicular to B
S

,  which corresponds to the case of Lz 5 0 and , 5 0.

Allowed values of Lz 

6See Equation 30.22 for this relationship as derived from a classical viewpoint. Quantum mechanics arrives at the 
same result.
7As with Equation 42.27, the relationship expressed in Equation 42.28 arises from the solution to the Schrödinger 
equation and application of boundary conditions.
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	 42.6  Physical Interpretation of the Quantum Numbers	 1313

	 The vector L
S

 does not point in one specific direction. If L
S

 were known exactly, 
all three components Lx , Ly , and Lz would be specified, which is inconsistent  
with an angular momentum version of the uncertainty principle. How can the  
magnitude and z component of a vector be specified, but the vector not be  
completely specified? To answer, imagine that Lx and Ly are completely unspecified 
so that L

S
 lies anywhere on the surface of a cone that makes an angle u with the z 

axis as shown in Figure 42.13b. From the figure, we see that u is also quantized and 
that its values are specified through the relationship

	 cos u 5
Lz

L
5

m,

", 1, 1 1 2
	 (42.29)

	 If the atom is placed in a magnetic field, the energy UB 5 2mS ? B
S

 is additional 
energy for the atom–field system beyond that described in Equation 42.21. Because 
the directions of mS are quantized, there are discrete total energies for the system 
corresponding to different values of m ,. Figure 42.14a shows a transition between 
two atomic levels in the absence of a magnetic field. In Figure 42.14b, a magnetic 

WW �Allowed directions of the 
orbital angular momentum 
vector

f0

hf0

h( f0 � f )

( f0  � f )

No magnetic
field

Magnetic field
present

Spectrum with magnetic
field present

Spectrum without
magnetic field

f0

� 1�

� 0�

�m   �  1
�m   �  0
�m   �  �1

�m   �  0

hf0

h( f0 � f )

( f0  � f )

�

� �

�

E
N

E
R

G
Y

E
N

E
R

G
Y

Atoms in three excited states 
decay to the ground state with 
three different energies, and 
three spectral lines are observed.

a b

When B � 0, the excited 
state has a single energy 
and only a single spectral 
line at f0 is observed.

S

Figure 42.14  ​The Zeeman 
effect. (a) Energy levels for the 
ground and first excited states of 
a hydrogen atom. (b) When the 
atom is immersed in a magnetic 
field B

S
,  the state with , 5 1 splits 

into three states, giving rise to 
emission lines at f0, f0 1 Df, and 
f0 2 Df, where Df is the frequency 
shift of the emission caused by the 
magnetic field.

Lz � �2�

� � 2

Lz � ��

Lz � 0

Lz � �

Lz � 2�

Lz � �2�

Lz � ��

Lz � 0

Lz � �

Lz � 2�
Lz

6 �

z

z

The allowed projections on 
the z axis af the orbital 
angular momentum L are 
integer multiples of �.

Because the x and y components of 
the orbital angular momentum 
vector are not quantized, the vector 
L lies on the surface of a cone.

B
S

B
S

L
S

L
S

a b

u

�

S

S

Figure 42.13  ​A vector model 
for , 5 2.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



1314	C hapter 42 A tomic Physics

	

Example 42.4	     Space Quantization for Hydrogen

Consider the hydrogen atom in the , 5 3 state. Calculate the magnitude of L
S

,  the allowed values of Lz , and the cor-
responding angles u that L

S
 makes with the z axis.

Conceptualize  ​Consider Figure 42.13a, which is a vector model for , 5 2. Draw such a vector model for , 5 3 to help 
with this problem.

Categorize  ​We evaluate results using equations developed in this section, so we categorize this example as a substitu-
tion problem.

S o l u ti  o n

Find the angles corresponding to these values of cos u: u 5 30.08, 54.78, 73.28, 90.08, 1078, 1258, 1508

Calculate the allowed values of cos u using Equation 
42.29:

cos u 5
63

2"3
5 60.866  cos u 5

62

2"3
5 60.577

cos u 5
61

2"3
5 60.289  cos u 5

0

2"3
5 0

Calculate the allowed values of Lz using Equation 42.28 
with m, 5 23, 22, 21, 0, 1, 2, and 3:

Lz 5 23U, 22U, 2U, 0, U, 2U, 3U

Calculate the magnitude of the orbital angular momen-
tum using Equation 42.27:

L 5 ", 1, 1 1 2 U 5 "3 13 1 1 2 U 5   2"3 U

What if the value of , is an arbitrary integer? For an arbitrary value of ,, how many values of m, are 
allowed?

Answer  ​For a given value of ,, the values of m, range from 2, to 1, in steps of 1. Therefore, there are 2, nonzero values 
of m, (specifically, 61, 62, . . . , 6,). In addition, one more value of m, 5 0 is possible, for a total of 2, 1 1 values of m,. 
This result is critical in understanding the results of the Stern–Gerlach experiment described below with regard to spin.

What If ?

field is applied and the upper level, with , 5 1, splits into three levels correspond-
ing to the different directions of mS. There are now three possible transitions from 
the , 5 1 subshell to the , 5 0 subshell. Therefore, in a collection of atoms, there 
are atoms in all three states and the single spectral line in Figure 42.14a splits into 
three spectral lines. This phenomenon is called the Zeeman effect.
	 The Zeeman effect can be used to measure extraterrestrial magnetic fields. For 
example, the splitting of spectral lines in light from hydrogen atoms in the surface 
of the Sun can be used to calculate the magnitude of the magnetic field at that loca-
tion. The Zeeman effect is one of many phenomena that cannot be explained with 
the Bohr model but are successfully explained by the quantum model of the atom.

The Spin Magnetic Quantum Number ms
The three quantum numbers n, ,, and m, discussed so far are generated by apply-
ing boundary conditions to solutions of the Schrödinger equation, and we can 
assign a physical interpretation to each quantum number. Let’s now consider elec-
tron spin, which does not come from the Schrödinger equation.
	 In Example 42.2, we found four quantum states corresponding to n 5 2. In real-
ity, however, eight such states occur. The additional four states can be explained 
by requiring a fourth quantum number for each state, the spin magnetic quantum 
number ms.
	 The need for this new quantum number arises because of an unusual feature 
observed in the spectra of certain gases, such as sodium vapor. Close examina-
tion of one prominent line in the emission spectrum of sodium reveals that the 

Wolfgang Pauli and Niels Bohr watch 
a spinning top. The spin of the elec-
tron is analogous to the spin of the 
top but is different in many ways.
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	 42.6  Physical Interpretation of the Quantum Numbers	 1315

8This phenomenon is a Zeeman effect for spin and is identical in nature to the Zeeman effect for orbital angular 
momentum discussed before Example 42.4 except that no external magnetic field is required. The magnetic field 
for this Zeeman effect is internal to the atom and arises from the relative motion of the electron and the nucleus.

line is, in fact, two closely spaced lines called a doublet.8 The wavelengths of these 
lines occur in the yellow region of the electromagnetic spectrum at 589.0 nm and  
589.6 nm. In 1925, when this doublet was first observed, it could not be explained 
with the existing atomic theory. To resolve this dilemma, Samuel Goudsmit (1902–
1978) and George Uhlenbeck (1900–1988), following a suggestion made by Aus-
trian physicist Wolfgang Pauli, proposed the spin quantum number.
	 To describe this new quantum number, it is convenient (but technically incor-
rect) to imagine the electron spinning about its axis as it orbits the nucleus as 
described in Section 30.6. As illustrated in Figure 42.15, only two directions exist 
for the electron spin. If the direction of spin is as shown in Figure 42.15a, the elec-
tron is said to have spin up. If the direction of spin is as shown in Figure 42.15b, the 
electron is said to have spin down. In the presence of a magnetic field, the energy 
associated with the electron is slightly different for the two spin directions. This 
energy difference accounts for the sodium doublet.
	 The classical description of electron spin—as resulting from a spinning elec-
tron—is incorrect. More recent theory indicates that the electron is a point particle, 
without spatial extent. Therefore, the electron is not modeled as a rigid object and 
cannot be considered to be spinning. Despite this conceptual difficulty, all experi-
mental evidence supports the idea that an electron does have some intrinsic angu-
lar momentum that can be described by the spin magnetic quantum number. Paul 
Dirac (1902–1984) showed that this fourth quantum number originates in the rela-
tivistic properties of the electron.
	 In 1921, Otto Stern (1888–1969) and Walter Gerlach (1889–1979) performed 
an experiment that demonstrated space quantization. Their results, however, were 
not in quantitative agreement with the atomic theory that existed at that time. In 
their experiment, a beam of silver atoms sent through a nonuniform magnetic field 
was split into two discrete components (Fig. 42.16). Stern and Gerlach repeated the 
experiment using other atoms, and in each case the beam split into two or more 
components. The classical argument is as follows. If the z direction is chosen to 
be the direction of the maximum nonuniformity of B

S
,  the net magnetic force on 

the atoms is along the z axis and is proportional to the component of the magnetic 
moment mS of the atom in the z direction. Classically, mS can have any orientation, 
so the deflected beam should be spread out continuously. According to quantum 
mechanics, however, the deflected beam has an integral number of discrete com-
ponents and the number of components determines the number of possible values 
of mz. Therefore, because the Stern–Gerlach experiment showed split beams, space 
quantization was at least qualitatively verified.

S
S

S
S

z z

a b

�e �e

Figure 42.15  ​The spin of an 
electron can be either (a) up or 
(b) down relative to a specified 
z axis. As in the case of orbital 
angular momentum, the x and 
y components of the spin angu-
lar momentum vector are not 
quantized.

Pitfall Prevention 42.5
The Electron Is Not Spinning   
Although the concept of a spin-
ning electron is conceptually 
useful, it should not be taken 
literally. The spin of the Earth 
is a mechanical rotation. On the 
other hand, electron spin is a 
purely quantum effect that  
gives the electron an angular 
momentum as if it were  
physically spinning.

A beam of silver atoms is 
split in two by a nonuniform 
magnetic field.

The shapes of the pole 
faces create a nonuniform 
magnetic field.

The pattern on the 
screen predicted by a 
classical analysis

The actual pattern 
observed in the 
experiment

Oven

Photographic
plate

Figure 42.16  ​The technique 
used by Stern and Gerlach to 
verify space quantization.
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1316	C hapter 42 A tomic Physics

	 For the moment, let’s assume the magnetic moment of the atom is due to the 
orbital angular momentum. Because mz is proportional to m,, the number of pos-
sible values of mz is 2, 1 1 as found in the What If? section of Example 42.4. Fur-
thermore, because , is an integer, the number of values of mz is always odd. This 
prediction is not consistent with Stern and Gerlach’s observation of two compo-
nents (an even number) in the deflected beam of silver atoms. Hence, either quan-
tum mechanics is incorrect or the model is in need of refinement.
	 In 1927, T. E. Phipps and J. B. Taylor repeated the Stern–Gerlach experiment 
using a beam of hydrogen atoms. Their experiment was important because it 
involved an atom containing a single electron in its ground state, for which the 
quantum theory makes reliable predictions. Recall that , 5 0 for hydrogen in its 
ground state, so m, 5 0. Therefore, we would not expect the beam to be deflected 
by the magnetic field at all because the magnetic moment mS of the atom is zero. 
The beam in the Phipps–Taylor experiment, however, was again split into two com-
ponents! On the basis of that result, we must conclude that something other than 
the electron’s orbital motion is contributing to the atomic magnetic moment.
	 As we learned earlier, Goudsmit and Uhlenbeck had proposed that the electron 
has an intrinsic angular momentum, spin, apart from its orbital angular momen-
tum. In other words, the total angular momentum of the electron in a particular 
electronic state contains both an orbital contribution L

S
 and a spin contribution S

S
.  

The Phipps–Taylor result confirmed the hypothesis of Goudsmit and Uhlenbeck.
	 In 1929, Dirac used the relativistic form of the total energy of a system to solve 
the relativistic wave equation for the electron in a potential well. His analysis con-
firmed the fundamental nature of electron spin. (Spin, like mass and charge, is 
an intrinsic property of a particle, independent of its surroundings.) Furthermore, 
the analysis showed that electron spin9 can be described by a single quantum num-
ber s, whose value can be only s 5 1

2. The spin angular momentum of the electron 
never changes. This notion contradicts classical laws, which dictate that a rotating 
charge slows down in the presence of an applied magnetic field because of the 
Faraday emf that accompanies the changing field (Chapter 31). Furthermore, if 
the electron is viewed as a spinning ball of charge subject to classical laws, parts of 
the electron near its surface would be rotating with speeds exceeding the speed of 
light. Therefore, the classical picture must not be pressed too far; ultimately, spin 
of an electron is a quantum entity defying any simple classical description.
	 Because spin is a form of angular momentum, it must follow the same quantum 
rules as orbital angular momentum. In accordance with Equation 42.27, the magni-
tude of the spin angular momentum S

S
 for the electron is

	 S 5 "s 1s 1 1 2 U 5
!3
2

 U	 (42.30)

	 Like orbital angular momentum L
S

,  spin angular momentum S
S

 exhibits space 
quantization as described in Figure 42.17. The spin vector S

S
 can have two orienta-

tions relative to a z axis, specified by the spin magnetic quantum number ms 5 61
2. 

Similar to Equation 42.28 for orbital angular momentum, the z component of spin 
angular momentum is

	 Sz 5 ms U 5 61
2 U 	 (42.31)

The two values 6"/2 for Sz correspond to the two possible orientations for S
S

 shown 
in Figure 42.17. The value ms 5 11

2 refers to the spin-up case, and ms 5 21
2 refers 

to the spin-down case. Notice that Equations 42.30 and 42.31 do not allow the spin 
vector to lie along the z axis. The actual direction of S

S
 is at a relatively large angle 

with respect to the z axis as shown in Figures 42.15 and 42.17.

� Magnitude of the spin angular 
 momentum of an electron

Allowed values of Sz 

9Scientists often use the word spin when referring to the spin angular momentum quantum number. For example, it 
is common to say, “The electron has a spin of one half.”
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Figure 42.17  ​Spin angular 
momentum S

S
 exhibits space 

quantization. This figure shows 
the two allowed orientations of 
the spin angular momentum 
vector S

S
 and the spin magnetic 

moment mSspin for a spin-12 particle, 
such as the electron.
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	 As discussed in the What If? feature of Example 42.4, there are 2, 1 1 possible 
values of m, for orbital angular momentum. Similarly, for spin angular momen-
tum, there are 2s 1 1 values of ms . For a spin of s 5 1

2, the number of values of ms is  
2s 1 1 5 2. These two possibilities for ms lead to the splitting of the beams into two 
components in the Stern–Gerlach and Phipps–Taylor experiments.
	 The spin magnetic moment mSspin of the electron is related to its spin angular 
momentum S

S
 by the expression

	 mSspin 5 2
e

me
 S

S
	 (42.32)

where e is the electronic charge and me is the mass of the electron. Because Sz 5 61
2 U, 

the z component of the spin magnetic moment can have the values

	 mSspin,z 5 6
e U

2me
	 (42.33)

As we learned in Section 30.6, the quantity e"/2me is the Bohr magneton mB 5 
9.27 3 10224 J/T. The ratio of magnetic moment to angular momentum is twice as 
great for spin angular momentum (Eq. 42.32) as it is for orbital angular momen-
tum (Eq. 30.22). The factor of 2 is explained in a relativistic treatment first carried 
out by Dirac.
	 Today, physicists explain the Stern–Gerlach and Phipps–Taylor experiments 
as follows. The observed magnetic moments for both silver and hydrogen are 
due to spin angular momentum only, with no contribution from orbital angular 
momentum. In the Phipps–Taylor experiment, the single electron in the hydrogen 
atom has its electron spin quantized in the magnetic field in such a way that the 
z component of spin angular momentum is either 1

2 U or 21
2 U, corresponding to 

ms 5 61
2. Electrons with spin 11

2 are deflected downward, and those with spin 21
2 

are deflected upward. In the Stern–Gerlach experiment, 46 of a silver atom’s 47 
electrons are in filled subshells with paired spins. Therefore, these 46 electrons 
have a net zero contribution to both orbital and spin angular momentum for the 
atom. The angular momentum of the atom is due to only the 47th electron. This 
electron lies in the 5s subshell, so there is no contribution from orbital angular 
momentum. As a result, the silver atoms have angular momentum due to just the 
spin of one electron and behave in the same way in a nonuniform magnetic field 
as the hydrogen atoms in the Phipps–Taylor experiment.
	 The Stern–Gerlach experiment provided two important results. First, it verified 
the concept of space quantization. Second, it showed that spin angular momen-
tum exists, even though this property was not recognized until four years after the 
experiments were performed.
	 As mentioned earlier, there are eight quantum states corresponding to n 5 2 in 
the hydrogen atom, not four as found in Example 42.2. Each of the four states in 
Example 42.2 is actually two states because of the two possible values of ms . Table 
42.4 shows the quantum numbers corresponding to these eight states.

Table 42.4 Quantum Numbers for the n 5 2 State of Hydrogen
						      Number of States
n	 <	 m<	 ms	 Subshell	 Shell	 in Subshell

2	 0	 0	 1
2	

2	 0	 0	 21
2	

2s	 L	 2

2	 1	 1	 1
2

2	 1	 1	 21
2

2	 1	 0	 1
2

2	 1	 0	 21
2	

2p	 L	 6

2	 1	 21	 1
2	

2	 1	 21	 21
2	
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42.7	 The Exclusion Principle and the Periodic Table
We have found that the state of a hydrogen atom is specified by four quantum num-
bers: n, ,, m,, and ms. As it turns out, the number of states available to other atoms 
may also be predicted by this same set of quantum numbers. In fact, these four 
quantum numbers can be used to describe all the electronic states of an atom, 
regardless of the number of electrons in its structure.
	 For our discussion of atoms with many electrons, it is often easiest to assign the 
quantum numbers to the electrons in the atom as opposed to the entire atom. An 
obvious question that arises here is, “How many electrons can be in a particular 
quantum state?” Pauli answered this important question in 1925, in a statement 
known as the exclusion principle:

No two electrons can ever be in the same quantum state; therefore, no two 
electrons in the same atom can have the same set of quantum numbers.

If this principle were not valid, an atom could radiate energy until every electron in 
the atom is in the lowest possible energy state and therefore the chemical behavior 
of the elements would be grossly modified. Nature as we know it would not exist.
	 In reality, we can view the electronic structure of complex atoms as a succession 
of filled levels increasing in energy. As a general rule, the order of filling of an 
atom’s subshells is as follows. Once a subshell is filled, the next electron goes into 
the lowest-energy vacant subshell. We can understand this behavior by recognizing 
that if the atom were not in the lowest energy state available to it, it would radiate 
energy until it reached this state. This tendency of a quantum system to achieve the 
lowest energy state is consistent with the second law of thermodynamics discussed 
in Chapter 22. The entropy of the Universe is increased by the system emitting pho-
tons, so that energy is spread out over a larger volume of space.
	 Before we discuss the electronic configuration of various elements, it is conve-
nient to define an orbital as the atomic state characterized by the quantum numbers 
n, ,, and m,. The exclusion principle tells us that only two electrons can be pres-
ent in any orbital. One of these electrons has a spin magnetic quantum number 
ms 5 11

2, and the other has ms 5 21
2. Because each orbital is limited to two elec-

trons, the number of electrons that can occupy the various shells is also limited.
	 Table 42.5 shows the allowed quantum states for an atom up to n 5 3. The 
arrows pointing upward indicate an electron described by ms 5 11

2, and those 
pointing downward indicate that ms 5 21

2. The n 5 1 shell can accommodate only 
two electrons because m, 5 0 means that only one orbital is allowed. (The three 
quantum numbers describing this orbital are n 5 1, , 5 0, and m, 5 0.) The n 5 2 
shell has two subshells, one for , 5 0 and one for , 5 1. The , 5 0 subshell is lim-
ited to two electrons because m, 5 0. The , 5 1 subshell has three allowed orbitals, 
corresponding to m, 5 1, 0, and 21. Because each orbital can accommodate two 
electrons, the , 5 1 subshell can hold six electrons. Therefore, the n 5 2 shell can 
contain eight electrons as shown in Table 42.4. The n 5 3 shell has three subshells 
(, 5 0, 1, 2) and nine orbitals, accommodating up to 18 electrons. In general, each 
shell can accommodate up to 2n2 electrons.

Table 42.5 Allowed Quantum States for an Atom Up to n 5 3

Shell n 1 2 3

Subshell , 0 0 1 0 1 2

Orbital m, 0 0 1 0 21 0 1 0 21 2 1 0 21 22

ms c T c T c T c T c T c T c T c T c T c T c T c T c T c T

Wolfgang Pauli
Austrian Theoretical Physicist 
(1900–1958)
An extremely talented theoretician who 
made important contributions in many 
areas of modern physics, Pauli gained 
public recognition at the age of 21 with 
a masterful review article on relativity 
that is still considered one of the finest 
and most comprehensive introduc-
tions to the subject. His other major 
contributions were the discovery of the 
exclusion principle, the explanation of 
the connection between particle spin 
and statistics, theories of relativistic 
quantum electrodynamics, the neutrino 
hypothesis, and the hypothesis of 
nuclear spin.
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The Exclusion Principle Is More 
General  A more general form of 
the exclusion principle, discussed 
in Chapter 46, states that no two 
fermions can be in the same quan-
tum state. Fermions are particles 
with half-integral spin (1

2 , 32 , 52 , and 
so on).
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10To a first approximation, energy depends only on the quantum number n, as we have discussed. Because of the 
effect of the electronic charge shielding the nuclear charge, however, energy depends on , also in multielectron 
atoms. We shall discuss these shielding effects in Section 42.8.

	 The exclusion principle can be illustrated by examining the electronic arrange-
ment in a few of the lighter atoms. The atomic number Z of any element is the 
number of protons in the nucleus of an atom of that element. A neutral atom of 
that element has Z electrons. Hydrogen (Z 5 1) has only one electron, which, in the 
ground state of the atom, can be described by either of two sets of quantum num-
bers n, ,, m,, ms: 1, 0, 0, 12 or 1, 0, 0, 21

2. This electronic configuration is often written 
1s1. The notation 1s refers to a state for which n 5 1 and , 5 0, and the superscript 
indicates that one electron is present in the s subshell.
	 Helium (Z 5 2) has two electrons. In the ground state, their quantum numbers 
are 1, 0, 0, 1

2 and 1, 0, 0, 21
2. No other possible combinations of quantum numbers 

exist for this level, and we say that the K shell is filled. This electronic configuration 
is written 1s2.
	 Lithium (Z 5 3) has three electrons. In the ground state, two of them are in the 
1s subshell. The third is in the 2s subshell because this subshell is slightly lower in 
energy than the 2p subshell.10 Hence, the electronic configuration for lithium is 
1s 22s1.
	 The electronic configurations of lithium and the next several elements are pro-
vided in Figure 42.18. The electronic configuration of beryllium (Z 5 4), with its 
four electrons, is 1s 22s 2, and boron (Z 5 5) has a configuration of 1s 22s 22p1. The 
2p electron in boron may be described by any of the six equally probable sets of 
quantum numbers listed in Table 42.4. In Figure 42.18, we show this electron in 
the leftmost 2p box with spin up, but it is equally likely to be in any 2p box with spin 
either up or down.
	 Carbon (Z 5 6) has six electrons, giving rise to a question concerning how to 
assign the two 2p electrons. Do they go into the same orbital with paired spins 
(c T), or do they occupy different orbitals with unpaired spins (c c)? Experimen-
tal data show that the most stable configuration (that is, the one with the lowest 
energy) is the latter, in which the spins are unpaired. Hence, the two 2p electrons 
in carbon and the three 2p electrons in nitrogen (Z 5 7) have unpaired spins as 

Atom

Li

Be

B

C

N

O

F

Ne

1s 2s 2p
Electronic

configuration

1s22s1

1s22s2

1s22s22p1

1s22s22p2

1s22s22p3

1s22s22p4

1s22s22p5

1s22s22p6

Figure 42.18  ​The filling of  
electronic states must obey both 
the exclusion principle and 
Hund’s rule (page 1320).
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Figure 42.18 shows. The general rule that governs such situations, called Hund’s 
rule, states that

when an atom has orbitals of equal energy, the order in which they are filled 
by electrons is such that a maximum number of electrons have unpaired spins.

Some exceptions to this rule occur in elements having subshells that are close to 
being filled or half-filled.
	 In 1871, long before quantum mechanics was developed, the Russian chemist 
Dmitri Mendeleev (1834–1907) made an early attempt at finding some order among 
the chemical elements. He was trying to organize the elements for the table of con-
tents of a book he was writing. He arranged the atoms in a table similar to that 
shown in Figure 42.19, according to their atomic masses and chemical similarities. 
The first table Mendeleev proposed contained many blank spaces, and he boldly 
stated that the gaps were there only because the elements had not yet been discov-
ered. By noting the columns in which some missing elements should be located, 
he was able to make rough predictions about their chemical properties. Within 20 
years of this announcement, most of these elements were indeed discovered.
	 The elements in the periodic table (Fig. 42.19) are arranged so that all those in 
a column have similar chemical properties. For example, consider the elements in 
the last column, which are all gases at room temperature: He (helium), Ne (neon), 
Ar (argon), Kr (krypton), Xe (xenon), and Rn (radon). The outstanding character-
istic of all these elements is that they do not normally take part in chemical reac-
tions; that is, they do not readily join with other atoms to form molecules. They are 
therefore called inert gases or noble gases.

H 1

1s1

Group 

I

Group 

II

Group 

III

Group 

IV

Group 

V

Group 

VI

Group 

VII

Group 

0

Transition elements

Li 3

2s1

Na 11

3s1

K 19

4s1

Rb 37

5s1

Cs 55

6s1

Fr 87

7s1

Be 4

2s2

Mg 12

3s2

Ca 20

4s2

Sr 38

5s2

Ba 56

6s2

Ra 88

7s2

Sc 21

3d14s2

Y 39

4d15s2

57–71*

89–

103**

Ti 22

3d24s2

Zr 40

4d25s2

Hf 72

5d26s2

Rf 104

6d27s2

V 23

3d34s2

Nb 41

4d45s1

Ta 73

5d36s2

Db 105

6d37s2

Cr 24

3d54s1

Mo 42

4d55s1

W 74

5d46s2

Sg 106

6d47s2

Mn 25

3d54s2

Tc 43

4d55s2

Re 75

5d56s2

Bh 107

6d57s2

Fe 26

3d64s2

Ru 44

4d75s1

Os 76

5d66s2

Hs 108

6d67s2

Co 27

3d74s2

Rh 45

4d85s1

Ir 77

5d76s2

Mt 109

6d77s2

Ni 28

3d84s2

Pd 46

4d10

Pt 78

5d96s1

Ds 110

6d97s1

Cu  29

3d104s1

Ag 47

4d105s1

Au 79

5d106s1

Rg 111 Cn 112 Fl 114

Zn 30

3d104s2

Cd 48

4d105s2

Hg 80

5d106s2

115113 117 118

B 5

2p1

Al 13

3p1

Ga 31

4p1

In 49

5p1

Tl 81

6p1

C 6

2p2

Si 14

3p2

Ge 32

4p2

Sn 50

5p2

Pb 82

6p2

N 7

2p3

P 15

3p3

As 33

4p3

Sb 51

5p3

Bi 83

6p3

O 8

2p4

S 16

3p4

Se 34

4p4

Te 52

5p4

Po 84

6p4

F 9

2p5

Cl 17

3p5

Br 35

4p5

I 53

5p5

At 85

6p5

Ne 10

2p6

H 1

1s1

He 2

1s2

La 57

5d16s2

Ac 89

6d17s2

Ce 58

5d14f 16s2

Th 90

6d27s2

Pr 59

4f 36s2

Pa 91

5f 26d17s2

Nd 60

4f 46s2

U 92

5f 36d17s2

Pm 61

4f 56s2

Np 93

5f 46d17s2

Sm 62

4f 66s2

Pu 94

5f 67s2

Eu 63

4f 76s2

Am 95

5f 77s2

Gd 64

5d14f 76s2

Cm 96

5f 76d17s2

Tb 65

5d14f 86s2

Bk 97

5f 86d17s2

Dy 66

4f 106s2

Cf 98

5f 107s2

Ho 67

4f 116s2

Es 99

5f 117s2

Er 68

4f 126s2

Fm 100

5f 127s2

Tm 69

4f 136s2

Md 101

5f 137s2

Yb 70

4f 146s2

No 102

5f 147s2

Lu 71

5d14f 146s2

Lr 103

5f 146d17s2

Ar 18

3p6

Kr 36

4p6

Xe 54

5p6

Rn 86

6p6

*Lanthanide series

**Actinide series

Lv 116

Figure 42.19  ​The periodic table of the elements is an organized tabular representation of the elements that shows their periodic chemical 
behavior. Elements in a given column have similar chemical behavior. This table shows the chemical symbol for the element, the atomic num-
ber, and the electron configuration. A more complete periodic table is available in Appendix C.
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	 We can partially understand this behavior by looking at the electronic configura-
tions in Figure 42.19. The chemical behavior of an element depends on the outer-
most shell that contains electrons. The electronic configuration for helium is 1s 2, 
and the n 5 1 shell (which is the outermost shell because it is the only shell) is filled. 
Also, the energy of the atom in this configuration is considerably lower than the 
energy for the configuration in which an electron is in the next available level, the 
2s subshell. Next, look at the electronic configuration for neon, 1s 22s 22p6. Again, 
the outermost shell (n 5 2 in this case) is filled and a wide gap in energy occurs 
between the filled 2p subshell and the next available one, the 3s subshell. Argon has 
the configuration 1s 22s 22p63s 23p6. Here, it is only the 3p subshell that is filled, but 
again a wide gap in energy occurs between the filled 3p subshell and the next avail-
able one, the 3d subshell. This pattern continues through all the noble gases. Kryp-
ton has a filled 4p subshell, xenon a filled 5p subshell, and radon a filled 6p subshell.
	 The column to the left of the noble gases in the periodic table consists of a group 
of elements called the halogens: fluorine, chlorine, bromine, iodine, and astatine. At 
room temperature, fluorine and chlorine are gases, bromine is a liquid, and iodine 
and astatine are solids. In each of these atoms, the outer subshell is one electron 
short of being filled. As a result, the halogens are chemically very active, readily 
accepting an electron from another atom to form a closed shell. The halogens tend 
to form strong ionic bonds with atoms at the other side of the periodic table. (We 
shall discuss ionic bonds in Chapter 43.) In a halogen lightbulb, bromine or iodine 
atoms combine with tungsten atoms evaporated from the filament and return them 
to the filament, resulting in a longer-lasting lightbulb. In addition, the filament can 
be operated at a higher temperature than in ordinary lightbulbs, giving a brighter 
and whiter light.
	 At the left side of the periodic table, the Group I elements consist of hydrogen 
and the alkali metals: lithium, sodium, potassium, rubidium, cesium, and francium. 
Each of these atoms contains one electron in a subshell outside of a closed sub-
shell. Therefore, these elements easily form positive ions because the lone electron 
is bound with a relatively low energy and is easily removed. Therefore, the alkali 
metal atoms are chemically active and form very strong bonds with halogen atoms. 
For example, table salt, NaCl, is a combination of an alkali metal and a halogen. 
Because the outer electron is weakly bound, pure alkali metals tend to be good 
electrical conductors. Because of their high chemical activity, however, they are not 
generally found in nature in pure form.
	 It is interesting to plot ionization energy versus atomic number Z as in Figure 
42.20. Notice the pattern of DZ 5 2, 8, 8, 18, 18, 32 for the various peaks. This 
pattern follows from the exclusion principle and helps explain why the elements 
repeat their chemical properties in groups. For example, the peaks at Z 5 2, 10, 18, 
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Figure 42.20  ​Ionization energy 
of the elements versus atomic 
number.
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1322	C hapter 42 A tomic Physics

and 36 correspond to the noble gases helium, neon, argon, and krypton, respec-
tively, which, as we have mentioned, all have filled outermost shells. These elements 
have relatively high ionization energies and similar chemical behavior.

