
Copyright ©2018 The Khronos™ Group Inc. - Page 1

HLSL in Vulkan
There and Back Again

Copyright ©2018 The Khronos™ Group Inc. - Page 2

Shrinking and Legalizing Vulkan
Shaders with spirv-opt

Greg Fischer, LunarG
January 2017

Copyright ©2018 The Khronos™ Group Inc. - Page 3

Goals of Talk
• What is spirv-opt?

• What is the status of SPIR-V size?

• What is HLSL Legalization?

• How to engage spirv-opt?

SPIR-V

spirv-opt

(Optimized/
Legalized)

SPIR-V

Vulkan

Copyright ©2018 The Khronos™ Group Inc. - Page 4

SPIR-V
• Binary shader intermediate representation (IR)

for Vulkan (and other APIs)

• SPIR-V is to Vulkan as DX Byte Code is to DirectX

• Primarily generated from high-level shader
languages GLSL and HLSL

• Disassembler, Assembler, Validator also available

GLSL/HLSL

glslValidator
/ dxc

SPIR-V

Vulkan

Copyright ©2018 The Khronos™ Group Inc. - Page 5

spirv-opt
• Open Source (github.com/KhronosGroup/SPIRV-Tools)

• Collaboration between Google and LunarG with support from
Valve. Additional contributions from Mesa and Roblox.

• SPIR-V -> “Optimized” SPIR-V

• Goals include
- Reduced SPIR-V size
- “Legalized” SPIR-V from HLSL

• Utilizes classic, platform-independent optimization
techniques

• First announced at SIGGRAPH, August 2017

SPIR-V

spirv-opt

(Optimized/
Legalized)

SPIR-V

Vulkan

Copyright ©2018 The Khronos™ Group Inc. - Page 6

• Optimizations include
- Function Call Inlining
- Constant Folding & Propagation
- Arithmetic Simplification
- Local Store/Load Elimination
- Dead Code Elimination
- Common Subexpression Elimination
- Debug Information Stripping

• Optimized SPIR-V now within 10% of DX Byte Code size

spirv-opt: Reducing SPIR-V Size
SPIR-V

spirv-opt

(Optimized)
SPIR-V

Vulkan

Copyright ©2018 The Khronos™ Group Inc. - Page 7

HLSL and fxc Equivalence
• HLSL shaders *must* be “legalized”

• HLSL contains constructs that are not directly supported by
graphics hardware

• Optimization techniques can be used to put shader code in a
form directly supported by graphics hardware

• fxc is Microsoft’s optimizing shader compiler

• fxc: HLSL -> Highly optimized and "legalized" DX Byte Code

• Current graphics hardware and drivers assume HLSL shaders
will have certain optimizations done

• spirv-opt therefore needs to be "equivalent" to fxc in
optimization capability when porting DX/HLSL to Vulkan

HLSL

fxc

(Optimized/
Legalized)

DX Byte Code

DirectX

Copyright ©2018 The Khronos™ Group Inc. - Page 8

• Some HLSL features not directly supported in Vulkan (or DX)
- Opaque structure members (eg. textures, samplers)
- Local Structured Buffers

• glslangValidator issues warning for problematic constructs:
“WARNING: AST will form illegal SPIR-V; need to transform to
legalize”

• These constructs are "optimized" away by spirv-opt through
function call inlining, dead control flow elimination, value
propagation

spirv-opt: HLSL Legalization via Propagation
SPIR-V

spirv-opt

(Legalized)
SPIR-V

Vulkan

Copyright ©2018 The Khronos™ Group Inc. - Page 9

struct os {
SamplerState o_s2D;
Texture2D o_tex;

};

Texture2D tex;
SamplerState s2D;

float4 osCall(os s, float2 f2)
{

return s.o_tex.Sample(s.o_s2D, f2);
}

float4 main() : SV_TARGET0
{

os s;
s.o_tex = tex;
s.o_s2D = s2D;
return osCall(s, float2(0.2, 0.3));

