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Abstract—A scenario consisting of single antenna source-
destination node pairs communicating using multiple single
antenna relays is considered. A transmission scheme utilizing
two subsequent time-slots assuming a time invariant channel
throughout the transmission period is applied to this scenario. In
the first time-slot, the source nodes transmit to both the relays
and the destination nodes. Both the source nodes and the relays
retransmit to the destination nodes in the second time-slot. As the
relays can not decode the received signals, amplify and forward
relaying is used. By exploiting the direct links between the source
and the destination nodes, each destination node observes a two
dimensional signal space. In the present paper, the sum mean
square error can be written as a convex quadratic function of
the relays’ gain and part of the temporal filters at the source and
the destination nodes. Moreover, closed form solutions for the
minimum sum mean square error with interference zero forcing
constraints and a total energy constraint are obtained. The results

show that the proposed schemes outperform the interference
alignment scheme at low and moderate SNRs.

I. INTRODUCTION

Due to the increasing demands of high aggregate throughput

at user equipments (UE), upcoming multiuser wireless sys-

tems have to smartly utilize their limited resources to serve

many UEs with a high QoS. Interference alignment (IA) is a

promising transmission technique as it maximizes the degrees

of freedom (DoF) [1]. By definition, the relationship between

the DoF and the sum rate of such an interference network

is linear only at infinite SNRs [2]. As a result, IA may

only achieve asymptotically the sum capacity at high SNR.

In practice, only low to moderate SNRs are achievable at

the destination nodes in most of the current communications

systems. Therefore, finding a transmission technique which

maximizes the performance at the low and moderate SNR

regime is of interest.

In the low and moderate SNR regime, the received noise has

to be tackled together with the interference as it significantly

affects the performance. As a consequence, minimizing the

sum mean square error (sum MSE) is considered in this paper.

By minimizing the sum MSE, both the received noise and the

interference are compensated keeping only the desired signal.

Many previous contributions tackle the problem of mini-

mizing the sum MSE. For MIMO interference channels, the

authors of [3] and [4] propose an iterative method which

minimizes the sum MSE. First, the transmit filters are opti-

mized in a closed form with a priori known receive filters

of the previous iteration. Then the optimum transmit filters

are applied to optimize the receive filters and the process

iteratively starts again. Because the optimization problem is

non-convex and this method does not jointly optimize both

the transmit and the receive filters, this method may lead to a

local optimum.

In [5], a scenario consisting of a single antenna node

pair communicating through several single antenna relays is

considered. The authors optimize the relays’ gains aiming at

minimizing the MSE at the destination node. Extending this

scenario to multiple node pairs, a closed form solution which

minimizes the sum MSE is derived in [6]. However, IA is

not feasible in the scenario of [6] as the dimension of the

receive signal space of every destination node is one, i.e.,

each destination node is equipped with a single antenna and it

receives once. By exploiting the direct links among the node

pairs in this scenario, IA achievability is shown in [7].

In the present paper, a scenario of several node pairs

communicating through a number of relays is considered. Each

of the nodes and the relays is equipped with a single antenna.

By exploiting the direct links among the node pairs, fully

adapting the relays and partially adapting the transmit and the

receive filters, the minimum sum MSE is found under an IA

constraint and a total energy constraint.

The rest of the paper is organized as follows. The system

model is discussed in the next section. In Section III, the

sum MSE of the considered scenario is derived. Closed form

solutions for the minimum MSE are obtained in Section IV.

Section V shows and discusses some numerical results. Finally,

the conclusions are drawn in Section VI.

