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HLSL in Vulkan
There and Back Again
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Goals of Talk
• What is spirv-opt?

• What is the status of SPIR-V size?

• What is HLSL Legalization?

• How to engage spirv-opt?

SPIR-V

spirv-opt

(Optimized/
Legalized)

SPIR-V

Vulkan
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SPIR-V
• Binary shader intermediate representation (IR) 

for Vulkan (and other APIs)

• SPIR-V is to Vulkan as DX Byte Code is to DirectX

• Primarily generated from high-level shader
languages GLSL and HLSL

• Disassembler, Assembler, Validator also available

GLSL/HLSL

glslValidator
/ dxc

SPIR-V

Vulkan
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spirv-opt
• Open Source (github.com/KhronosGroup/SPIRV-Tools)

• Collaboration between Google and LunarG with support from 
Valve. Additional contributions from Mesa and Roblox.

• SPIR-V -> “Optimized” SPIR-V

• Goals include
- Reduced SPIR-V size
- “Legalized” SPIR-V from HLSL

• Utilizes classic, platform-independent optimization 
techniques

• First announced at SIGGRAPH, August 2017

SPIR-V

spirv-opt

(Optimized/
Legalized)

SPIR-V

Vulkan
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• Optimizations include
- Function Call Inlining
- Constant Folding & Propagation
- Arithmetic Simplification
- Local Store/Load Elimination
- Dead Code Elimination
- Common Subexpression Elimination
- Debug Information Stripping

• Optimized SPIR-V now within 10% of DX Byte Code size

spirv-opt: Reducing SPIR-V Size
SPIR-V

spirv-opt

(Optimized)
SPIR-V

Vulkan
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HLSL and fxc Equivalence
• HLSL shaders *must* be “legalized”

• HLSL contains constructs that are not directly supported by 
graphics hardware

• Optimization techniques can be used to put shader code in a 
form directly supported by graphics hardware

• fxc is Microsoft’s optimizing shader compiler

• fxc: HLSL -> Highly optimized and "legalized" DX Byte Code

• Current graphics hardware and drivers assume HLSL shaders
will have certain optimizations done

• spirv-opt therefore needs to be "equivalent" to fxc in 
optimization capability when porting DX/HLSL to Vulkan

HLSL

fxc

(Optimized/
Legalized)

DX Byte Code

DirectX
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• Some HLSL features not directly supported in Vulkan (or DX)
- Opaque structure members (eg. textures, samplers)
- Local Structured Buffers

• glslangValidator issues warning for problematic constructs: 
“WARNING: AST will form illegal SPIR-V; need to transform to 
legalize”

• These constructs are "optimized" away by spirv-opt through 
function call inlining, dead control flow elimination, value 
propagation

spirv-opt: HLSL Legalization via Propagation
SPIR-V

spirv-opt

(Legalized)
SPIR-V

Vulkan
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struct os {
SamplerState o_s2D;
Texture2D o_tex;

};

Texture2D tex;
SamplerState s2D;

float4 osCall(os s, float2 f2)
{

return s.o_tex.Sample(s.o_s2D, f2);
}

float4 main() : SV_TARGET0
{

os s;
s.o_tex = tex;
s.o_s2D = s2D;
return osCall(s, float2(0.2, 0.3));

}

Opaque Struct Example
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Texture2D tex;
SamplerState s2D;

float4 main() : SV_TARGET0
{

return tex.Sample(s2D, float2(0.2, 0.3));
}

Opaque Struct Example: Optimized
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struct S {
float4 f;

};

RWStructuredBuffer<S> gRWSBuffer;

float4 main() : A {
RWStructuredBuffer<S> t;

t = gRWSBuffer;

return t[0].f;
}

Local Structured Buffer Example
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struct S {
float4 f;

};

RWStructuredBuffer<S> gRWSBuffer;

float4 main() : A {
return gRWSBuffer[0].f;

}

Local Structured Buffer Example: Optimized
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• HLSL may contain dead texture, sampler, buffer references

• Such dead refs cause Vulkan Validation Layer complaints: 
“VALIDATION ERROR 0x3d Descriptor set 0x41bde 
encountered the following validation error at 
vkCmdDrawIndexed() time: Descriptor in binding #33 at 
global descriptor index 10 is being used in draw but has not 
been updated.”

• These are optimized away by spirv-opt dead code/branch 
elimination

spirv-opt: HLSL Legalization via Dead Code 
Elimination

SPIR-V

spirv-opt

(Legalized)
SPIR-V

Vulkan
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Texture2D tex0;
SamplerState s0;

Texture2D tex1;
SamplerState s1;

float4 main() : SV_TARGET0
{

if (true)
return tex0.Sample(s0, float2(0.2,0.3));

else
return tex1.Sample(s1, float2(0.2,0.3));

}

Dead Sample Example
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Texture2D tex0;
SamplerState s0;

float4 main() : SV_TARGET0
{

return tex0.Sample(s0, float2(0.2,0.3));

}

Dead Sample Example: Optimized
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• Command line
- --legalize-hlsl
- -Os: Optimize for size
- --<pass> --<pass> ... (see --help)