}

Opaque Struct Example

Copyright ©2018 The Khronos™ Group Inc. - Page 10

Texture2D tex;
SamplerState s2D;

float4 main() : SV_TARGET0
{

return tex.Sample(s2D, float2(0.2, 0.3));
}

Opaque Struct Example: Optimized

Copyright ©2018 The Khronos™ Group Inc. - Page 11

struct S {
float4 f;

};

RWStructuredBuffer<S> gRWSBuffer;

float4 main() : A {
RWStructuredBuffer<S> t;

t = gRWSBuffer;

return t[0].f;
}

Local Structured Buffer Example

Copyright ©2018 The Khronos™ Group Inc. - Page 12

struct S {
float4 f;

};

RWStructuredBuffer<S> gRWSBuffer;

float4 main() : A {
return gRWSBuffer[0].f;

}

Local Structured Buffer Example: Optimized

Copyright ©2018 The Khronos™ Group Inc. - Page 13

• HLSL may contain dead texture, sampler, buffer references

• Such dead refs cause Vulkan Validation Layer complaints:
“VALIDATION ERROR 0x3d Descriptor set 0x41bde
encountered the following validation error at
vkCmdDrawIndexed() time: Descriptor in binding #33 at
global descriptor index 10 is being used in draw but has not
been updated.”

• These are optimized away by spirv-opt dead code/branch
elimination

spirv-opt: HLSL Legalization via Dead Code
Elimination

SPIR-V

spirv-opt

(Legalized)
SPIR-V

Vulkan

Copyright ©2018 The Khronos™ Group Inc. - Page 14

Texture2D tex0;
SamplerState s0;

Texture2D tex1;
SamplerState s1;

float4 main() : SV_TARGET0
{

if (true)
return tex0.Sample(s0, float2(0.2,0.3));

else
return tex1.Sample(s1, float2(0.2,0.3));

}

Dead Sample Example

Copyright ©2018 The Khronos™ Group Inc. - Page 15

Texture2D tex0;
SamplerState s0;

float4 main() : SV_TARGET0
{

return tex0.Sample(s0, float2(0.2,0.3));

}

Dead Sample Example: Optimized

Copyright ©2018 The Khronos™ Group Inc. - Page 16

• Command line
- --legalize-hlsl
- -Os: Optimize for size
- --<pass> --<pass> ... (see --help)

• API interface
- Optimizer::RegisterLegalizationPasses()
- Optimizer::RegisterSizePasses()

spirv-opt Usage - Direct

SPIR-V

spirv-opt

(Optimized/
Legalized)

SPIR-V

Vulkan

Copyright ©2018 The Khronos™ Group Inc. - Page 17

• glslangValidator
- Khronos GLSL/HLSL FE
- For legacy reasons, glslang does not require SPIRV-

Tools to build
- Legalization by default if built with SPIRV-Tools; can

be disabled (see README)
- -Os: Optimize for size if built with SPIRV-Tools
- LunarG Vulkan SDK edition built with SPIRV-Tools
- github.com/KhronosGroup/glslang

spirv-opt Usage – Indirect through Frontends

GLSL/HLSL

glslangValidator
/ dxc

(Optimized/
Legalized)

SPIR-V

Vulkan

Copyright ©2018 The Khronos™ Group Inc. - Page 18

• dxc
- Microsoft Open Source HLSL FE / SPIR-V generator
- Default Legalization, Optimization
- Can be disabled (see README)
- github.com/Microsoft/DirectXShaderCompiler/wiki

/SPIR-V-CodeGen

• glslc
- Wrapper for glslangValidator and SPIRV-Tools
- Legalization always on for HLSL
- -Os for size optimization
- github.com/google/shaderc/tree/master/glslc

spirv-opt Usage – Indirect through Frontends

GLSL/HLSL

glslangValidator
/ dxc
/ glslc

(Optimized/
Legalized)

SPIR-V

Vulkan

Copyright ©2018 The Khronos™ Group Inc. - Page 19

• Google (David Neto, Steven Perron,
Alan Baker, Diego Novillo, John
Kessenich, Lei Zhang)

