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Notation

Throughout, k is an algebraically closed field. Unadorned tensor products are over k. For
a k-algebra R and k-module M, we often write My for R® M. The dual Homy jjpeqr(E, k)
of a k-vector space E is denoted by EV. All rings are commutative with 1, and homomor-
phisms are required to map 1 to 1. Following Bourbaki, we require compact topological
spaces to be Hausdorff.

N=1{0,1,2,..}

Z = ring of integers

C = field of complex numbers

F, = Z/pZ = field of p elements, p a prime number.

Given an equivalence relation, [+] denotes the equivalence class containing . A family of
elements of a set A indexed by a second set I, denoted (a;);¢s, is a functioni — a; : I — A.
We sometimes write |S| for the number of elements in a finite set S.

X dCfY X is a subset of Y, not necessarily proper.
X Y indicates that the equality in question is a definition.
X~Y XandY areisomorphic.

X ~Y XandY areisomorphic by a specific isomorphism, usually canonical.
We use Gothic (fraktur) letters to denote ideals:

y q A B M N P Q
p q A B

m n
m n M N P Q

Q@

a b ¢
a b c
A reference “Section 3m” is to Section m in Chapter 3; a reference “3.45 ” is to item 45

in chapter 3; a reference “(67)” is to (displayed) equation 67 (often given with a page
reference).

Prerequisites

The reader is assumed to be familiar with the basic objects of algebra, namely, rings,
modules, fields, and so on.

References

CA: Milne, J.S., Commutative Algebra, v4.03, 2020.
FT: Milne, J.S., Fields and Galois Theory, Kea Books, 2022.
monnnn: Question nnnn on mathoverflow.net.
sxnnnn: Question nnnn on math.stackexchange.com.

We sometimes refer to the computer algebra programs
CoCoA (Computations in Commutative Algebra) website.

Macaulay2 website; web version.


https://sites.google.com/view/cocoa-cocoalib
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https://www.unimelb-macaulay2.cloud.edu.au/#home
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There is almost nothing left to discover in geometry.
Descartes, March 26, 1619

QUESTION: If we try to explain to a layman what algebraic geometry is, it seems to
me that the title of the old book of Enriques is still adequate: Geometrical Theory of
Equations.....
GROTHENDIECK: Yes! but your “layman” should know what a system of algebraic
equations is. This would cost years of study to Plato.
QUESTION: It should be nice to have a little faith that after two thousand years every
good high school graduate can understand what an affine scheme is ...

From the notes of a lecture series that Grothendieck gave at SUNY at Buffalo in the
summer of 1973 (in 167 pages, Grothendieck manages to cover very little).






Introduction

I believe that you should begin by getting a solid foundation
in what I call “elementary algebraic geometry,” that is, the
theory of “Serre varieties” as defined in FAC.'I think that
at the beginning you should should strictly limit yourself to
varieties over an algebraically closed field (but of arbitrary
characteristic).

Dieudonné, Letter to Ribenboim, 1972.

Just as the starting point of linear algebra is the study of the solutions of systems of
linear equations,

n
Zal]XJ :bi’ i = 1,..,m, (1)
j=1

the starting point for algebraic geometry is the study of the solutions of systems of
polynomial equations,

fi(Xl’ .ee ,Xn) = 0, l = 1, e, M, fi (S k[Xl, .. ’X}’l]'

One immediate difference between linear equations and polynomial equations is that
theorems for linear equations do not depend on which field k you are working over,?
but those for polynomial equations depend on whether or not k is algebraically closed
and (to a lesser extent) whether k has characteristic zero.

A better description of algebraic geometry is that it is the study of polynomial func-
tions and the spaces on which they are defined (algebraic varieties), just as topology is
the study of continuous functions and the spaces on which they are defined (topological
spaces), differential topology the study of infinitely differentiable functions and the
spaces on which they are defined (differentiable manifolds), and so on:

algebraic geometry | regular (polynomial) functions algebraic varieties

topology continuous functions topological spaces

differential topology | infinitely differentiable functions | differentiable manifolds

complex analysis analytic (power series) functions | complex manifolds.