42.8	 More on Atomic Spectra: Visible and X-Ray
In Section 42.1, we discussed the observation and early interpretation of visible 
spectral lines from gases. These spectral lines have their origin in transitions 
between quantized atomic states. We shall investigate these transitions more deeply 
in these final three sections of this chapter.
	 A modified energy-level diagram for hydrogen is shown in Figure 42.21. In this 
diagram, the allowed values of , for each shell are separated horizontally. Figure 
42.21 shows only those states up to , 5 2; the shells from n 5 4 upward would 
have more sets of states to the right, which are not shown. Transitions for which 
, does not change are very unlikely to occur and are called forbidden transitions. 
(Such transitions actually can occur, but their probability is very low relative to the 
probability of “allowed” transitions.) The various diagonal lines represent allowed 
transitions between stationary states. Whenever an atom makes a transition from a 
higher energy state to a lower one, a photon of light is emitted. The frequency of 
this photon is f 5 DE/h, where DE is the energy difference between the two states 
and h is Planck’s constant. The selection rules for the allowed transitions are

	 D, 5 61 ​ ​  and ​ ​  Dm, 5 0, 61	 (42.34)

	 Figure 42.21 shows that the orbital angular momentum of an atom changes when 
it makes a transition to a lower energy state. Therefore, the atom alone is a non­
isolated system for angular momentum. If we consider the atom–photon system, how-
ever, it must be an isolated system for angular momentum because nothing else is 
interacting with this system. The photon involved in the process must carry angular 
momentum away from the atom when the transition occurs. In fact, the photon has 
an angular momentum equivalent to that of a particle having a spin of 1. We have 
now determined over several chapters that a photon has energy, linear momentum, 
and angular momentum, and each of these is conserved in atomic processes.
	 Recall from Equation 42.19 that the allowed energies for one-electron atoms and 
ions, such as hydrogen and He1, are

	 En 5 2
kee

2

2a0
aZ 2

n2 b 5 2
113.6 eV 2Z 2

n2 	 (42.35)

This equation was developed from the Bohr theory, but it serves as a good first 
approximation in quantum theory as well. For multielectron atoms, the positive 
nuclear charge Ze is largely shielded by the negative charge of the inner-shell elec-
trons. Therefore, the outer electrons interact with a net charge that is smaller than 
the nuclear charge. The expression for the allowed energies for multielectron 
atoms has the same form as Equation 42.35 with Z replaced by an effective atomic 
number Z eff :

	 En 5 2
113.6 eV 2Z eff

2

n2 	 (42.36)

where Z eff  depends on n and ,.

X-Ray Spectra
X-rays are emitted when high-energy electrons or any other charged particles bom-
bard a metal target. The x-ray spectrum typically consists of a broad continuous 
band containing a series of sharp lines as shown in Figure 42.22. In Section 34.6, 
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bremsstrahlung. The shortest 
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Figure 42.22  ​The x-ray spec-
trum of a metal target. The data 
shown were obtained when 37-keV 
electrons bombarded a molybde-
num target.
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Figure 42.21  ​Some allowed elec-
tronic transitions for hydrogen, 
represented by the colored lines.
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Figure 42.23  ​Bremsstrahlung is 
created by this machine and used to 
treat cancer in a patient.
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we mentioned that an accelerated electric charge emits electromagnetic radiation. 
The x-rays in Figure 42.22 are the result of the slowing down of high-energy elec-
trons as they strike the target. It may take several interactions with the atoms of 
the target before the electron gives up all its kinetic energy. The amount of kinetic 
energy given up in any interaction can vary from zero up to the entire kinetic 
energy of the electron. Therefore, the wavelength of radiation from these inter-
actions lies in a continuous range from some minimum value up to infinity. It is 
this general slowing down of the electrons that provides the continuous curve in 
Figure 42.22, which shows the cutoff of x-rays below a minimum wavelength value 
that depends on the kinetic energy of the incoming electrons. X-ray radiation with 
its origin in the slowing down of electrons is called bremsstrahlung, the German 
word for “braking radiation.”
	 Extremely high-energy bremsstrahlung can be used for the treatment of 
cancerous tissues. Figure 42.23 shows a machine that uses a linear accelerator 
to accelerate electrons up to 18 MeV and smash them into a tungsten target. 
The result is a beam of photons, up to a maximum energy of 18 MeV, which is 
actually in the gamma-ray range in Figure 34.13. This radiation is directed at 
the tumor in the patient.
	 The discrete lines in Figure 42.22, called characteristic x-rays and discov-
ered in 1908, have a different origin. Their origin remained unexplained until 
the details of atomic structure were understood. The first step in the produc-
tion of characteristic x-rays occurs when a bombarding electron collides with 
a target atom. The electron must have sufficient energy to remove an inner-
shell electron from the atom. The vacancy created in the shell is filled when 
an electron in a higher level drops down into the level containing the vacancy. The 
existence of characteristic lines in an x-ray spectrum is further direct evidence of 
the quantization of energy in atomic systems. 
	 The time interval for atomic transitions to happen is very short, less than 1029 s.  
This transition is accompanied by the emission of a photon whose energy equals 
the difference in energy between the two levels. Typically, the energy of such transi-
tions is greater than 1 000 eV and the emitted x-ray photons have wavelengths in the 
range of 0.01 nm to 1 nm.
	 Let’s assume the incoming electron has dislodged an atomic electron from the 
innermost shell, the K shell. If the vacancy is filled by an electron dropping from 
the next higher shell—the L shell—the photon emitted has an energy correspond-
ing to the Ka characteristic x-ray line on the curve of Figure 42.22. In this notation, 
K refers to the final level of the electron and the subscript a, as the first letter of the 
Greek alphabet, refers to the initial level as the first one above the final level. Figure 
42.24 shows this transition as well as others discussed below. If the vacancy in the K 
shell is filled by an electron dropping from the M shell, the Kb line in Figure 42.22 
is produced.
	 Other characteristic x-ray lines are formed when electrons drop from upper lev-
els to vacancies other than those in the K shell. For example, L lines are produced 
when vacancies in the L shell are filled by electrons dropping from higher shells. 
An La line is produced as an electron drops from the M shell to the L shell, and an 
Lb line is produced by a transition from the N shell to the L shell.
	 Although multielectron atoms cannot be analyzed exactly with either the Bohr 
model or the Schrödinger equation, we can apply Gauss’s law from Chapter 24 to 
make some surprisingly accurate estimates of expected x-ray energies and wave-
lengths. Consider an atom of atomic number Z in which one of the two electrons 
in the K shell has been ejected. Imagine drawing a gaussian sphere immediately 
inside the most probable radius of the L electrons. The electric field at the posi-
tion of the L electrons is a combination of the fields created by the nucleus, the 
single K electron, the other L electrons, and the outer electrons. The wave func-
tions of the outer electrons are such that the electrons have a very high probability 
of being farther from the nucleus than the L electrons are. Therefore, the outer 
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Figure 42.24  ​Transitions 
between higher and lower atomic 
energy levels that give rise to  
x-ray photons from heavy atoms 
when they are bombarded with 
high-energy electrons.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



1324	C hapter 42 A tomic Physics

electrons are much more likely to be outside the gaussian surface than inside and, 
on average, do not contribute significantly to the electric field at the position of 
the L electrons. The effective charge inside the gaussian surface is the positive 
nuclear charge and one negative charge due to the single K electron. Ignoring the 
interactions between L electrons, a single L electron behaves as if it experiences 
an electric field due to a charge (Z 2 1)e enclosed by the gaussian surface. The 
nuclear charge is shielded by the electron in the K shell such that Zeff in Equation 
42.36 is Z 2 1. For higher-level shells, the nuclear charge is shielded by electrons in 
all the inner shells.
	 We can now use Equation 42.36 to estimate the energy associated with an elec-
tron in the L shell:

EL 5 2 1Z 2 1 22 
13.6 eV

22

After the atom makes the transition, there are two electrons in the K shell. We can 
approximate the energy associated with one of these electrons as that of a one-
electron atom. (In reality, the nuclear charge is reduced somewhat by the negative 
charge of the other electron, but let’s ignore this effect.) Therefore,

	 E K < 2Z 2(13.6 eV)	 (42.37)

As Example 42.5 shows, the energy of the atom with an electron in an M shell can 
be estimated in a similar fashion. Taking the energy difference between the initial 
and final levels, we can then calculate the energy and wavelength of the emitted 
photon.
	 In 1914, Henry G. J. Moseley (1887–1915) plotted !1/l versus the Z values for 
a number of elements where l is the wavelength of the Ka line of each element. 
He found that the plot is a straight line as in Figure 42.25, which is consistent with 
rough calculations of the energy levels given by Equation 42.37. From this plot, 
Moseley determined the Z values of elements that had not yet been discovered and 
produced a periodic table in excellent agreement with the known chemical proper-
ties of the elements. Until that experiment, atomic numbers had been merely place-
holders for the elements that appeared in the periodic table, the elements being 
ordered according to mass.

Q	 uick Quiz 42.5  ​In an x-ray tube, as you increase the energy of the electrons 
striking the metal target, do the wavelengths of the characteristic x-rays 
(a) increase, (b) decrease, or (c) remain constant?

Q	 uick Quiz 42.6 ​ True or False: It is possible for an x-ray spectrum to show the 
continuous spectrum of x-rays without the presence of the characteristic x-rays.

Example 42.5	     Estimating the Energy of an X-Ray

Estimate the energy of the characteristic x-ray emitted from a tungsten target when an electron drops from an M shell  
(n 5 3 state) to a vacancy in the K shell (n 5 1 state). The atomic number for tungsten is Z 5 74.

Conceptualize  ​Imagine an accelerated electron striking a tungsten atom and ejecting an electron from the K shell 
(n 5 1). Subsequently, an electron in the M shell (n 5 3) drops down to fill the vacancy and the energy difference 
between the states is emitted as an x-ray photon.

Categorize  ​We estimate the results using equations developed in this section, so we categorize this example as a sub-
stitution problem.

S o l u ti  o n

Use Equation 42.37 and Z 5 74 for tungsten to estimate 
the energy associated with the electron in the K shell:

EK < 2(74)2(13.6 eV) 5 27.4 3 104 eV

Z

�1/l

Figure 42.25  ​A Moseley plot  
of !1/l versus Z, where l is the 
wavelength of the K a x-ray line of  
the element of atomic number Z.
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	 42.9  Spontaneous and Stimulated Transitions	 1325

Find the energy of the emitted x-ray photon: hf 5 EM 2 EK < 26.4 3 103 eV 2 (27.4 3 104 eV)

< 6.8 3 104 eV 5 68 keV

Use Equation 42.36 and that nine electrons shield the 
nuclear charge (eight electrons in the n 5 2 state and 
one electron in the n 5 1 state) to estimate the energy  
of the M shell:

EM < 2
113.6 eV 2 174 2 9 22

13 22 < 26.4 3 103 eV

	 Consultation of x-ray tables shows that the M–K transition energies in tungsten vary from 66.9 keV to 67.7 keV, 
where the range of energies is due to slightly different energy values for states of different ,. Therefore, our estimate 
differs from the midpoint of this experimentally measured range by approximately 1%.

42.9	 Spontaneous and Stimulated Transitions
We have seen that an atom absorbs and emits electromagnetic radiation only at 
frequencies that correspond to the energy differences between allowed states. 
Let’s now examine more details of these processes. Consider an atom having 
the allowed energy levels labeled E1, E2, E3, . . . . When radiation is incident on 
the atom, only those photons whose energy hf matches the energy separation DE 
between two energy levels can be absorbed by the atom as represented in Figure 
42.26. This process is called stimulated absorption because the photon stimulates 
the atom to make the upward transition. At ordinary temperatures, most of the 
atoms in a sample are in the ground state. If a vessel containing many atoms of 
a gaseous element is illuminated with radiation of all possible photon frequen-
cies (that is, a continuous spectrum), only those photons having energy E 2 2 E1,  
E3 2 E1, E4 2 E1, and so on are absorbed by the atoms. As a result of this absorp-
tion, some of the atoms are raised to excited states.
	 Once an atom is in an excited state, the excited atom can make a transition 
back to a lower energy level, emitting a photon in the process as in Figure 42.27. 
This process is known as spontaneous emission because it happens naturally, with-
out requiring an event to trigger the transition. Typically, an atom remains in an 
excited state for only about 1028 s.
	 In addition to spontaneous emission, stimulated emission occurs. Suppose an 
atom is in an excited state E2 as in Figure 42.28 (page 1326). If the excited state is a 
metastable state—that is, if its lifetime is much longer than the typical 1028 s lifetime of 

E2E2

E1 E1

E
N

E
R

G
Y

The electron is transferred from 
the ground state to the excited 
state when the atom absorbs a 
photon of energy hf � E2 � E1.

Before After

hf � E2 � E1

Figure 42.26  Stimulated absorption of a photon.

E2E2

E1 E1

E
N

E
R

G
Y

When the atom falls to the
ground state, it emits a photon 
of energy hf � E2 � E1.

hf � E2 � E1

Before After

Figure 42.27  Spontaneous emission of 
a photon by an atom that is initially in the 
excited state E2.

	

▸ 42.5 c o n t i n u e d
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1326	C hapter 42 A tomic Physics

excited states—the time interval until spontaneous emission occurs is relatively long. 
Let’s imagine that during that interval a photon of energy hf 5 E2 2 E1 is incident 
on the atom. One possibility is that the photon energy is sufficient for the photon to 
ionize the atom. Another possibility is that the interaction between the incoming pho-
ton and the atom causes the atom to return to the ground state11 and thereby emit a 
second photon with energy hf 5 E2 2 E1. In this process, the incident photon is not 
absorbed; therefore, after the stimulated emission, two photons with identical energy 
exist: the incident photon and the emitted photon. The two are in phase and travel in 
the same direction, which is an important consideration in lasers, discussed next.

42.10	 Lasers
In this section, we explore the nature of laser light and a variety of applications of 
lasers in our technological society. The primary properties of laser light that make 
it useful in these technological applications are the following:

•	Laser light is coherent. The individual rays of light in a laser beam maintain a 
fixed phase relationship with one another.

•	Laser light is monochromatic. Light in a laser beam has a very narrow range 
of wavelengths.

•	Laser light has a small angle of divergence. The beam spreads out very little, 
even over large distances.

To understand the origin of these properties, let’s combine our knowledge of 
atomic energy levels from this chapter with some special requirements for the 
atoms that emit laser light.
	 We have described how an incident photon can cause atomic energy transitions 
either upward (stimulated absorption) or downward (stimulated emission). The 
two processes are equally probable. When light is incident on a collection of atoms, 
a net absorption of energy usually occurs because when the system is in thermal 
equilibrium, many more atoms are in the ground state than in excited states. If 
the situation can be inverted so that more atoms are in an excited state than in the 
ground state, however, a net emission of photons can result. Such a condition is 
called population inversion.
	 Population inversion is, in fact, the fundamental principle involved in the opera-
tion of a laser (an acronym for l ight amplification by stimulated emission of radia-

E2E2

hf

E1 E1

hf

The incoming photon stimulates 
the atom to emit a second photon 
of energy hf � E2 � E1.

E
N

E
R

G
Y

Before After

hf � E2 � E1

Figure 42.28  Stimulated emis-
sion of a photon by an incoming 
photon of energy hf 5 E2 2 E1. 
Initially, the atom is in the excited 
state.

11This phenomenon is fundamentally due to resonance. The incoming photon has a frequency and drives the system 
of the atom at that frequency. Because the driving frequency matches that associated with a transition between 
states—one of the natural frequencies of the atom—there is a large response: the atom makes the transition.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 42.10  Lasers	 1327

tion). The full name indicates one of the requirements for laser light: to achieve 
laser action, the process of stimulated emission must occur.
	 Suppose an atom is in the excited state E2 as in Figure 42.28 and a photon with 
energy hf 5 E2 2 E1 is incident on it. As described in Section 42.9, the incoming 
photon can stimulate the excited atom to return to the ground state and thereby 
emit a second photon having the same energy hf and traveling in the same direc-
tion. The incident photon is not absorbed, so after the stimulated emission, there 
are two identical photons: the incident photon and the emitted photon. The emit-
ted photon is in phase with the incident photon. These photons can stimulate other 
atoms to emit photons in a chain of similar processes. The many photons produced 
in this fashion are the source of the intense, coherent light in a laser.
	 For the stimulated emission to result in laser light, there must be a buildup of 
photons in the system. The following three conditions must be satisfied to achieve 
this buildup:

•	The system must be in a state of population inversion: there must be more 
atoms in an excited state than in the ground state. That must be true because 
the number of photons emitted must be greater than the number absorbed.

•	The excited state of the system must be a metastable state, meaning that its 
lifetime must be long compared with the usually short lifetimes of excited 
states, which are typically 1028 s. In this case, the population inversion can 
be established and stimulated emission is likely to occur before spontaneous 
emission.

•	The emitted photons must be confined in the system long enough to enable 
them to stimulate further emission from other excited atoms. That is 
achieved by using reflecting mirrors at the ends of the system. One end is 
made totally reflecting, and the other is partially reflecting. A fraction of the 
light intensity passes through the partially reflecting end, forming the beam 
of laser light (Fig. 42.29).

	 One device that exhibits stimulated emission of radiation is the helium–neon gas 
laser. Figure 42.30 is an energy-level diagram for the neon atom in this system. The 
mixture of helium and neon is confined to a glass tube that is sealed at the ends 
by mirrors. A voltage applied across the tube causes electrons to sweep through 
the tube, colliding with the atoms of the gases and raising them into excited states. 
Neon atoms are excited to state E3* through this process (the asterisk indicates a 
metastable state) and also as a result of collisions with excited helium atoms. 
Stimulated emission occurs, causing neon atoms to make transitions to state 
E2. Neighboring excited atoms are also stimulated. The result is the production 
of coherent light at a wavelength of 632.8 nm.

Mirror 1

Energy input

Mirror 2

Laser 
output

The tube contains 
the atoms that are 
the active medium.

Due to spontaneous 
emission, some photons 
leave the side of the tube.

The parallel end mirrors confine 
the photons to the tube, but mirror 
2 is only partially reflective.

The stimulating wave is 
that moving parallel to 
the axis of the tube.

An external source of 
energy “pumps” the 
atoms to excited states.

Figure 42.29  Schematic diagram of a laser design.

Metastable state

E3*

E2

E1

Output 
energy

Input 
energy

 � 632.8 nm
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E
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The atom emits 632.8-nm photons 
through stimulated emission in the 
transition E3* � E2. That is the 
source of coherent light in the laser.

Figure 42.30  ​Energy-level 
diagram for a neon atom in a 
helium–neon laser.
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1328	 Chapter 42  Atomic Physics

Applications
Since the development of the first laser in 1960, tremendous growth has occurred 
in laser technology. Lasers that cover wavelengths in the infrared, visible, and ultra-
violet regions are now available. Laser diodes are used as laser pointers, and in sur-
veying and construction rangefinders, fiber optic communication, DVD and Blu-ray 
players, and bar code readers. Carbon dioxide lasers are used in industry for welding 
and cutting, such as the process shown to cut  fabric in Figure 42.31. Excimer lasers 
are used in Lasik eye surgery. A variety of other types of lasers exist and are used 
in various applications. These applications are possible because of the unique char-
acteristics of laser light. In addition to being highly monochromatic, laser light is 
also highly directional and can be sharply focused to produce regions of extremely 
intense light energy (with energy densities 1012 times the density in the flame of a 
typical cutting torch).
	 Lasers are used in precision long-range distance measurement (range finding). 
In recent years, it has become important in astronomy and geophysics to measure 
as precisely as possible the distances from various points on the surface of the Earth 
to a point on the Moon’s surface. To facilitate these measurements, the Apollo astro-
nauts set up a 0.5-m square of reflector prisms on the Moon, which enables laser 
pulses directed from an Earth-based station to be retroreflected to the same station 
(see Fig. 35.8a). Using the known speed of light and the measured round-trip travel 
time of a laser pulse, the Earth–Moon distance can be determined to a precision of 
better than 10 cm.
	 Because various laser wavelengths can be absorbed in specific biological tis-
sues, lasers have a number of medical applications. For example, certain laser pro-
cedures have greatly reduced blindness in patients with glaucoma and diabetes. 
Glaucoma is a widespread eye condition characterized by a high fluid pressure in 
the eye, a condition that can lead to destruction of the optic nerve. A simple laser 
operation (iridectomy) can “burn” open a tiny hole in a clogged membrane, reliev-
ing the destructive pressure. A serious side effect of diabetes is neovascularization, 
the proliferation of weak blood vessels, which often leak blood. When neovascular-
ization occurs in the retina, vision deteriorates (diabetic retinopathy) and finally 
is destroyed. Today, it is possible to direct the green light from an argon ion laser 
through the clear eye lens and eye fluid, focus on the retina edges, and photoco-
agulate the leaky vessels. Even people who have only minor vision defects such as 
nearsightedness are benefiting from the use of lasers to reshape the cornea, chang-
ing its focal length and reducing the need for eyeglasses.
	 Laser surgery is now an everyday occurrence at hospitals and medical clinics 
around the world. Infrared light at 10 mm from a carbon dioxide laser can cut 
through muscle tissue, primarily by vaporizing the water contained in cellular 
material. Laser power of approximately 100 W is required in this technique. The 
advantage of the “laser knife” over conventional methods is that laser radiation cuts 
tissue and coagulates blood at the same time, leading to a substantial reduction in 
blood loss. In addition, the technique virtually eliminates cell migration, an impor-
tant consideration when tumors are being removed.

Figure 42.31  ​This robot carry-
ing laser scissors, which can cut 
up to 50 layers of fabric at a time, 
is one of the many applications of 
laser technology.
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	   Summary	 1329

12The laser light traveling in the same direction as the atom is Doppler-shifted further downward in frequency, so 
there is no absorption. Therefore, the atom is not pushed out of the trap by the diametrically opposed laser.

	 A laser beam can be trapped in fine optical fiber light guides (endoscopes) by 
means of total internal reflection. An endoscope can be introduced through natu-
ral orifices, conducted around internal organs, and directed to specific interior 
body locations, eliminating the need for invasive surgery. For example, bleeding 
in the gastrointestinal tract can be optically cauterized by endoscopes inserted 
through the patient’s mouth.
	 In biological and medical research, it is often important to isolate and collect 
unusual cells for study and growth. A laser cell separator exploits the tagging of 
specific cells with fluorescent dyes. All cells are then dropped from a tiny charged 
nozzle and laser-scanned for the dye tag. If triggered by the correct light-emitting 
tag, a small voltage applied to parallel plates deflects the falling electrically charged 
cell into a collection beaker.
	 An exciting area of research and technological applications arose in the 1990s 
with the development of laser trapping of atoms. One scheme, called optical molas­
ses and developed by Steven Chu of Stanford University and his colleagues, involves 
focusing six laser beams onto a small region in which atoms are to be trapped. Each 
pair of lasers is along one of the x, y, and z axes and emits light in opposite directions 
(Fig. 42.32). The frequency of the laser light is tuned to be slightly below the absorp-
tion frequency of the subject atom. Imagine that an atom has been placed into the 
trap region and moves along the positive x axis toward the laser that is emitting light 
toward it (the rightmost laser on the x axis in Fig. 42.32). Because the atom is mov-
ing, the light from the laser appears Doppler-shifted upward in frequency in the 
reference frame of the atom. Therefore, a match between the Doppler-shifted laser 
frequency and the absorption frequency of the atom exists and the atom absorbs 
photons.12 The momentum carried by these photons results in the atom being 
pushed back to the center of the trap. By incorporating six lasers, the atoms are 
pushed back into the trap regardless of which way they move along any axis.
	 In 1986, Chu developed optical tweezers, a device that uses a single tightly focused 
laser beam to trap and manipulate small particles. In combination with micro-
scopes, optical tweezers have opened up many new possibilities for biologists. Opti-
cal tweezers have been used to manipulate live bacteria without damage, move 
chromosomes within a cell nucleus, and measure the elastic properties of a single 
DNA molecule. Chu shared the 1997 Nobel Prize in Physics with two of his col-
leagues for the development of the techniques of optical trapping.
	 An extension of laser trapping, laser cooling, is possible because the normal high 
speeds of the atoms are reduced when they are restricted to the region of the trap. 
As a result, the temperature of the collection of atoms can be reduced to a few 
microkelvins. The technique of laser cooling allows scientists to study the behavior 
of atoms at extremely low temperatures (Fig. 42.33).

cS
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cS

cS

cS

cS

xz

y

Figure 42.32  ​An optical trap 
for atoms is formed at the inter-
section point of six counterpropa-
gating laser beams along mutually 
perpendicular axes.

Figure 42.33  ​A staff member of 
the National Institute of Standards 
and Technology views a sample of 
trapped sodium atoms cooled to a 
temperature of less than 1 mK.

The orange dot is the sample 
of trapped sodium atoms.
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Concepts and Principles

  The wavelengths of spectral lines from hydrogen, called the Balmer series, can be described by the equation

	
1
l

5 RH a 1
22 2

1
n2b n 5 3, 4, 5, c 	 (42.1)

where RH is the Rydberg constant. The spectral lines corresponding to values of n from 3 to 6 are in the visible range 
of the electromagnetic spectrum. Values of n higher than 6 correspond to spectral lines in the ultraviolet region of 
the spectrum.

Summary

continued
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1330	C hapter 42 A tomic Physics

  The Bohr model of the atom is successful in 
describing some details of the spectra of atomic 
hydrogen and hydrogen-like ions. One basic 
assumption of the model is that the electron can 
exist only in discrete orbits such that the angular 
momentum of the electron is an integral multiple 
of h/2p 5 ". When we assume circular orbits and 
a simple Coulomb attraction between electron 
and proton, the energies of the quantum states for 
hydrogen are calculated to be

	 En 5 2
ke e

2

2a0
a 1

n2b n 5 1, 2, 3, c	 (42.13)

where n is an integer called the quantum number,  
ke is the Coulomb constant, e is the electronic 
charge, and a0 5 0.052 9 nm is the Bohr radius.
	 If the electron in a hydrogen atom makes a 
transition from an orbit whose quantum number is 
ni to one whose quantum number is nf , where nf , 
ni , a photon is emitted by the atom. The frequency 
of this photon is

	 f 5
ke e

2

2a0h
a 1

nf
2 2

1
ni

2b 	 (42.15)

  The exclusion principle states that no two 
electrons in an atom can be in the same quantum 
state. In other words, no two electrons can have 
the same set of quantum numbers n, ,, m,, and ms . 
Using this principle, the electronic configurations 
of the elements can be determined. This principle 
serves as a basis for understanding atomic struc-
ture and the chemical properties of the elements.

  Quantum mechanics can be applied to the hydrogen 
atom by the use of the potential energy function U(r) 5  
2kee 2/r in the Schrödinger equation. The solution to this  
equation yields wave functions for allowed states and 
allowed energies:

	 En 5 2ake e
2

2a0
b 1

n2 5 2
13.606 eV

n2  n 5 1, 2, 3, c 	 (42.21)

where n is the principal quantum number. The allowed 
wave functions depend on three quantum numbers: n, ,, 
and m,, where , is the orbital quantum number and m, is 
the orbital magnetic quantum number. The restrictions on 
the quantum numbers are

	 n 5 1, 2, 3, . . .	

	 , 5 0, 1, 2, . . . , n 2 1	

	 m, 5 2,, 2, 1 1, . . . , 2 1, ,	

All states having the same principal quantum number n form 
a shell, identified by the letters K, L, M, . . . (corresponding 
to n 5 1, 2, 3, . . .). All states having the same values of n and 
, form a subshell, designated by the letters s, p, d, f, . . . (cor-
responding to , 5 0, 1, 2, 3, . . .).

  The magnetic moment mSspin associated with the spin 
angular momentum of an electron is

	 mSspin 5 2
e

me
 S
S

	 (42.32)

The z component of mSspin can have the values

	 mspin,z 5 6
e U

2me
	 (42.33)

  An atom in a state characterized by a specific 
value of n can have the following values of L,  
the magnitude of the atom’s orbital angular 
momentum L

S
:

	 L 5 ", 1, 1 1 2 U 	

	 , 5 0, 1, 2, . . . , n 2 1	 (42.27)

The allowed values of the projection of L
S

 along 
the z axis are

	 Lz 5 m,"	 (42.28)

Only discrete values of Lz are allowed as deter-
mined by the restrictions on m,. This quantiza-
tion of Lz is referred to as space quantization.

  The electron has an intrinsic angular momentum called 
the spin angular momentum. Electron spin can be described 
by a single quantum number s 5 1

2. To describe a quantum 
state completely, it is necessary to include a fourth quantum 
number ms , called the spin magnetic quantum number. This 
quantum number can have only two values, 61

2. The magni-
tude of the spin angular momentum is

	 S 5
"3

2
 U 	 (42.30)

and the z component of S
S

 is

	 Sz 5 ms U 5 61
2 U 	 (42.31)

That is, the spin angular momentum is also quantized in space, 
as specified by the spin magnetic quantum number ms 5 61

2.
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	 1.	 (i) What is the principal quantum number of the initial 
state of an atom as it emits an Mb line in an x-ray spec-
trum? (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (ii) What is the principal 
quantum number of the final state for this transition?  
Choose from the same possibilities as in part (i).

	 2.	 If an electron in an atom has the quantum numbers  
n 5 3, , 5 2, m, 5 1, and ms 5 1

2, what state is it in?  
(a) 3s (b) 3p (c) 3d (d) 4d (e) 3f

	 3.	 An electron in the n 5 5 energy level of hydrogen under-
goes a transition to the n 5 3 energy level. What is the 
wavelength of the photon the atom emits in this process?  
(a) 2.28 3 1026 m (b) 8.20 3 1027 m (c) 3.64 3 1027 m  
(d) 1.28 3 1026 m (e) 5.92 3 1025 m

	 4.	 Consider the n 5 3 energy level in a hydrogen atom. 
How many electrons can be placed in this level? (a) 1 
(b) 2 (c) 8 (d) 9 (e) 18

	 5.	 Which of the following is not one of the basic assump-
tions of the Bohr model of hydrogen? (a) Only certain 
electron orbits are stable and allowed. (b) The electron 
moves in circular orbits about the proton under the  
influence of the Coulomb force. (c) The charge on 
the electron is quantized. (d) Radiation is emitted by  
the atom when the electron moves from a higher 
energy state to a lower energy state. (e) The angu-
lar momentum associated with the electron’s orbital 
motion is quantized.

	 6.	 Let 2E represent the energy of a hydrogen atom.  
(i) What is the kinetic energy of the electron? (a) 2E 
(b) E (c) 0 (d)  2E (e) 22E (ii) What is the potential 
energy of the atom? Choose from the same possibilities 
(a) through (e).

	 7.	 The periodic table is based on which of the following 
principles? (a) The uncertainty principle. (b) All elec-
trons in an atom must have the same set of quantum 
numbers. (c)  Energy is conserved in all interactions. 
(d) All electrons in an atom are in orbitals having the 
same energy. (e) No two electrons in an atom can have 
the same set of quantum numbers.