• API interface
- Optimizer::RegisterLegalizationPasses()
- Optimizer::RegisterSizePasses()

spirv-opt Usage - Direct

SPIR-V

spirv-opt

(Optimized/
Legalized)

SPIR-V

Vulkan
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• glslangValidator
- Khronos GLSL/HLSL FE
- For legacy reasons, glslang does not require SPIRV-

Tools to build
- Legalization by default if built with SPIRV-Tools; can 

be disabled (see README)
- -Os: Optimize for size if built with SPIRV-Tools
- LunarG Vulkan SDK edition built with SPIRV-Tools
- github.com/KhronosGroup/glslang

spirv-opt Usage – Indirect through Frontends

GLSL/HLSL

glslangValidator
/ dxc

(Optimized/
Legalized)

SPIR-V

Vulkan
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• dxc
- Microsoft Open Source HLSL FE / SPIR-V generator
- Default Legalization, Optimization
- Can be disabled (see README)
- github.com/Microsoft/DirectXShaderCompiler/wiki

/SPIR-V-CodeGen

• glslc
- Wrapper for glslangValidator and SPIRV-Tools
- Legalization always on for HLSL
- -Os for size optimization
- github.com/google/shaderc/tree/master/glslc

spirv-opt Usage – Indirect through Frontends

GLSL/HLSL

glslangValidator
/ dxc
/ glslc

(Optimized/
Legalized)

SPIR-V

Vulkan
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 Most games have large HLSL shader libraries

 Using those with Vulkan requires some work

WHERE ARE WE?
STATE OF THE UNION

HLSL

#macros GLSLang DXC Source-to-Source

GLSLang GLSLang

SPIR-V
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 Vulkan has a different binding model from Direct3D 11/12
‒ Direct3D 11 is all about slots and named bindings
‒ Direct3D 12 has root signatures, typed descriptor heaps etc. 

 Vulkan has descriptor sets

WHY ARE WE DOING THIS? WHY?
WHAT ARE THE PROBLEMS?

Root 
signature

Descriptor 
heap

Descriptor 
heap

Descriptor 
heap

Descriptor 
set

Descriptor 
set

Descriptor 
set

Texture2D t : register (t0)   layout (set = X, binding = Y) texture2D t;
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 No 1:1 mapping of resource types
‒ UAV  Image?
‒ Some things have no 100% equivalent, like read-only structured buffers

 Samplers are not objects you can pass around

 Bindless is very different

 Descriptor remapping is generally the main problem
‒ Partition descriptor ranges?
‒ I/O remapper?
‒ Engine needs to be somehow aware of both

 Some functionality is missing in HLSL
‒ Push constants
‒ Input attachments
‒ Specialization constants

GLSL VS HLSL
OTHER DIFFERENCES
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 The big difference is the binding 
model

 Specific syntax to help you out –
attributes “[[vk::binding]]” etc.

 Probably want to wrap those in 
macros so FXC doesn’t see this

 This is going to be the majority of 
your porting effort!

THE BIG DIFFERENCE
BINDINGS

struct S {
float2 f;

};

[[vk::binding(1)]] StructuredBuffer<S> buffer1;
[[vk::binding(3, 2)]] StructuredBuffer<S> buffer3;

[[vk::input_attachment_index(4)]]
Texture2D<float4> attach;

[[vk::constant_id(13)]] const int ci = 11;
[[vk::push_constant]] cbuffer pcBuf { int a; };

[[vk::location(7)]] float4
main([[vk::location(8)]] float4 input: A) : B
{

return input + attach.Load(float2(0.5));// * a;
}
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 Your compile pipeline should end in SPIR-V Opt

 Required for legal SPIR-V from HLSL – mostly for passing around opaque objects (samplers, etc.)

 Various optimizations are available
‒ Anything reducing output size is generally safe – and also helps the backend
‒ Prefer [unroll] to forced-unroll
‒ Remap identifiers etc. is beneficial
‒ Turning on all options is not a good idea 

 You should also use it for GLSL

 Significant savings on shipping titles on the code size end
‒ Still need to apply compression
‒ Consider domain-specific compression like SMOL-V

CLEAN IT UP
SPIR-V OPT
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 Originally, there used to be a significant “Vulkan tax”
‒ Compilers not used to seeing SPIR-V
‒ GLSLang compile output sometimes rather naïve …

 Be on the lookout
‒ Temporary/local arrays or arrays in general
‒ Function calls – specifically passing large objects around
‒ Annotations not getting translated correctly

 Overall, we’re really close these days
‒ And if we aren’t, use the tools
‒ SPIR-V opt, dis is your friend
‒ IHV tools to inspect generated ISA

ARE WE FAST YET?
PERF!
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 Games are shipping on Vulkan with tons of HLSL source

 Single HLSL source for both Vulkan and D3D is possible

 Going forward, you can use DXC supporting both APIs – more on this in a minute!