The approach adopted in this course makes plain the similarities between these different
areas of mathematics. Of course, the polynomial functions form a much less rich class

!Serre, Jean-Pierre. Faisceaux algébriques cohérents. Ann. of Math. (2) 61, (1955). 197-278, commonly
referred to as FAC.

*For example, suppose that the system (1) has coefficients a;; € k and that K is a field containing
k. Then (1) has a solution in k" if and only if it has a solution in K", and the dimension of the space of
solutions is the same for both fields.



10 INTRODUCTION

than the others, but by restricting our study to polynomials we are able to do calculus
over any field: we simply define

diX Z a,-Xi = Z iaiXi_l.

Moreover, calculations with polynomials are easier than with more general functions.
Consider a nonzero differentiable function f(x, y, z). In calculus, we learn that the
equation

fx,y,2)=C 2
defines a surface S in R3, and that the tangent plane to S at a point P = (a, b, c) has
equation?

af af ) <af )
bl — - -b - —c)=0. 3
(50), o+ (55) o-p+(5;) -0 O

The inverse function theorem says that a differentiable map a : S — S’ of surfaces is a
local isomorphism at a point P € S if it is an isomorphism on the tangent planes.

Now consider a nonzero polynomial f(x,y, z) with coefficients in a field k. In these
notes, we shall learn that the equation (2) defines a surface in k®, and we shall use
the equation (3) to define the tangent space at a point P on the surface. However, and
this is one of the essential differences between algebraic geometry and the other fields,
the inverse function theorem does not hold in algebraic geometry. One other essential
difference is that 1/X is not the derivative of any rational function of X, and nor is X"P~!
in characteristic p # 0 — these functions cannot be integrated in the field of rational
functions k(X).

These notes form a basic first course on algebraic geometry. Throughout, we require
the ground field to be algebraically closed in order to be able to concentrate on the
geometry. Additional chapters, treating more advanced topics, can be found on my
website.

The approach to algebraic geometry taken in these notes

In differential geometry it is important to define differentiable manifolds abstractly, i.e.,
not simply as submanifolds of some Euclidean space. For example, it is difficult even to
make sense of a statement such as “the Gauss curvature of a surface is intrinsic to the
surface but the principal curvatures are not” without the abstract notion of a surface.

Until the mid 1940s, algebraic geometry was concerned only with algebraic sub-
varieties of affine or projective space over algebraically closed fields. Then, in order
to give substance to his proof of the congruence Riemann hypothesis for curves and
abelian varieties, Weil was forced to develop a theory of algebraic geometry for “abstract”
algebraic varieties over arbitrary fields, but his “foundations” are unsatisfactory in two
major respects:

o Lacking a sheaf theory, his method of patching together affine varieties to form
abstract varieties is clumsy.

o His definition of a variety over a base field k is not intrinsic; specifically, he fixes
some large “universal” algebraically closed field Q and defines an algebraic variety
over k to be an algebraic variety over Q together with a k-structure.

3Think of S as a level surface for the function f, and note that the equation is that of a plane through
(a, b, c) perpendicular to the gradient vector (v f), of f at P.
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In the ensuing years, several attempts were made to resolve these difficulties. In
1955, Serre resolved the first by borrowing ideas from complex analysis and defining an
algebraic variety over an algebraically closed field to be a topological space with a sheaf
of functions that is locally affine. Then, in the late 1950s Grothendieck resolved all such
difficulties by developing the theory of schemes.

In these notes, we follow Grothendieck except that, by working only over a base
field, we are able to simplify his language by considering only the closed points in the
underlying topological spaces. In this way, we hope to provide a bridge between the
intuition given by advanced calculus and the abstractions of scheme theory.

The following complementary material is available my website.