	 8.	 (a) Can a hydrogen atom in the ground state absorb a 
photon of energy less than 13.6 eV? (b) Can this atom 
absorb a photon of energy greater than 13.6 eV?

	 9.	 Which of the following electronic configurations 
are not allowed for an atom? Choose all correct 
answers. (a) 2s 22p6 (b) 3s 23p7 (c) 3d 74s 2 (d) 3d 104s 24p 6  
(e) 1s 22s 22d 1

	10.	What can be concluded about a hydrogen atom with 
its electron in the d state? (a) The atom is ionized.  
(b) The orbital quantum number is , 5 1. (c) The 
principal quantum number is n 5 2. (d) The atom is in 
its ground state. (e) The orbital angular momentum of 
the atom is not zero.

	11.	 (i) Rank the following transitions for a hydrogen atom 
from the transition with the greatest gain in energy to 
that with the greatest loss, showing any cases of equal-
ity. (a) ni 5 2; nf 5 5 (b) ni 5 5; nf 5 3 (c) ni 5 7; nf 5 4  
(d) ni 5 4; nf 5 7 (ii) Rank the same transitions as in 
part (i) according to the wavelength of the photon 
absorbed or emitted by an otherwise isolated atom 
from greatest wavelength to smallest.

	12.	When an atom emits a photon, what happens? (a) One 
of its electrons leaves the atom. (b) The atom moves to 
a state of higher energy. (c) The atom moves to a state 
of lower energy. (d) One of its electrons collides with 
another particle. (e) None of those events occur.

	13.	(a) In the hydrogen atom, can the quantum number n 
increase without limit? (b) Can the frequency of possi-
ble discrete lines in the spectrum of hydrogen increase 
without limit? (c) Can the wavelength of possible dis-
crete lines in the spectrum of hydrogen increase with-
out limit?

	14.	Consider the quantum numbers (a) n, (b) ,, (c) m,, 
and (d) ms . (i) Which of these quantum numbers are 
fractional as opposed to being integers? (ii) Which can 
sometimes attain negative values? (iii) Which can be 
zero?

	15.	When an electron collides with an atom, it can trans-
fer all or some of its energy to the atom. A hydrogen 
atom is in its ground state. Incident on the atom are 
several electrons, each having a kinetic energy of  
10.5 eV. What is the result? (a) The atom can be excited 
to a higher allowed state. (b)  The atom is ionized.  
(c) The electrons pass by the atom without interaction.

  The x-ray spectrum of a metal target consists of 
a set of sharp characteristic lines superimposed on 
a broad continuous spectrum. Bremsstrahlung is 
x-radiation with its origin in the slowing down of 
high-energy electrons as they encounter the target. 
Characteristic x-rays are emitted by atoms when an 
electron undergoes a transition from an outer shell 
to a vacancy in an inner shell.

  Atomic transitions can be described with three pro-
cesses: stimulated absorption, in which an incoming pho-
ton raises the atom to a higher energy state; spontaneous 
emission, in which the atom makes a transition to a lower 
energy state, emitting a photon; and stimulated emission, 
in which an incident photon causes an excited atom to 
make a downward transition, emitting a photon identical 
to the incident one.

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide
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1332	C hapter 42 A tomic Physics

	 4.	 An isolated atom of a certain element emits light of 
wavelength lm1 when the atom falls from its state with 
quantum number m into its ground state of quantum 
number 1. The atom emits a photon of wavelength ln1 
when the atom falls from its state with quantum number 
n into its ground state. (a) Find the wavelength of the 
light radiated when the atom makes a transition from 
the m state to the n state. (b) Show that kmn 5 ukm1 2 kn1u, 
where ki j 5 2p/li j is the wave number of the photon. 
This problem exemplifies the Ritz combination principle, 
an empirical rule formulated in 1908.

	 5.	 (a) What value of ni is associated with the 94.96-nm  
spectral line in the Lyman series of hydrogen?  
(b) What If? Could this wavelength be associated with 
the Paschen series? (c) Could this wavelength be asso-
ciated with the Balmer series?

Section 42.2 ​ Early Models of the Atom
	 6.	 According to classical physics, a charge e moving with 

an acceleration a radiates energy at a rate
dE
dt

5 2
1

6pP0
  

e 2a 2

c 3

		  (a) Show that an electron in a classical hydrogen atom 
(see Fig. 42.5) spirals into the nucleus at a rate

S
Section 42.1 ​ Atomic Spectra of Gases

	 1.	 The wavelengths of the Lyman series for hydrogen are 
given by

1
l

5 R Ha1 2
1
n2b n 5 2, 3, 4, c

		  (a) Calculate the wavelengths of the first three lines in 
this series. (b) Identify the region of the electromag-
netic spectrum in which these lines appear.

	 2.	 The wavelengths of the Paschen series for hydrogen 
are given by

1
l

5 R Ha 1
32 2

1
n2b n 5 4, 5, 6, c

		  (a) Calculate the wavelengths of the first three lines in 
this series. (b) Identify the region of the electromag-
netic spectrum in which these lines appear.

	 3.	 An isolated atom of a certain element emits light of 
wavelength 520 nm when the atom falls from its fifth 
excited state into its second excited state. The atom 
emits a photon of wavelength 410 nm when it drops 
from its sixth excited state into its second excited state. 
Find the wavelength of the light radiated when the atom 
makes a transition from its sixth to its fifth excited state.

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C

S

Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

	 1.	 Why is stimulated emission so important in the opera-
tion of a laser?

	 2.	 An energy of about 21 eV is required to excite an elec-
tron in a helium atom from the 1s state to the 2s state. 
The same transition for the He1 ion requires approxi-
mately twice as much energy. Explain.

	 3.	 Why are three quantum numbers needed to describe 
the state of a one-electron atom (ignoring spin)?

	 4.	 Compare the Bohr theory and the Schrödinger treat-
ment of the hydrogen atom, specifically commenting 
on their treatment of total energy and orbital angular 
momentum of the atom.

	 5.	 Could the Stern–Gerlach experiment be performed 
with ions rather than neutral atoms? Explain.

	 6.	 Why is a nonuniform magnetic field used in the Stern–
Gerlach experiment?

	 7.	 Discuss some consequences of the exclusion principle.

	 8.	 (a) According to Bohr’s model of the hydrogen atom, 
what is the uncertainty in the radial coordinate of the 
electron? (b) What is the uncertainty in the radial 
component of the velocity of the electron? (c) In what 
way does the model violate the uncertainty principle?

	 9.	 Why do lithium, potassium, and sodium exhibit simi-
lar chemical properties?

	10.	 It is easy to understand how two electrons (one spin up, 
one spin down) fill the n 5 1 or K shell for a helium 
atom. How is it possible that eight more electrons are 
allowed in the n 5 2 shell, filling the K and L shells for 
a neon atom?

	11.	 Suppose the electron in the hydrogen atom obeyed clas-
sical mechanics rather than quantum mechanics. Why 
should a gas of such hypothetical atoms emit a continu-
ous spectrum rather than the observed line spectrum?

	12.	Does the intensity of light from a laser fall off as 1/r 2? 
Explain.

www.as
warp

hy
sic

s.w
ee

bly
.co

m
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	14.	Two hydrogen atoms collide head-on and end up with 
zero kinetic energy. Each atom then emits light with a 
wavelength of 121.6 nm (n 5 2 to n 5 1 transition). At 
what speed were the atoms moving before the collision?

	15.	(a) Calculate the angular momentum of the Moon due 
to its orbital motion about the Earth. In your calcula-
tion, use 3.84 3 108 m as the average Earth–Moon dis-
tance and 2.36 3 106 s as the period of the Moon in its 
orbit. (b) Assume that the Moon’s angular momentum 
is described by Bohr’s assumption mvr 5 n". Deter-
mine the corresponding quantum number. (c) By what 
fraction would the Earth–Moon distance have to be 
increased to raise the quantum number by 1?

	16.	A monochromatic beam of light is absorbed by a col-
lection of ground-state hydrogen atoms in such a way 
that six different wavelengths are observed when the 
hydrogen relaxes back to the ground state. (a) What is 
the wavelength of the incident beam? Explain the steps 
in your solution. (b) What is the longest wavelength in 
the emission spectrum of these atoms? (c) To what por-
tion of the electromagnetic spectrum and (d) to what 
series does it belong? (e) What is the shortest wave-
length? (f) To what portion of the electromagnetic 
spectrum and (g) to what series does it belong?

	17.	 A hydrogen atom is in its second excited state, corre-
sponding to n 5 3. Find (a) the radius of the electron’s 
Bohr orbit and (b) the de Broglie wavelength of the 
electron in this orbit.

	18.	A hydrogen atom is in its first excited state (n 5 2). Cal-
culate (a) the radius of the orbit, (b) the linear momen-
tum of the electron, (c) the angular momentum of the 
electron, (d) the kinetic energy of the electron, (e) the 
potential energy of the system, and (f) the total energy 
of the system.

	19.	A photon with energy 2.28 eV is absorbed by a hydro-
gen atom. Find (a) the minimum n for a hydrogen 
atom that can be ionized by such a photon and (b) the 
speed of the electron released from the state in part 
(a) when it is far from the nucleus.

	20.	An electron is in the nth Bohr orbit of the hydrogen 
atom. (a) Show that the period of the electron is T 5 
n3t0 and determine the numerical value of t0. (b) On 
average, an electron remains in the n 5 2 orbit for 
approximately 10 ms before it jumps down to the n 5 1  
(ground-state) orbit. How many revolutions does the 
electron make in the excited state? (c) Define the 
period of one revolution as an electron year, analogous 
to an Earth year being the period of the Earth’s motion 
around the Sun. Explain whether we should think of 
the electron in the n 5 2 orbit as “living for a long time.”

	21.	 (a) Construct an energy-level diagram for the He1 ion, 
for which Z 5 2, using the Bohr model. (b) What is the 
ionization energy for He1?

Section 42.4 ​ The Quantum Model of the Hydrogen Atom
	22.	A general expression for the energy levels of one- 

electron atoms and ions is

En 5 2
mke

2q1
2q2

2

2U2n2

AMT

Q/C
W

W
M

Q/C

dr
dt

5 2
e4

12p2P0
2me

2c 3 a 1
r 2b

		  (b) Find the time interval over which the electron 
reaches r 5 0, starting from r0 5 2.00 3 10210 m.

	 7.	 Review. In the Rutherford scattering experiment,  
4.00-MeV alpha particles scatter off gold nuclei (con-
taining 79 protons and 118 neutrons). Assume a par-
ticular alpha particle moves directly toward the gold 
nucleus and scatters backward at 180°, and that the 
gold nucleus remains fixed throughout the entire pro-
cess. Determine (a) the distance of closest approach 
of the alpha particle to the gold nucleus and (b) the 
maximum force exerted on the alpha particle.

Section 42.3 ​ Bohr’s Model of the Hydrogen Atom

Note: In this section, unless otherwise indicated, assume 
the hydrogen atom is treated with the Bohr model.

	 8.	 Show that the speed of the electron in the nth Bohr 
orbit in hydrogen is given by

vn 5
ke e

2

nU

	 9.	 How much energy is required to ionize hydrogen  
(a) when it is in the ground state and (b) when it is in 
the state for which n 5 3?

	10.	What is the energy of a photon that, when absorbed by 
a hydrogen atom, could cause an electronic transition 
from (a) the n 5 2 state to the n 5 5 state and (b) the  
n 5 4 state to the n 5 6 state?

	11.	 A photon is emitted when a hydrogen atom undergoes 
a transition from the n 5 5 state to the n 5 3 state. Cal-
culate (a) the energy (in electron volts), (b) the wave-
length, and (c) the frequency of the emitted photon.

	12.	The Balmer series for the hydrogen atom corre-
sponds to electronic transitions that terminate in the 
state with quantum number n 5 2 as shown in Figure 
P42.12. Consider the photon of longest wavelength cor-
responding to a transition shown in the figure. Deter-
mine (a) its energy and (b)  its wavelength. Consider 
the spectral line of shortest wavelength corresponding 
to a transition shown in the figure. Find (c) its photon 
energy and (d) its wavelength. (e) What is the shortest 
possible wavelength in the Balmer series?

5
4
3

2
Balmer
series

�3.401

�1.512
�0.850 4
�0.544 2

0.00
E (eV)

�
n

E
N

E
R

G
Y

Figure P42.12

	13.	For a hydrogen atom in its ground state, compute  
(a) the orbital speed of the electron, (b) the kinetic 
energy of the electron, and (c) the electric potential 
energy of the atom.

S
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1334	C hapter 42 A tomic Physics

	26.	For a spherically symmetric state of a hydrogen atom, 
the Schrödinger equation in spherical coordinates is

2
U2

2me
ad 2c

dr 2 1
2
r
  

dc

dr
b 2

ke e
2

r
 c 5 E c

		  (a) Show that the 1s wave function for an electron in 
hydrogen,

c1s 1r 2 5
1

"pa0
3
 e2r/a 0

		  satisfies the Schrödinger equation. (b) What is the 
energy of the atom for this state?

	27.	The radial function R(r) of the wave function for a 
hydrogen atom in the 2p state is

c2p 5
1

!3 12a023/2   
r

a0
 e2r/2a0

		  What is the most likely distance from the nucleus to 
find an electron in the 2p state?

	28.	The ground-state wave function for the electron in a 
hydrogen atom is

c1s 1r 2 5
1

"pa0
3
 e2r/a 0

		  where r is the radial coordinate of the electron and a0 
is the Bohr radius. (a) Show that the wave function as 
given is normalized. (b) Find the probability of locat-
ing the electron between r1 5 a0/2 and r2 5 3a0/2.

	29.	In an experiment, a large number of electrons are 
fired at a sample of neutral hydrogen atoms and obser-
vations are made of how the incident particles scatter. 
The electron in the ground state of a hydrogen atom is 
found to be momentarily at a distance a0/2 from the 
nucleus in 1 000 of the observations. In this set of tri-
als, how many times is the atomic electron observed at 
a distance 2a0 from the nucleus?

Section 42.6 ​ Physical Interpretation of the Quantum Numbers

	30.	List the possible sets of quantum numbers for the 
hydrogen atom associated with (a) the 3d subshell and 
(b) the 3p subshell.

	31.	 If a hydrogen atom has orbital angular momentum 
4.714 3 10234 J ? s, what is the orbital quantum number 
for the state of the atom?

	32.	Find all possible values of (a) L , (b) Lz , and (c) u for a 
hydrogen atom in a 3d state.

	33.	Calculate the magnitude of the orbital angular momen-
tum for a hydrogen atom in (a) the 4d state and (b) the 
6f state.

	34.	How many sets of quantum numbers are possible for a 
hydrogen atom for which (a) n 5 1, (b) n 5 2, (c) n 5 
3, (d) n 5 4, and (e) n 5 5?

	35.	An electron in a sodium atom is in the N shell. Deter-
mine the maximum value the z component of its angu-
lar momentum could have.

	36.	(a) Find the mass density of a proton, modeling it as 
a solid sphere of radius 1.00 3 10215 m. (b) What If? 
Consider a classical model of an electron as a uniform 

S

S

W
Q/C

		  Here m is the reduced mass of the atom, given by m 5  
m1m2/(m1 1 m2), where m1 is the mass of the electron 
and m2 is the mass of the nucleus; ke is the Coulomb 
constant; and q1 and q2 are the charges of the elec-
tron and the nucleus, respectively. The wavelength for 
the n 5 3 to n 5 2 transition of the hydrogen atom is 
656.3 nm (visible red light). What are the wavelengths 
for this same transition in (a) positronium, which con-
sists of an electron and a positron, and (b) singly ion-
ized helium? Note: A positron is a positively charged 
electron.

	23.	Atoms of the same element but with different numbers 
of neutrons in the nucleus are called isotopes. Ordinary 
hydrogen gas is a mixture of two isotopes containing 
either one- or two-particle nuclei. These isotopes are 
hydrogen-1, with a proton nucleus, and hydrogen-2, 
called deuterium, with a deuteron nucleus. A deu-
teron is one proton and one neutron bound together.  
Hydrogen-1 and deuterium have identical chemical 
properties, but they can be separated via an ultracen-
trifuge or by other methods. Their emission spectra 
show lines of the same colors at very slightly different 
wavelengths. (a) Use the equation given in Problem 22 
to show that the difference in wavelength between the 
hydrogen-1 and deuterium spectral lines associated 
with a particular electron transition is given by

lH 2 lD 5 a1 2
mH

mD
blH

		  (b) Find the wavelength difference for the Balmer 
alpha line of hydrogen, with wavelength 656.3 nm, 
emitted by an atom making a transition from an n 5 3 
state to an n 5 2 state. Harold Urey observed this wave-
length difference in 1931 and so confirmed his discov-
ery of deuterium.

	24.	An electron of momentum p is at a distance r from a 
stationary proton. The electron has kinetic energy K 5  
p2/2me . The atom has potential energy U 5 2kee 2/r 
and total energy E 5 K 1 U. If the electron is bound to 
the proton to form a hydrogen atom, its average posi-
tion is at the proton but the uncertainty in its position 
is approximately equal to the radius r of its orbit. The 
electron’s average vector momentum is zero, but its 
average squared momentum is approximately equal to 
the squared uncertainty in its momentum as given by 
the uncertainty principle. Treating the atom as a one-
dimensional system, (a) estimate the uncertainty in the 
electron’s momentum in terms of r. Estimate the elec-
tron’s (b) kinetic energy and (c) total energy in terms 
of r. The actual value of r is the one that minimizes the 
total energy, resulting in a stable atom. Find (d) that 
value of r and (e) the resulting total energy. (f) State 
how your answers compare with the predictions of the 
Bohr theory.

Section 42.5 ​ The Wave Functions for Hydrogen

	25.	Plot the wave function c1s(r) versus r (see Eq. 42.22) 
and the radial probability density function P1s(r) versus 
r (see Eq. 42.25) for hydrogen. Let r range from 0 to 
1.5a0, where a0 is the Bohr radius.

Q/C
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	46.	For a neutral atom of element 110, what would be the 
probable ground-state electronic configuration?

	47.	 Review. For an electron with magnetic moment mSs in 
a magnetic field B

S
,  Section 29.5 showed the following. 

The electron–field system can be in a higher energy 
state with the z component of the electron’s magnetic 
moment opposite the field or a lower energy state with 
the z component of the magnetic moment in the direc-
tion of the field. The difference in energy between the 
two states is 2mBB.

		  	 Under high resolution, many spectral lines are 
observed to be doublets. The most famous doublet is 
the pair of two yellow lines in the spectrum of sodium 
(the D lines), with wavelengths of 588.995 nm and 
589.592 nm. Their existence was explained in 1925 by 
Goudsmit and Uhlenbeck, who postulated that an elec-
tron has intrinsic spin angular momentum. When the 
sodium atom is excited with its outermost electron in a 
3p state, the orbital motion of the outermost electron 
creates a magnetic field. The atom’s energy is somewhat 
different depending on whether the electron is itself 
spin-up or spin-down in this field. Then the photon 
energy the atom radiates as it falls back into its ground 
state depends on the energy of the excited state. Cal-
culate the magnitude of the internal magnetic field, 
mediating this so-called spin-orbit coupling.

Section 42.8 ​ More on Atomic Spectra: Visible and X-Ray

	48.	In x-ray production, electrons are accelerated through 
a high voltage DV and then decelerated by striking a 
target. Show that the shortest wavelength of an x-ray 
that can be produced is

l min 5
1 240 nm # V

DV
	49.	What minimum accelerating voltage would be required 

to produce an x-ray with a wavelength of 70.0 pm?

	50.	A tungsten target is struck by electrons that have been 
accelerated from rest through a 40.0-keV potential dif-
ference. Find the shortest wavelength of the radiation 
emitted.

	51.	 A bismuth target is struck by electrons, and x-rays are 
emitted. Estimate (a) the M- to L-shell transitional 
energy for bismuth and (b) the wavelength of the x-ray 
emitted when an electron falls from the M shell to the 
L shell.

	52.	The 3p level of sodium has an energy of 23.0 eV, and 
the 3d level has an energy of 21.5 eV. (a) Determine 
Zeff for each of these states. (b) Explain the difference.

	53.	(a) Determine the possible values of the quantum 
numbers , and m, for the He1 ion in the state corre-
sponding to n 5 3. (b) What is the energy of this state?

	54.	The K series of the discrete spectrum of tungsten 
contains wavelengths of 0.018 5 nm, 0.020 9 nm, and 
0.021 5 nm. The K-shell ionization energy is 69.5 keV. 
Determine the ionization energies of the L, M, and N 
shells.

	55.	Use the method illustrated in Example 42.5 to cal-
culate the wavelength of the x-ray emitted from a  

Q/C

M

M

solid sphere with the same density as the proton. Find 
its radius. (c) Imagine that this electron possesses spin 
angular momentum Iv 5 "/2 because of classical rota-
tion about the z axis. Determine the speed of a point 
on the equator of the electron. (d) State how this speed 
compares with the speed of light.

	37.	 A hydrogen atom is in its fifth excited state, with princi-
pal quantum number 6. The atom emits a photon with 
a wavelength of 1 090 nm. Determine the maximum 
possible magnitude of the orbital angular momentum 
of the atom after emission.

	38.	Why is the following situation impossible? A photon of 
wavelength 88.0 nm strikes a clean aluminum surface, 
ejecting a photoelectron. The photoelectron then 
strikes a hydrogen atom in its ground state, transfer-
ring energy to it and exciting the atom to a higher 
quantum state.

	39.	The r2 meson has a charge of 2e, a spin quantum 
number of 1, and a mass 1 507 times that of the elec-
tron. The possible values for its spin magnetic quan-
tum number are 21, 0, and 1. What If? Imagine that 
the electrons in atoms are replaced by r2 mesons. List 
the possible sets of quantum numbers for r2 mesons  
in the 3d subshell.

Section 42.7  The Exclusion Principle and the Periodic Table

	40.	(a) As we go down the periodic table, which subshell 
is filled first, the 3d or the 4s subshell? (b) Which elec-
tronic configuration has a lower energy, [Ar]3d 44s2 
or [Ar]3d 54s1? Note: The notation [Ar] represents the 
filled configuration for argon. Suggestion: Which has 
the greater number of unpaired spins? (c) Identify the 
element with the electronic configuration in part (b).

	41.	(a) Write out the electronic configuration of the 
ground state for nitrogen (Z 5 7). (b) Write out the 
values for the possible set of quantum numbers n, ,, 
m,, and ms for the electrons in nitrogen.

	42.	Devise a table similar to that shown in Figure 42.18 for 
atoms containing 11 through 19 electrons. Use Hund’s 
rule and educated guesswork.

	43.	A certain element has its outermost electron in a 3p 
subshell. It has valence 13 because it has three more 
electrons than a certain noble gas. What element is it?

	44.	Scanning through Figure 42.19 in order of increasing 
atomic number, notice that the electrons usually fill 
the subshells in such a way that those subshells with 
the lowest values of n 1 , are filled first. If two sub-
shells have the same value of n 1 ,, the one with the 
lower value of n is generally filled first. Using these two 
rules, write the order in which the subshells are filled 
through n 1 , 5 7.

	45.	Two electrons in the same atom both have n 5 3 and  
, 5 1. Assume the electrons are distinguishable, so 
that interchanging them defines a new state. (a) How  
many states of the atom are possible considering the 
quantum numbers these two electrons can have? 
(b) What If? How many states would be possible if the 
exclusion principle were inoperative?

M
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of 632.8 nm in a transition E 4* 2 E 3 and green light 
with a wavelength of 543 nm in a competing transition  
E 4* 2 E 2. (a) What is the energy E 2? Assume the atoms 
are in a cavity between mirrors designed to reflect the 
green light with high efficiency but to allow the red 
light to leave the cavity immediately. Then stimulated 
emission can lead to the buildup of a collimated beam 
of green light between the mirrors having a greater 
intensity than that of the red light. To constitute the 
radiated laser beam, a small fraction of the green 
light is permitted to escape by transmission through 
one mirror. The mirrors forming the resonant cav-
ity can be made of layers of silicon dioxide (index of 
refraction n 5 1.458) and titanium dioxide (index of 
refraction varies between 1.9 and 2.6). (b) How thick 
a layer of silicon dioxide, between layers of titanium 
dioxide, would minimize reflection of the red light? 
(c) What should be the thickness of a similar but sepa-
rate layer of silicon dioxide to maximize reflection of 
the green light?

Red Green

Ground state

20.66 eV

18.70 eV

0

E4
*

E3
E2

E1

E
N

E
R

G
Y

Figure P42.60  Problems 60 and 62.

	61.	 A ruby laser delivers a 10.0-ns pulse of 1.00-MW aver-
age power. If the photons have a wavelength of 694.3 
nm, how many are contained in the pulse?

	62.	The number N of atoms in a particular state is called 
the population of that state. This number depends 
on the energy of that state and the temperature. In 
thermal equilibrium, the population of atoms in a 
state of energy En is given by a Boltzmann distribution 
expression

N 5 Nge2(En2Eg)/kBT

		  where Ng is the population of the ground state of 
energy Eg , kB is Boltzmann’s constant, and T is the 
absolute temperature. For simplicity, assume each 
energy level has only one quantum state associated 
with it. (a) Before the power is switched on, the neon 
atoms in a laser are in thermal equilibrium at 27.0°C. 
Find the equilibrium ratio of the populations of the 
states E4* and E3 shown for the red transition in Fig-
ure P42.60. Lasers operate by a clever artificial pro-
duction of a “population inversion” between the upper 
and lower atomic energy states involved in the lasing 
transition. This term means that more atoms are in the 
upper excited state than in the lower one. Consider 
the E4*2E3 transition in Figure P42.60. Assume 2% 
more atoms occur in the upper state than in the lower.  
(b) To demonstrate how unnatural such a situation 
is, find the temperature for which the Boltzmann 
distribution describes a 2.00% population inversion.  
(c) Why does such a situation not occur naturally?

M

Q/C

molybdenum target (Z 5 42) when an electron moves 
from the L shell (n 5 2) to the K shell (n 5 1).

	56.	In x-ray production, electrons are accelerated through 
a high voltage and then decelerated by striking a target. 
(a) To make possible the production of x-rays of wave-
length l, what is the minimum potential difference DV 
through which the electrons must be accelerated?  
(b) State in words how the required potential differ-
ence depends on the wavelength. (c) Explain whether 
your result predicts the correct minimum wavelength  
in Figure 42.22. (d) Does the relationship from part  
(a) apply to other kinds of electromagnetic radiation 
besides x-rays? (e) What does the potential difference 
approach as l goes to zero? (f) What does the potential 
difference approach as l increases without limit?

	57.	 When an electron drops from the M shell (n 5 3) to 
a vacancy in the K shell (n 5 1), the measured wave-
length of the emitted x-ray is found to be 0.101 nm. 
Identify the element.

Section 42.9 ​ Spontaneous and Stimulated Transitions

Section 42.10 ​ Lasers

	58.	Figure P42.58 shows portions of the energy-level dia-
grams of the helium and neon atoms. An electrical 
discharge excites the He atom from its ground state 
(arbitrarily assigned the energy E1 5 0) to its excited 
state of 20.61 eV. The excited He atom collides with a 
Ne atom in its ground state and excites this atom to the 
state at 20.66 eV. Lasing action takes place for electron 
transitions from E3* to E2 in the Ne atoms. From the 
data in the figure, show that the wavelength of the red 
He–Ne laser light is approximately 633 nm.

Lasing

Ground state

20.66 eV

18.70 eV
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Figure P42.58

	59.	The carbon dioxide laser is one of the most powerful 
developed. The energy difference between the two 
laser levels is 0.117 eV. Determine (a) the frequency 
and (b) the wavelength of the radiation emitted by this 
laser. (c) In what portion of the electromagnetic spec-
trum is this radiation?

	60.	Review. A helium–neon laser can produce a green 
laser beam instead of a red one. Figure P42.60 shows 
the transitions involved to form the red beam and the 
green beam. After a population inversion is established,  
neon atoms make a variety of downward transitions 
in falling from the state labeled E4* down eventu-
ally to level E 1 (arbitrarily assigned the energy E1 5 
0). The atoms emit both red light with a wavelength 
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lower energy state corresponds to the case in which the 
z component of the magnetic moment mSspin is aligned 
with the magnetic field, and the higher energy state 
corresponds to the case in which the z component of 
mSspin is aligned opposite to the field.) What is the pho-
ton frequency required to excite an ESR transition in a 
0.350-T magnetic field?

	70.	An electron in chromium moves from the n 5 2 state 
to the n 5 1 state without emitting a photon. Instead, 
the excess energy is transferred to an outer electron 
(one in the n 5 4 state), which is then ejected by the 
atom. In this Auger (pronounced “ohjay”) process, the 
ejected electron is referred to as an Auger electron. 
Use the Bohr theory to find the kinetic energy of the 
Auger electron.

	71.	The states of matter are solid, liquid, gas, and plasma. 
Plasma can be described as a gas of charged particles 
or a gas of ionized atoms. Most of the matter in the 
Solar System is plasma (throughout the interior of 
the Sun). In fact, most of the matter in the Universe 
is plasma; so is a candle flame. Use the information in 
Figure 42.20 to make an order-of-magnitude estimate 
for the temperature to which a typical chemical ele-
ment must be raised to turn into plasma by ionizing 
most of the atoms in a sample. Explain your reasoning.

	72.	Show that the wave function for a hydrogen atom in 
the 2s state

c2s 1r 2 5
1

4"2p
a 1

a0
b

3/2

a2 2
r

a0
be2r/2a0

		  satisfies the spherically symmetric Schrödinger equa-
tion given in Problem 26.

	73.	Find the average (expectation) value of 1/r in the 1s 
state of hydrogen. Note that the general expression is 
given by

81/r 9 5 3
 

  all space
 0c 0 2 11/r 2  dV 5 3

 ` 

 0
P 1r 2 11/r 2  dr

		  Is the result equal to the inverse of the average value  
of r ?

	74.	 Why is the following situation impossible? An experiment is 
performed on an atom. Measurements of the atom when 
it is in a particular excited state show five possible val-
ues of the z component of orbital angular momentum, 
ranging between 3.16 3 10234 kg ? m2/s and 23.16 3  
10234 kg ? m2/s.

	75.	 In the Bohr model of the hydrogen atom, an elec-
tron travels in a circular path. Consider another case 
in which an electron travels in a circular path: a sin-
gle electron moving perpendicular to a magnetic 
field B

S
.  Lev Davidovich Landau (1908–1968) solved 

the Schrödinger equation for such an electron. The 
electron can be considered as a model atom without 
a nucleus or as the irreducible quantum limit of the 
cyclotron. Landau proved its energy is quantized in 
uniform steps of e "B/me . In 1999, a single electron was 
trapped by a Harvard University research team in an 
evacuated centimeter-size metal can cooled to a tem-
perature of 80 mK. In a magnetic field of magnitude 

	63.	A neodymium–yttrium–aluminum garnet laser used in 
eye surgery emits a 3.00-mJ pulse in 1.00 ns, focused to 
a spot 30.0 mm in diameter on the retina. (a) Find (in 
SI units) the power per unit area at the retina. (In the 
optics industry, this quantity is called the irradiance.) 
(b) What energy is delivered by the pulse to an area 
of molecular size, taken as a circular area 0.600 nm in 
diameter?