II. SYSTEM MODEL AND TRANSMISSION SCHEME

A scenario consisting of K source-destination node pairs

and R one-way relays is considered. Every node and relay

is equipped with a single antenna so that it is impossible

for a relay to separate the received signals. Consequently,

the amplify and forward relaying strategy is used. Moreover,

full CSI is assumed to be available at the nodes and the

relays. A two time-slot transmission scheme is considered

where τ denotes the index of the time-slot. At the first time-

slot τ = 1, the source nodes transmit to both the relays and
the destination nodes as shown in Fig. 1a. Both the source

nodes and the relays retransmit to the destination nodes at the

second time-slot τ = 2 as illustrated in Fig. 1b. The channel
coefficients between the l-th source node and k-th destination
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Fig. 1: Two time-slot scenario: (a) the source nodes transmit to both the relays and the destination nodes, (b) both the source

nodes and the relays retransmit to the destination nodes.

node, the l-th source node and r-th relay and the r-th relay

and the k-th destination node are denoted by h
(k,l)
DS , h

(r,l)
RS and

h
(k,r)
DR , respectively. All channels are considered to be constant

throughout the transmission duration. Also, it is assumed that

the noise signals n
(k,τ)
D , k = 1, . . . ,K , τ = 1, 2, and n

(r)
R ,

r = 1, . . . , R, at the destination nodes and at the relays,
respectively are additive white Gaussian noise (AWGN) with

zero mean and the same variance σ2.

Let d(l) be the transmitted data symbol of the l-th source

node which is scaled by v
(l)
τ in the τ -th time-slot. It is assumed

that the data symbols are uncorrelated and that they have equal

average energies Ed = E

{∣
∣
∣d

(k)
∣
∣
∣

2
}

, ∀k. Additionally, let

e
(k)
τ , τ = 1, 2, and e

(r)
R be the received signals at the k-

th destination node in the τ -th time-slot and the r-th relay,

respectively. At the first time-slot, the received signals at the

k-th destination node and the r-th relay are

e
(k)
1 =

K∑

l=1

h
(k,l)
DS v

(l)
1 d(l) + n

(k,1)
D , (1)

and

e
(r)
R =

K∑

l=1

h
(r,l)
RS v

(l)
1 d(l) + n

(r)
R , (2)

respectively. At the second time-slot, the received signal at the

k-th destination node reads

e
(k)
2 =

K∑

l=1

h
(k,l)
DS v

(l)
2 d(l) +

R∑

r=1

h
(k,r)
DR g(r)e

(r)
R + n

(k)
D , (3)

where g(r) is a complex scaling factor of the r-th relay. As

each destination node receives twice, it combines the received

signals with the weights u
(k)∗
τ , ∀k, τ = 1, 2. The received data

symbol at the k-th destination node reads

d̂
(k)

= u
(k)∗
1 e

(k)
1 + u

(k)∗
2 e

(k)
2 . (4)

If v
(l)
1 and u

(k)
2 ∀k, l are fixed, the received data symbol

becomes a linear function of g(r), v
(l)
2 , and u

(k)
1 , ∀r, l, k.

Accordingly, the received data symbol can be written in a

vector form as

d̂
(k)

=

K∑

l=1

g∗T q(k,l)d(l) + g∗T z(k) + u
(k)∗
2 n

(k,2)
D (5)

where

g =
(

g(1)∗, · · · , g(R)∗
∣
∣
∣ v

(1)∗
2 , · · · , v

(K)∗
2

∣
∣
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(1)
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(K)
1

)T

,

(6)

q(k,l) =
(
u
(k)∗
2 v

(l)
1 h

(k,1)
DR h

(1,l)
RS , . . . , u

(k)∗
2 v

(l)
1 h
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∣
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K−l

∣
∣ 0, . . . , 0
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, v
(l)
1 h
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K−k
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,

(7)

and

z(k) =
(
u
(k)∗
2 h

(k,1)
DR n

(1)
R , . . . , u

(k)∗
2 h

(k,R)
DR n

(R)
R

∣
∣

0, . . . , 0
︸ ︷︷ ︸

K

∣
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, n
(k,1)
D , 0, . . . , 0
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K−k

)T
. (8)

III. SUM MEAN SQUARE ERROR (SUM MSE)

In this section, the sum MSE function is derived and

formulated as a convex quadratic function. The MSE of the

k-th user is calculated as

δ(k) = E

{∣
∣
∣d̂

(k)
− d(k)