10 Algebraic Schemes. Explains how the the theory in these notes extends to arbitrary
base fields, nonreduced schemes, etc.

11 Surfaces. Develops enough of the theory of algebraic surfaces to explain what is still
the most illuminating proof of the Riemann hypothesis for curves over finite fields
(Weil, Mattuck, Tate, Grothendieck).

12 Divisors and Intersection Theory.

13 Coherent Sheaves and Vector Bundles.

14 Differentials (Outline).

15 Algebraic Varieties over the Complex Numbers.

17 Lefschetz Pencils.


https://www.jmilne.org/math/CourseNotes/ag.html

Chapter1

Preliminaries from commutative
algebra

Algebraic geometry and commutative algebra are closely intertwined. For the most
part, we develop the necessary commutative algebra in the context in which it is used.
However, in this chapter, we review some basic definitions and results from commutative
algebra.

a. Rings and ideals

Basic definitions

Let A be aring. A subring of A is a subset that contains 1,4 and is closed under addition,
multiplication, and the formation of negatives. An A-algebra is a ring B together
with a homomorphism iz : A — B. A homomorphism of A-algebras B — C is a
homomorphism of rings ¢ : B — C such that ¢(igz(a)) = ic(a) for all a € A.

Elements xy, ..., X, of an A-algebra B are said to generate it if every element of B
can be expressed as a polynomial in the x; with coefficients in iz(A), i.e., if the homo-
morphism of A-algebras A[X},...,X,,] — B acting as iy on A and sending X to x; is
surjective.

When A C Band x4, ..., X, € B, we let A[x,..., X, ] denote the A-subalgebra of B
generated by the x;.

A ring homomorphism A — B is said to be of finite-type, and B is a finitely gener-
ated A-algebra if B is generated by a finite set of elements as an A-algebra.

A ring homomorphism A — B is finite, and B is a finite' A-algebra, if B is finitely
generated as an A-module.

Let k be a field, and let A be a k-algebra. If 14 # 0, then the map k — A is injective,
and we can identify k with its image, i.e., we can regard k as a subring of A. If 1, = 0,
then A is the zero ring {0}.

A ring is an integral domain if it is not the zero ring and if ab = 0 implies that
a = 0or b = 0; in other words, if ab = acand a # 0, then b = c.

For aring A, A* is the group of elements of A with inverses (the units in the ring).

IThe term “module-finite” is also used.

12



a. Rings and ideals 13

Ideals

Let A be aring. Anideal a in A is a subset such that
(a) aisasubgroup of A regarded as a group under addition;
(b) aea,reA=>rae€a.

The ideal generated by a subset S of A is the intersection of all ideals a containing S —
it is easy to see that this is in fact an ideal, and that it consists of the finite sums of the
form )’ q;5; with a; € A, s; € S. The ideal generated by the empty set is the zero ideal
{0}. When S = {sy, s, ...}, we write (sy, s, ...) for the ideal it generates.

Let a and b be idealsin A. Theset{a+b | a € a, b € b}is an ideal, denoted by a + b.
The ideal generated by {ab | a € a, b € b} is denoted by ab. Clearly ab consists of all
finite sums )] q;b; with a; € a and b; € b, and if a = (a4, ...,a,,) and b = (by, ..., b,),

then ab = (a;by, ..., a;bj, ..., a,,b,). Note that

abcanh. 4)

The kernel of a homomorphism A — B is an ideal in A. Conversely, for any ideal a
in A, the set of cosets of a in A forms a ring A/a, and a — a + a is a homomorphism
¢ : A — A/a whose kernel is a. The map b — ¢~!(b) is a one-to-one correspondence
between the ideals of A/a and the ideals of A containing a.

An ideal p is primeifp # Aand ab € p= a € por b € p. Thus p is prime if and
only if A/p is nonzero and has the property that

ab=0 = a=0o0rb =0,

i.e., A/p is an integral domain. Note that if p is prime and a, --- a,, € p, then at least
one of the a; € p.
An ideal m in A is maximal if it is maximal among the proper ideals of A. Thus m
is maximal if and only if A/m is nonzero and has no proper nonzero ideals, and so is a
field. Note that
m maximal = m prime.