	64.	Review. Figure 42.29 represents the light bouncing 
between two mirrors in a laser cavity as two traveling 
waves. These traveling waves moving in opposite direc-
tions constitute a standing wave. If the reflecting sur-
faces are metallic films, the electric field has nodes 
at both ends. The electromagnetic standing wave is 
analogous to the standing string wave represented in 
Figure 18.10. (a) Assume that a helium–neon laser has 
precisely flat and parallel mirrors 35.124 103 cm apart. 
Assume that the active medium can efficiently amplify 
only light with wavelengths between 632.808 40 nm 
and 632.809 80 nm. Find the number of components 
that constitute the laser light, and the wavelength of 
each component, precise to eight digits. (b) Find the 
root-mean-square speed for a neon atom at 120°C.  
(c) Show that at this temperature the Doppler effect 
for light emission by moving neon atoms should realis-
tically make the bandwidth of the light amplifier larger 
than the 0.001 40 nm assumed in part (a).

Additional Problems

	65.	How much energy is required to ionize a hydrogen 
atom when it is in (a) the n 5 2 state and (b) the n 5 10 
state?

	66.	The force on a magnetic moment mz in a nonuniform 
magnetic field Bz is given by Fz 5 mz(dBz /dz). If a beam 
of silver atoms travels a horizontal distance of 1.00 m 
through such a field and each atom has a speed of  
100 m/s, how strong must be the field gradient dBz /dz 
to deflect the beam 1.00 mm?

	67.	 Suppose a hydrogen atom is in the 2s state, with its 
wave function given by Equation 42.26. Taking r 5 a0,  
calculate values for (a) c2s(a0), (b) uc2s(a0)u2, and  
(c) P2s(a0).

	68.	Review. (a) How much energy is required to cause an 
electron in hydrogen to move from the n 5 1 state to 
the n 5 2 state? (b) Suppose the atom gains this energy 
through collisions among hydrogen atoms at a high 
temperature. At what temperature would the average 
atomic kinetic energy 3

2kBT  be great enough to excite 
the electron? Here kB is Boltzmann’s constant.

	69.	In the technique known as electron spin resonance 
(ESR), a sample containing unpaired electrons is 
placed in a magnetic field. Consider a situation in 
which a single electron (not contained in an atom) is 
immersed in a magnetic field. In this simple situation, 
only two energy states are possible, corresponding to 
ms 5 61

2. In ESR, the absorption of a photon causes 
the electron’s spin magnetic moment to flip from the 
lower energy state to the higher energy state. Accord-
ing to Section 29.5, the change in energy is 2mBB. (The 
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1338	C hapter 42 A tomic Physics

lines form the Lyman series for a (new?) one-electron 
atom, they start to construct the energy-level diagram 
shown in Figure P42.80, which gives the wavelengths 
of the first four lines and the short-wavelength limit of 
this series. Based on this information, calculate (a) the 
energies of the ground state and first four excited states 
for this one-electron atom and (b) the wavelengths of 
the first three lines and the short-wavelength limit in 
the Balmer series for this atom. (c) Show that the wave-
lengths of the first four lines and the short-wavelength 
limit of the Lyman series for the hydrogen atom are 
all 60.0% of the wavelengths for the Lyman series in 
the one-electron atom in the distant galaxy. (d) Based 
on this observation, explain why this atom could be 
hydrogen.

n � 
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n � 1

E  � 0
E5

E4

E3

E2

E1

�
 1

62
.1

 n
m

�
 1

58
.3

 n
m

�
 1

52
.0

 n
m

�
 2

02
.6

 n
m

�
 1

70
.9

 n
m

l

l

l

l

l

� �

E
N

E
R

G
Y

Figure P42.80

	81.	 We wish to show that the most probable radial position 
for an electron in the 2s state of hydrogen is r 5 5.236a0. 
(a) Use Equations 42.24 and 42.26 to find the radial 
probability density for the 2s state of hydrogen. (b) Cal-
culate the derivative of the radial probability density 
with respect to r. (c) Set the derivative in part (b) equal 
to zero and identify three values of r that represent min-
ima in the function. (d) Find two values of r that repre-
sent maxima in the function. (e) Identify which of the 
values in part (c) represents the highest probability.

	82.	All atoms have the same size, to an order of magni-
tude. (a) To demonstrate this fact, estimate the atomic  
diameters for aluminum (with molar mass 27.0 g/mol 
and density 2.70 g/cm3) and uranium (molar mass  
238 g/mol and density 18.9 g/cm3). (b) What do the 
results of part (a) imply about the wave functions for 
inner-shell electrons as we progress to higher and 
higher atomic mass atoms?

	83.	A pulsed ruby laser emits light at 694.3 nm. For a 14.0-ps  
pulse containing 3.00 J of energy, find (a) the physi-
cal length of the pulse as it travels through space and 
(b) the number of photons in it. (c) The beam has a 
circular cross section of diameter 0.600 cm. Find the 
number of photons per cubic millimeter.

	84.	A pulsed laser emits light of wavelength l. For a pulse 
of duration Dt having energy TER, find (a) the physi-
cal length of the pulse as it travels through space and  
(b) the number of photons in it. (c) The beam has a 

GP
S

Q/C

S

5.26 T, the electron circulated for hours in its lowest 
energy level. (a) Evaluate the size of a quantum jump 
in the electron’s energy. (b) For comparison, evaluate 
kBT as a measure of the energy available to the elec-
tron in blackbody radiation from the walls of its con-
tainer. Microwave radiation was introduced to excite 
the electron. Calculate (c) the frequency and (d)  the 
wavelength of the photon the electron absorbed as it 
jumped to its second energy level. Measurement of the 
resonant absorption frequency verified the theory and 
permitted precise determination of properties of the 
electron.

	76.	As the Earth moves around the Sun, its orbits are 
quantized. (a) Follow the steps of Bohr’s analysis of the 
hydrogen atom to show that the allowed radii of the 
Earth’s orbit are given by

r 5
n2U2

GMS ME
2

		  where n is an integer quantum number, MS is the mass 
of the Sun, and ME is the mass of the Earth. (b) Calcu-
late the numerical value of n for the Sun–Earth system. 
(c) Find the distance between the orbit for quantum 
number n and the next orbit out from the Sun corre-
sponding to the quantum number n 1 1. (d) Discuss 
the significance of your results from parts (b) and (c).

	77.	 An elementary theorem in statistics states that the 
root-mean-square uncertainty in a quantity r is  
given by Dr 5 !8r 2 9 2 8r 92. Determine the uncertainty 
in the radial position of the electron in the ground 
state of the hydrogen atom. Use the average value of r 
found in Example 42.3: 8r 9 5 3a 0/2. The average value 
of the squared distance between the electron and the 
proton is given by

8r 2 9 5 3
all space

0 c 0 2r 2 dV 5 3
`

0
P 1r 2r 2 dr

	78.	Example 42.3 calculates the most probable value and 
the average value for the radial coordinate r of the 
electron in the ground state of a hydrogen atom. For 
comparison with these modal and mean values, find 
the median value of r. Proceed as follows. (a) Derive 
an expression for the probability, as a function of r, 
that the electron in the ground state of hydrogen will 
be found outside a sphere of radius r centered on the 
nucleus. (b) Make a graph of the probability as a func-
tion of r/a0. Choose values of r/a0 ranging from 0 to 
4.00 in steps of 0.250. (c) Find the value of r for which 
the probability of finding the electron outside a sphere 
of radius r is equal to the probability of finding the 
electron inside this sphere. You must solve a transcen-
dental equation numerically, and your graph is a good 
starting point.

	79.	(a) For a hydrogen atom making a transition from the  
n 5 4 state to the n 5 2 state, determine the wavelength 
of the photon created in the process. (b) Assuming the 
atom was initially at rest, determine the recoil speed of 
the hydrogen atom when it emits this photon.

	80.	Astronomers observe a series of spectral lines in the 
light from a distant galaxy. On the hypothesis that the 
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trap atoms with laser light.” One part of their work 
was with a beam of atoms (mass , 10225 kg) that move 
at a speed on the order of 1 km/s, similar to the speed 
of molecules in air at room temperature. An intense 
laser light beam tuned to a visible atomic transition 
(assume 500 nm) is directed straight into the atomic 
beam; that is, the atomic beam and the light beam 
are traveling in opposite directions. An atom in the 
ground state immediately absorbs a photon. Total 
system momentum is conserved in the absorption 
process. After a lifetime on the order of 1028 s, the 
excited atom radiates by spontaneous emission. It 
has an equal probability of emitting a photon in any 
direction. Therefore, the average “recoil” of the atom 
is zero over many absorption and emission cycles. 
(a) Estimate the average deceleration of the atomic 
beam. (b) What is the order of magnitude of the dis-
tance over which the atoms in the beam are brought 
to a halt?

	91.	 (a) Use Bohr’s model of the hydrogen atom to show 
that when the electron moves from the n state to the  
n 2 1 state, the frequency of the emitted light is

f 5 a2p2me ke
2e4

h3 b 2n 2 1
n2 1n 2 1 22

		  (b) Bohr’s correspondence principle claims that quan-
tum results should reduce to classical results in the 
limit of large quantum numbers. Show that as n S ,̀ 
this expression varies as 1/n3 and reduces to the classi-
cal frequency one expects the atom to emit. Suggestion: 
To calculate the classical frequency, note that the fre-
quency of revolution is v/2pr, where v is the speed of 
the electron and r is given by Equation 42.10.

S

circular cross section having diameter d. Find the 
number of photons per unit volume.

	85.	Assume three identical uncharged particles of mass 
m and spin 1

2 are contained in a one-dimensional box 
of length L. What is the ground-state energy of this 
system?

	86.	Suppose the ionization energy of an atom is 4.10 eV. In 
the spectrum of this same atom, we observe emission 
lines with wavelengths 310 nm, 400 nm, and 1 377.8 nm. 
Use this information to construct the energy-level dia-
gram with the fewest levels. Assume the higher levels 
are closer together.

	87.	 For hydrogen in the 1s state, what is the probability 
of finding the electron farther than 2.50a0 from the 
nucleus?

	88.	For hydrogen in the 1s state, what is the probability of 
finding the electron farther than ba0 from the nucleus, 
where b is an arbitrary number?

Challenge Problems

	89.	The positron is the antiparticle to the electron. It has 
the same mass and a positive electric charge of the 
same magnitude as that of the electron. Positronium 
is a hydrogen-like atom consisting of a positron and an 
electron revolving around each other. Using the Bohr 
model, find (a) the allowed distances between the two 
particles and (b) the allowed energies of the system.

	90.	Review. Steven Chu, Claude Cohen-Tannoudji, and 
William Phillips received the 1997 Nobel Prize in 
Physics for “the development of methods to cool and 
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1340  	

The most random atomic arrangement, that of a gas, was well understood in the 1800s 
as discussed in our study of kinetic theory in Chapter 21. In a crystalline solid, the atoms are 
not randomly arranged; rather, they form a regular array. The symmetry of the arrangement 
of atoms both stimulated and allowed rapid progress in the field of solid-state physics in the 
20th century. Recently, our understanding of liquids and amorphous solids has advanced. 
(In an amorphous solid such as glass or paraffin, the atoms do not form a regular array.) 
The recent interest in the physics of low-cost amorphous materials has been driven by their 
use in such devices as solar cells, memory elements, and fiber-optic waveguides. With the 
addition of liquids, amorphous solids, and some more exotic forms of matter, such as Bose–
Einstein condensates, solid-state physics expanded in the middle of the 20th century to 
become known as condensed matter physics.
	 We begin this chapter by studying the aggregates of atoms known as molecules. We 
describe the bonding mechanisms in molecules, the various modes of molecular excitation, 
and the radiation emitted or absorbed by molecules. Next, we show how molecules combine 
to form solids. Then, by examining their energy-level structure, we explain the differences 
between insulating, conducting, semiconducting, and superconducting materials. The chap-
ter also includes discussions of semiconducting junctions and several semiconductor devices.

43.1	 Molecular Bonds

43.2	 Energy States and Spectra 
of Molecules

43.3	 Bonding in Solids

43.4	 Free-Electron Theory  
of Metals

43.5	 Band Theory of Solids

43.6	 Electrical Conduction in 
Metals, Insulators, and 
Semiconductors

43.7	 Semiconductor Devices

43.8	 Superconductivity

c h a p t e r 

43 Molecules and Solids

The photograph shows a NEMS 
resonator, where NEMS is an 
acronym for nanoelectromechanical 
system. The device employs a 
semiconductor bridge vibrating in 
a standing wave like the strings in 
Chapter 18. When a single molecule 
or other particle adheres to the 
bridge, the resonance frequencies 
of the normal modes shift in a 
measurable way. Scientists can 
determine the mass of the particle 
from the shifts in the frequencies. 
The new device shows promise in 
allowing the masses of molecules 
and many biological particles to 
be measured with great accuracy. 
(Caltech/Scott Kelberg and Michael Roukes)
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	 43.1  Molecular Bonds	 1341

43.1	 Molecular Bonds
The bonding mechanisms in a molecule are fundamentally due to electric forces 
between atoms (or ions). Because the electric force is conservative, the forces between 
atoms in the system of a molecule are related to a potential energy function. A stable 
molecule is expected at a configuration for which the potential energy function for 
the molecule has its minimum value. (See Section 7.9.)
	 A potential energy function that can be used to model a molecule should account 
for two known features of molecular bonding:

	 1.	 The force between atoms is repulsive at very small separation distances. 
When two atoms are brought close to each other, some of their electron 
shells overlap, resulting in repulsion between the shells. This repulsion is 
partly electrostatic in origin and partly the result of the exclusion principle. 
Because all electrons must obey the exclusion principle, some electrons in 
the overlapping shells are forced into higher energy states and the system 
energy increases as if a repulsive force existed between the atoms.

	 2.	 At somewhat larger separations, the force between atoms is attractive. If 
that were not true, the atoms in a molecule would not be bound together.

	 Taking into account these two features, the potential energy for a system of two 
atoms can be represented by an expression of the form

	 U 1r 2 5 2
A
r n 1

B
r m 	 (43.1)

where r is the internuclear separation distance between the two atoms and n and 
m are small integers. The parameter A is associated with the attractive force and B 
with the repulsive force. Example 7.9 gives one common model for such a potential 
energy function, the Lennard–Jones potential.
	 Potential energy versus internuclear separation distance for a two-atom system 
is graphed in Figure 43.1. At large separation distances between the two atoms, the 
slope of the curve is positive, corresponding to a net attractive force. At the equi-
librium separation distance, the attractive and repulsive forces just balance. At this 
point, the potential energy has its minimum value and the slope of the curve is zero.
	 A complete description of the bonding mechanisms in molecules is highly com-
plex because bonding involves the mutual interactions of many particles. In this 
section, we discuss only some simplified models.

Ionic Bonding
When two atoms combine in such a way that one or more outer electrons are trans-
ferred from one atom to the other, the bond formed is called an ionic bond. Ionic 
bonds are fundamentally caused by the Coulomb attraction between oppositely 
charged ions.
	 A familiar example of an ionically bonded solid is sodium chloride, NaCl, which 
is common table salt. Sodium, which has the electronic configuration 1s22s22p 63s1, 
is ionized relatively easily, giving up its 3s electron to form a Na1 ion. The energy 
required to ionize the atom to form Na1 is 5.1 eV. Chlorine, which has the elec-
tronic configuration 1s22s22p 5, is one electron short of the filled-shell structure 
of argon. If we compare the energy of a system of a free electron and a Cl atom 
with one in which the electron joins the atom to make the Cl2 ion, we find that 
the energy of the ion is lower. When the electron makes a transition from the E 5 
0 state to the negative energy state associated with the available shell in the atom, 
energy is released. This amount of energy is called the electron affinity of the 
atom. For chlorine, the electron affinity is 3.6 eV. Therefore, the energy required to 
form Na1 and Cl2 from isolated atoms is 5.1 2 3.6 5 1.5 eV. It costs 5.1 eV to remove 

Attractive
potential � 1/r n 

0

Total potential

r

U(r)

Repulsive
potential � 1/r m 

Equilibrium
separation

Binding
energy

Figure 43.1  ​Total potential 
energy as a function of inter-
nuclear separation distance for a 
system of two atoms.
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1342	C hapter 43  Molecules and Solids

the electron from the Na atom, but 3.6 eV of it is gained back when that electron is 
allowed to join with the Cl atom.
	 Now imagine that these two charged ions interact with one another to form a 
NaCl “molecule.”1 The total energy of the NaCl molecule versus internuclear sepa-
ration distance is graphed in Figure 43.2. At very large separation distances, the 
energy of the system of ions is 1.5 eV as calculated above. The total energy has a 
minimum value of 24.2 eV at the equilibrium separation distance, which is approx-
imately 0.24 nm. Hence, the energy required to break the Na12Cl2 bond and form 
neutral sodium and chlorine atoms, called the dissociation energy, is 4.2 eV. The 
energy of the molecule is lower than that of the system of two neutral atoms. Conse-
quently, it is energetically favorable for the molecule to form: if a lower energy 
state of a system exists, the system tends to emit energy to achieve this lower energy 
state. The system of neutral sodium and chlorine atoms can reduce its total  
energy by transferring energy out of the system (by electromagnetic radiation, for 
example) and forming the NaCl molecule.

Covalent Bonding
A covalent bond between two atoms is one in which electrons supplied by either 
one or both atoms are shared by the two atoms. Many diatomic molecules—such 
as H2, F2, and CO—owe their stability to covalent bonds. The bond between two 
hydrogen atoms can be described by using atomic wave functions. The ground-
state wave function for a hydrogen atom (Chapter 42) is

c1s 1r 2 5
1

"pa0
3
 e2r/a 0

	 This wave function is graphed in Figure 43.3a for two hydrogen atoms that are 
far apart. There is very little overlap of the wave functions c1(r) for atom 1, located 
at r 5 0, and c2(r) for atom 2, located some distance away. Suppose now the two 
atoms are brought close together. As that happens, their wave functions overlap and 
form the compound wave function c1(r) 1 c2(r) shown in Figure 43.3b. Notice that 
the probability amplitude is larger between the atoms than it is on either side of the 
combination of atoms. As a result, the probability is higher that the electrons asso-
ciated with the atoms will be located between the atoms than on the outer regions 

r (nm)

Total energy (eV)

0.24 nm

0
1
2
3
4

�4
�3
�2
�1

Na� � Cl�

Na � Cl4.2 eV

0.2 0.4 0.6 1.0 1.2 1.40.8

Dissociation

The asymptote of the curve for large 
values of r is marked Na� � Cl� 
because that is the energy of the 
system of sodium and chlorine ions.

The horizontal axis is labeled Na � Cl 
because we define zero energy as that 
for the system of neutral sodium and 
chlorine atoms.

Figure 43.2  ​Total energy versus 
internuclear separation distance 
for Na1 and Cl2 ions.

1NaCl does not tend to form as an isolated molecule at room temperature. In the solid state, NaCl forms a crystalline 
array of ions as described in Section 43.3. In the liquid state or in solution with water, the Na1 and Cl2 ions dissociate 
and are free to move relative to each other.

Pitfall Prevention 43.1
Ionic and Covalent Bonds  In prac-
tice, these descriptions of ionic 
and covalent bonds represent 
extreme ends of a spectrum of 
bonds involving electron transfer. 
In a real bond, the electron may 
not be completely transferred as in 
an ionic bond or equally shared 
as in a covalent bond. Therefore, 
real bonds lie somewhere between 
these extremes.

0

0

r

2(r)1(r)

r

c

c c

1(r) �    2(r)cc

c

The probability amplitude for 
an electron to be between the 
atoms is high.

a

b

Figure 43.3  Ground-state wave 
functions c1(r) and c2(r) for two 
atoms making a covalent bond.  
(a) The atoms are far apart, and 
their wave functions overlap mini-
mally. (b) The atoms are close 
together, forming a composite 
wave function c1(r) 1 c2(r) for 
the system.
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of the system. Consequently, the average position of negative charge in the system 
is halfway between the atoms. This scenario can be modeled as if there were a fixed 
negative charge between the atoms, exerting attractive Coulomb forces on both 
nuclei. Therefore, there is an overall attractive force between the atoms, resulting 
in a covalent bond.
	 Because of the exclusion principle, the two electrons in the ground state of H2 
must have antiparallel spins. Also because of the exclusion principle, if a third H 
atom is brought near the H2 molecule, the third electron would have to occupy a 
higher energy level, which is not an energetically favorable situation. For this rea-
son, the H3 molecule is not stable and does not form.

Van der Waals Bonding
Ionic and covalent bonds occur between atoms to form molecules or ionic solids, 
so they can be described as bonds within molecules. Two additional types of bonds, 
van der Waals bonds and hydrogen bonds, can occur between molecules.
	 You might think that two neutral molecules would not interact by means of the 
electric force because they each have zero net charge. They are attracted to each 
other, however, by weak electrostatic forces called van der Waals forces. Likewise, 
atoms that do not form ionic or covalent bonds are attracted to each other by 
van der Waals forces. Noble gas atoms, for example, because of their filled shell 
structure, do not generally form molecules or bond to each other to form a liquid. 
Because of van der Waals forces, however, at sufficiently low temperatures at which 
thermal excitations are negligible, noble gases first condense to liquids and then 
solidify. (The exception is helium, which does not solidify at atmospheric pressure.)
	 The van der Waals force results from the following situation. While being elec-
trically neutral, a molecule has a charge distribution with positive and negative 
centers at different positions in the molecule. As a result, the molecule may act as 
an electric dipole. (See Section 23.4.) Because of the dipole electric fields, two mol-
ecules can interact such that there is an attractive force between them.
	 There are three types of van der Waals forces. The first type, called the dipole–
dipole force, is an interaction between two molecules each having a permanent elec-
tric dipole moment. For example, polar molecules such as HCl have permanent 
electric dipole moments and attract other polar molecules.
	 The second type, the dipole–induced dipole force, results when a polar molecule 
having a permanent electric dipole moment induces a dipole moment in a non-
polar molecule. In this case, the electric field of the polar molecule creates the 
dipole moment in the nonpolar molecule, which then results in an attractive force 
between the molecules.
	 The third type is called the dispersion force, an attractive force that occurs between 
two nonpolar molecules. In this case, although the average dipole moment of a 
nonpolar molecule is zero, the average of the square of the dipole moment is non-
zero because of charge fluctuations. Two nonpolar molecules near each other tend 
to have dipole moments that are correlated in time so as to produce an attractive 
van der Waals force.

Hydrogen Bonding
Because hydrogen has only one electron, it is expected to form a covalent bond with 
only one other atom within a molecule. A hydrogen atom in a given molecule can 
also form a second type of bond between molecules called a hydrogen bond. Let’s 
use the water molecule H2O as an example. In the two covalent bonds in this mol-
ecule, the electrons from the hydrogen atoms are more likely to be found near the 
oxygen atom than near the hydrogen atoms, leaving essentially bare protons at the 
positions of the hydrogen atoms. This unshielded positive charge can be attracted 
to the negative end of another polar molecule. Because the proton is unshielded 
by electrons, the negative end of the other molecule can come very close to the 
proton to form a bond strong enough to form a solid crystalline structure, such as 
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1344	C hapter 43  Molecules and Solids

that of ordinary ice. The bonds within a water molecule are covalent, but the bonds 
between water molecules in ice are hydrogen bonds.
	 The hydrogen bond is relatively weak compared with other chemical bonds 
and can be broken with an input energy of approximately 0.1 eV. Because of this 
weakness, ice melts at the low temperature of 0°C. Even though this bond is weak, 
however, hydrogen bonding is a critical mechanism responsible for the linking of 
biological molecules and polymers. For example, in the case of the DNA (deoxy-
ribonucleic acid) molecule, which has a double-helix structure (Fig. 43.4), hydro-
gen bonds form by the sharing of a proton between two atoms and create linkages 
between the turns of the helix.

Q	 uick Quiz 43.1 ​ For each of the following atoms or molecules, identify the most 
likely type of bonding that occurs between the atoms or between the molecules. 
Choose from the following list: ionic, covalent, van der Waals, hydrogen. (a) atoms 
of krypton (b) potassium and chlorine atoms (c) hydrogen fluoride (HF) mol-
ecules (d) chlorine and oxygen atoms in a hypochlorite ion (ClO2)

43.2	 Energy States and Spectra of Molecules
Consider an individual molecule in the gaseous phase of a substance. The energy 
E of the molecule can be divided into four categories: (1) electronic energy, due 
to the interactions between the molecule’s electrons and nuclei; (2) translational 
energy, due to the motion of the molecule’s center of mass through space; (3) rota-
tional energy, due to the rotation of the molecule about its center of mass; and 
(4) vibrational energy, due to the vibration of the molecule’s constituent atoms:

E 5 Eel 1 E trans 1 E rot 1 E vib

We explored the roles of translational, rotational, and vibrational energy of mol-
ecules in determining the molar specific heats of gases in Sections 21.2 and 21.3. 
The translational energy is important in kinetic theory, but it is unrelated to inter-
nal structure of the molecule, so this molecular energy is unimportant in interpret-
ing molecular spectra. The electronic energy of a molecule is very complex because 
it involves the interaction of many charged particles, but various techniques have 
been developed to approximate its values. Although the electronic energies can be 
studied, significant information about a molecule can be determined by analyzing 
its quantized rotational and vibrational energy states. Transitions between these 
states give spectral lines in the microwave and infrared regions of the electromag-
netic spectrum, respectively.

Rotational Motion of Molecules
Let’s consider the rotation of a molecule around its center of mass, confining our 
discussion to the diatomic molecule (Fig. 43.5a) but noting that the same ideas can 
be extended to polyatomic molecules. A diatomic molecule aligned along a y axis has 
only two rotational degrees of freedom, corresponding to rotations about the x and z 
axes passing through the molecule’s center of mass. We discussed the rotation of such 
a molecule and its contribution to the specific heat of a gas in Section 21.3. If v is the 
angular frequency of rotation about one of these axes, the rotational kinetic energy 
of the molecule about that axis can be expressed with Equation 10.24:

	 E rot 5 1
2Iv

2 	 (43.2)

In this equation, I is the moment of inertia of the molecule about its center of mass, 
given by

	 I 5 a m1 m 2

m 1 1 m 2
br 2 5 mr 2 	 (43.3)

Total energy of a molecule 

� Moment of inertia for 
a diatomic molecule

Figure 43.4  ​DNA molecules are 
held together by hydrogen bonds.
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	 43.2  Energy States and Spectra of Molecules	 1345

where m1 and m2 are the masses of the atoms that form the molecule, r is the atomic 
separation, and m is the reduced mass of the molecule (see Example 41.5 and Prob-
lem 40 in Chapter 41):

	 m 5
m1 m2

m1 1 m2
	 (43.4)

	 The magnitude of the molecule’s angular momentum about its center of mass 
is given by Equation 11.14, L 5 Iv, which classically can have any value. Quantum 
mechanics, however, restricts the molecule to certain quantized rotational frequen-
cies such that the angular momentum of the molecule has the values2

	 L 5 "J 1 J 1 1 2  U  J 5 0, 1, 2, c 	 (43.5)

where J is an integer called the rotational quantum number. Combining Equa-
tions 43.5 and 43.2, we obtain an expression for the allowed values of the rotational 
kinetic energy of the molecule:

	 E rot 5 1
2Iv2 5

1
2I

1Iv 22 5
L2

2I
5

1"J 1 J 1 1 2  U 22

2I

	 E rot 5 EJ 5
U2

2I
 J 1 J 1 1 2  J 5 0, 1, 2, c 	 (43.6)

The allowed rotational energies of a diatomic molecule are plotted in Figure 43.5b. 
As the quantum number J goes up, the states become farther apart as displayed 
earlier for rotational energy levels in Figure 21.7.
	 For most molecules, transitions between adjacent rotational energy levels result 
in radiation that lies in the microwave range of frequencies ( f , 1011 Hz). When a 
molecule absorbs a microwave photon, the molecule jumps from a lower rotational 
energy level to a higher one. The allowed rotational transitions of linear molecules 
are regulated by the selection rule DJ 5 61. Given this selection rule, all absorption 
lines in the spectrum of a linear molecule correspond to energy separations equal 
to EJ 2 EJ21, where J 5 1, 2, 3, . . . . From Equation 43.6, we see that the energies of 
the absorbed photons are given by

	 Ephoton 5 DE rot 5 EJ 2 EJ21 5
U2

2I
3 J 1 J 1 1 2 2 1 J 2 1 2 J 4

	 Ephoton 5
U2

I
 J 5

h2

4p2I
 J  J 5 1, 2, 3, c 	 (43.7)

WW �Reduced mass of a diatomic 
molecule

WW �Allowed values of rotational 
angular momentum

WW �Allowed values of rotational 
energy

WW �Energy of a photon absorbed 
in a transition between adja-
cent rotational levels

2Equation 43.5 is similar to Equation 42.27 for orbital angular momentum in an atom. The relationship between the 
magnitude of the angular momentum of a system and the associated quantum number is the same as it is in these 
equations for any system that exhibits rotation as long as the potential energy function for the system is spherically 
symmetric.

E1
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E1

E1

E1
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3
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2 3
1
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E1

Rotational
energyJ
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E
N

E
R

G
Y

yx

z

a b

The diatomic molecule 
can rotate about the x 
and z axes.

m1

m2

E0 � 0

The energies of 
allowed states can 
be calculated using 
Equation 43.6.

Figure 43.5  Rotation of a 
diatomic molecule around its cen-
ter of mass. (a) A diatomic mol-
ecule oriented along the y axis. 
(b) Allowed rotational energies of 
a diatomic molecule expressed as 
multiples of E1 5 "2/I.
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1346	C hapter 43  Molecules and Solids

where J is the rotational quantum number of the higher energy state. Because  
Ephoton 5 hf, where f is the frequency of the absorbed photon, we see that the 
allowed frequency for the transition J 5 0 to J 5 1 is f1 5 h/4p2I. The frequency cor-
responding to the J 5 1 to J 5 2 transition is 2f1, and so on. These predictions are in 
excellent agreement with the observed frequencies.

Q	 uick Quiz 43.2 ​ A gas of identical diatomic molecules absorbs electromagnetic 
radiation over a wide range of frequencies. Molecule 1 is in the J 5 0 rotation 
state and makes a transition to the J 5 1 state. Molecule 2 is in the J 5 2 state 
and makes a transition to the J 5 3 state. Is the ratio of the frequency of the 
photon that excited molecule 2 to that of the photon that excited molecule 1 
equal to (a) 1, (b) 2, (c) 3, (d) 4, or (e) impossible to determine?

Example 43.1	     Rotation of the CO Molecule

The J 5 0 to J 5 1 rotational transition of the CO molecule occurs at a frequency of 1.15 3 1011 Hz.

(A)  ​Use this information to calculate the moment of inertia of the molecule.

Conceptualize  ​Imagine that the two atoms in Figure 43.5a are carbon and oxygen. The center of mass of the molecule 
is not midway between the atoms because of the difference in masses of the C and O atoms.

Categorize  ​The statement of the problem tells us to categorize this example as one involving a quantum-mechanical 
treatment and to restrict our investigation to the rotational motion of a diatomic molecule.

S o l u ti  o n

Analyze  ​Use Equation 43.7 to find the energy of a pho-
ton that excites the molecule from the J 5 0 to the J 5 1 
rotational level:

Ephoton 5
h2

4p2I
11 2 5

h2

4p2I

Equate this energy to E 5 hf for the absorbed photon 
and solve for I :

h2

4p2I
5 hf    S   I 5

h
4p2f

Substitute the frequency given in the problem statement: I 5
6.626 3 10234 J # s

4p2 11.15 3 1011 s21 2 5 1.46 3 10246 kg # m2

(B)  ​Calculate the bond length of the molecule.