∣
∣
∣

2
}

= Ed

( K∑

l=1

g∗Tq(k,l) q(k,l)∗Tg − q(k,k)∗T g

− g∗T q(k,k) + 1
)

+ σ2
(

g∗TN(k)g+
∣
∣
∣u

(k)
2

∣
∣
∣

2 )

, (9)
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Because there are multiple destination nodes in our considered

scenario, the objective should be to minimize the individual

MSE at each destination node. Unfortunately, this results in a

multi-objective optimization problem. Instead, it is reasonable

to consider the sum MSE as an objective function. The sum

MSE can be written as

δ =

K∑

k=1

δ(k) = g∗TA g−b
∗T

g−g∗Tb+KEd+σ2
∣
∣
∣u

(k)
2

∣
∣
∣

2

,

(11)

where

A =

K∑

k=1

K∑

l=1

Edq
(k,l)q(k,l)∗T +

K∑

k=1

σ2N(k), (12)

and

b =
K∑

k=1

Edq
(k,k). (13)

It can be observed from (11) and (12) that the sum MSE is

essentially affected by the noise especially at low and moderate

SNRs. However, at high SNRs, the noise term in (12) can be

neglected.

IV. MINIMIZING SUM MSE

A. Interference alignment constrained minimum sum MSE

In this section, the sum MSE is minimized with the con-

straint of IA. To achieve IA, two conditions have to be satisfied

[7]

g∗T q(k,l) = 0, ∀k, l 6= k, (14)

and

g∗T q(k,k) 6= 0, ∀k. (15)

Accordingly, the optimization problem is formulated as

g
IAC

= argmin
g

{

g∗TA g − b∗Tg− g∗Tb
}

(16)

subject to

H g = 0, (17)

where the rows of H correspond to q(k,l)∗T, ∀k, l 6= k, for

all interference links. The linear system of equations of (17)

is homogenous and it has nontrivial valid solutions if R ≥
K2 − 3K +2 [7]. The optimization problem is convex as the
objective function is convex and the constraints form an affine

set. The Lagrangian is written as

L
(
g, λ

)
= g∗TA g − b∗Tg − g∗Tb+ λ H g, (18)

where λ is a vector of Lagrangian multipliers each of which

corresponds to a constraint of (17). Taking the generalized

derivatives of (18) with respect to g and λ yields

∂L

∂g
= ATg∗ − b∗ +HTλT !

= 0 (19)

and
∂L

∂λ
= H g

!
= 0, (20)

respectively. Solving (19) for g and substituting the result in

(20) yields

H
(

A∗T
)−1 (

b−H∗Tλ∗T
)

= 0. (21)

Solving (21) for λ yields

λ = b∗TA−1H∗T
(

H A−1H∗T
)−1

. (22)

By substituting (22) in (19), the optimum g
IAC
is obtained as

g
IAC

=
(

A∗T
)−1

b−
(

A∗T
)−1

H∗T

(

H
(

A∗T
)−1

H∗T

)−1

H
(

A∗T
)−1

b. (23)

B. Total energy constrained minimum sum MSE

By partially adapting the filters, the transmitted energy in the

first time-slot is fixed. In this section, the energy transmitted

in the second time-slot τ = 2 of both the source nodes and
the relays is considered as a total energy constraint Etot.

Accordingly, the optimization problem is formulated as

g
EC

= argmin
g

{

g∗TA g− b∗Tg − g∗Tb
}

(24)

subject to

g∗TC g = Etot, (25)

whereC is a diagonal matrix with the relays’ received energies

at the first R diagonal elements, Ed at the next K diagonal

elements and zeros at the last K diagonal elements. Because

of the structure of C, just the first R + K elements of

g corresponding to both the relays’ scaling factors and the

transmit filters are constrained by (25). Accordingly, let g and

b be split into R+K and K dimensional vectors as

g =

(
g
1

g
2

)

, b =

(
b1

b2

)

. (26)

Moreover, the matrix A is split into (R+K) × (R+K),
(R+K) × K , K × (R+K) and K × K blocks denoted

by A11, A12, A21 and A22, respectively. Finally, the block

of C which covers the non-zero diagonal elements, i.e., the

first R + K diagonal elements, is denoted as C1. Then the

constraint of (25) can be rewritten as

g∗T
1

C1 g
1
= Etot. (27)

This constraint forms a R + K dimensional ellipsoid. To

simplify the optimization problem of (24)-(25), the constraint

can be reformulated as a R + K dimensional sphere by



decomposing the matrix C1. Because each relay is equipped

with a single antenna,C1 is a diagonal matrix soT1 = C
−1/2
1 .