If a and b are ideals in A and B, then a X b is an ideal in A X B, and all ideals in
A X B are of this form. To see this, note that if ¢ is an ideal in A X B and (a, b) € ¢, then
(a,0) = (1,0)(a,b) € cand (0,b) = (0,1)(a, b) € c. Therefore, ¢ = a X b with

a={a]|(a,00€c}, b={b]|(0,b) €}

Ideals a and b in A are coprime (or relatively prime) if a + b = A. Assume that
a and b are coprime, and leta € a and b € bbe such thata + b = 1. For x,y € A, let
z = ay + bx; then

z=bx=x moda

z=ay =ymodb,

and so the canonical map
A— AlaxA/b (5)

is surjective. Clearly its kernel is a N b, which contains ab. Let c € a N b; then
c=cl=ca+cb € ab.

Hence, A — A/a X A/b is surjective with kernel ab. This statement extends to finite
collections of ideals.
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THEOREM 1.1 (CHINESE REMAINDER THEOREM). Let ay, ..., a, be ideals in a ring A. If
a; is coprime to a; whenever i # j, then the canonical map

A—Afa;X---XA/ay, (6)
is surjective, with kernel [[ a; = () a;.

PROOF. We have proved the statement for n = 2, and we use induction to extend it to
n > 2. For i > 2, there exist elements @; € a; and b; € q; such that

a; + bi =1.
The product [].. ,(a; + b;) lies in a; + a5 - a,, and equals 1, and so

a;+ay--a, =A.

Therefore,
Afay--a, = Afay-(ay---ay)
~Ala; XAfay - ay, by the n = 2 case
~ Ala; X AJay X - X Afa, by induction. -

Noetherian rings

PROPOSITION 1.2. The following three conditions on a ring A are equivalent:
(a) everyideal in A is finitely generated;
(b) every ascending chain of ideals a;, C a, C --- eventually becomes constant, i.e.,
Ay, = Ay = -~ for some m;
(c) every nonempty set of ideals in A has a maximal element.

PROOF. (a) = (b): Leta; C a, C --- be an ascending chain of ideals. Then (] q; is an
ideal, and hence has a finite set {a, ..., a, } of generators. For some m, all the a; belong
to a,,, and then

An = Ay = =0 = Uai-

(b) = (c): Let X be a nonempty set of ideals in A. If ¥ has no maximal element, then
the axiom of dependent choice? implies that there exists an infinite strictly ascending
chain of ideals in X, contradicting (b).

(c) = (a): Let a be anideal, and let X be the set of finitely generated ideals contained
in a. Then X is nonempty because it contains the zero ideal, and so it contains a maximal
element ¢ = (ay, ..., a,). If ¢ # a, then there exists an a € a~ ¢, and (a4, ..., a,, a) will be
a finitely generated ideal in a properly containing c¢. This contradicts the definition of ¢,
and so ¢ = a. O

A ring A is noetherian if every nonempty set of ideals has a maximal element.
Applying this to the set of proper ideals containing a fixed ideal, we see that every proper
ideal in a noetherian ring is contained in a maximal ideal. This last assertion is, in fact,
true for all rings, but the proof for non-noetherian rings requires Zorn’s lemma (CA, 2.2).

A ring A is local if it has exactly one maximal ideal m . If A is local, then A* =
A~ m,4. A homomorphism ¢ : A — B of local rings is local if ¢(m ) C mp, in which
case o l(mg) = my,.