WHERE ARE WE?
SUMMARY
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DXC / Spiregg

Hai Nguyen / Google
March 2018
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Overview
• Brief History

- There and back again

• Development 
- Compilation
- Legalization
- Optimization

• What’s Here
- SM6.0 Wave Ops
- Semantics
- Reflection

• What’s Coming
- Descriptor Indexing
- Extensions

• Credits
- Appreciating the blood, sweat, and tears
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Brief History
• There…

- David Neto (Google) initiated the Spiregg project
- Google met with Microsoft DXC team in early 2017

- HLSL is a language without a spec
- “I did not know that was legal…” – Baldur Karlsson (RenderDoc)
- Microsoft plans to evolve the HLSL rapidly once DXC is stable
- Keeping up with parser could prove difficult…so leverage it!

• …and back again 
- Spiregg at Google contributes and maintains a SPIR-V backend for DXC

- Open source under LLVM license and hosted on Github
- Spiregg leaned on glslang’s progress to get started

- Both projects collaborate to maintain parity
- Spiregg works closely with SPIRV-Tools/spirv-opt team

- DXC/SPIRV leans on spirv-opt for legalization
- Outreach to community and IHVs has provided valuable feedback
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Development
• Compilation

- Parsing HLSL to generalized SPIR-V
- Front end process that happens in DXC

• Legalization
- Transforming generalized SPIR-V to Vulkan dialect
- Back end process that happens in SPIRV-Tools

- spirv-opt transform passes
- See Greg’s talk for more details

• Optimization
- Transforms Vulkan SPIR-V to be more performant
- Controversial transform

- Loop unrolling
- Must be done for legalization, will follow up about performance

- Will follow up at SIGGRAPH
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Development
• Spiregg has been very busy!

- Lei Zhang (antiagainst)
- Ehsan Nasiri (ehsannas)
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Legalization
• We are aware that some generated SPIR-V is problematic for consumption

- Complex HLSL opaque object resolution
- Structs within structs containing opaque objects

- First time legalization has been attempted for HLSL in Vulkan
- We’re learning very valuable lessons

• Working with IHVs to address this as quickly as possible
- Bug fixes to DXC
- Updated drivers
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What’s Here
• Full SM 5.1 Support

- Bugs (and features not in Vulkan) not withstanding 
- Please bugs report on Github!

- Let us know if we’re missing anything!

• SM 6.0 Wave Ops
- Landed with Vulkan 1.1

• Other Highlights
- Global variable collected under $Globals cbuffer

- Working on support to assing $Globals to a specific register
- SPV_KHR_shader_draw_parameters implemented to explore extension workflow

• Semantics and Counter Buffers!
- Two SPIR-V Extensions
- One upcoming Vulkan Extension to support SPIR-V Extensions

• Reflection
- Reflecting SPIR-V data at runtime
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What’s Here: Semantics and Counter Buffers
• Two SPIR-V extensions

- SPV_GOOGLE_decorate_string
- OpDecorateStringGOOGLE - decorates variable with string
- OpMemberDecorateStringGOOGLE - decorate struct member with string

- SPV_GOOGLE_hlsl_functionality1
- HlslCounterBufferGOOGLE - link a counter buffer to a UAV resource that has an 

associated counter
- HlslSemanticGOOGLE - decorate an input or output variable id with a string 

representing semantic as defined in the HLSL source

• One Vulkan extension
- WIP

• Opt-in Feature for DXC and glslang
- -fspv-reflect for DXC
- -hlsl_functionality1 for glslang
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What’s Here: Semantics and Counter Buffers
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What’s Here: Semantics and Counter Buffers
• There’s just one thing…

- New SPIR-V opcodes and decorations not yet consumable by drivers
- Must be stripped before handing off the SPIR-V to the driver

• Fear not…batteries are included!
- SPIRV-Reflect repo will have copy/paste snipped to strip reflection data
- What’s SPIRV-Reflect?
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What’s Here: Reflection
• SPIRV-Reflect

- Small library C/C++
- 2 files: 1 header, 1 source

- Cort Stratton + Hai Nguyen
- Send bugs and requests to Cort

• Reflected Data
- Vertex attribute locations

- Basic type info
- Descriptor bindings and sets

- Binding #, set#, descriptor type
- Uniform, storage, push constants blocks

- Relative offsets, absolute offsets, raw size, padded size, type info
- HLSL resource types

- CBV, SRV, UAV, Samplers
- Semantics and Counter Buffers

I <3 BUGS!
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What’s Here: Reflection
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What’s Here: Reflection
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What’s Here: Reflection
• https://github.com/chaoticbob/SPIRV-Reflect

• Goes live this Friday (March 23, 2018)

• Please file issues on Github

• Work in progress to add reflection to SPIRV-Tools
- Will deprecate SPIRV-Reflect

I <3 ISSUES!
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What’s Coming
• Descriptor Indexing!

- NonUniformResourceIndex FTW!
- “Coming soon”

• Extensions Support
- Will likely be command line option

- -fspv-extension=<ext-a> -fspv-extension=<ext-b>

• Moar SM 6.x
- 64-bit integer
- 16-bit scalars
- Barycentrics

• Things being considered…but no firm conclusion
- Inline cbuffer initialization
- Root descriptors in HLSL source
- Specifying extensions in the source like GLSL
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Thank You!