• Valve (Pierre-Loup Griffais, Dan
Ginsburg)

• Mesa (Pierre Moreau)

• Roblox (Arseny Kapoulkine)

Acknowledgements

DR. MATTHÄUS G. CHAJDAS, AMD

From HLSL to Vulkan®

21 | GDC 2018 | 19-23 MARCH 2018

 Most games have large HLSL shader libraries

 Using those with Vulkan requires some work

WHERE ARE WE?
STATE OF THE UNION

HLSL

#macros GLSLang DXC Source-to-Source

GLSLang GLSLang

SPIR-V

22 | GDC 2018 | 19-23 MARCH 2018

 Vulkan has a different binding model from Direct3D 11/12
‒ Direct3D 11 is all about slots and named bindings
‒ Direct3D 12 has root signatures, typed descriptor heaps etc.

 Vulkan has descriptor sets

WHY ARE WE DOING THIS? WHY?
WHAT ARE THE PROBLEMS?

Root
signature

Descriptor
heap

Descriptor
heap

Descriptor
heap

Descriptor
set

Descriptor
set

Descriptor
set

Texture2D t : register (t0) layout (set = X, binding = Y) texture2D t;

23 | GDC 2018 | 19-23 MARCH 2018

 No 1:1 mapping of resource types
‒ UAV Image?
‒ Some things have no 100% equivalent, like read-only structured buffers

 Samplers are not objects you can pass around

 Bindless is very different

 Descriptor remapping is generally the main problem
‒ Partition descriptor ranges?
‒ I/O remapper?
‒ Engine needs to be somehow aware of both

 Some functionality is missing in HLSL
‒ Push constants
‒ Input attachments
‒ Specialization constants

GLSL VS HLSL
OTHER DIFFERENCES

24 | GDC 2018 | 19-23 MARCH 2018

 The big difference is the binding
model

 Specific syntax to help you out –
attributes “[[vk::binding]]” etc.

 Probably want to wrap those in
macros so FXC doesn’t see this

 This is going to be the majority of
your porting effort!

THE BIG DIFFERENCE
BINDINGS

struct S {
float2 f;

};

[[vk::binding(1)]] StructuredBuffer<S> buffer1;
[[vk::binding(3, 2)]] StructuredBuffer<S> buffer3;

[[vk::input_attachment_index(4)]]
Texture2D<float4> attach;

[[vk::constant_id(13)]] const int ci = 11;
[[vk::push_constant]] cbuffer pcBuf { int a; };

[[vk::location(7)]] float4
main([[vk::location(8)]] float4 input: A) : B
{

return input + attach.Load(float2(0.5));// * a;
}

25 | GDC 2018 | 19-23 MARCH 2018

 Your compile pipeline should end in SPIR-V Opt

 Required for legal SPIR-V from HLSL – mostly for passing around opaque objects (samplers, etc.)

 Various optimizations are available
‒ Anything reducing output size is generally safe – and also helps the backend
‒ Prefer [unroll] to forced-unroll
‒ Remap identifiers etc. is beneficial
‒ Turning on all options is not a good idea

 You should also use it for GLSL

 Significant savings on shipping titles on the code size end
‒ Still need to apply compression
‒ Consider domain-specific compression like SMOL-V

CLEAN IT UP
SPIR-V OPT

26 | GDC 2018 | 19-23 MARCH 2018

 Originally, there used to be a significant “Vulkan tax”
‒ Compilers not used to seeing SPIR-V
‒ GLSLang compile output sometimes rather naïve …

 Be on the lookout
‒ Temporary/local arrays or arrays in general
‒ Function calls – specifically passing large objects around
‒ Annotations not getting translated correctly

 Overall, we’re really close these days
‒ And if we aren’t, use the tools
‒ SPIR-V opt, dis is your friend
‒ IHV tools to inspect generated ISA

ARE WE FAST YET?
PERF!