2This says the following: let R be a binary relation on a nonempty set X, and suppose that, for each a in
X, there exists a b such that aRb; then there exists a sequence (a,,),en of elements of X such that a,Ra,, ., for
all n. This axiom is strictly weaker than the axiom of choice (Wikipedia: AXIOM OF DEPENDENT CHOICE).


https://en.wikipedia.org/wiki/Axiom_of_dependent_choice
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PROPOSITION 1.3 (NAKAYAMA’S LEMMA). Let A be a local ring with maximal ideal m,
and let M be a finitely generated A-module.

(@) IfM = mM, then M = 0.
(b) If N is a submodule of M such that M = N + mM, then M = N.

PROOF. (a) Suppose that M # 0. Choose a minimal set of generators {ej, ...,e,}, n > 1,
for M, and write
61 = a161 + -+ anen, al' € m.

Then
(1 —ay)e; =aze, + - +aye,

and, as (1—a;) & m,itisaunit,andsoe,, ..., e, generate M, contradicting the minimality
of the set.
(b) The hypothesis implies that M /N = m(M /N), and so M/N = 0. o

Now let A be a local noetherian ring with maximal ideal m. Then m is an A-module,
and the action of A on m/m? factors through k = /.

COROLLARY 1.4. Elements a,, ..., a, of m generate m as an ideal if and only if their

residues modulo m? span m/m? as a vector space over k. In particular, the minimum

number of generators for the maximal ideal is equal to the dimension of the vector space
2

m/m=,

PROOF. If a4, ...,a, generate m, it is obvious that their residues span m/m?. Con-
versely, suppose that their residues span m/m?, so that m = (ay,...,a,) + m?. Be-
cause A is noetherian, m is finitely generated, and Nakayama’s lemma shows that
m = (a,..,q,). O

DEFINITION 1.5. Let A be a noetherian ring.

(a) The height ht(p) of a prime ideal p in A is the greatest length d of a chain of
distinct prime ideals

P=PaDPi-12D D Py (7)

(b) The Krull dimension, or simply dimension, dim(A), of A is sup{ht(p) | p a prime
ideal in A}.

Thus, the Krull dimension of a noetherian ring A is the supremum of the lengths of
chains of prime ideals in A (the length of a chain is the number of gaps). For example, a
field has Krull dimension 0, and conversely an integral domain of Krull dimension 0 is a
field. The height of every nonzero prime ideal in a principal ideal domain is 1, and so
such a ring has Krull dimension 1 (unless it is a field).

The height of every prime ideal in a noetherian ring is finite, but the Krull dimension
of the ring may be infinite because it may contain a sequence of prime ideals py, p, P3, ---
such that ht(p;) tends to infinity (CA, p. 13).

DEFINITION 1.6. A regular local ring A is a noetherian local ring whose maximal ideal
can be generated by d elements, where d is the Krull dimension of A.

It follows from Corollary 1.4 that a local noetherian ring is regular if and only if its
dimension is equal to the dimension of the vector space m/m?.
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LEMMA 1.7. In a noetherian ring, every set of generators for an ideal contains a finite
generating subset.

PROOF. Let a be an ideal in a noetherian ring A, and let S be a set of generators for a. An
ideal maximal among those generated by a finite subset of S must contain every element
of S (otherwise it would not be maximal), and so equals a. O

In the proof of the next theorem, we use that a polynomial ring over a noetherian
ring is noetherian (Theorem 2.8).

THEOREM 1.8 (KRULL INTERSECTION THEOREM). Let A be a noetherian local ring with
maximal ideal m; then [ _, m" = {0}.

PROOF. Letay,...,a, generate m. Then m”" consists of all finite sums

i i
Z Cil...iral ar’, cil"'ir € A.