S o l u ti  o n

Find the reduced mass m of the CO molecule: m 5
m1 m 2

m1 1 m 2
5

112 u 2 116 u 2
12 u 1 16 u

5 6.86 u

5 16.86 u 2 a1.66 3 10227 kg

1 u
b 5 1.14 3 10226 kg

Solve Equation 43.3 for r and substitute for the reduced 
mass and the moment of inertia from part (A):

r 5 Å
I
m

5 Å
1.46 3 10246 kg # m2

1.14 3 10226 kg
 

5 1.13 3 10210 m 5 0.113 nm

Finalize  ​The moment of inertia of the molecule and the separation distance between the atoms are both very small, as 
expected for a microscopic system.

What if another photon of frequency 1.15 3 1011 Hz is incident on the CO molecule while that molecule 
is in the J 5 1 state? What happens?

Answer  ​Because the rotational quantum states are not equally spaced in energy, the J 5 1 to J 5 2 transition does not 
have the same energy as the J 5 0 to J 5 1 transition. Therefore, the molecule will not be excited to the J 5 2 state. Two 

What If ?
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	 43.2  Energy States and Spectra of Molecules	 1347

possibilities exist. The photon could pass by the molecule with no interaction, or the photon could induce a stimulated 
emission, similar to that for atoms and discussed in Section 42.9. In this case, the molecule makes a transition back to 
the J 5 0 state and the original photon and a second identical photon leave the scene of the interaction.

Vibrational Motion of Molecules
If we consider a molecule to be a flexible structure in which the atoms are bonded 
together by “effective springs” as shown in Figure 43.6a, we can apply the particle in 
simple harmonic motion analysis model to the molecule as long as the atoms in the 
molecule are not too far from their equilibrium positions. Recall from Section 15.3 
that the potential energy function for a simple harmonic oscillator is parabolic, 
varying as the square of the position of the particle relative to the equilibrium posi-
tion. (See Eq. 15.20 and Fig. 15.9b.) Figure 43.6b shows a plot of potential energy 
versus atomic separation for a diatomic molecule, where r0 is the equilibrium 
atomic separation. For separations close to r0, the shape of the potential energy 
curve closely resembles the parabolic shape of the potential energy function in the 
particle in simple harmonic motion model.
	 According to classical mechanics, the frequency of vibration for the system 
shown in Figure 43.6a is given by Equation 15.14:

	 f 5
1

2p Å
k
m

	 (43.8)

where k is the effective spring constant and m is the reduced mass given by Equation 
43.4. In Section 21.3, we studied the contribution of a molecule’s vibration to the 
specific heats of gases.
	 Quantum mechanics predicts that a molecule vibrates in quantized states as 
described in Section 41.7. The vibrational motion and quantized vibrational energy 
can be altered if the molecule acquires energy of the proper value to cause a transi-
tion between quantized vibrational states. As discussed in Section 41.7, the allowed 
vibrational energies are

	 E vib 5 1v 1 1
2 2hf  v 5 0, 1, 2, c 	 (43.9)

where v is an integer called the vibrational quantum number. (We used n in Sec-
tion 41.7 for a general harmonic oscillator, but v is often used for the quantum 
number when discussing molecular vibrations.) If the system is in the lowest vibra-
tional state, for which v 5 0, its ground-state energy is 12hf. In the first excited vibra-
tional state, v 5 1 and the energy is 32hf, and so on.

k

r

r
r 0

U(r)

a b

The vibration of the 
molecule is along 
the molecular axis.

The distance r0 is the 
equilibrium separation 
distance of the atoms.

m1

m2

Figure 43.6  (a) Effective-spring 
model of a diatomic molecule.  
(b) Plot of the potential energy  
of a diatomic molecule versus  
atomic separation distance.  
Compare with Figure 15.11a.

	

▸ 43.1 c o n t i n u e d
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1348	C hapter 43  Molecules and Solids

	 Substituting Equation 43.8 into Equation 43.9 gives the following expression for 
the allowed vibrational energies:

	 E vib 5 1v 1 1
2 2  

h
2p

 Å
k
m
  v 5 0, 1, 2, c 	 (43.10)

The selection rule for the allowed vibrational transitions is Dv 5 61. Transitions 
between vibrational levels are caused by absorption of photons in the infrared 
region of the spectrum. The energy of an absorbed photon is equal to the energy 
difference between any two successive vibrational levels. Therefore, the photon 
energy is given by

	 Ephoton 5 DE vib 5
h

2p
 Å

k
m

	 (43.11)

	 The vibrational energies of a diatomic molecule are plotted in Figure 43.7. At 
ordinary temperatures, most molecules have vibrational energies corresponding to 
the v 5 0 state because the spacing between vibrational states is much greater than 
kBT, where kB is Boltzmann’s constant and T is the temperature.

Q	 uick Quiz 43.3 ​ A gas of identical diatomic molecules absorbs electromagnetic 
radiation over a wide range of frequencies. Molecule 1, initially in the v 5 0 
vibrational state, makes a transition to the v 5 1 state. Molecule 2, initially in 
the v 5 2 state, makes a transition to the v 5 3 state. What is the ratio of the fre-
quency of the photon that excited molecule 2 to that of the photon that excited 
molecule 1? (a) 1 (b) 2 (c) 3 (d) 4 (e) impossible to determine

� Allowed values of 
vibrational energy

Vibrational
energyv

5 hf11
2

4 hf9
2

3 hf7
2

2 hf5
2

1 hf3
2

0 hf1
2

E vib�

E
N

E
R

G
Y

The spacings between 
adjacent vibrational 
levels are equal if the 
molecule behaves as a 
harmonic oscillator.

Example 43.2	     Vibration of the CO Molecule 

The frequency of the photon that causes the v 5 0 to v 5 1 transition in the CO molecule is 6.42 3 1013 Hz. We ignore 
any changes in the rotational energy for this example.

(A)  ​Calculate the force constant k for this molecule.

Conceptualize  ​Imagine that the two atoms in Figure 43.6a are carbon and oxygen. As the molecule vibrates, a given 
point on the imaginary spring is at rest. This point is not midway between the atoms because of the difference in 
masses of the C and O atoms.

Categorize  ​The statement of the problem tells us to categorize this example as one involving a quantum-mechanical 
treatment and to restrict our investigation to the vibrational motion of a diatomic molecule. The molecule is analyzed 
with portions of the particle in simple harmonic motion analysis model.

AM

S o l u ti  o n

Figure 43.7  Allowed vibrational 
energies of a diatomic molecule, 
where f is the frequency of vibra-
tion of the molecule, given by 
Equation 43.8.
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Molecular Spectra
In general, a molecule vibrates and rotates simultaneously. To a first approxima-
tion, these motions are independent of each other, so the total energy of the mol-
ecule for these motions is the sum of Equations 43.6 and 43.9:

	 E 5 1v 1 1
2 2hf 1

U2

2I
 J 1 J 1 1 2 	 (43.12)

The energy levels of any molecule can be calculated from this expression, and each 
level is indexed by the two quantum numbers v and J. From these calculations, 
an energy-level diagram like the one shown in Figure 43.8a (page 1350) can be 
constructed. For each allowed value of the vibrational quantum number v, there 
is a complete set of rotational levels corresponding to J 5 0, 1, 2, . . . . The energy 
separation between successive rotational levels is much smaller than the separation 
between successive vibrational levels. As noted earlier, most molecules at ordinary 
temperatures are in the v 5 0 vibrational state; these molecules can be in various 
rotational states as Figure 43.8a shows.
	 When a molecule absorbs a photon with the appropriate energy, the vibrational 
quantum number v increases by one unit while the rotational quantum number J 
either increases or decreases by one unit as can be seen in Figure 43.8. Therefore, 
the molecular absorption spectrum in Figure 43.8b consists of two groups of lines: 
one group to the right of center and satisfying the selection rules DJ 5 11 and Dv 5 
11, and the other group to the left of center and satisfying the selection rules DJ 5 
21 and Dv 5 11.
	 The energies of the absorbed photons can be calculated from Equation 43.12:

	 Ephoton 5 DE 5 hf 1
U2

I
 1 J 1 1 2  J 5 0, 1, 2, c 1DJ 5 11 2 	 (43.13)

	 Ephoton 5 DE 5 hf 2
U2

I
 J  J 5 1, 2, 3, c 1DJ 5 21 2 	 (43.14)

Substitute the frequency given in the prob-
lem statement and the reduced mass from 
Example 43.1:

k 5 4p2 11.14 3 10226 kg 2 16.42 3 1013 s21 22 5 1.85 3 103 N/m

Analyze  ​Set Equation 43.11 equal to the pho-
ton energy hf and solve for the force constant:

h
2p

 Å
k
m

5 hf    S   k 5 4p2mf 2

(B)  ​What is the classical amplitude A of vibration for this molecule in the v 5 0 vibrational state?

S o l u ti  o n

Substitute the value for k from part (A) and 
the value for m: A 5 Å

6.626 3 10234 J # s

2p
  c 1

11.14 3 10226 kg 2 11.85 3 103 N/m 2 d
1/4

5 4.79 3 10212 m 5 0.004 79 nm

Equate the maximum elastic potential energy 
1
2 kA2 in the molecule (Eq. 15.21) to the vibra-
tional energy given by Equation 43.10 with  
v 5 0 and solve for A:

1
2kA2 5

h
4p

 Å
k
m

   S   A 5 Å
h

2p
a 1

mk
b

1/4

Finalize  ​Comparing this result with the bond length of 0.113 nm we calculated in Example 43.1 shows that the classical 
amplitude of vibration is approximately 4% of the bond length.

	

▸ 43.2 c o n t i n u e d
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1350	C hapter 43  Molecules and Solids

where J is the rotational quantum number of the initial state. Equation 43.13 gener-
ates the series of equally spaced lines higher than the frequency f, whereas Equation 
43.14 generates the series lower than this frequency. Adjacent lines are separated 
in frequency by the fundamental unit "/2pI. Figure 43.8b shows the expected 
frequencies in the absorption spectrum of the molecule; these same frequencies 
appear in the emission spectrum.
	 The experimental absorption spectrum of the HCl molecule shown in Figure 
43.9 follows this pattern very well and reinforces our model. One peculiarity is 
apparent, however: each line is split into a doublet. This doubling occurs because 
two chlorine isotopes (Cl-35 and Cl-37; see Section 44.1) were present in the sample 
used to obtain this spectrum. Because the isotopes have different masses, the two 
HCl molecules have different values of I.
	 The intensity of the spectral lines in Figure 43.9 follows an interesting pattern, 
rising first as one moves away from the central gap (located at about 8.65 3 1013 Hz, 
corresponding to the forbidden J 5 0 to J 5 0 transition) and then falling. This 
intensity is determined by a product of two functions of J. The first function cor-
responds to the number of available states for a given value of J. This function is  
2J 1 1, corresponding to the number of values of mJ , the molecular rotation ana-
log to m, for atomic states. For example, the J 5 2 state has five substates with five 
values of mJ (mJ 5 22, 21, 0, 1, 2), whereas the J 5 1 state has only three substates 
(mJ 5 21, 0, 1). Therefore, on average and without regard for the second function 
described below, five-thirds as many molecules make the transition from the J 5 2 
state as from the J 5 1 state.
	 The second function determining the envelope of the intensity of the spectral 
lines is the Boltzmann factor, introduced in Section 21.5. The number of molecules 
in an excited rotational state is given by

n 5 n 0e
2U2J 1 J112/12I k BT 2

where n0 is the number of molecules in the J 5 0 state.
	 Multiplying these factors together indicates that the intensity of spectral lines 
should be described by a function of J as follows:

	 I ~ 12J 1 1 2e2U2J 1 J112/12Ik BT 2 	 (43.15)� Intensity variation in the 
 vibration–rotation 

spectrum of a molecule

Photon frequency

J � 4
J � 3
J � 2
J � 1
J � 0

v � 1

J � 4
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J � 1
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G
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The transitions obey the selection 
rule �J � �1 and fall into two 
sequences, those for �J � �1 and 
those for �J � �1.

The lines to the right of the center 
mark correspond to transitions in 
which J changes by �1; the lines to the 
left of the center mark correspond to 
transitions for which J changes by �1.
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J � 3
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J � 0

v � 1

J � 4
J � 3
J � 2
J � 1
J � 0

v � 0

J � �1� J � �1�

�/2  Ip

E
N

E
R

G
Y

a

b

The transitions obey the selection 
rule �J � �1 and fall into two 
sequences, those for �J � �1 and 
those for �J � �1.

The lines to the right of the center 
mark correspond to transitions in 
which J changes by �1; the lines to the 
left of the center mark correspond to 
transitions for which J changes by �1.

Figure 43.8  (a) Absorptive 
transitions between the v 5 0 
and v 5 1 vibrational states of a 
diatomic molecule. Compare the 
energy levels in this figure with 
those in Figure 21.7. (b) Expected 
lines in the absorption spectrum 
of a molecule. These same lines 
appear in the emission spectrum.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 43.2  Energy States and Spectra of Molecules	 1351

The factor (2J 1 1) increases with J while the exponential second factor decreases. 
The product of the two factors gives a behavior that closely describes the envelope 
of the spectral lines in Figure 43.9.
	 The excitation of rotational and vibrational energy levels is an important consid-
eration in current models of global warming. Most of the absorption lines for CO2 
are in the infrared portion of the spectrum. Therefore, visible light from the Sun 
is not absorbed by atmospheric CO2 but instead strikes the Earth’s surface, warm-
ing it. In turn, the surface of the Earth, being at a much lower temperature than 
the Sun, emits thermal radiation that peaks in the infrared portion of the electro-
magnetic spectrum (Section 40.1). This infrared radiation is absorbed by the CO2 
molecules in the air instead of radiating out into space. Atmospheric CO2 acts like 
a one-way valve for energy from the Sun and is responsible, along with some other 
atmospheric molecules, for raising the temperature of the Earth’s surface above 
its value in the absence of an atmosphere. This phenomenon is commonly called 
the “greenhouse effect.” The burning of fossil fuels in today’s industrialized society 
adds more CO2 to the atmosphere. This addition of CO2 increases the absorption 
of infrared radiation, raising the Earth’s temperature further. In turn, this increase 
in temperature causes substantial climatic changes. 
	 As seen in Figure 43.10, the amount of carbon dioxide in the atmosphere has 
been steadily increasing since the middle of the 20th century. This graph shows 
hard data that indicate that the atmosphere is undergoing a distinct change, 
although not all scientists agree on the interpretation of what that change means in 
terms of global temperatures. 
	 The  Intergovernmental Panel on Climate Change (IPCC) is a scientific body that 
assesses the available information related to global warming and associated effects 
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Each line is split into a doublet because the sample 
contains two chlorine isotopes that have different 
masses and therefore different moments of inertia.

Figure 43.9  ​Experimental 
absorption spectrum of the HCl 
molecule.
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Figure 43.10  The concentra-
tion of atmospheric carbon 
dioxide in parts per million 
(ppm) of dry air as a function of 
time. These data were recorded 
at the Mauna Loa Observatory 
in Hawaii. The yearly variations 
(red-brown curve) coincide with 
growing seasons because vegeta-
tion absorbs carbon dioxide from 
the air. The steady increase in 
the average concentration (black 
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related to climate change. It was originally established in 1988 by two United Nations 
organizations, the World Meteorological Organization and the United Nations Envi-
ronment Programme. The IPCC has published four assessment reports on climate 
change, the most recent in 2007, and a fifth report is scheduled to be released in 
2014. The 2007 report concludes that there is a probability of greater than 90% that 
the increased global temperature measured by scientists is due to the placement of 
greenhouse gases such as carbon dioxide in the atmosphere by humans. The report 
also predicts a global temperature increase between 1°C and 6°C in the 21st century, 
a sea level rise from 18 cm to 59 cm, and very high probabilities of weather extremes, 
including heat waves, droughts, cyclones, and heavy rainfall.
     In addition to its scientific aspects, global warming is a social issue with many fac-
ets. These facets encompass international politics and economics, because global 
warming is a worldwide problem. Changing our policies requires real costs to solve 
the problem. Global warming also has technological aspects, and new methods of 
manufacturing, transportation, and energy supply must be designed to slow down 
or reverse the increase in temperature.

	

Conceptual Example 43.3	     Comparing Figures 43.8 and 43.9

In Figure 43.8a, the transitions indicated correspond to spectral lines that are equally spaced as shown in Figure 43.8b. 
The actual spectrum in Figure 43.9, however, shows lines that move closer together as the frequency increases. Why 
does the spacing of the actual spectral lines differ from the diagram in Figure 43.8?

In Figure 43.8, we modeled the rotating diatomic molecule as a rigid object (Chapter 10). In reality, however, as the 
molecule rotates faster and faster, the effective spring in Figure 43.6a stretches and provides the increased force asso-
ciated with the larger centripetal acceleration of each atom. As the molecule stretches along its length, its moment of 
inertia I increases. Therefore, the rotational part of the energy expression in Equation 43.12 has an extra dependence 
on J in the moment of inertia I. Because the increasing moment of inertia is in the denominator, as J increases, the 
energies do not increase as rapidly with J as indicated in Equation 43.12. With each higher energy level being lower 
than indicated by Equation 43.12, the energy associated with a transition to that level is smaller, as is the frequency 
of the absorbed photon, destroying the even spacing of the spectral lines and giving the spacing that decreases with 
increasing frequency seen in Figure 43.9.

S o l u ti  o n

43.3	 Bonding in Solids
A crystalline solid consists of a large number of atoms arranged in a regular array, 
forming a periodic structure. The ions in the NaCl crystal are ionically bonded, 
as already noted, and the carbon atoms in diamond form covalent bonds with one 
another. The metallic bond described at the end of this section is responsible for 
the cohesion of copper, silver, sodium, and other solid metals.

Ionic Solids
Many crystals are formed by ionic bonding, in which the dominant interaction 
between ions is the Coulomb force. Consider a portion of the NaCl crystal shown in 
Figure 43.11a. The red spheres are sodium ions, and the blue spheres are chlorine 
ions. As shown in Figure 43.11b, each Na1 ion has six nearest-neighbor Cl2 ions. 
Similarly, in Figure 43.11c, we see that each Cl2 ion has six nearest-neighbor Na1 
ions. Each Na1 ion is attracted to its six Cl2 neighbors. The corresponding poten-
tial energy is 26kee 2/r, where ke is the Coulomb constant and r is the separation dis-
tance between each Na1 and Cl2. In addition, there are 12 next-nearest-neighbor 
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Na� Cl �

a b c

The blue spheres represent 
Cl� ions, and the red spheres 
represent Na� ions.

Figure 43.11  ​(a) Crystalline 
structure of NaCl. (b) Each posi-
tive sodium ion is surrounded by 
six negative chlorine ions. (c) Each 
chlorine ion is surrounded by six 
sodium ions.

Na1 ions at a distance of !2r  from the Na1 ion, and these 12 positive ions exert 
weaker repulsive forces on the central Na1. Furthermore, beyond these 12 Na1 ions 
are more Cl2 ions that exert an attractive force, and so on. The net effect of all 
these interactions is a resultant negative electric potential energy

	 Uattractive 5 2ake 
e 2

r
	 (43.16)

where a is a dimensionless number known as the Madelung constant. The value 
of a depends only on the particular crystalline structure of the solid. For example,  
a 5 1.747 6 for the NaCl structure. When the constituent ions of a crystal are brought 
close together, a repulsive force exists because of electrostatic forces and the exclu-
sion principle as discussed in Section 43.1. The potential energy term B/r m in Equa-
tion 43.1 accounts for this repulsive force. We do not include neighbors other than 
nearest neighbors here because the repulsive forces occur only for ions that are very 
close together. (Electron shells must overlap for exclusion-principle effects to become 
important.) Therefore, we can express the total potential energy of the crystal as

	 Utotal 5 2ake 
e 2

r
1

B
rm 	 (43.17)

where m in this expression is some small integer.
	 A plot of total potential energy versus ion separation distance is shown in Figure 
43.12. The potential energy has its minimum value U0 at the equilibrium separa-
tion, when r 5 r0. It is left as a problem (Problem 59) to show that

	 U0 5 2ake 
e2

r0
a1 2

1
m
b 	 (43.18)

This minimum energy U0 is called the ionic cohesive energy of the solid, and its 
absolute value represents the energy required to separate the solid into a collection 
of isolated positive and negative ions. Its value for NaCl is 27.84 eV per ion pair.
	 To calculate the atomic cohesive energy, which is the binding energy relative to 
the energy of the neutral atoms, 5.14 eV must be added to the ionic cohesive energy 
value to account for the transition from Na1 to Na and 3.62 eV must be subtracted 
to account for the conversion of Cl2 to Cl. Therefore, the atomic cohesive energy of 
NaCl is

27.84 eV 1 5.14 eV 2 3.62 eV 5 26.32 eV

In other words, 6.32 eV of energy per ion pair is needed to separate the solid into 
isolated neutral atoms of Na and Cl.

U0

r0

0

Utotal

r

Figure 43.12  ​Total potential 
energy versus ion separation dis-
tance for an ionic solid, where U0 
is the ionic cohesive energy and 
r0 is the equilibrium separation 
distance between ions.
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	 Ionic crystals form relatively stable, hard crystals. They are poor electrical con-
ductors because they contain no free electrons; each electron in the solid is bound 
tightly to one of the ions, so it is not sufficiently mobile to carry current. Ionic 
crystals have high melting points; for example, the melting point of NaCl is 801°C. 
Ionic crystals are transparent to visible radiation because the shells formed by the 
electrons in ionic solids are so tightly bound that visible radiation does not possess 
sufficient energy to promote electrons to the next allowed shell. Infrared radiation 
is absorbed strongly because the vibrations of the ions have natural resonant fre-
quencies in the low-energy infrared region.

Covalent Solids
Solid carbon, in the form of diamond, is a crystal whose atoms are covalently 
bonded. Because atomic carbon has the electronic configuration 1s22s22p2, it is 
four electrons short of filling its n 5 2 shell, which can accommodate eight elec-
trons. Because of this electron structure, two carbon atoms have a strong attraction 
for each other, with a cohesive energy of 7.37 eV. In the diamond structure, each 
carbon atom is covalently bonded to four other carbon atoms located at four cor-
ners of a cube as shown in Figure 43.13a.
	 The crystalline structure of diamond is shown in Figure 43.13b. Notice that each 
carbon atom forms covalent bonds with four nearest-neighbor atoms. The basic 
structure of diamond is called tetrahedral (each carbon atom is at the center of 
a regular tetrahedron), and the angle between the bonds is 109.5°. Other crystals 
such as silicon and germanium have the same structure.
	 Carbon is interesting in that it can form several different types of structures. 
In addition to the diamond structure, it forms graphite, with completely different 
properties. In this form, the carbon atoms form flat layers with hexagonal arrays of 
atoms. A very weak interaction between the layers allows the layers to be removed 
easily under friction, as occurs in the graphite used in pencil lead.
	 Carbon atoms can also form a large hollow structure; in this case, the compound 
is called buckminsterfullerene after the famous architect R. Buckminster Fuller, 
who invented the geodesic dome. The unique shape of this molecule (Fig. 43.14) 
provides a “cage” to hold other atoms or molecules. Related structures, called 
“buckytubes” because of their long, narrow cylindrical arrangements of carbon 
atoms, may provide the basis for extremely strong, yet lightweight, materials.
	 A current area of active research is in the properties and applications of gra-
phene. Graphene consists of a monolayer of carbon atoms, with the atoms arranged 
in hexagons so that the monolayer looks like chicken wire. Graphite flakes that are 
shed from a pencil while writing contain small fragments of graphene. Pioneers 
in graphene research include Andre Geim (b. 1958) and Konstantin Novoselov 
(b. 1974) of the University of Manchester, who received the Nobel Prize in Physics 
in 2010 for their experiments. Graphene has interesting electronic, thermal, and 
optical properties that are currently under investigation. Its mechanical properties 
include a breaking strength 200 times that of steel. Potential applications under 

a

b

a

b

Figure 43.13  ​(a) Each carbon 
atom in a diamond crystal is 
covalently bonded to four other 
carbon atoms so that a tetrahe-
dral structure is formed. (b) The 
crystal structure of diamond, 
showing the tetrahedral bond 
arrangement.

A cylinder of nearly pure crystal-
line silicon (Si), approximately 
25 cm long. Such crystals are cut 
into wafers and processed to make 
various semiconductor devices.
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Figure 43.14  ​Computer render-
ing of a “buckyball,” short for the 
molecule buckminsterfullerene. 
These nearly spherical molecular 
structures that look like soccer 
balls were named for the inventor 
of the geodesic dome. This form 
of carbon, C60, was discovered by 
astrophysicists investigating the 
carbon gas that exists between 
stars. Scientists are actively study-
ing the properties and potential 
uses of buckminsterfullerene and 
related molecules. .
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Table 43.1 Atomic Cohesive Energies  
of Some Covalent Solids
Solid	 Cohesive Energy (eV per ion pair)

C (diamond)	 7.37
Si	 4.63
Ge	 3.85
InAs	 5.70
SiC	 6.15
ZnS	 6.32
CuCl	 9.24

study include graphene nanoribbons, quantum dots, transistors, optical modula-
tors, and integrated circuits.
	 The atomic cohesive energies of some covalent solids are given in Table 43.1. 
The large energies account for the hardness of covalent solids. Diamond is par-
ticularly hard and has an extremely high melting point (about 4 000 K). Covalently 
bonded solids usually have high bond energies and high melting points, and are 
good electrical insulators.

Metallic Solids
Metallic bonds are generally weaker than ionic or covalent bonds. The outer elec-
trons in the atoms of a metal are relatively free to move throughout the material, 
and the number of such mobile electrons in a metal is large. The metallic structure 
can be viewed as a “sea” or a “gas” of nearly free electrons surrounding a lattice of 
positive ions (Fig. 43.15). The bonding mechanism in a metal is the attractive force 
between the entire collection of positive ions and the electron gas. Metals have a 
cohesive energy in the range of 1 to 3 eV per atom, which is less than the cohesive 
energies of ionic or covalent solids.
	 Light interacts strongly with the free electrons in metals. Hence, visible light is 
absorbed and re-emitted quite close to the surface of a metal, which accounts for 
the shiny nature of metal surfaces. In addition to the high electrical conductivity 
of metals produced by the free electrons, the nondirectional nature of the metallic 
bond allows many different types of metal atoms to be dissolved in a host metal in 
varying amounts. The resulting solid solutions, or alloys (steel, bronze, brass, etc.), 
may be designed to have particular properties, such as tensile strength, ductility, 
electrical and thermal conductivity, and resistance to corrosion.
	 Because the bonding in metals is between all the electrons and all the positive 
ions, metals tend to bend when stressed. This bending is in contrast to nonmetallic 
solids, which tend to fracture when stressed. Fracturing results because bonding 
in nonmetallic solids is primarily with nearest-neighbor ions or atoms. When the 
distortion causes sufficient stress between some set of nearest neighbors, fracture 
occurs.

43.4	 Free-Electron Theory of Metals
In Section 27.3, we described a classical free-electron theory of electrical conduc-
tion in metals, a structural model that led to Ohm’s law. According to this theory, 
a metal is modeled as a classical gas of conduction electrons moving through a 
fixed lattice of ions. Although this theory predicts the correct functional form 
of Ohm’s law, it does not predict the correct values of electrical and thermal 
conductivities.
	 A quantum-based free-electron theory of metals remedies the shortcomings of 
the classical model by taking into account the wave nature of the electrons. In this 
model, based on the quantum particle under boundary conditions analysis model, 
the outer-shell electrons are free to move through the metal but are trapped within 
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The blue area represents the 
electron gas, and the red spheres 
represent the positive metal ions.

Figure 43.15  ​Highly schematic 
diagram of a metal.
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a three-dimensional box formed by the metal surfaces. Therefore, each electron is 
represented as a particle in a box. As discussed in Section 41.2, particles in a box 
are restricted to quantized energy levels.
	 Statistical physics can be applied to a collection of particles in an effort to relate 
microscopic properties to macroscopic properties as we saw with kinetic theory of 
gases in Chapter 21. In the case of electrons, it is necessary to use quantum statistics, 
with the requirement that each state of the system can be occupied by only two 
electrons (one with spin up and the other with spin down) as a consequence of the 
exclusion principle. The probability that a particular state having energy E is occu-
pied by one of the electrons in a solid is

	 f 1E 2 5
1

e 1E2E F2/k BT 1 1
	 (43.19)

where f(E) is called the Fermi–Dirac distribution function and E F is called the 
Fermi energy. A plot of f(E) versus E at T 5 0 K is shown in Figure 43.16a. Notice 
that f(E) 5 1 for E , E F and f(E) 5 0 for E . E F. That is, at 0 K, all states having 
energies less than the Fermi energy are occupied and all states having energies 
greater than the Fermi energy are vacant. A plot of f(E) versus E at some temper-
ature T . 0 K is shown in Figure 43.16b. This curve shows that as T increases, 
the distribution rounds off slightly. Because of thermal excitation, states near and 
below E F lose population and states near and above EF gain population. The Fermi 
energy E F also depends on temperature, but the dependence is weak in metals.
	 Let’s now follow up on our discussion of the particle in a box in Chapter 41 to 
generalize the results to a three-dimensional box. Recall that if a particle of mass m 
is confined to move in a one-dimensional box of length L, the allowed states have 
quantized energy levels given by Equation 41.14:

En 5 a h2

8mL2bn2 5 a U2p2

2mL2bn2 n 5 1, 2, 3, c

	 Now imagine a piece of metal in the shape of a solid cube of sides L and vol-
ume L3 and focus on one electron that is free to move anywhere in this volume. 
Therefore, the electron is modeled as a particle in a three-dimensional box. In this 
model, we require that c(x, y, z) 5 0 at the boundaries of the metal. It can be shown 
(see Problem 37) that the energy for such an electron is

	 E 5
U2p2

2me L2
1nx

2 1 ny
2 1 nz

2 2 	 (43.20)

where me is the mass of the electron and nx , ny , and nz are quantum numbers. As we 
expect, the energies are quantized, and each allowed value of the energy is char-
acterized by this set of three quantum numbers (one for each degree of freedom) 
and the spin quantum number ms. For example, the ground state, corresponding to 

Fermi–Dirac distribution  
function

0

1.0
T � 0 K

E
E F

0

1.0

f(E)f(E)

T � 0 K

E
E F

0.5

a b

The energy EF is the Fermi energy.
Figure 43.16  Plot of the Fermi–
Dirac distribution function f(E) 
versus energy at (a) T 5 0 K and 
(b) T . 0 K.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	 43.4  Free-Electron Theory of Metals	 1357

0 1 2 3
E (eV)

N(E)

T � 0 K

0 1 2 3
E (eV)

N(E)

T � 0 K

kBT at 300 K

T � 300 K

a

b

To provide a sense of scale, 
imagine that the Fermi energy 
EF of the metal is 3 eV.