27 | GDC 2018 | 19-23 MARCH 2018

28 | GDC 2018 | 19-23 MARCH 2018

29 | GDC 2018 | 19-23 MARCH 2018

30 | GDC 2018 | 19-23 MARCH 2018

31 | GDC 2018 | 19-23 MARCH 2018

 Games are shipping on Vulkan with tons of HLSL source

 Single HLSL source for both Vulkan and D3D is possible

 Going forward, you can use DXC supporting both APIs – more on this in a minute!

WHERE ARE WE?
SUMMARY

33 | GDC 2018 | 19-23 MARCH 2018

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new
model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise
this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR
OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2018 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names
are for informational purposes only and may be trademarks of their respective owners.

Copyright ©2018 The Khronos™ Group Inc. - Page 34

DXC / Spiregg

Hai Nguyen / Google
March 2018

Copyright ©2018 The Khronos™ Group Inc. - Page 35

Overview
• Brief History

- There and back again

• Development
- Compilation
- Legalization
- Optimization

• What’s Here
- SM6.0 Wave Ops
- Semantics
- Reflection

• What’s Coming
- Descriptor Indexing
- Extensions

• Credits
- Appreciating the blood, sweat, and tears

Copyright ©2018 The Khronos™ Group Inc. - Page 36

Brief History
• There…

- David Neto (Google) initiated the Spiregg project
- Google met with Microsoft DXC team in early 2017

- HLSL is a language without a spec
- “I did not know that was legal…” – Baldur Karlsson (RenderDoc)
- Microsoft plans to evolve the HLSL rapidly once DXC is stable
- Keeping up with parser could prove difficult…so leverage it!

• …and back again
- Spiregg at Google contributes and maintains a SPIR-V backend for DXC

- Open source under LLVM license and hosted on Github
- Spiregg leaned on glslang’s progress to get started

- Both projects collaborate to maintain parity
- Spiregg works closely with SPIRV-Tools/spirv-opt team

- DXC/SPIRV leans on spirv-opt for legalization
- Outreach to community and IHVs has provided valuable feedback

Copyright ©2018 The Khronos™ Group Inc. - Page 37

Development
• Compilation

- Parsing HLSL to generalized SPIR-V
- Front end process that happens in DXC

• Legalization
- Transforming generalized SPIR-V to Vulkan dialect
- Back end process that happens in SPIRV-Tools

- spirv-opt transform passes
- See Greg’s talk for more details

• Optimization
- Transforms Vulkan SPIR-V to be more performant
- Controversial transform

- Loop unrolling
- Must be done for legalization, will follow up about performance

- Will follow up at SIGGRAPH

Copyright ©2018 The Khronos™ Group Inc. - Page 38

Development
• Spiregg has been very busy!

- Lei Zhang (antiagainst)
- Ehsan Nasiri (ehsannas)

Copyright ©2018 The Khronos™ Group Inc. - Page 39

Legalization
• We are aware that some generated SPIR-V is problematic for consumption

- Complex HLSL opaque object resolution
- Structs within structs containing opaque objects

- First time legalization has been attempted for HLSL in Vulkan
- We’re learning very valuable lessons

• Working with IHVs to address this as quickly as possible
- Bug fixes to DXC
- Updated drivers

Copyright ©2018 The Khronos™ Group Inc. - Page 40

What’s Here
• Full SM 5.1 Support

- Bugs (and features not in Vulkan) not withstanding
- Please bugs report on Github!

- Let us know if we’re missing anything!

• SM 6.0 Wave Ops
- Landed with Vulkan 1.1

• Other Highlights
- Global variable collected under $Globals cbuffer

- Working on support to assing $Globals to a specific register
- SPV_KHR_shader_draw_parameters implemented to explore extension workflow

• Semantics and Counter Buffers!
- Two SPIR-V Extensions
- One upcoming Vulkan Extension to support SPIR-V Extensions

• Reflection
- Reflecting SPIR-V data at runtime

Copyright ©2018 The Khronos™ Group Inc. - Page 41

What’s Here: Semantics and Counter Buffers
• Two SPIR-V extensions

- SPV_GOOGLE_decorate_string
- OpDecorateStringGOOGLE - decorates variable with string
- OpMemberDecorateStringGOOGLE - decorate struct member with string