Then (27) can be rewritten as

y∗T
1

y
1
= Etot, (28)

where g
1

= T1y1
. By substituting y

1
into the objective

function (24), the Lagrangian reads

L

((
y
1

g
2

)

, λ

)

=
(
y∗T
1

g∗T
2

)
(

Ã11 Ã12

Ã21 A22

)(
y
1

g
2

)

−
(

b̃
∗T

1 b∗T
2

)( y
1

g
2

)

−
(
y∗T
1

g∗T
2

)
(

b̃1

b2

)

+ λ
(

y∗T
1

y
1
− Etot

)

, (29)

where λ is the Lagrangian multiplier, b̃1 = T1b1, Ã11 =
T1A11T1, Ã12 = T1A12 and Ã21 = A21T1. Taking the

derivatives of (29) with respect to

(
y
1

g
2

)

yields

∂L

∂

(
y
1

g
2

) =

(

Ã
T

11 Ã
T

21

Ã
T

12 AT
22

)(
y∗
1

g∗
2

)

−

(

b̃
∗

1

b∗
2

)

+ λ

(
y∗
1
0

)

!
= 0. (30)

From (30), the optimum solution is calculated as

(
y
1

g
2

)

EC

=

(

Ã
∗T

11 + λIR+K Ã
∗T

21

Ã
∗T

12 A∗T
22

)−1(
b̃1

b2

)

,

(31)

where λ has to be adapted to satisfy the total energy constraint

of (28). In (30), two equalities are represented which are

Ã
∗T

11 y1
+ Ã

∗T

21 g2
− b̃1 + λy

1
= 0 (32)

and

Ã
∗T

12 y1
+A∗T

22 g2
− b2 = 0. (33)

Solving (33) for g
2
and substituting the result in (32) yields

(

Â+ λIR+K

)

y
1
− b̂ = 0, (34)

where

Â = Ã
∗T

11 − Ã
∗T

21

(

A∗T
22

)−1

Ã
∗T

12 (35)

and

b̂ = b̃1 − Ã
∗T

21

(

A∗T
22

)−1

b2. (36)

Using the Eigenvalue decomposition, the matrix Â is decom-

posed as Â = QΛQ−1, where Λ is a (R+K) × (R+K)

diagonal matrix with the eigenvalues ρ1, . . . , ρR+K of Â at

the diagonal. Moreover, Q is a (R+K) × (R+K) matrix

where the i-th column is the eigenvector of Â corresponding

to the i-th eigenvalue ρi. Then
(

Â+ λIR+K

)−1

=
(
QΛQ−1 + λIR+K

)−1
(37)

=
1

λ
Q
(

IR+K −
(
λΛ−1 + IR+K

)−1
)

Q−1, (38)

where (38) follows from (37) by applying the Woodbury

matrix inversion lema. Substituting (38) in (34) yields

y
1
=

1

λ
Q
(

IR+K −
(
λΛ−1 + IR+K

)−1
)

Q−1b̂. (39)

To find λ which satisfies the total energy constraint, equation

(39) is substituted in (28) as

1

λ2
p∗T

(

IR+K −
(
λΛ−1 + IR+K

)−1
)2

p = Etot (40)

where

p = Q−1b̂ =
(

p(1), . . . , p(R+K)
)T

. (41)

Equation (40) can be simplified as

R+K∑

i=1

∣
∣p(i)

∣
∣
2

(λ+ ρi)
2 = Etot . (42)