Figure 43.17  ​Plot of the elec-
tron distribution function versus 
energy in a metal at (a) T 5 0 K 
and (b) T 5 300 K.

nx 5 ny 5 nz 5 1, has an energy equal to 3"2p2/2meL2 and can be occupied by two 
electrons, corresponding to spin up and spin down.
	 Because of the macroscopic size L of the box, the energy levels for the electrons 
are very close together. As a result, we can treat the quantum numbers as continu-
ous variables. Under this assumption, the number of allowed states per unit volume 
that have energies between E and E 1 dE is

	 g 1E 2  dE 5
8"2 pme

3/2

h3  E 1/2 dE 	 (43.21)

(See Example 43.5.) The function g(E) is called the density-of-states function.
	 If a metal is in thermal equilibrium, the number of electrons per unit volume 
N(E) dE that have energy between E and E 1 dE is equal to the product of the num-
ber of allowed states per unit volume and the probability that a state is occupied; 
that is, N(E) dE 5 g(E)f(E) dE:

	 N 1E 2  dE 5 a8"2 pme
3/2

h3  E 1/2 b a 1

e 1E2EF 2/kBT 1 1
b dE 	 (43.22)

Plots of N(E) versus E for two temperatures are given in Figure 43.17.
	 If ne is the total number of electrons per unit volume, we require that

	 ne 5 3
`

0
N 1E 2  dE 5

8"2 pme
3/2

h3  3
`

0
 

E 1/2 dE

e 1E2EF 2/kBT 1 1
	 (43.23)

We can use this condition to calculate the Fermi energy. At T 5 0 K, the Fermi–
Dirac distribution function f(E) 5 1 for E , E F and f(E) 5 0 for E . E F. Therefore, 
at T 5 0 K, Equation 43.23 becomes

	 ne 5
8"2 pme

3/2

h3  3
EF

0
E 1/2 dE 5 2

3 
8"2 pme

3/2

h3  EF
3/2 	 (43.24)

Solving for the Fermi energy at 0 K gives

	 EF 10 2 5
h2

2me
a3ne

8p
b

2/3

	 (43.25)

The Fermi energies for metals are in the range of a few electron volts. Representa-
tive values for various metals are given in Table 43.2. It is left as a problem (Problem 
39) to show that the average energy of a free electron in a metal at 0 K is

	 E avg 5 3
5 EF 	 (43.26)

	 In summary, we can consider a metal to be a system comprising a very large num-
ber of energy levels available to the free electrons. These electrons fill the levels in 
accordance with the Pauli exclusion principle, beginning with E 5 0 and ending 
with EF. At T 5 0 K, all levels below the Fermi energy are filled and all levels above 
the Fermi energy are empty. At 300 K, a small fraction of the free electrons are 
excited above the Fermi energy.

WW Fermi energy at T 5 0 K

Table 43.2 Calculated Values of the Fermi Energy 
for Metals at 300 K Based on the Free-Electron Theory
Metal	 Electron Concentration (m23)	 Fermi Energy (eV)

Li	 4.70 3 1028	 4.72
Na	 2.65 3 1028	 3.23
K	 1.40 3 1028	 2.12
Cu	 8.46 3 1028	 7.05
Ag	 5.85 3 1028	 5.48
Au	 5.90 3 1028	 5.53

www.as
warp

hy
sic

s.w
ee

bly
.co

m



1358	C hapter 43  Molecules and Solids

	

Defining E0 5 "2p2/2me L2 and n 5 (E/E0)1/2, rewrite 
Equation 43.20:

(1)   nx
2 1 ny

2 1 nz
2 5

2me L2

U2p2  E 5
E
E 0

5 n2

In the quantum number space, Equation (1) is the equation of a sphere of radius n. Therefore, the number of allowed 
states having energies between E and E 1 dE is equal to the number of points in a spherical shell of radius n and thick-
ness dn.

Find the “volume” of this shell, which represents the 
total number of states G(E ) dE:

(2)   G 1E 2  dE 5 1
8 14pn2 dn 2 5 1

2pn2 dn

We have taken one-eighth of the total volume because we are restricted to the octant of a three-dimensional space in 
which all three quantum numbers are positive.

Replace n in Equation (2) with its equivalent in terms of 
E using the relation n2 5 E/E0 from Equation (1):

G 1E 2  dE 5 1
2 pa E

E 0
b d c a E

E 0
b

1/2

d 5 1
2 p 

E
1E0 23/2 d 3 1E 21/2 4

Example 43.4	     The Fermi Energy of Gold

Each atom of gold (Au) contributes one free electron to the metal. Compute the Fermi energy for gold.

Conceptualize  ​Imagine electrons filling available levels at T 5 0 K in gold until the solid is neutral. The highest energy 
filled is the Fermi energy.

Categorize  ​We evaluate the result using a result from this section, so we categorize this example as a substitution 
problem.

S o l u ti  o n

Substitute the concentration of free electrons in gold 
from Table 43.2 into Equation 43.25 to calculate the 
Fermi energy at 0 K:

EF 10 2 5
16.626 3 10234 J # s 22

2 19.11 3 10231 kg 2 c3 15.90 3 1028 m23 2
8p

d
2/3

5 8.85 3 10219 J 5 5.53 eV

Example 43.5	     Deriving Equation 43.21

Based on the allowed states of a particle in a three-dimensional box, 
derive Equation 43.21.

Conceptualize  ​Imagine a particle confined to a three-dimensional box, 
subject to boundary conditions in three dimensions. Imagine also a 
three-dimensional quantum number space 
whose axes represent nx , ny , and nz . The 
allowed states in this space can be repre-
sented as dots located at integral values of 
the three quantum numbers as in Figure 
43.18. This space is not traditional space in 
which a location is specified by coordinates 
x, y, and z; rather, it is a space in which 
allowed states can be specified by coordinates representing the quantum numbers. The number of allowed states having 
energies between E and E 1 dE corresponds to the number of dots in the spherical shell of radius n and thickness dn.

Categorize  ​We categorize this problem as that of a quantum system in which the energies of the particle are quantized. 
Furthermore, we can base the solution to the problem on our understanding of the particle in a one-dimensional box.

Analyze  ​As noted previously, the allowed states of the particle in a three-dimensional box are described by three quan-
tum numbers nx , ny , and nz . For a macroscopic sample of metal, the number of allowed values of these quantum num-
bers is tremendous, so on a macroscopic scale, the allowed states in the number space can be modeled as continuous.

S o l u ti  o n

nz

n dn

ny

nx

Figure 43.18  ​The dots rep-
resenting the allowed states are 
located at integer values of nx, 
ny , and nz and are therefore at 
the corners of cubes with sides 
of “length” 1. 
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Multiply by 2 for the two possible spin states in each 
particle-in-a-box state:

g 1E 2  dE 5
8"2 pme

3/2

h3  E 1/2 dE

Substitute " 5 h/2p: g 1E 2  dE 5
4"2 pme

3/2

h3  E 1/2 dE

Letting g(E ) represent the number of states per unit 
volume, where L3 is the volume V of the cubical box in 
normal space, find g(E ) 5 G(E )/V :

g 1E 2  dE 5
G 1E 2

V
 dE 5

"2
2

  
me

3/2

U3p2  E 1/2 dE

Substitute for E0 from its definition above: G 1E 2  dE 5 1
4pa U2p2

2meL
2b

23/2

E 1/2 dE

5
"2

2
  

me
3/2L3

U3p2  E 1/2 dE

Evaluate the differential: G 1E 2  dE 5 1
2p c E

1E 0 23/2 d 11
2E21/2 dE 2 5 1

4pE 0
23/2E 1/2 dE

Finalize  ​This result is Equation 43.21, which is what we set out to derive.

3The functions f(r) are called Laguerre polynomials. They can be found in the quantum treatment of the hydrogen 
atom in modern physics textbooks.
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The probability of an 
electron being between 
the atoms is nonzero.

The probability of an electron 
being between the atoms is  
generally lower than in       and 
zero at the midpoint.
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Figure 43.19  ​The wave functions 
of two atoms combine to form a 
composite wave function for the 
two-atom system when the atoms 
are close together. (a) Two atoms 
with wave functions cs

1(r) com-
bine. (b) Two atoms with wave func-
tions cs

1(r) and cs
2(r) combine.

	

▸ 43.5 c o n t i n u e d

43.5	 Band Theory of Solids
In Section 43.4, the electrons in a metal were modeled as particles free to move 
around inside a three-dimensional box and we ignored the influence of the parent 
atoms. In this section, we make the model more sophisticated by incorporating the 
contribution of the parent atoms that form the crystal.
	 Recall from Section 41.1 that the probability density |c |2 for a system is physically 
significant, but the probability amplitude c is not. Let’s consider as an example an 
atom that has a single s electron outside of a closed shell. Both of the following wave 
functions are valid for such an atom with atomic number Z :

cs
1 1r 2 5 1Af 1r 2e2Zr/na0  cs

2 1r 2 5 2Af 1r 2e2Zr/na0

where A is the normalization constant and f(r) is a function3 of r that varies with 
the value of n. Choosing either of these wave functions leads to the same value of 
|c|2, so both choices are equivalent. A difference arises, however, when two atoms 
are combined.
	 If two identical atoms are very far apart, they do not interact and their electronic 
energy levels can be considered to be those of isolated atoms. Suppose the two 
atoms are sodium, each having a lone 3s electron that is in a well-defined quantum 
state. As the two sodium atoms are brought closer together, their wave functions 
begin to overlap as we discussed for covalent bonding in Section 43.1. The proper-
ties of the combined system differ depending on whether the two atoms are com-
bined with wave functions cs

1(r) as in Figure 43.19a or whether they are combined 
with one having wave function cs

1(r) and the other cs
2(r) as in Figure 43.19b. The 

choice of two atoms with wave function cs
2(r) is physically equivalent to that with 

two positive wave functions, so we do not consider it separately. When two wave 
functions cs

1(r) are combined, the result is a composite wave function in which 
the probability amplitudes add between the atoms. If cs

1(r) combines with cs
2(r), 
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however, the wave functions between the nuclei subtract. Therefore, the composite 
probability amplitudes for the two possibilities are different. These two possible 
combinations of wave functions represent two possible states of the two-atom sys-
tem. We interpret these curves as representing the probability amplitude of find-
ing an electron. The positive–positive curve shows some probability of finding the 
electron at the midpoint between the atoms. The positive–negative function shows 
no such probability. A state with a high probability of an electron between two posi-
tive nuclei must have a different energy than a state with a high probability of the 
electron being elsewhere! Therefore, the states are split into two energy levels due 
to the two ways of combining the wave functions. The energy difference is relatively 
small, so the two states are close together on an energy scale.
	 Figure 43.20a shows this splitting effect as a function of separation distance. For 
large separations r, the electron clouds do not overlap and there is no splitting. As 
the atoms are brought closer so that r decreases, the electron clouds overlap and we 
need to consider the system of two atoms.
	 When a large number of atoms are brought together to form a solid, a simi-
lar phenomenon occurs. The individual wave functions can be brought together 
in various combinations of cs

1(r) and cs
2(r), each possible combination corre-

sponding to a different energy. As the atoms are brought close together, the vari-
ous isolated-atom energy levels split into multiple energy levels for the composite 
system. This splitting in levels for five atoms in close proximity is shown in Fig-
ure 43.20b. In this case, there are five energy levels corresponding to five different 
combinations of isolated-atom wave functions.
	 As the number of atoms grows, the number of combinations of wave functions 
grows, as does the number of possible energies. If we extend this argument to the 
large number of atoms found in solids (on the order of 1023 atoms per cubic centi-
meter), we obtain a huge number of levels of varying energy so closely spaced that 
they may be regarded as a continuous band of energy levels as shown in Figure 
43.20c. In the case of sodium, it is customary to refer to the continuous distribu-
tions of allowed energy levels as s bands because the bands originate from the s 
levels of the individual sodium atoms.
	 Each energy level in the atom can spread into a band when the atoms are com-
bined into a solid. Figure 43.21 shows the allowed energy bands of sodium at a 
fixed separation distance between the atoms. Notice that energy gaps, correspond-
ing to forbidden energies, occur between the allowed bands. In addition, some bands 
exhibit sufficient spreading in energy that there is an overlap between bands aris-
ing from different quantum states (3s and 3p).

3p

3s

2p

2s

1s

E
N

E
R

G
Y

In some cases, the 
energy bands of 
previously separated 
atomic states overlap.

There are no states for electrons 
to occupy in the energy gaps.

Figure 43.21  ​Energy bands of 
a sodium crystal. Blue represents 
energy bands occupied by the 
sodium electrons when the atom 
is in its ground state. Gold repre-
sents energy bands that are empty.
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When two atoms are 
brought together, the 
1s and 2s levels split 
into two components.

When five atoms are 
brought together, the 
1s and 2s levels split 
into five components.

When a large number of 
atoms are brought together, 
the 1s and 2s levels spread 
into energy bands.

Figure 43.20  ​Energies of the 1s 
and 2s levels in sodium as a func-
tion of the separation distance r 
between atoms.
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Metal
E � 0

E � E F

E
N

E
R

G
Y

The states in the gold 
region of the band are 
available to account for 
electron motion.

Figure 43.22  Half-filled band 
of a metal, an electrical conduc-
tor. At T 5 0 K, the Fermi energy 
lies in the middle of the band.

	 As indicated by the blue-shaded areas in Figure 43.21, the 1s, 2s, and 2p bands 
of sodium are each full of electrons because the 1s, 2s, and 2p states of each atom 
are full. An energy level in which the orbital angular momentum is , can hold  
2(2, 1 1) electrons. The factor 2 arises from the two possible electron spin orienta-
tions, and the factor 2, 1 1 corresponds to the number of possible orientations of 
the orbital angular momentum. The capacity of each band for a system of N atoms 
is 2(2, 1 1)N electrons. Therefore, the 1s and 2s bands each contain 2N electrons  
(, 5 0), and the 2p band contains 6N electrons (, 5 1). Because sodium has only 
one 3s electron and there are a total of N atoms in the solid, the 3s band contains 
only N electrons and is partially full as indicated by the blue coloring in Figure 
43.21. The 3p band, which is the higher region of the overlapping bands, is com-
pletely empty (all gold in the figure).
	 Band theory allows us to build simple models to understand the behavior of con-
ductors, insulators, and semiconductors as well as that of semiconductor devices, as 
we shall discuss in the following sections.

43.6	 Electrical Conduction in Metals,  
Insulators, and Semiconductors

Good electrical conductors contain a high density of free charge carriers, and the 
density of free charge carriers in insulators is nearly zero. Semiconductors, first 
introduced in Section 23.2, are a class of technologically important materials in 
which charge-carrier densities are intermediate between those of insulators and 
those of conductors. In this section, we discuss the mechanisms of conduction in 
these three classes of materials in terms of a model based on energy bands.

Metals
If a material is to be a good electrical conductor, the charge carriers in the mate-
rial must be free to move in response to an applied electric field. Let’s consider the 
electrons in a metal as the charge carriers. The motion of the electrons in response 
to an electric field represents an increase in energy of the system (the metal lattice 
and the free electrons) corresponding to the additional kinetic energy of the mov-
ing electrons. The system is described by the nonisolated system model for energy. 
Equation 8.2 becomes W 5 DK, where the work is done on the electrons by the 
electric field. Therefore, when an electric field is applied to a conductor, electrons 
must move upward to an available higher energy state on an energy-level diagram 
to represent the additional kinetic energy.
	 Figure 43.22 shows a half-filled band in a metal at T 5 0 K, where the blue 
region represents levels filled with electrons. Because electrons obey Fermi–Dirac 
statistics, all levels below the Fermi energy are filled with electrons and all levels 
above the Fermi energy are empty. The Fermi energy lies in the band at the highest 
filled state. At temperatures slightly greater than 0 K, some electrons are thermally 
excited to levels above E F, but overall there is little change from the 0 K case. If 
a potential difference is applied to the metal, however, electrons having energies 
near the Fermi energy require only a small amount of additional energy from the 
applied electric field to reach nearby empty energy states above the Fermi energy. 
Therefore, electrons in a metal experiencing only a weak applied electric field are 
free to move because many empty levels are available close to the occupied energy 
levels. The model of metals based on band theory demonstrates that metals are 
excellent electrical conductors.

Insulators
Now consider the two outermost energy bands of a material in which the lower 
band is filled with electrons and the higher band is empty at 0 K (Fig. 43.23). The 

Conduction band

Energy gap

Valence band

Insulator
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E � 0

E � E F

E
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The available states in the 
conduction band are 
separated from the valence 
band by a large energy gap.

Figure 43.23  ​An electrical 
insulator at T 5 0 K has a filled 
valence band and an empty con-
duction band. The Fermi level  
lies somewhere between these 
bands in the region known as the 
energy gap.
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lower, filled band is called the valence band, and the upper, empty band is the con-
duction band. (The conduction band is the one that is partially filled in a metal.) 
It is common to refer to the energy separation between the valence and conduction 
bands as the energy gap Eg of the material. The Fermi energy lies somewhere in the 
energy gap4 as shown in Figure 43.23.
	 Suppose a material has a relatively large energy gap of, for example, approxi-
mately 5 eV. At 300 K (room temperature), kBT 5 0.025 eV, which is much smaller 
than the energy gap. At such temperatures, the Fermi–Dirac distribution predicts 
that very few electrons are thermally excited into the conduction band. There are 
no available states that lie close in energy above the valence band and into which 
electrons can move upward to account for the extra kinetic energy associated with 
motion through the material in response to an electric field. Consequently, the 
electrons do not move; the material is an insulator. Although an insulator has many 
vacant states in its conduction band that can accept electrons, these states are sepa-
rated from the filled states by a large energy gap. Only a few electrons occupy these 
states, so the overall electrical conductivity of insulators is very small.

Semiconductors
Semiconductors have the same type of band structure as an insulator, but 
the energy gap is much smaller, on the order of 1 eV. Table 43.3 shows the 
energy gaps for some representative materials. The band structure of a 
semiconductor is shown in Figure 43.24. Because the Fermi level is located 
near the middle of the gap for a semiconductor and Eg is small, appreciable 
numbers of electrons are thermally excited from the valence band to the 
conduction band. Because of the many empty levels above the thermally 
filled levels in the conduction band, a small applied potential difference 
can easily raise the electrons in the conduction band into available energy 
states, resulting in a moderate current.
	 At T 5 0 K, all electrons in these materials are in the valence band and 
no energy is available to excite them across the energy gap. Therefore, 
semiconductors are poor conductors at very low temperatures. Because the 
thermal excitation of electrons across the narrow gap is more probable at 

higher temperatures, the conductivity of semiconductors increases rapidly with tem-
perature, contrasting sharply with the conductivity of metals, which decreases slowly 
with increasing temperature.
	 Charge carriers in a semiconductor can be negative, positive, or both. When an 
electron moves from the valence band into the conduction band, it leaves behind a 
vacant site, called a hole, in the otherwise filled valence band. This hole (electron-
deficient site) acts as a charge carrier in the sense that a free electron from a nearby 
site can transfer into the hole. Whenever an electron does so, it creates a new hole 
at the site it abandoned. Therefore, the net effect can be viewed as the hole migrat-
ing through the material in the direction opposite the direction of electron move-
ment. The hole behaves as if it were a particle with a positive charge 1e.
	 A pure semiconductor crystal containing only one element or one compound is 
called an intrinsic semiconductor. In these semiconductors, there are equal num-
bers of conduction electrons and holes. Such combinations of charges are called 
electron–hole pairs. In the presence of an external electric field, the holes move in 
the direction of the field and the conduction electrons move in the direction oppo-
site the field (Fig. 43.25). Because the electrons and holes have opposite signs, both 
motions correspond to a current in the same direction.

4We defined the Fermi energy as the energy of the highest filled state at T 5 0, which might suggest that the Fermi 
energy should be at the top of the valence band in Figure 43.23. A more sophisticated general treatment of the Fermi 
energy, however, shows that it is located at that energy at which the probability of occupation is one-half (see Fig. 
43.16b). According to this definition, the Fermi energy lies in the energy gap between the bands.
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The small energy gap allows 
electrons to be thermally excited 
into the conduction band.

Figure 43.24  ​Band structure 
of a semiconductor at ordinary 
temperatures (T < 300 K). The 
energy gap is much smaller than 
in an insulator.

Table 43.3 Energy-Gap  
Values for Some Semiconductors

Eg (eV)

Crystal	 0 K	 300 K

Si	 1.17	 1.14
Ge	 0.74	 0.67
InP	 1.42	 1.34
GaP	 2.32	 2.26
GaAs	 1.52	 1.42
CdS	 2.58	 2.42
CdTe	 1.61	 1.56
ZnO	 3.44	 3.2
ZnS	 3.91	 3.6
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Q	 uick Quiz 43.4 ​ Consider the data on three materials given in the table.

  
Material	 Conduction Band	 Eg

A	 Empty	 1.2 eV
B	 Half full	 1.2 eV
C	 Empty	 8.0 eV

Identify each material as a conductor, an insulator, or a semiconductor.

Doped Semiconductors
When impurities are added to a semiconductor, both the band structure of the 
semiconductor and its resistivity are modified. The process of adding impurities, 
called doping, is important in controlling the conductivity of semiconductors. For 
example, when an atom containing five outer-shell electrons, such as arsenic, is 
added to a Group IV semiconductor, four of the electrons form covalent bonds 
with atoms of the semiconductor and one is left over (Fig. 43.26a). This extra elec-
tron is nearly free of its parent atom and can be modeled as having an energy level 
that lies in the energy gap, immediately below the conduction band (Fig. 43.26b). 
Such a pentavalent atom in effect donates an electron to the structure and hence 
is referred to as a donor atom. Because the spacing between the energy level of 
the electron of the donor atom and the bottom of the conduction band is very 

Energy level
of donor atom

Conduction
band

Valence
band

Eg

Ed

� Semiconductor atoms

� Impurity atom with
   five outer-shell electrons

� Extra electron from
   impurity atom

E
N

E
R

G
Y

a b

Each double line between 
atoms represents a covalent 
bond in which two electrons 
are shared.

A small amount of energy 
Ed can excite the electron 
into the conduction band.

Figure 43.26  ​(a) Two- 
dimensional representation 
of a semiconductor consisting 
of Group IV atoms (gray) and 
an impurity atom (yellow) that 
has five outer-shell electrons. 
(b) Energy-band diagram for a 
semiconductor in which the nearly 
free electron of the impurity atom 
lies in the energy gap, immedi-
ately below the bottom of the  
conduction band.

Conduction band

Valence band

Electrons

Holes

E
N

E
R

G
Y

Applied E field 
S

The electrons move in 
the direction opposite 
the external electric 
field. 

The holes move in the 
direction of the external 
electric field.

For T � 0, thermal excitation 
raises electrons to the 
conduction band, leaving 
holes in the valence band.

Figure 43.25  ​Movement of 
charges (holes and electrons) in 
an intrinsic semiconductor.
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small (typically, approximately 0.05 eV), only a small amount of thermal excitation 
is needed to cause this electron to move into the conduction band. (Recall that 
the average energy of an electron at room temperature is approximately kBT < 
0.025 eV.) Semiconductors doped with donor atoms are called n-type semiconduc-
tors because the majority of charge carriers are electrons, which are negatively 
charged.
	 If a Group IV semiconductor is doped with atoms containing three outer-shell 
electrons, such as indium and aluminum, the three electrons form covalent bonds 
with neighboring semiconductor atoms, leaving an electron deficiency—a hole—
where the fourth bond would be if an impurity-atom electron were available to form 
it (Fig. 43.27a). This situation can be modeled by placing an energy level in the 
energy gap, immediately above the valence band, as in Figure 43.27b. An electron 
from the valence band has enough energy at room temperature to fill this impurity 
level, leaving behind a hole in the valence band. This hole can carry current in the 
presence of an electric field. Because a trivalent atom accepts an electron from the 
valence band, such impurities are referred to as acceptor atoms. A semiconduc-
tor doped with trivalent (acceptor) impurities is known as a p -type semiconductor 
because the majority of charge carriers are positively charged holes.
	 When conduction in a semiconductor is the result of acceptor or donor impuri-
ties, the material is called an extrinsic semiconductor. The typical range of doping 
densities for extrinsic semiconductors is 1013 to 1019 cm23, whereas the electron den-
sity in a typical semiconductor is roughly 1021 cm23.

43.7	 Semiconductor Devices
The electronics of the first half of the 20th century was based on vacuum tubes, in 
which electrons pass through empty space between a cathode and an anode. We 
have seen vacuum tube devices in Figure 29.6 (the television picture tube), Figure 
29.10 (circular electron beam), Figure 29.15a (Thomson’s apparatus for measuring 
e/me for the electron), and Figure 40.9 (photoelectric effect apparatus).
	 The transistor was invented in 1948, leading to a shift away from vacuum tubes 
and toward semiconductors as the basis of electronic devices. This phase of elec-
tronics has been under way for several decades. As discussed in Chapter 41, there 
may be a new phase of electronics in the near future using nanotechnological 
devices employing quantum dots and other nanoscale structures.

Conduction
band

Valence
band

Energy level of
acceptor atomEg

Ea
� Semiconductor atoms

� Impurity atom with
   three outer-shell electrons

� Hole, or electron
   deficiency in a bond

E
N

E
R

G
Y

a b

The single line between the impurity 
atom and the semiconductor atom 
below it represents that there is only 
one electron shared in this bond.

A small amount of energy 
Ea excites an electron into
the energy level of the 
acceptor atom, leaving a 
hole in the valence band.

Figure 43.27  ​(a) Two- 
dimensional representation of a 
semiconductor consisting of Group 
IV atoms (gray) and an impurity 
atom (yellow) having three outer-
shell electrons. (b) Energy-band 
diagram for a semiconductor in 
which the energy level associated 
with the trivalent impurity atom 
lies in the energy gap, immediately 
above the top of the valence band.
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	 In this section, we discuss electronic devices based on semiconductors, which are 
still in wide use and will be for many years to come.

The Junction Diode
A fundamental unit of a semiconductor device is formed when a p -type semicon-
ductor is joined to an n-type semiconductor to form a p–n junction. A junction 
diode is a device that is based on a single p–n junction. The role of a diode of any 
type is to pass current in one direction but not the other. Therefore, it acts as a one-
way valve for current.
	 The p–n junction shown in Figure 43.28a consists of three distinct regions: a p 
region, an n region, and a small area that extends several micrometers to either 
side of the interface, called a depletion region.
	 The depletion region may be visualized as arising when the two halves of the 
junction are brought together. The mobile n-side donor electrons nearest the junc-
tion (deep-blue area in Fig. 43.28a) diffuse to the p side and fill holes located there, 
leaving behind immobile positive ions. While this process occurs, we can model the 
holes that are being filled as diffusing to the n side, leaving behind a region (brown 
area in Fig. 43.28a) of fixed negative ions.
	 Because the two sides of the depletion region each carry a net charge, an inter-
nal electric field on the order of 104 to 106 V/cm exists in the depletion region (see 
Fig. 43.28b). This field produces an electric force on any remaining mobile charge 
carriers that sweeps them out of the depletion region, so named because it is a 
region depleted of mobile charge carriers. This internal electric field creates an 
internal potential difference DV0 that prevents further diffusion of holes and elec-
trons across the junction and thereby ensures zero current in the junction when no 
potential difference is applied.

np
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V0
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�

� �

� �

� �� �
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S

 

The darker blue and brown areas 
represent the depletion region. The 
ions are fixed in position, and the 
mobile charge carriers are swept out 
of the region by the electric field. 

There is a potential difference �V0  
across the junction in the absence 
of an applied electric field.

b

c

a

Figure 43.28  ​(a) Physical 
arrangement of a p–n junction. 
(b) Component Ex of the internal 
electric field versus x for the p–n 
junction. (c) Internal electric 
potential difference DV versus x 
for the p–n junction.
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	 The operation of the junction as a diode is easiest to understand in terms of the 
potential difference graph shown in Figure 43.28c. If a voltage DV is applied to the 
junction such that the p side is connected to the positive terminal of a voltage source 
as shown in Figure 43.29a, the internal potential difference DV0 across the junction 
decreases as shown at the top of the figure; the decrease results in a current that 
increases exponentially with increasing forward voltage, or forward bias. For reverse 
bias (where the n side of the junction is connected to the positive terminal of a voltage 
source), the internal potential difference DV0 increases with increasing reverse bias 
as in Figure 43.29b; the increase results in a very small reverse current that quickly 
reaches a saturation value I0. The current–voltage relationship for an ideal diode is

	 I 5 I0 1e e DV/kBT 2 1 2 	 (43.27)

where the first e is the base of the natural logarithm, the second e represents the 
magnitude of the electron charge, kB is Boltzmann’s constant, and T is the absolute 
temperature. Figure 43.29c shows an I2DV plot characteristic of a real p–n junc-
tion, demonstrating the diode behavior.

Light-Emitting and Light-Absorbing Diodes
Light-emitting diodes (LEDs) and semiconductor lasers are common examples of 
devices that depend on the behavior of semiconductors. LEDs are used in LCD 
television displays, household lighting, flashlights, and camera flash units. Semi-
conductor lasers are often used for pointers in presentations and in playback equip-
ment for digitally recorded information.
	 Light emission and absorption in semiconductors is similar to light emission and 
absorption by gaseous atoms except that in the discussion of semiconductors we 
must incorporate the concept of energy bands rather than the discrete energy lev-
els in single atoms. As shown in Figure 43.30a, an electron excited electrically into 
the conduction band can easily recombine with a hole (especially if the electron 
is injected into a p region). As this recombination takes place, a photon of energy 
Eg is emitted. With proper design of the semiconductor and the associated plastic 
envelope or mirrors, the light from a large number of these transitions serves as the 
source of an LED or a semiconductor laser.
	 Conversely, an electron in the valence band may absorb an incoming photon of 
light and be promoted to the conduction band, leaving a hole behind (Fig. 43.30b). 
This absorbed energy can be used to operate an electrical circuit.
	 One device that operates on this principle is the photovoltaic solar cell, which 
appears in many handheld calculators. An early large-scale application of arrays of 
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Figure 43.29  ​(a) A p–n junction 
under forward bias. The middle 
diagram shows the potentials 
applied at the ends of the  
junction. Below that is a circuit 
diagram showing a battery with 
an adjustable voltage. The upper 
diagram shows how the potential 
varies across the junction. The 
dashed line shows the potential 
difference across the unbiased 
junction. (b) When the battery  
is reversed and the p–n junction is 
under reverse bias, the current is 
very small. (c) The characteristic 
curve for a real p–n junction.
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Example 43.6	     Where’s the Remote?

Estimate the band gap of the semiconductor in the infrared LED of a typical television remote control.

Conceptualize  ​Imagine electrons in Figure 43.30a falling from the conduction band to the valence band, emitting 
infrared photons in the process.

Categorize  ​We use concepts discussed in this section, so we categorize this example as a substitution problem.
	 In Chapter 34, we learned that the wavelength of infrared light ranges from 700 nm to 1 mm. Let’s pick a number 
that is easy to work with, such as 1 000 nm (which is not a bad estimate because remote controls typically operate in the 
range of 880 to 950 nm.)
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When an electron falls from 
the conduction band to the 
valence band, a photon of 
light is emitted.

When a photon is absorbed, 
an electron is raised from 
the valence band to the 
conduction band.

a b

Figure 43.30  ​(a) Light emission from a semiconductor. (b) Light absorption by a semiconductor.