i+ =n

In other words, m" consists of the elements of A of the form g(ay, ..., a,) for some
homogeneous polynomial g(X1, ..., X,) € A[X},...,X,] of degree n. Let S,, denote the
set of homogeneous polynomials f of degree m such that f(a,,...,a,) € ﬂn>1 m", and
let a be the ideal in A[X, ..., X, ] generated by the set Um S,,. According to the lemma, a
is generated by a finite subset {f1, ..., fs} of |, Sp. Letd; = deg f;, and let d = max d;.
Ifb € (), m" thenb € md+! andso b = f(ay,...,qa,) for some homogeneous
polynomial f of degree d + 1. By definition, f € S;,; C a, and so

f=g1f1+"'+gsfs

for some g; € A[X,,...,X,]. As f and the f; are homogeneous, we can omit from each
g; all terms not of degree deg f — deg f;, since these terms cancel out. Thus, we may
choose the g; to be homogeneous of degree deg f — degf; = d + 1 —d; > 0. Then
gi(aq,...,a,) € m, and so

b= f(a;,..,qa)= Zigi(al,...,ar) - filag,...,a,) Em - ﬂ m”,

nx1
Thus, [ m" = m - (| m", and Nakayama’s lemma implies that [ | m" = 0. 0

ASIDE 1.9. Let A be the ring of germs of analytic functions at 0 € R (see p. 60 for the notion of
a germ of a function). Then A is a noetherian local ring with maximal ideal m = (x), and m”"
consists of the functions f that vanish to order n at x = 0. The theorem says (correctly) that only
the zero function vanishes to all orders at 0. By contrast, the function e~1/** shows that the Krull
intersection theorem fails for the ring of germs of infinitely differentiable functions at 0 (this
ring is not noetherian).
b. Rings of fractions
A multiplicative subset of a ring A is a subset S with the property:

1€S, a,beS = abes.

Define an equivalence relation on A X S by

(a,s) ~(b,t) < u(at —bs) =0forsomeu € S.
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Write % for the equivalence class containing (a, s), and define addition and multiplication
of equivalence classes in the way suggested by the notation:

a, b_at+bs ab_ab
st st 7 St st

It is easy to check that these do not depend on the choices of representatives for the
equivalence classes, and that we obtain in this way a ring

—1 4 _ 2
S A_{SlaeA,seS}
and a ring homomorphism a % : A — S71A, whose kernel is

{a € A | sa = 0 for some s € S}.

If A is an integral domain and 0 ¢ S, then a % is injective. On the other hand, if

0 € S, then S~!A is the zero ring.
Write i for the homomorphism a +— % tA-> STlA

PROPOSITION 1.10. The pair (S™1A, i) has the following universal property: every element
s € S maps to a unit in ST A, and any other homomorphism « © A — B with this property
factors uniquely through i,

PROOF. If § exists, then
st=a = BEBE) =) = BE)=al@als)™,

and so (8 is unique. Define
B($) = a(aals)™.
Then

% = 3 = s(ad —bc)=0somes € S = a(a)a(d) — a(b)a(c) =0

because «(s) is a unit in B, and so 8 is well-defined. It is obviously a homomorphism.g

As usual, the universal property determines the pair (S~' A, i) uniquely up to a unique
isomorphism.

If A is an integral domain and S = A \ {0}, then F = S~ A is the field of fractions
of A. In this case, for any other multiplicative subset T of A not containing 0, the ring
T~1A can be identified with the subring {% EF|lae€A,teS}ofF.

We shall be especially interested in the following examples.

EXAMPLE 1.11. Leth € A. Then S), =4 {1, h, h?, ...} is a multiplicative subset of A, and
a

we let A, = S;lA. Thus every element of A, can be written in the form pm> @ € A, and
@ _b o pNar—pmy =0 N
= a =0, someN.

If h is nilpotent, then A;, = 0, and if A is an integral domain with field of fractions F and

h # 0, then Ay, is the subring of F of elements of the form him’ aeA,meN.
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EXAMPLE 1.12. Let p be a prime ideal in A. Then S, LA p is a multiplicative subset
of A, and we let Ay = S; LA. Thus each element of A, can be written in the form %,
c & p,and

b

%ZH < s(ad —bc) =0,some s & p.

The subset m = {% laep, s¢& p} is a maximal ideal in Ay, and it is the only maximal

ideal, i.e., Apisa local ring.> When A is an integral domain with field of fractions F, A,y
is the subring of F consisting of elements expressible in the form %, acAsgp.