- SPV_GOOGLE_hlsl_functionality1
- HlslCounterBufferGOOGLE - link a counter buffer to a UAV resource that has an

associated counter
- HlslSemanticGOOGLE - decorate an input or output variable id with a string

representing semantic as defined in the HLSL source

• One Vulkan extension
- WIP

• Opt-in Feature for DXC and glslang
- -fspv-reflect for DXC
- -hlsl_functionality1 for glslang

Copyright ©2018 The Khronos™ Group Inc. - Page 42

What’s Here: Semantics and Counter Buffers

Copyright ©2018 The Khronos™ Group Inc. - Page 43

What’s Here: Semantics and Counter Buffers
• There’s just one thing…

- New SPIR-V opcodes and decorations not yet consumable by drivers
- Must be stripped before handing off the SPIR-V to the driver

• Fear not…batteries are included!
- SPIRV-Reflect repo will have copy/paste snipped to strip reflection data
- What’s SPIRV-Reflect?

Copyright ©2018 The Khronos™ Group Inc. - Page 44

What’s Here: Reflection
• SPIRV-Reflect

- Small library C/C++
- 2 files: 1 header, 1 source

- Cort Stratton + Hai Nguyen
- Send bugs and requests to Cort

• Reflected Data
- Vertex attribute locations

- Basic type info
- Descriptor bindings and sets

- Binding #, set#, descriptor type
- Uniform, storage, push constants blocks

- Relative offsets, absolute offsets, raw size, padded size, type info
- HLSL resource types

- CBV, SRV, UAV, Samplers
- Semantics and Counter Buffers

I <3 BUGS!

Copyright ©2018 The Khronos™ Group Inc. - Page 45

What’s Here: Reflection

Copyright ©2018 The Khronos™ Group Inc. - Page 46

What’s Here: Reflection

Copyright ©2018 The Khronos™ Group Inc. - Page 47

What’s Here: Reflection
• https://github.com/chaoticbob/SPIRV-Reflect

• Goes live this Friday (March 23, 2018)

• Please file issues on Github

• Work in progress to add reflection to SPIRV-Tools
- Will deprecate SPIRV-Reflect

I <3 ISSUES!

Copyright ©2018 The Khronos™ Group Inc. - Page 48

What’s Coming
• Descriptor Indexing!

- NonUniformResourceIndex FTW!
- “Coming soon”

• Extensions Support
- Will likely be command line option

- -fspv-extension=<ext-a> -fspv-extension=<ext-b>

• Moar SM 6.x
- 64-bit integer
- 16-bit scalars
- Barycentrics

• Things being considered…but no firm conclusion
- Inline cbuffer initialization
- Root descriptors in HLSL source
- Specifying extensions in the source like GLSL

Copyright ©2018 The Khronos™ Group Inc. - Page 49

Credits
• Individuals (apologies if I missed anyone)

- Team #spiregg (DXC/SPIRV)
- Lei Zhang (Google), Ehsan Nasiri (Google)

- Guidance
- David Neto (Google), John Kessenich (Google)

- spirv-opt
- Greg Fischer(LunarG), Diego Novillio (Google), Steven Perron (Google), Alan Baker (Google)

- IHV Friends
- Dr. Matthäus G. Chajdas (AMD), Nuno Subtil (NVIDIA), Piers Daniell (NVIDIA), Jason Ekstrand

(Intel), Slawomir Grajewski (Intel)
- Khronos Members

- Neil Henning (Codeplay), Tobias Hector (Imagination), Dan Ginsburg (Valve)
- Community Members

- Graham Wihlidal (EA), Andrew Lauritzen (EA), Dan Baker (Oxide)

• Companies
- AMD, Intel, LunarG, Microsoft, Nvidia, Valve

Copyright ©2018 The Khronos™ Group Inc. - Page 50

Thank You!