Estimate the energy hf of the photons from the remote 
control:

E 5 hf 5
hc
l

5
1 240 eV # nm

1 000 nm
5 1.2 eV

This value corresponds to an energy gap Eg of approximately 1.2 eV in the LED’s semiconductor.

photovoltaic cells is the energy supply for orbiting spacecraft. The solar panels of 
the Hubble Space Telescope can be seen in the chapter-opening photograph for 
Chapter 38 on page 1160.
	 During the early years of the current century, application of photovoltaics for 
ground-based generation of electricity has been one of the world’s fastest-growing 
energy technologies. At the time of this printing, the global generation of energy by 
means of photovoltaics is over 70 GW. A homeowner can install arrays of photovol-
taic panels on the roof of his or her house and generate enough energy to operate 
the home as well as feed excess energy back into the electrical grid. Several pho-
tovoltaic power plants have recently been completed, including the Agua Caliente 
Solar Project in Arizona (200 MW completed in 2012, and 397 MW projected at 
completion), the Golmud Solar Park in China (200 MW), and the Charanka Solar 
Park in India (214 MW completed in 2012, and 500 MW projected at completion), 
the latter of which will be one location in the Gujarat Solar Park, a collection of 
several sites that is hoped to eventually supply close to 1 GW of power.
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The Transistor
The invention of the transistor by John Bardeen (1908–1991), Walter Brattain 
(1902–1987), and William Shockley (1910–1989) in 1948 totally revolutionized 
the world of electronics. For this work, these three men shared the Nobel Prize 
in Physics in 1956. By 1960, the transistor had replaced the vacuum tube in many 
electronic applications. The advent of the transistor created a multitrillion-dollar 
industry that produces such popular devices as personal computers, wireless key-
boards, smartphones, electronic book readers, and computer tablets.
	 A junction transistor consists of a semiconducting material in which a very narrow 
n region is sandwiched between two p regions or a p region is sandwiched between 
two n regions. In either case, the transistor is formed from two p–n junctions. These 
types of transistors were used widely in the early days of semiconductor electronics.
	 During the 1960s, the electronics industry converted many electronic applications 
from the junction transistor to the field-effect transistor, which is much easier to 
manufacture and just as effective. Figure 43.31a shows the structure of a very common 
device, the MOSFET, or metal-oxide-semiconductor field-effect transistor. You are 
likely using millions of MOSFET devices when you are working on your computer.
	 There are three metal connections (the M in MOSFET) to the transistor: the 
source, drain, and gate. The source and drain are connected to n-type semiconduc-
tor regions (the S in MOSFET) at either end of the structure. These regions are 
connected by a narrow channel of additional n-type material, the n channel. The 
source and drain regions and the n channel are embedded in a p -type substrate 
material, which forms a depletion region, as in the junction diode, along the bot-
tom of the n channel. (Depletion regions also exist at the junctions underneath 
the source and drain regions, but we will ignore them because the operation of the 
device depends primarily on the behavior in the channel.)
	 The gate is separated from the n channel by a layer of insulating silicon dioxide 
(the O in MOSFET, for oxide). Therefore, it does not make electrical contact with 
the rest of the semiconducting material.
	 Imagine that a voltage source DVSD is applied across the source and drain as 
shown in Figure 43.31b. In this situation, electrons flow through the upper region 
of the n channel. Electrons cannot flow through the depletion region in the lower 
part of the n channel because this region is depleted of charge carriers. Now a 
second voltage DVSG is applied across the source and gate as in Figure 43.31c. The 
positive potential on the gate electrode results in an electric field below the gate 
that is directed downward in the n channel (the field in “field-effect”). This electric 
field exerts upward forces on electrons in the region below the gate, causing them 
to move into the n channel. Consequently, the depletion region becomes smaller, 

Figure 43.31  ​(a) The structure of a metal-oxide-semiconductor field-effect transistor (MOSFET). 
(b) A source–drain voltage is applied. (c) A gate voltage is applied.
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Figure 43.33  ​Integrated 
circuits are prevalent in many 
electronic devices. All the flat 
circuit elements with black-
topped surfaces in this photo-
graph are integrated circuits.St
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widening the area through which there is current between the top of the n channel 
and the depletion region. As the area becomes wider, the current increases.
	 If a varying voltage, such as that generated from music stored in the memory of 
a smartphone, is applied to the gate, the area through which the source–drain cur-
rent exists varies in size according to the varying gate voltage. A small variation in 
gate voltage results in a large variation in current and a correspondingly large volt-
age across the resistor in Figure 43.31c. Therefore, the MOSFET acts as a voltage 
amplifier. A circuit consisting of a chain of such transistors can result in a very small 
initial signal from a microphone being amplified enough to drive powerful speak-
ers at an outdoor concert.

The Integrated Circuit
Invented independently by Jack Kilby (1923–2005, Nobel Prize in Physics, 2000) 
at Texas Instruments in late 1958 and by Robert Noyce (1927–1990) at Fairchild 
Camera and Instrument in early 1959, the integrated circuit has been justly called 
“the most remarkable technology ever to hit mankind.” Kilby’s first device is shown 
in Figure 43.32. Integrated circuits have indeed started a “second industrial revolu-
tion” and are found at the heart of computers, watches, cameras, automobiles, air-
craft, robots, space vehicles, and all sorts of communication and switching networks.
	 In simplest terms, an integrated circuit is a collection of interconnected transis-
tors, diodes, resistors, and capacitors fabricated on a single piece of silicon known 
as a chip. Contemporary electronic devices often contain many integrated circuits 
(Fig. 43.33). State-of-the-art chips easily contain several million components within 
a 1-cm2 area, and the number of components per square inch has increased steadily 
since the integrated circuit was invented. The dramatic advances in chip technology 
can be seen by looking at microchips manufactured by Intel. The 4004 chip, intro-
duced in 1971, contained 2 300 transistors. This number increased to 3.2 million  
24 years later in 1995 with the Pentium processor. Sixteen years later, the Core i7 Sandy 
Bridge processor introduced in November 2011 contained 2 270 million transistors. 
	 Integrated circuits were invented partly to solve the interconnection problem 
spawned by the transistor. In the era of vacuum tubes, power and size consider-
ations of individual components set modest limits on the number of components 
that could be interconnected in a given circuit. With the advent of the tiny, low-
power, highly reliable transistor, design limits on the number of components disap-
peared and were replaced by the problem of wiring together hundreds of thousands 
of components. The magnitude of this problem can be appreciated when we con-
sider that second-generation computers (consisting of discrete transistors rather 
than integrated circuits) contained several hundred thousand components requir-
ing more than a million joints that had to be hand-soldered and tested.
	 In addition to solving the interconnection problem, integrated circuits pos-
sess the advantages of miniaturization and fast response, two attributes critical for 
high-speed computers. Because the response time of a circuit depends on the time  

Figure 43.32  ​Jack Kilby’s first 
integrated circuit, tested on Sep-
tember 12, 1958.
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interval required for electrical signals traveling at the speed of light to pass from 
one component to another, miniaturization and close packing of components 
result in fast response times.

43.8	 Superconductivity
We learned in Section 27.5 that there is a class of metals and compounds known 
as superconductors whose electrical resistance decreases to virtually zero below a 
certain temperature Tc called the critical temperature (Table 27.3). Let’s now look at 
these amazing materials in greater detail, using what we know about the properties 
of solids to help us understand the behavior of superconductors.
	 Let’s start by examining the Meissner effect, introduced in Section 30.6 as the 
exclusion of magnetic flux from the interior of superconductors. The Meissner 
effect is illustrated in Figure 43.34 for a superconducting material in the shape of a 
long cylinder. Notice that the magnetic field penetrates the cylinder when its tem-
perature is greater than Tc (Fig. 43.34a). As the temperature is lowered to below Tc , 
however, the field lines are spontaneously expelled from the interior of the super-
conductor (Fig. 43.34b). Therefore, a superconductor is more than a perfect con-
ductor (resistivity r 5 0); it is also a perfect diamagnet ( B

S
5 0). The property that 

B
S

5 0  in the interior of a superconductor is as fundamental as the property of zero 
resistance. If the magnitude of the applied magnetic field exceeds a critical value 
Bc , defined as the value of B that destroys a material’s superconducting properties, 
the field again penetrates the sample.
	 Because a superconductor is a perfect diamagnet, it repels a permanent magnet. 
In fact, one can perform a demonstration of the Meissner effect by floating a small 
permanent magnet above a superconductor and achieving magnetic levitation as 
seen in Figure 30.27 in Section 30.6.
	 Recall from our study of electricity that a good conductor expels static electric 
fields by moving charges to its surface. In effect, the surface charges produce an 
electric field that exactly cancels the externally applied field inside the conductor. In 
a similar manner, a superconductor expels magnetic fields by forming surface cur-
rents. To see why that happens, consider again the superconductor shown in Figure 
43.34. Let’s assume the sample is initially at a temperature T . Tc as illustrated in 
Figure 43.34a so that the magnetic field penetrates the cylinder. As the cylinder is 
cooled to a temperature T , Tc , the field is expelled as shown in Figure 43.34b. Sur-
face currents induced on the superconductor’s surface produce a magnetic field that 
exactly cancels the externally applied field inside the superconductor. As you would 
expect, the surface currents disappear when the external magnetic field is removed.
	 A successful theory for superconductivity in metals was published in 1957 by 
John Bardeen, L. N. Cooper (b. 1930), and J. R. Schrieffer (b. 1931); it is generally 
called BCS theory, based on the first letters of their last names. This theory led to a 
Nobel Prize in Physics for the three scientists in 1972. In this theory, two electrons 
can interact via distortions in the array of lattice ions so that there is a net attractive 
force between the electrons.5 As a result, the two electrons are bound into an entity 
called a Cooper pair, which behaves like a particle with integral spin. Particles with 
integral spin are called bosons. (As noted in Pitfall Prevention 42.6, fermions make 
up another class of particles, those with half-integral spin.) An important feature 
of bosons is that they do not obey the Pauli exclusion principle. Consequently, at 
very low temperatures, it is possible for all bosons in a collection of such particles to 
be in the lowest quantum state. The entire collection of Cooper pairs in the metal 
is described by a single wave function. Above the energy level associated with this 
wave function is an energy gap equal to the binding energy of a Cooper pair. Under 

5A highly simplified explanation of this attraction between electrons is as follows. The attractive Coulomb force 
between one electron and the surrounding positively charged lattice ions causes the ions to move inward slightly 
toward the electron. As a result, there is a higher concentration of positive charge in this region than elsewhere in 
the lattice. A second electron is attracted to the higher concentration of positive charge.

T � Tc

I

T � Tc

a b

At 
temperatures 
above Tc, the 
field lines 
penetrate the
cylinder 
because it is 
in its normal 
state.

When the 
cylinder is cooled 
to T � Tc and 
becomes 
superconducting, 
magnetic flux is 
excluded from its 
interior by the 
induction of 
surface currents.

Figure 43.34  ​A superconductor 
in the form of a long cylinder in 
the presence of an external mag-
netic field.

www.as
warp

hy
sic

s.w
ee

bly
.co

m



	   Summary	 1371

the action of an applied electric field, the Cooper pairs experience an electric force 
and move through the metal. A random scattering event of a Cooper pair from a 
lattice ion would represent resistance to the electric current. Such a collision would 
change the energy of the Cooper pair because some energy would be transferred 
to the lattice ion. There are no available energy levels below that of the Cooper 
pair (it is already in the lowest state), however, and none available above because of 
the energy gap. As a result, collisions do not occur and there is no resistance to the 
movement of Cooper pairs.
	 An important development in physics that elicited much excitement in the scien-
tific community was the discovery of high-temperature copper oxide-based supercon-
ductors. The excitement began with a 1986 publication by J. Georg Bednorz (b. 1950) 
and K. Alex Müller (b. 1927), scientists at the IBM Zurich Research Laboratory in Swit-
zerland. In their seminal paper,6 Bednorz and Müller reported strong evidence for 
superconductivity at 30 K in an oxide of barium, lanthanum, and copper. They were 
awarded the Nobel Prize in Physics in 1987 for their remarkable discovery. Shortly 
thereafter, a new family of compounds was open for investigation and research activ-
ity in the field of superconductivity proceeded vigorously. In early 1987, groups at 
the University of Alabama at Huntsville and the University of Houston announced 
superconductivity at approximately 92 K in an oxide of yttrium, barium, and copper 
(YBa2Cu3O7). Later that year, teams of scientists from Japan and the United States 
reported superconductivity at 105 K in an oxide of bismuth, strontium, calcium, and 
copper. Superconductivity at temperatures as high as 150 K have been reported in 
an oxide containing mercury. In 2006, Japanese scientists discovered superconductiv-
ity for the first time in iron-based materials, beginning with LaFePO, with a critical 
temperature of 4 K. The highest critical temperature that has been reported so far in 
the iron-based materials is 55 K, a milestone held by fluorine-doped SmFeAsO. These 
newly discovered materials have rejuvenated the field of high-Tc superconductivity. 
Today, one cannot rule out the possibility of room-temperature superconductivity, 
and the mechanisms responsible for the behavior of high-temperature superconduc-
tors are still under investigation. The search for novel superconducting materials con-
tinues both for scientific reasons and because practical applications become more 
probable and widespread as the critical temperature is raised.
	 Although BCS theory was very successful in explaining superconductivity in met-
als, there is currently no widely accepted theory for high-temperature superconduc-
tivity. It remains an area of active research.

Concepts and Principles

  Two or more atoms combine to form molecules because of a net attractive force between the atoms. The mecha-
nisms responsible for molecular bonding can be classified as follows:

•	 Ionic bonds form primarily because of the Coulomb attraction between oppositely charged ions. Sodium chlo-
ride (NaCl) is one example.

•	 Covalent bonds form when the constituent atoms of a molecule share electrons. For example, the two electrons 
of the H2 molecule are equally shared between the two nuclei.

•	 Van der Waals bonds are weak electrostatic bonds between molecules or between atoms that do not form ionic 
or covalent bonds. These bonds are responsible for the condensation of noble gas atoms and nonpolar mol-
ecules into the liquid phase.

•	 Hydrogen bonds form between the center of positive charge in a polar molecule that includes one or more 
hydrogen atoms and the center of negative charge in another polar molecule.

Summary

continued

6J. G. Bednorz and K. A. Müller, Z. Phys. B 64:189, 1986.
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1372	C hapter 43  Molecules and Solids

  In a crystalline solid, 
the energy levels of the 
system form a set of bands. 
Electrons occupy the low-
est energy states, with no 
more than one electron per 
state. Energy gaps are pres-
ent between the bands of 
allowed states.

  A semiconductor is a material having an energy gap of approximately 1 eV and 
a valence band that is filled at T 5 0 K. Because of the small energy gap, a signifi-
cant number of electrons can be thermally excited from the valence band into 
the conduction band. The band structures and electrical properties of a Group 
IV semiconductor can be modified by the addition of either donor atoms con-
taining five outer-shell electrons or acceptor atoms containing three outer-shell 
electrons. A semiconductor doped with donor impurity atoms is called an n-type 
semiconductor, and one doped with acceptor impurity atoms is called a p-type 
semiconductor.

	 1.	 Is each one of the following statements true or false for 
a superconductor below its critical temperature? (a) It  
can carry infinite current. (b) It must carry some non-
zero current. (c) Its interior electric field must be zero. 
(d) Its internal magnetic field must be zero. (e) No 
internal energy appears when it carries electric current.

	 2.	 An infrared absorption spectrum of a molecule is 
shown in Figure OQ43.2. Notice that the highest peak 
on either side of the gap is the third peak from the gap. 
After this spectrum is taken, the temperature of the 
sample of molecules is raised to a much higher value. 
Compared with Figure OQ43.2, in this new spectrum is 
the highest absorption peak (a) at the same frequency, 
(b) farther from the gap, or (c) closer to the gap?

	 3.	 What kind of bonding likely holds the atoms together 
in the following solids (i), (ii), and (iii)? Choose your 

Objective Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

  The allowed values of the rotational energy 
of a diatomic molecule are

	E rot 5 EJ 5
U2

2I
 J 1 J 1 1 2 J 5 0, 1, 2, c 	(43.6)

where I is the moment of inertia of the molecule 
and J is an integer called the rotational quan-
tum number. The selection rule for transitions 
between rotational states is DJ 5 61.

  Bonding mechanisms 
in solids can be classified 
in a manner similar to the 
schemes for molecules. For 
example, the Na1 and Cl2 
ions in NaCl form ionic 
bonds, whereas the carbon 
atoms in diamond form 
covalent bonds. The metal-
lic bond is characterized 
by a net attractive force 
between positive ion cores 
and the mobile free elec-
trons of a metal.

  The allowed values of the vibrational energy of a diatomic 
molecule are

	 E vib 5 1v 1 1
2 2

h
2p

 Å
k
m
 v 5 0, 1, 2, c 	 (43.10)

where v is the vibrational quantum number, k is the force 
constant of the “effective spring” bonding the molecule, and 
m is the reduced mass of the molecule. The selection rule for 
allowed vibrational transitions is Dv 5 61, and the energy dif-
ference between any two adjacent levels is the same, regardless 
of which two levels are involved.

  In the free-electron theory of metals, the free electrons fill the quantized levels 
in accordance with the Pauli exclusion principle. The number of states per unit vol-
ume available to the conduction electrons having energies between E and E 1 dE is

	 N 1E 2  dE 5 a8"2 pme
3/2

h3  E 1/2b a 1

e 1E2EF 2/k BT 1 1
b dE 	 (43.22)

where E F is the Fermi energy. At T 5 0 K, all levels below E F are filled, all levels 
above E F are empty, and

	 EF 10 2 5
h2

2me
a3ne

8p
b

2/3

	 (43.25)

where n e is the total number of conduction electrons per unit volume. Only those 
electrons having energies near E F can contribute to the electrical conductivity of 
the metal.

Frequency
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Figure OQ43.2
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Conceptual Questions 1.  denotes answer available in Student Solutions Manual/Study Guide

Conceptual Questions 5 and 6 in Chapter 27 can be 
assigned with this chapter.

	 1.	 The energies of photons of visible light range between 
the approximate values 1.8 eV and 3.1 eV. Explain why 
silicon, with an energy gap of 1.14 eV at room tem-
perature (see Table 43.3), appears opaque, whereas 
diamond, with an energy gap of 5.47 eV, appears 
transparent.

	 2.	 Discuss the three major forms of excitation of a mole-
cule (other than translational motion) and the relative 
energies associated with these three forms.

	 3.	 How can the analysis of the rotational spectrum 
of a molecule lead to an estimate of the size of that 
molecule?

	 4.	 Pentavalent atoms such as arsenic are donor atoms 
in a semiconductor such as silicon, whereas trivalent 
atoms such as indium are acceptors. Inspect the peri-
odic table in Appendix C and determine what other 
elements might make good donors or acceptors.

	 5.	 When a photon is absorbed by a semiconductor, an 
electron–hole pair is created. Give a physical explana-
tion of this statement using the energy-band model as 
the basis for your description.

	 6.	 (a) Discuss the differences in the band structures of 
metals, insulators, and semiconductors. (b) How does 
the band-structure model enable you to understand 
the electrical properties of these materials better?

	 7.	 (a) What essential assumptions are made in the free-
electron theory of metals? (b) How does the energy-
band model differ from the free-electron theory in 
describing the properties of metals?

	 8.	 How do the vibrational and rotational levels of heavy 
hydrogen (D2) molecules compare with those of H2 
molecules?

	 9.	 Discuss models for the different types of bonds that 
form stable molecules.

	10.	Discuss the differences between crystalline solids, 
amorphous solids, and gases.

answers from these possibilities: (a) ionic bonding,  
(b) covalent bonding, and (c) metallic bonding.  
(i) The solid is opaque, shiny, flexible, and a good elec-
tric conductor. (ii) The crystal is transparent, brittle, 
and soluble in water. It is a poor conductor of electric-
ity. (iii) The crystal is opaque, brittle, very hard, and a 
good electric insulator.

	 4.	 The Fermi energy for silver is 5.48 eV. In a piece of solid 
silver, free-electron energy levels are measured near  
2 eV and near 6 eV. (i) Near which of these energies 
are the energy levels closer together? (a) 2 eV (b) 6 eV  
(c) The spacing is the same. (ii) Near which of these 
energies are more electrons occupying energy levels? 
(a) 2 eV (b) 6 eV (c) The number of electrons is the 
same.

	 5.	 As discussed in Chapter 27, the conductivity of met-
als decreases with increasing temperature due to 
electron collisions with vibrating atoms. In contrast, 
the conductivity of semiconductors increases with 
increasing temperature. What property of a semicon-

ductor is responsible for this behavior? (a) Atomic 
vibrations decrease as temperature increases. (b) The 
number of conduction electrons and the number of 
holes increase steeply with increasing temperature. 
(c) The energy gap decreases with increasing tem-
perature. (d) Electrons do not collide with atoms in a 
semiconductor.

	 6.	 (i) Should you expect an n-type doped semiconductor 
to have (a) higher, (b) lower, or (c) the same conduc-
tivity as an intrinsic (pure) semiconductor? (ii) Should 
you expect a p -type doped semiconductor to have  
(a) higher, (b) lower, or (c) the same conductivity as an 
intrinsic (pure) semiconductor?

	 7.	 Consider a typical material composed of covalently 
bonded diatomic molecules. Rank the following ener-
gies from the largest in magnitude to the smallest in 
magnitude. (a) the latent heat of fusion per molecule 
(b) the molecular binding energy (c) the energy of the 
first excited state of molecular rotation (d) the energy 
of the first excited state of molecular vibration

Problems

 
The problems found in this  

	 chapter may be assigned 
online in Enhanced WebAssign

1.	 straightforward; 2. intermediate;  
3. challenging

1.  �full solution available in the Student 
Solutions Manual/Study Guide

AMT  � Analysis Model tutorial available in 
Enhanced WebAssign

	 GP   Guided Problem

	 M  � Master It tutorial available in Enhanced 
WebAssign

	 W  � Watch It video solution available in 
Enhanced WebAssign

BIO

Q/C

S

www.as
warp

hy
sic

s.w
ee

bly
.co

m



1374	C hapter 43  Molecules and Solids

Section 43.1  Molecular Bonds

	 1.	 A van der Waals dispersion force between helium 
atoms produces a very shallow potential well, with a 
depth on the order of 1 meV. At approximately what 
temperature would you expect helium to condense?

	 2.	 Review. A K1 ion and a Cl2 ion are separated by a dis-
tance of 5.00 3 10210 m. Assuming the two ions act like 
charged particles, determine (a) the force each ion 
exerts on the other and (b) the potential energy of the 
two-ion system in electron volts.

	 3.	 Potassium chloride is an ionically bonded molecule that 
is sold as a salt substitute for use in a low-sodium diet. 
The electron affinity of chlorine is 3.6 eV. An energy 
input of 0.70 eV is required to form separate K1 and Cl2 
ions from separate K and Cl atoms. What is the ioniza-
tion energy of K?

	 4.	 In the potassium iodide (KI) molecule, assume the 
K and I atoms bond ionically by the transfer of one 
electron from K to I. (a) The ionization energy of K is 
4.34 eV, and the electron affinity of I is 3.06 eV. What 
energy is needed to transfer an electron from K to I, to 
form K1 and I2 ions from neutral atoms? This quan-
tity is sometimes called the activation energy Ea. (b) A 
model potential energy function for the KI molecule is 
the Lennard–Jones potential:

U 1r 2 5 4P c as

r
b

12

2 as

r
b

6

d 1 Ea

		  where r is the internuclear separation distance and P 
and s are adjustable parameters. The Ea term is added 
to ensure the correct asymptotic behavior at large r. At 
the equilibrium separation distance, r 5 r0 5 0.305 nm,  
U(r) is a minimum, and dU/dr 5 0. In addition, U(r0)  
is the negative of the dissociation energy: U(r0) 5 
23.37 eV. Find s and P. (c) Calculate the force needed 
to break up a KI molecule. (d) Calculate the force con-
stant for small oscillations about r 5 r0. Suggestion: Set  
r 5 r0 1 s, where s/r0 ,, 1, and expand U(r) in powers 
of s/r0 up to second-order terms.

	 5.	 One description of the potential energy of a diatomic 
molecule is given by the Lennard–Jones potential,

U 5
A
r 12 2

B
r 6

		  where A and B are constants and r is the separation 
distance between the atoms. For the H2 molecule, 
take A 5 0.124 3 102120 eV ? m12 and B 5 1.488 3  
10260 eV ? m6. Find (a) the separation distance r0 at 
which the energy of the molecule is a minimum and 
(b) the energy E required to break up the H2 molecule.

	 6.	 One description of the potential energy of a diatomic 
molecule is given by the Lennard–Jones potential,

U 5
A
r 12 2

B
r 6

W

S

		  where A and B are constants and r is the separation 
distance between the atoms. Find, in terms of A and 
B, (a)  the value r0 at which the energy is a minimum 
and (b) the energy E required to break up a diatomic 
molecule.

Section 43.2 ​ Energy States and Spectra of Molecules

	 7.	 The CO molecule makes a transition from the J 5 1 
to the J 5 2 rotational state when it absorbs a photon 
of frequency 2.30 3 1011 Hz. (a) Find the moment of 
inertia of this molecule from these data. (b) Compare 
your answer with that obtained in Example 43.1 and 
comment on the significance of the two results.

	 8.	 The cesium iodide (CsI) molecule has an atomic sepa-
ration of 0.127 nm. (a) Determine the energy of the 
second excited rotational state, with J 5 2. (b) Find the 
frequency of the photon absorbed in the J 5 1 to J 5 2 
transition.

	 9.	 An HCl molecule is excited to its second rotational 
energy level, corresponding to J 5 2. If the distance 
between its nuclei is 0.127 5 nm, what is the angular 
speed of the molecule about its center of mass?

	10.	The photon frequency that would be absorbed by the 
NO molecule in a transition from vibration state v 5 0 
to v 5 1, with no change in rotation state, is 56.3 THz. 
The bond between the atoms has an effective spring 
constant of 1 530 N/m. (a) Use this information to cal-
culate the reduced mass of the NO molecule. (b) Com-
pute a value for m using Equation 43.4. (c) Compare 
your results to parts (a) and (b) and explain their dif-
ference, if any.

	11.	 Assume the distance between the protons in the H2 
molecule is 0.750 3 10210 m. (a) Find the energy of the 
first excited rotational state, with J 5 1. (b) Find the 
wavelength of radiation emitted in the transition from 
J 5 1 to J 5 0.

	12.	Why is the following situation impossible? The effective 
force constant of a vibrating HCl molecule is k 5  
480 N/m. A beam of infrared radiation of wave-
length 6.20 3 103 nm is directed through a gas of HCl  
molecules. As a result, the molecules are excited from 
the ground vibrational state to the first excited vibra-
tional state.

	13.	The effective spring constant describing the potential 
energy of the HI molecule is 320 N/m and that for 
the HF molecule is 970 N/m. Calculate the minimum 
amplitude of vibration for (a) the HI molecule and  
(b) the HF molecule.

	14.	The rotational spectrum of the HCl molecule contains 
lines with wavelengths of 0.060 4, 0.069 0, 0.080 4, 
0.096 4, and 0.120 4 mm. What is the moment of iner-
tia of the molecule?

	15.	The atoms of an NaCl molecule are separated by a dis-
tance r 5 0.280 nm. Calculate (a) the reduced mass 
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	20.	Estimate the moment of inertia of an HCl molecule 
from its infrared absorption spectrum shown in Figure 
P43.19.

	21.	 An H2 molecule is in its vibrational and rotational 
ground states. It absorbs a photon of wavelength  
2.211 2 mm and makes a transition to the v 5 1, J 5  
1 energy level. It then drops to the v 5 0, J 5 2 
energy level while emitting a photon of wavelength  
2.405 4 mm. Calculate (a) the moment of inertia of the 
H2 molecule about an axis through its center of mass 
and perpendicular to the H–H bond, (b) the vibra-
tional frequency of the H2 molecule, and (c) the equi-
librium separation distance for this molecule.

	22.	Photons of what frequencies can be spontaneously 
emitted by CO molecules in the state with v 5 1 and  
J 5 0?

	23.	Most of the mass of an atom is in its nucleus. Model the 
mass distribution in a diatomic molecule as two spheres 
of uniform density, each of radius 2.00 3 10215 m  
and mass 1.00 3 10226 kg, located at points along the y 
axis as in Figure 43.5a, and separated by 2.00 3 10210 m.  
Rotation about the axis joining the nuclei in the 
diatomic molecule is ordinarily ignored because the 
first excited state would have an energy that is too high 
to access. To see why, calculate the ratio of the energy 
of the first excited state for rotation about the y axis to 
the energy of the first excited state for rotation about 
the x axis.

Section 43.3 ​ Bonding in Solids

	24.	Use a magnifying glass to look at the grains of table 
salt that come out of a salt shaker. Compare what you 
see with Figure 43.11a. The distance between a sodium 
ion and a nearest-neighbor chlorine ion is 0.261 nm.  
(a) Make an order-of-magnitude estimate of the num-
ber N of atoms in a typical grain of salt. (b) What If? 
Suppose you had a number of grains of salt equal to 
this number N. What would be the volume of this 
quantity of salt?

	25.	Use Equation 43.18 to calculate the ionic cohesive 
energy for NaCl. Take a 5 1.747 6, r0 5 0.281 nm, and 
m 5 8.

	26.	Consider a one-dimensional chain of alternating 
singly-ionized positive and negative ions. Show that the 

W

S

of an NaCl molecule, (b) the moment of inertia of an 
NaCl molecule, and (c) the wavelength of radiation 
emitted when an NaCl molecule undergoes a transi-
tion from the J 5 2 state to the J 5 1 state.

	16.	A diatomic molecule consists of two atoms having 
masses m1 and m2 separated by a distance r. Show that 
the moment of inertia about an axis through the cen-
ter of mass of the molecule is given by Equation 43.3,  
I 5 mr 2.

	17.	 The nuclei of the O2 molecule are separated by a dis-
tance 1.20 3 10210 m. The mass of each oxygen atom 
in the molecule is 2.66 3 10226 kg. (a) Determine the 
rotational energies of an oxygen molecule in electron 
volts for the levels corresponding to J 5 0, 1, and 2. 
(b) The effective force constant k between the atoms 
in the oxygen molecule is 1 177 N/m. Determine the 
vibrational energies (in electron volts) corresponding 
to v 5 0, 1, and 2.

	18.	Figure P43.18 is a model of a benzene molecule. All 
atoms lie in a plane, and the carbon atoms (mC 5 1.99 3  
10226 kg) form a regular hexagon, as do the hydrogen 
atoms (mH 5 1.67 3 10227 kg). The carbon atoms are 
0.110 nm apart center to center, and the adjacent car-
bon and hydrogen atoms are 0.100 nm apart center to 
center. (a) Calculate the moment of inertia of the mol-
ecule about an axis perpendicular to the plane of the 
paper through the center point O. (b) Determine the 
allowed rotational energies about this axis.

H

0.110 nm

120� 0.
10

0
nm

C

O

Figure P43.18

	19.	(a) In an HCl molecule, take the Cl atom to be the iso-
tope 35Cl. The equilibrium separation of the H and Cl 
atoms is 0.127 46 nm. The atomic mass of the H atom is 
1.007 825 u and that of the 35Cl atom is 34.968 853 u. 
Calculate the longest wavelength in the rotational 
spectrum of this molecule. (b) What If? Repeat the  
calculation in part (a), but take the Cl atom to be the 
isotope 37Cl, which has atomic mass 36.965 903 u.  
The equilibrium separation distance is the same as in  
part (a). (c) Naturally occurring chlorine contains 
approximately three parts of 35Cl to one part of 37Cl. 
Because of the two different Cl masses, each line in 
the microwave rotational spectrum of HCl is split into 
a doublet as shown in Figure P43.19. Calculate the sep-
aration in wavelength between the doublet lines for 
the longest wavelength.
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Figure P43.19  Problems 19 and 20.
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1376	C hapter 43  Molecules and Solids

	36.	For a metal at temperature T, calculate the probability 
that a state with an energy equal to bE F is occupied 
where b is a fraction between 0 and 1.

