
Publishing Virtual
Worlds with glTF

Robert Long
@arobertlong

+

- Hubs is built on AFrame
- AFrame scenes are defined in HTML
- We wanted to add user generated content to Hubs (environments and avatars)

- Limit what components you can use (ex. no camera component on a throwable duck)
- No loading of untrusted Javascript for security reasons

- User defined HTML scenes weren’t going to work and glTF seemed like the perfect fit.
- We were already using glTF for all of our assets, but didn’t have a way to attach AFrame

components to glTF nodes.
- Examples:

- Playing animations
- Player spawn points
- Collisions
- Duck spawners

Why glTF?

Defining AFrame Scenes in glTF
{

 "nodes": [

 {

 "name": "fan",

 "translation": [1, 3, 0],

 "extras": {

 "MOZ_shadow": {

 "castShadow": true,

 "receiveShadow": true

 },

 "MOZ_loopAnimation": {

 "clip": "Fan01"

 }

 }

 }

]

}

<a-scene>

 <a-entity

 class="fan"

 position="1 3 0"

 shadow="castShadow: true; receiveShadow: true;"

 loop-animation="clip: Fan01"

 ></a-entity>

</a-scene>

Current AFrame gltf-model Component

- Attached to an <a-entity>
- Uses THREE.GLTFLoader
- Adds the loaded glTF scene as a child of the entity.

- Attached to an <a-entity>
- Uses THREE.GLTFLoader
- Adds the loaded glTF scene as a child of the entity.

- Problem:
- Loaded ThreeJS scene is not exposed as AFrame entities.
- No ability to attach AFrame components to nodes of the loaded scene.

Current AFrame gltf-model Component

<a-entity

 gltf-model="atrium.gltf"

></a-entity>

<a-entity

 gltf-model="atrium.gltf"

></a-entity>

<a-entity

 gltf-model-plus="inflate: true; src=atrium.gltf;"

></a-entity>

Inflating glTF Scenes with gltf-model-plus

<a-entity

 gltf-model-plus="inflate: true; src=atrium.gltf;"

>

...

 <a-entity

 class="fan"

 position="1 3 0"

 shadow="castShadow: true; receiveShadow: true;"

 loop-animation="clip: Fan01"

 ></a-entity>

...

</a-entity>

AFRAME.GLTFModelPlus.registerComponent ("MOZ_shadow", "shadow");

Registering Components with gltf-model-plus

- THREE.GLTFLoader puts glTF node.extras data on ThreeJS’s object3d.userData

- gltf-model-plus calls:

el.setAttribute(componentName, object3D.userData);

- Example:

el.setAttribute("shadow", object3d.userData.MOZ_shadow);

How it Works

- Hubs needs to run well on mobile phones and look good on desktops with high end
GPUs.

- Low end platforms should use simpler lighting or no lighting to hit 60 FPS
- High end platforms should use physically based lighting and look as good as possible.

Progressive Enhancement

- Render with flat shading on low end platforms.

"materials": [
 {
 "name": "red_unlit_material",
 "pbrMetallicRoughness": {
 "baseColorFactor": [1.0, 0.0, 0.0, 1.0]
 },
 "extensions": {
 "KHR_materials_unlit": {}
 }
 }
]

KHR_materials_unlit

- Define alternate materials that can be used to render a given mesh.

"materials": [

 {

 "pbrMetallicRoughness": ...,

 "extensions": {

 "MOZ_alt_materials": {

 "KHR_materials_unlit": 1

 }

 }

 },

 {

 "pbrMetallicRoughness": ...,

 "extensions": {

 "KHR_materials_unlit": {}

 }

 }

]

MOZ_alt_materials

- Lets the application decide the appropriate material to download and use at runtime.

- gltf-model-plus has a global and component “preferredTechnique” property

<a-entity

 gltf-model-plus= "inflate: true; src=atrium.gltf; preferredTechnique=KHR_materials_unlit;"

></a-entity>

- We currently use AFRAME.utils.device.isMobile() to determine if we should use unlit
materials. We would like to move to something that is based on GPU capabilities.

- Use .gltf vs .glb so that only the necessary textures are loaded at runtime.

MOZ_alt_materials

Physically Based Rendering KHR_materials_unlit

- gltf-bundle is a command line utility built out of modular parts
- FBX2glTF (created by Pär Winzell)

- Converts any FBX models to glTF
- gltf-component-data

- Adds component data stored in a separate JSON file
- gltf-unlit-generator

- Generates unlit materials from the PBR materials
- Combines baseColorMap, occlusionMap, and emissive map to approximate the PBR material.
- Add KHR_materials_unlit material as an alternative material via MOZ_alt_materials.

- gltf-content-hash
- Gives assets content-hashed file names to improve caching
- mygltf-h8sg2.gltf -> gl8sd.bin and s2n3f.png
- If only the gltf file changes then gltf file will be redownloaded.

Automating Our Asset Pipeline

- Automating our asset pipeline was only a partial success.
- Editing component data in JSON format isn’t ideal.
- Maintaining configuration files for the gltf-bundle tool isn’t great either.

- We’re building an editor on top of what we’ve learned with gltf-bundle to help improve
this experience.

Next Steps

Goals:
- One stop shop for composing and publishing glTF assets.
- Make importing/exporting content drag and drop or pasting a URL.
- Edit component data visually
- Make Blender/Maya/Substance Painter to glTF/Hubs iteration times quick and easy
- APIs for extending the editor’s functionality
- Integrate with your existing source control systems
- Preview scenes in local copy of Hubs
- Publish to Hubs

glTF Editor

Hubs by Mozilla: hubs.mozilla.com
Mozilla Reality GitHub: github.com/MozillaReality
Social Mixed Reality Slack: webvr.slack.com #social channel
Mozilla Reality Twitter: @mozillareality

gltf-bundle: github.com/MozillaReality/gltf-bundle
gltf-model-plus: github.com/mozilla/hubs/blob/master/src/components/gltf-model-plus.js
hubs-editor: github.com/MozillaReality/hubs-editor

Robert Long
@arobertlong

Thank You!

https://hubs.mozilla.com
https://github.com/MozillaReality
https://webvr.slack.com
https://github.com/MozillaReality/gltf-bundle
https://github.com/mozilla/hubs/blob/master/src/components/gltf-model-plus.js
https://github.com/MozillaReality/hubs-editor