As A is a positive semidefinite matrix, λ should be adapted in

such a way that the Hessian of the Lagrangian is kept positive

semidefinite. Moreover, y
1
corresponds to the total energy

constraint and thus corresponds to λ. Instead of taking the

second derivative of (29), (34) is a function of only y
1
where

g
2
satisfies the first order optimality condition of (30) and

hence (34) is equivalent to (30). The second order optimality

condition in this case is obtained by taking the derivative of

(34) with respect to y
1
. Accordingly,

x∗T
(

Â+ λIR+K

)

x ≥ 0 (43)

should hold for any vector x. This condition implies that

an optimum solution exists if the matrix
(

Â+ λIR+K

)

is

positive semidefinite. As a result, the eigenvalues of this

matrix are lower bounded by zero. Because Â is a positive

semidefinite matrix, λ ≥ −ρmin where ρmin is the minimum

eigenvalue of Â. Moreover, if λ > −ρmin, the constraint

of (42) is a monotonically decreasing function of λ in the

interval ]−ρmin,∞[ [8]. Accordingly, there is only one zero
of this function in the interval ]−ρmin,∞[ and hence, a
unique optimum solution for λopt exists. With an initial value

λini = −ρmin + ǫ where ǫ is an arbitrary small value, a

numerical equation solver can be used to find the optimum

λopt which can be substituted in (31) to find the optimum

solution for y
1
and g

2
.

V. NUMERICAL RESULTS

In this section, both the sum rate C and the sum MSE δ are

considered as performance measures. The performance of the

proposed scheme is measured as a function of the pseudo SNR

γPSNR which can be defined as the whole energy transmitted

in both time-slots to the noise variance where one half of the

total energy is transmitted in the first time-slot. The sum-rate

per time-slot is calculated as

C =
1

2

K∑

k=1

log2 (1 + γk) , (44)
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Fig. 2: The performance measures as a function of the PSNR

for K = 3 node pairs.

where

γk =
Ed

σ2

∣
∣g∗T q(k,k)

∣
∣
2

∣
∣
∣u

(k)
1

∣
∣
∣

2

+
∣
∣
∣u

(k)
2

∣
∣
∣

2
(

R∑
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∣
∣
∣h

(k,r)
DR g(r)

∣
∣
∣

2

+ 1

)

+ Ik

,

(45)

and

Ik =
∑

l 6=k

Ed

σ2

∣
∣
∣g

∗T q(k,l)
∣
∣
∣

2

, (46)

are the received SINR and the unaligned interference signals

normalized to the noise variance at the k-th destination node,

respectively. A Rayleigh fading channel is employed with

a unit average channel gain. In the following, a scenario

consisting of K = 3 node pairs and R relays is considered.

The reference scheme is the IA scheme proposed in [7]. For

the IA scheme, simply an arbitrary IA solution is picked and

scaled to satisfy the total energy constraint of (25).

Fig. 2a and Fig. 2b show the sum MSE and the sum

rate as a function of PSNR, respectively. For R = 2, the
energy constraint minimum sum MSE (EC-MMSE) achieves a

significantly smaller sum MSE than the other two schemes. In

terms of capacity, the EC-MMSE outperforms the IAC-MMSE

scheme at low and moderate PSNR but it saturates at a certain

sum rate at high PSNRs. If the number of relays is relatively

large, e.g., R = 9, lower sum MSE and thus higher sum rates
are achieved by the proposed schemes as compared to the IA

scheme. Furthermore, the EC-MMSE implicitly performs IA

at high PSNR.

VI. CONCLUSION

In this paper, a scenario consisting of single antenna node

pairs communicating through single antenna relays is consid-

ered. When fully adapting the relays and partially adapting

the transmit and receive filters, closed form solutions for

minimizing the sum MSE under IA constraint and energy

constraint are proposed. The results show that the proposed

schemes outperform the conventional IA scheme. Moreover,

at high SNR, IA is implicitly achieved by minimizing sum

MSE if the number of relays is sufficient.
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