	37.	 Review. An electron moves in a three-dimensional box 
of edge length L and volume L3. The wave function of 
the particle is c 5 A sin (kxx) sin (kyy) sin (kzz). Show 
that its energy is given by Equation 43.20,

E 5
U2p2

2me L
2
1nx

2 1 ny
2 1 nz

2 2

		  where the quantum numbers (nx , ny , nz) are integers $ 1.  
Suggestion: The Schrödinger equation in three dimen-
sions may be written

U2

2m
a'

2c

'x2 1
'2c

'y 2 1
'2c

'z2 b 5 1U 2 E 2c

	38.	(a) Consider a system of electrons confined to a three-
dimensional box. Calculate the ratio of the number 
of allowed energy levels at 8.50 eV to the number at 
7.05  eV. (b) What If? Copper has a Fermi energy of 
7.05 eV at 300 K. Calculate the ratio of the number of 
occupied levels in copper at an energy of 8.50 eV to the 
number at the Fermi energy. (c) How does your answer 
to part (b) compare with that obtained in part (a)?

	39.	Show that the average kinetic energy of a conduction 
electron in a metal at 0 K is E avg 5 3

5E F. Suggestion: In 
general, the average kinetic energy is

E avg 5
1
ne

 3
`

0
EN 1E 2  dE

		  where ne is the density of particles, N(E ) dE is given by 
Equation 43.22, and the integral is over all possible val-
ues of the energy.

Section 43.6 ​ Electrical Conduction in Metals, Insulators,  
and Semiconductors

	40.	Most solar radiation has a wavelength of 1 mm or less. 
(a) What energy gap should the material in a solar 
cell have if it is to absorb this radiation? (b) Is silicon 
an appropriate solar cell material (see Table 43.3)? 
Explain your answer.

	41.	The energy gap for silicon at 300 K is 1.14 eV. (a) Find 
the lowest-frequency photon that can promote an elec-
tron from the valence band to the conduction band. 
(b) What is the wavelength of this photon?

	42.	Light from a hydrogen discharge tube is incident on a 
CdS crystal. (a) Which spectral lines from the Balmer 
series are absorbed and (b) which are transmitted?

	43.	A light-emitting diode (LED) made of the semiconduc-
tor GaAsP emits red light (l 5 650 nm). Determine the 
energy-band gap Eg for this semiconductor.

	44.	The longest wavelength of radiation absorbed by a cer-
tain semiconductor is 0.512 mm. Calculate the energy 
gap for this semiconductor.

	45.	You are asked to build a scientific instrument that is 
thermally isolated from its surroundings. The isolation 

S

S

M
Q/C

S

Q/C

potential energy associated with one of the ions and its 
interactions with the rest of this hypothetical crystal is

U 1r 2 5 2ake  
e 2

r

		  where the Madelung constant is a 5 2 ln 2 and r is the 
distance between ions. Suggestion: Use the series expan-
sion for ln (1 1 x).

Section 43.4 ​ Free-Electron Theory of Metals

Section 43.5 ​ Band Theory of Solids

	27.	Calculate the energy of a conduction electron in silver 
at 800 K, assuming the probability of finding an elec-
tron in that state is 0.950. The Fermi energy of silver is 
5.48 eV at this temperature.

	28.	(a) State what the Fermi energy depends on according 
to the free-electron theory of metals and how the Fermi 
energy depends on that quantity. (b) Show that Equa-
tion 43.25 can be expressed as E F 5 (3.65 3 10219)ne

2/3,  
where E F is in electron volts when ne is in electrons per 
cubic meter. (c) According to Table 43.2, by what factor 
does the free-electron concentration in copper exceed 
that in potassium? (d) Which of these metals has the 
larger Fermi energy? (e) By what factor is the Fermi 
energy larger? (f) Explain whether this behavior is pre-
dicted by Equation 43.25.

	29.	When solid silver starts to melt, what is the approxi-
mate fraction of the conduction electrons that are 
thermally excited above the Fermi level?

	30.	(a) Find the typical speed of a conduction electron in 
copper, taking its kinetic energy as equal to the Fermi 
energy, 7.05 eV. (b) Suppose the copper is a current-
carrying wire. How does the speed found in part  
(a) compare with a typical drift speed (see Section 
27.1) of electrons in the wire of 0.1 mm/s?

	31.	The Fermi energy of copper at 300 K is 7.05 eV.  
(a) What is the average energy of a conduction elec-
tron in copper at 300 K? (b) At what temperature 
would the average translational energy of a molecule 
in an ideal gas be equal to the energy calculated in 
part (a)?

	32.	Consider a cube of gold 1.00 mm on an edge. Calcu-
late the approximate number of conduction electrons 
in this cube whose energies lie in the range 4.000 to  
4.025 eV.

	33.	Sodium is a monovalent metal having a density of  
0.971 g/cm3 and a molar mass of 23.0 g/mol. Use this 
information to calculate (a) the density of charge car-
riers and (b) the Fermi energy of sodium.

	34.	Why is the following situation impossible? A hypothetical 
metal has the following properties: its Fermi energy is 
5.48 eV, its density is 4.90 3 103 kg/m3, its molar mass 
is 100 g/mol, and it has one free electron per atom.

	35.	For copper at 300 K, calculate the probability that a 
state with an energy equal to 99.0% of the Fermi 
energy is occupied.

Q/C

Q/C
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the left-hand side of the above equation and the right-
hand side as functions of DV and find the value of DV 
at which the curves cross. (c) Find the current I in the 
circuit. (d) Find the ohmic resistance of the diode, 
defined as the ratio DV/I, at the voltage in part (b). 
(e) Find the dynamic resistance of the diode, which 
is defined as the derivative d(DV)/dI, at the voltage in 
part (b).

	49.	You put a diode in a microelectronic circuit to protect 
the system in case an untrained person installs the bat-
tery backward. In the correct forward-bias situation, 
the current is 200 mA with a potential difference of 
100 mV across the diode at room temperature (300 K). 
If the battery were reversed, so that the potential dif-
ference across the diode is still 100  mV but with the 
opposite sign, what would be the magnitude of the cur-
rent in the diode?

	50.	A diode is at room temperature so that kBT 5 
0.025 0  eV. Taking the applied voltages across the 
diode to be 1 1.00 V (under forward bias) and 21.00 V 
(under reverse bias), calculate the ratio of the forward 
current to the reverse current if the diode is described 
by Equation 43.27.

Section 43.8 ​ Superconductivity

Problem 30 in Chapter 30 and Problems 73 through 76 
in Chapter 32 can also be assigned with this section.

	51.	 A thin rod of superconducting material 2.50 cm long 
is placed into a 0.540-T magnetic field with its cylindri-
cal axis along the magnetic field lines. (a) Sketch the 
directions of the applied field and the induced surface 
current. (b) Find the magnitude of the surface current 
on the curved surface of the rod.

	52.	A direct and relatively simple demonstration of zero 
DC resistance can be carried out using the four-point 
probe method. The probe shown in Figure P43.52 con-
sists of a disk of YBa2Cu3O7 (a high-Tc superconductor) 
to which four wires are attached. Current is maintained 
through the sample by applying a DC voltage between 
points a and b, and it is measured with a DC ammeter. 
The current can be varied with the variable resistance 
R. The potential difference DVcd between c and d is 
measured with a digital voltmeter. When the probe is 
immersed in liquid nitrogen, the sample quickly cools  

W

M

Q/C

container may be a calorimeter, but these design crite-
ria could apply to other containers as well. You wish to 
use a laser external to the container to raise the tem-
perature of a target inside the instrument. You decide 
to use a diamond window in the container. Diamond 
has an energy gap of 5.47 eV. What is the shortest laser 
wavelength you can use to warm the sample inside the 
instrument?

	46.	Review. When a phosphorus atom is substituted for a 
silicon atom in a crystal, four of the phosphorus valence 
electrons form bonds with neighboring atoms and the 
remaining electron is much more loosely bound. You 
can model the electron as free to move through the 
crystal lattice. The phosphorus nucleus has one more 
positive charge than does the silicon nucleus, how-
ever, so the extra electron provided by the phosphorus 
atom is attracted to this single nuclear charge 1e. The 
energy levels of the extra electron are similar to those 
of the electron in the Bohr hydrogen atom with two 
important exceptions. First, the Coulomb attraction 
between the electron and the positive charge on the 
phosphorus nucleus is reduced by a factor of 1/k from 
what it would be in free space (see Eq. 26.21), where 
k is the dielectric constant of the crystal. As a result, 
the orbit radii are greatly increased over those of the 
hydrogen atom. Second, the influence of the periodic 
electric potential of the lattice causes the electron to 
move as if it had an effective mass m*, which is quite 
different from the mass me of a free electron. You can 
use the Bohr model of hydrogen to obtain relatively 
accurate values for the allowed energy levels of the 
extra electron. We wish to find the typical energy of 
these donor states, which play an important role in 
semiconductor devices. Assume k 5 11.7 for silicon and 
m* 5 0.220me. (a) Find a symbolic expression for the 
smallest radius of the electron orbit in terms of a0, the 
Bohr radius. (b) Substitute numerical values to find 
the numerical value of the smallest radius. (c) Find 
a symbolic expression for the energy levels En9 of the 
electron in the Bohr orbits around the donor atom in 
terms of me , m*, k, and En, the energy of the hydrogen 
atom in the Bohr model. (d) Find the numerical value 
of the energy for the ground state of the electron.

Section 43.7 ​ Semiconductor Devices

	47.	 Assuming T 5 300 K, (a) for what value of the bias volt-
age DV in Equation 43.27 does I 5 9.00I 0? (b) What If? 
What if I 5 20.900I 0?

	48.	A diode, a resistor, and a battery are connected in a 
series circuit. The diode is at a temperature for which 
kBT 5 25.0 meV, and the saturation value of the cur-
rent is I0 5 1.00 mA. The resistance of the resistor is  
R 5 745 V, and the battery maintains a constant poten-
tial difference of e 5 2.42 V between its terminals.  
(a) Use Kirchhoff’s loop rule to show that

e 2 DV 5 I 0R 1e e DV/k BT 2 1 2
		  where DV is the voltage across the diode. (b) To solve 

this transcendental equation for the voltage DV, graph 
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1378	C hapter 43  Molecules and Solids

		  where a is the Madelung constant and r0 is the equilib-
rium separation. (b) Imagine that an ion in the solid is 
displaced a small distance s from r0. Show that the ion 
experiences a restoring force F 5 2Ks, where

K 5
ake e

2

r 0
3

1m 2 1 2

		  (c) Use the result of part (b) to find the frequency of 
vibration of a Na1 ion in NaCl. Take m 5 8 and use the 
value a 5 1.747 6.

	57.	 Under pressure, liquid helium can solidify as each 
atom bonds with four others, and each bond has an 
average energy of 1.74 3 10223 J. Find the latent heat of 
fusion for helium in joules per gram. (The molar mass 
of He is 4.00 g/mol.)

	58.	The dissociation energy of ground-state molecular 
hydrogen is 4.48 eV, but it only takes 3.96 eV to dis-
sociate it when it starts in the first excited vibrational 
state with J 5 0. Using this information, determine the 
depth of the H2 molecular potential-energy function.

	59.	Starting with Equation 43.17, show that the ionic cohe-
sive energy of an ionically bonded solid is given by 
Equation 43.18.

	60.	The Fermi–Dirac distribution function can be written 
as

f 1E 2 5
1

e 1E 2E F2/k BT 1 1
5

1

e 1E/E F212TF/T 1 1

		  where TF is the Fermi temperature, defined according to

kBTF ; EF

		  (a) Write a spreadsheet to calculate and plot f(E) ver-
sus E/E F at a fixed temperature T. (b) Describe the 
curves obtained for T 5 0.1TF, 0.2TF, and 0.5TF.

	61.	 A particle moves in one-dimensional motion through 
a field for which the potential energy of the particle–
field system is

U 1x 2 5
A
x3 2

B
x

		  where A 5 0.150 eV ? nm3 and B 5 3.68 eV ? nm. The 
shape of this function is shown in Figure P43.61.  
(a) Find the equilibrium position x0 of the particle. 
(b)  Determine the depth U0 of this potential well.  

S

to 77 K, below the critical temperature of the material, 
92 K. The current remains approximately constant, 
but DVcd drops abruptly to zero. (a) Explain this obser-
vation on the basis of what you know about super-
conductors. (b) The data in the accompanying table 
represent actual values of DVcd for different values of 
I taken on the sample at room temperature in the 
senior author’s laboratory. A 6-V battery in series with 
a variable resistor R supplied the current. The values 
of R ranged from 10 V to 100 V. Make an I–DV plot of 
the data and determine whether the sample behaves 
in a linear manner. (c) From the data, obtain a value 
for the DC resistance of the sample at room temper-
ature. (d) At room temperature, it was found that  
DVcd 5 2.234 mV for I 5 100.3 mA, but after the sample 
was cooled to 77 K, DVcd 5 0 and I 5 98.1 mA. What 
do you think might have caused the slight decrease  
in current?

Current Versus Potential Difference DVcd Measured in a  
Bulk Ceramic Sample of YBa2Cu3O72d at Room Temperature

	 I (mA)	 DVcd (mV)

	 57.8	 1.356
	 61.5	 1.441
	 68.3	 1.602
	 76.8	 1.802
	 87.5	 2.053
	 102.2	 2.398
	 123.7	 2.904
	 155	 3.61 

	53.	A superconducting ring of niobium metal 2.00 cm in 
diameter is immersed in a uniform 0.020 0-T magnetic 
field directed perpendicular to the ring and carries no 
current. Determine the current generated in the ring 
when the magnetic field is suddenly decreased to zero. 
The inductance of the ring is 3.10 3 1028 H.

Additional Problems

	54.	The effective spring constant associated with bonding 
in the N2 molecule is 2 297 N/m. The nitrogen atoms 
each have a mass of 2.32 3 10226 kg, and their nuclei 
are 0.120 nm apart. Assume the molecule is rigid. The 
first excited vibrational state of the molecule is above 
the vibrational ground state by an energy difference 
DE. Calculate the J value of the rotational state that is 
above the rotational ground state by the same energy 
difference DE.

	55.	The hydrogen molecule comes apart (dissociates) 
when it is excited internally by 4.48 eV. Assuming this 
molecule behaves like a harmonic oscillator having 
classical angular frequency v 5 8.28 3 1014 rad/s, find 
the highest vibrational quantum number for a state 
below the 4.48-eV dissociation energy.

	56.	(a) Starting with Equation 43.17, show that the force 
exerted on an ion in an ionic solid can be written as

F 5 2ake  
e 2

r 2 c1 2 ar0

r
b

m21

d

S

U0

x0

0

Utotal

x

Figure P43.61  Problems 61 and 62.
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carbon-14 nucleus. Assume the CO molecular potential 
energy is the same for both isotopes of carbon and the 
examples in Section 43.2 contain accurate data and 
results for carbon monoxide with carbon-12 atoms.  
(a) What is the vibrational frequency of 14CO? (b) What 
is the moment of inertia of 14CO? (c) What wavelengths 
of light can be absorbed by 14CO in the (v 5 0, J 5 10) 
state that cause it to end up in the v 5 1 state?

	64.	As an alternative to Equation 43.1, another useful 
model for the potential energy of a diatomic molecule 
is the Morse potential

	 U 1r 2 5 B 3e2a 1r 2 r0 2 2 1 4 2

		  where B, a, and r0 are parameters used to adjust the 
shape of the potential and its depth. (a) What is the 
equilibrium separation of the nuclei? (b) What is  
the depth of the potential well, defined as the dif-
ference in energy between the potential’s minimum 
value and its asymptote as r approaches infinity?  
(c) If m is the reduced mass of the system of two nuclei 
and assuming the potential is nearly parabolic about 
the well minimum, what is the vibrational frequency 
of the diatomic molecule in its ground state? (d) What 
amount of energy needs to be supplied to the ground-
state molecule to separate the two nuclei to infinity?

S

(c) In moving along the x axis, what maximum force 
toward the negative x direction does the particle 
experience?

	62.	A particle of mass m moves in one-dimensional motion 
through a field for which the potential energy of the 
particle–field system is

U 1x 2 5
A
x3 2

B
x

		  where A and B are constants. The general shape of 
this function is shown in Figure P43.61. (a) Find the 
equilibrium position x0 of the particle in terms of m, 
A, and B. (b) Determine the depth U0 of this potential 
well. (c) In moving along the x axis, what maximum 
force toward the negative x direction does the particle 
experience?

Challenge Problems

	63.	As you will learn in Chapter 44, carbon-14 (14C) is an 
unstable isotope of carbon. It has the same chemical 
properties and electronic structure as the much more 
abundant isotope carbon-12 (12C), but it has different 
nuclear properties. Its mass is 14 u, greater than that 
of carbon-12 because of the two extra neutrons in the 
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The year 1896 marks the birth of nuclear physics when French physicist Antoine-Henri 
Becquerel (1852–1908) discovered radioactivity in uranium compounds. This discovery 
prompted scientists to investigate the details of radioactivity and, ultimately, the structure 
of the nucleus. Pioneering work by Ernest Rutherford showed that the radiation emitted 
from radioactive substances is of three types—alpha, beta, and gamma rays—classified 
according to the nature of their electric charge and their ability to penetrate matter and 
ionize air. Later experiments showed that alpha rays are helium nuclei, beta rays are elec-
trons, and gamma rays are high-energy photons.
	 In 1911, Rutherford, Hans Geiger, and Ernest Marsden performed the alpha-particle 
scattering experiments described in Section 42.2. These experiments established that the 
nucleus of an atom can be modeled as a point mass and point charge and that most of the 
atomic mass is contained in the nucleus. Subsequent studies revealed the presence of a new 
type of force, the short-range nuclear force, which is predominant at particle separation 
distances less than approximately 10214 m and is zero for large distances.
	 In this chapter, we discuss the properties and structure of the atomic nucleus. We start 
by describing the basic properties of nuclei, followed by a discussion of nuclear forces and 
binding energy, nuclear models, and the phenomenon of radioactivity. Finally, we explore the 
various processes by which nuclei decay and the ways that nuclei can react with each other.

44.1	 Some Properties of Nuclei

44.2	 Nuclear Binding Energy

44.3	 Nuclear Models

44.4	 Radioactivity

44.5	 The Decay Processes

44.6	 Natural Radioactivity

44.7	 Nuclear Reactions

44.8	 Nuclear Magnetic 
Resonance and Magnetic 
Resonance Imaging

c h a p t e r 

44 Nuclear Structure

Ötzi the Iceman, a Copper Age man, 
was discovered by German tourists 
in the Italian Alps in 1991 when a 
glacier melted enough to expose 
his remains. Analysis of his corpse 
has exposed his last meal, illnesses 
he suffered, and places he lived. 
Radioactivity was used to determine 
that he lived in about 3300 BC.  
Ötzi can be seen today in the 
Südtiroler Archäologiemuseum 
(South Tyrol Museum of Archae-
ology) in Bolzano, Italy. (© Vienna 

Report Agency/Sygma/Corbis)
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	 44.1  Some Properties of Nuclei	 1381

44.1	 Some Properties of Nuclei
All nuclei are composed of two types of particles: protons and neutrons. The only 
exception is the ordinary hydrogen nucleus, which is a single proton. We describe 
the atomic nucleus by the number of protons and neutrons it contains, using the 
following quantities:

•	 the atomic number Z, which equals the number of protons in the nucleus 
(sometimes called the charge number)

•	 the neutron number N, which equals the number of neutrons in the nucleus
•	 the mass number A 5 Z 1 N, which equals the number of nucleons (neutrons 

plus protons) in the nucleus

	 A nuclide is a specific combination of atomic number and mass number that 
represents a nucleus. In representing nuclides, it is convenient to use the symbol AZ X 
to convey the numbers of protons and neutrons, where X represents the chemical 
symbol of the element. For example, 56

26Fe (iron) has mass number 56 and atomic 
number 26; therefore, it contains 26 protons and 30 neutrons. When no confusion 
is likely to arise, we omit the subscript Z because the chemical symbol can always be 
used to determine Z. Therefore, 56

26Fe is the same as 56Fe and can also be expressed 
as “iron-56” or “Fe-56.”
	 The nuclei of all atoms of a particular element contain the same number of pro-
tons but often contain different numbers of neutrons. Nuclei related in this way are 
called isotopes. The isotopes of an element have the same Z value but different N 
and A values.
	 The natural abundance of isotopes can differ substantially. For example 11

6C, 
12

6C, 13
6C, and 14

6C are four isotopes of carbon. The natural abundance of the 12
6C 

isotope is approximately 98.9%, whereas that of the 13
6C isotope is only about 1.1%. 

Some isotopes, such as 11
6C and 14

6C, do not occur naturally but can be produced by 
nuclear reactions in the laboratory or by cosmic rays.
	 Even the simplest element, hydrogen, has isotopes: 1

1H, the ordinary hydrogen 
nucleus; 21H, deuterium; and 31H, tritium.

Q	 uick Quiz 44.1 ​ For each part of this Quick Quiz, choose from the following 
answers: (a) protons (b) neutrons (c) nucleons. (i) The three nuclei 12C, 13N, 
and 14O have the same number of what type of particle? (ii) The three nuclei 
12N, 13N, and 14N have the same number of what type of particle? (iii) The three 
nuclei 14C, 14N, and 14O have the same number of what type of particle?

Charge and Mass
The proton carries a single positive charge e, equal in magnitude to the charge 2e 
on the electron (e 5 1.6 3 10219 C). The neutron is electrically neutral as its name 
implies. Because the neutron has no charge, it was difficult to detect with early 
experimental apparatus and techniques. Today, neutrons are easily detected with 
devices such as plastic scintillators.
	 Nuclear masses can be measured with great precision using a mass spectrometer 
(see Section 29.3) and by the analysis of nuclear reactions. The proton is approxi-
mately 1 836 times as massive as the electron, and the masses of the proton and 
the neutron are almost equal. The atomic mass unit u is defined in such a way 
that the mass of one atom of the isotope 12C is exactly 12 u, where 1 u is equal to 
1.660 539 3 10227 kg. According to this definition, the proton and neutron each 
have a mass of approximately 1 u and the electron has a mass that is only a small 
fraction of this value. The masses of these particles and others important to the 
phenomena discussed in this chapter are given in Table 44.1 (page 1382).

Pitfall Prevention 44.1
Mass Number Is Not Atomic Mass  
The mass number A should not be 
confused with the atomic mass. 
Mass number is an integer specific 
to an isotope and has no units; it 
is simply a count of the number of 
nucleons. Atomic mass has units 
and is generally not an integer 
because it is an average of the 
masses of a given element’s natu-
rally occurring isotopes.
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1382	C hapter 44  Nuclear Structure

	 You might wonder how six protons and six neutrons, each having a mass larger 
than 1 u, can be combined with six electrons to form a carbon-12 atom having a 
mass of exactly 12 u. The bound system of 12C has a lower rest energy (Section 39.8) 
than that of six separate protons and six separate neutrons. According to Equation 
39.24, ER 5 mc2, this lower rest energy corresponds to a smaller mass for the bound 
system. The difference in mass accounts for the binding energy when the particles 
are combined to form the nucleus. We shall discuss this point in more detail in Sec-
tion 44.2.
	 It is often convenient to express the atomic mass unit in terms of its rest-energy 
equivalent. For one atomic mass unit,

ER 5 mc 2 5 (1.660 539 3 10227 kg)(2.997 92 3 108 m/s)2 5 931.494 MeV

where we have used the conversion 1 eV 5 1.602 176 3 10219 J.
	 Based on the rest-energy expression in Equation 39.24, nuclear physicists often 
express mass in terms of the unit MeV/c 2.

Table 44.1 Masses of Selected Particles in Various Units
		  Mass
Particle	 kg	 u	 MeV/c2

Proton	 1.672 62 3 10227	 1.007 276	 938.27

Neutron	 1.674 93 3 10227	 1.008 665	 939.57

Electron ( b particle)	 9.109 38 3 10231	 5.485 79 3 1024	 0.510 999
1
1H atom	 1.673 53 3 10227	 1.007 825	 938.783
4
2He nucleus (a particle)	 6.644 66 3 10227	 4.001 506	 3 727.38
4
2He atom	 6.646 48 3 10227	 4.002 603	 3 728.40
12

6C atom	 1.992 65 3 10227	 12.000 000	 11 177.9

	

Example 44.1	     The Atomic Mass Unit

Use Avogadro’s number to show that 1 u 5 1.66 3 10227 kg.

Conceptualize  ​From the definition of the mole given in Section 19.5, we know that exactly 12 g (5 1 mol) of 12C con-
tains Avogadro’s number of atoms.

Categorize  ​We evaluate the atomic mass unit that was introduced in this section, so we categorize this example as a 
substitution problem.

S o l u ti  o n

Find the mass m of one 12C atom: m 5
0.012 kg

6.02 3 1023 atoms
5 1.99 3 10226 kg

Because one atom of 12C is defined to have a mass of 
12.0 u, divide by 12.0 to find the mass equivalent to 1 u:

1 u 5
1.99 3 10226 kg

12.0
5 1.66 3 10227 kg

The Size and Structure of Nuclei
In Rutherford’s scattering experiments, positively charged nuclei of helium atoms 
(alpha particles) were directed at a thin piece of metallic foil. As the alpha particles 
moved through the foil, they often passed near a metal nucleus. Because of the 
positive charge on both the incident particles and the nuclei, the particles were 
deflected from their straight-line paths by the Coulomb repulsive force.
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	 Rutherford used the isolated system (energy) analysis model to find an expres-
sion for the separation distance d at which an alpha particle approaching a nucleus 
head-on is turned around by Coulomb repulsion. In such a head-on collision, the 
mechanical energy of the nucleus–alpha particle system is conserved. The initial 
kinetic energy of the incoming particle is transformed completely to electric poten-
tial energy of the system when the alpha particle stops momentarily at the point of 
closest approach (the final configuration of the system) before moving back along 
the same path (Fig. 44.1). Applying Equation 8.2, the conservation of energy prin-
ciple, to the system gives

DK 1 DU 5 0

10 2 1
2mv2 2 1 ake 

q1q2

d
2 0b 5 0

where m is the mass of the alpha particle and v is its initial speed. Solving for d gives

d 5 2ke 
q1q2

mv2 5 2ke 
12e 2 1Ze 2

mv2 5 4ke 
Ze 2

mv2

where Z is the atomic number of the target nucleus. From this expression, Ruth-
erford found that the alpha particles approached nuclei to within 3.2 3 10214 m 
when the foil was made of gold. Therefore, the radius of the gold nucleus must be 
less than this value. From the results of his scattering experiments, Rutherford con-
cluded that the positive charge in an atom is concentrated in a small sphere, which 
he called the nucleus, whose radius is no greater than approximately 10214 m.
	 Because such small lengths are common in nuclear physics, an often-used conve-
nient length unit is the femtometer (fm), which is sometimes called the fermi and is 
defined as

1 fm ; 10215 m

	 In the early 1920s, it was known that the nucleus of an atom contains Z pro-
tons and has a mass nearly equivalent to that of A protons, where on average  
A < 2Z for lighter nuclei (Z # 20) and A . 2Z for heavier nuclei. To account for 
the nuclear mass, Rutherford proposed that each nucleus must also contain A 2 Z 
neutral particles that he called neutrons. In 1932, British physicist James Chadwick 
(1891–1974) discovered the neutron, and he was awarded the Nobel Prize in Physics 
in 1935 for this important work.
	 Since the time of Rutherford’s scattering experiments, a multitude of other 
experiments have shown that most nuclei are approximately spherical and have an 
average radius given by

	 r 5 aA1/3	 (44.1)

where a is a constant equal to 1.2 3 10215 m and A is the mass number. Because 
the volume of a sphere is proportional to the cube of its radius, it follows from 
Equation 44.1 that the volume of a nucleus (assumed to be spherical) is directly 
proportional to A, the total number of nucleons. This proportionality suggests that 
all nuclei have nearly the same density. When nucleons combine to form a nucleus, 
they combine as though they were tightly packed spheres (Fig. 44.2). This fact has 
led to an analogy between the nucleus and a drop of liquid, in which the density of 
the drop is independent of its size. We shall discuss the liquid-drop model of the 
nucleus in Section 44.3.

WW Nuclear radiusWW Nuclear radius

Because of the Coulomb 
repulsion between the charges of 
the same sign, the alpha particle 
approaches to a distance d from 
the nucleus, called the distance 
of closest approach.

d

Ze
2e v � 0

vS
�� � ��

� �

��
�

�

Figure 44.1  An alpha particle 
on a head-on collision course with 
a nucleus of charge Ze.

Figure 44.2  ​A nucleus can be 
modeled as a cluster of tightly 
packed spheres, where each  
sphere is a nucleon.Example 44.2	     The Volume and Density of a Nucleus

Consider a nucleus of mass number A.

(A)  ​Find an approximate expression for the mass of the nucleus. continued
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1384	C hapter 44  Nuclear Structure

Conceptualize  ​Imagine the nucleus to be a collection of protons and neutrons as shown in Figure 44.2. The mass 
number A counts both protons and neutrons.

Categorize  ​Let’s assume A is large enough that we can imagine the nucleus to be spherical.

Analyze  ​The mass of the proton is approximately equal to that of the neutron. Therefore, if the mass of one of these 
particles is m, the mass of the nucleus is approximately   Am.

(B)  ​Find an expression for the volume of this nucleus in terms of A.

S o l u ti  o n

S o l u ti  o n

Assume the nucleus is spherical and use Equation 44.1: (1)   Vnucleus 5 4
3 pr 3 5  4

3 pa 3A

(C)  ​Find a numerical value for the density of this nucleus.

S o l u ti  o n

Substitute numerical values: r 5
3 11.67 3 10227 kg 2
4p 11.2 3 10215 m 23 5 2.3 3 1017 kg/m3

From this volume, find the radius: V 5 4
3 pr 3   S   r 5 a 3V

4p
b

1/3

5 c3 12.6 3 107 m3 2
4p

d
1/3

r 5 1.8 3 102 m

Use Equation 1.1 and substitute Equation (1): r 5
m nucleus

Vnucleus
5

Am
4
3pa 3A

5
3m

4pa 3

Use Equation 1.1 and the mass of the Earth to find the 
volume of the compressed Earth:

V 5
ME

r
5

5.97 3 1024 kg

2.3 3 1017 kg/m3 5 2.6 3 107 m3

Finalize  ​The nuclear density is approximately 2.3 3 1014 times the density of water (rwater 5 1.0 3 103 kg/m3).

What if the Earth could be compressed until it had this density? How large would it be?

Answer  ​Because this density is so large, we predict that an Earth of this density would be very small.

What If ?

An Earth of this radius is indeed a small Earth!

Nuclear Stability
You might expect that the very large repulsive Coulomb forces between the close-
packed protons in a nucleus should cause the nucleus to fly apart. Because that 
does not happen, there must be a counteracting attractive force. The nuclear force 
is a very short range (about 2 fm) attractive force that acts between all nuclear parti-
cles. The protons attract each other by means of the nuclear force, and, at the same 
time, they repel each other through the Coulomb force. The nuclear force also 
acts between pairs of neutrons and between neutrons and protons. The nuclear 
force dominates the Coulomb repulsive force within the nucleus (at short ranges), 
so stable nuclei can exist.
	 The nuclear force is independent of charge. In other words, the forces associ-
ated with the proton–proton, proton–neutron, and neutron–neutron interactions 

	

▸ 44.2 c o n t i n u e d
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