LEMMA 1.13. ForanyringAandh € A, themap ), a; X' — Y, % defines an isomorphism

A[X]/(Q = hX) = Ay,

PROOF. If h = 0, then both rings are zero, so we may suppose that h # 0. Let x be the
class of X in the quotient ring A[X]/(1 — hX). Then A[x] is generated by x subject to
the relation 1 = hx, and so h is a unit. Leta : A — B be a homomorphism of rings
such that a(h) is a unit in B. The homomorphism Y a;X* = Y. a(a;)a(h)™ : A[X] - B
factors through A[x] because 1 — hX — 1 —a(h)a(h)™! = 0, and, because a(h) is a unit
in B, this is the unique extension of a to A[x]. Therefore A[x] has the same universal
property as Ay, and so the two are (uniquely) isomorphic by an isomorphism that fixes
elements of A and makes h™! correspond to x. O

Let S be a multiplicative subset of a ring A4, and let S~ A be the corresponding ring of
fractions. Each ideal a in A, generates an ideal S ~lain S71A. If a contains an element of
S, then S~!a contains a unit, and so is the whole ring. Thus some of the ideal structure
of A is lost in the passage to S —14, but, as the next proposition shows, much is retained.

PROPOSITION 1.14. Let S be a multiplicative subset of the ring A. The map
pSTp=(S"1Ap

is a bijection from the set of prime ideals of A disjoint from S to the set of prime ideals of
SLA. Its inverse sends a prime ideal of ST1 A to its inverse image in A.

PROOF. Foranideal b of S71A, let b¢ denote the inverse image of b in A, and for an ideal
a of A, let a® = (S~1A)a denote the ideal in S~ A generated by the image of a.
For an ideal b of S™1 A, certainly, b D b. Conversely, if % €b,ae A, s €S, then

% € b, and so a € b°. Thus % € b, and so b = bee.

a
1

/
= % for some a’ € a,s € S. Thus, t(as —a’) = 0forsome ¢t € S, and so ast € a. Ifa

For an ideal a of A, certainly a C a®. Conversely, if a € a*‘, then = € a®, and so
a
1
is a prime ideal disjoint from S, this implies that a € a: for such an ideal, a = a*“.

If b is prime, then certainly b is prime. For any ideal a of A, S7'A/a® ~ S71(A/a),
where S is the image of S in A/a. If a is a prime ideal disjoint from S, then S~(A/a) is
a subring of the field of fractions of A/a, and is therefore an integral domain. Thus, a® is
prime.

We have shown that p — p° and q — q° are inverse bijections between the prime
ideals of A disjoint from S and the prime ideals of S~ A. O

3First check m is an ideal. Next, if m = Ay, thenl € m;butifl = % for some a € pand s & p, then

u(s —a) = 0some u ¢ p, and so ua = us ¢ p, which contradicts a € p. Finally, m is maximal because
every element of A, not in m is a unit.
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LEMMA 1.15. Let m be a maximal ideal of a ring A, and let n = mA,,. For all n, the map
a+m’> s A/m" = Ay /0" (8)
is an isomorphism. Moreover, it induces isomorphisms
m'/m" - n" /n"
forallr < n.

PRrROOF. The second statement follows from the first, because of the exact commutative
diagram (r < n):

0O — m"/m" — A/m" —— A/m" —— 0

0 — n'/n" —— A, /0" — A, /v —— 0.
LetS = Axm. Then A, = S Aand n" = m"A,, ={2 € 4,, [bem", s € 5}. In
order to show that the map (8) is injective, it suffices to show that

%=%withaeA,b6m",seS = aemh.

But if% = %, then tas = tb € m" for some t € S, and so tas = 0in A/m". The only
maximal ideal in A containing m™ is m (because m’ > m™ = m’ D m), and so the
only maximal ideal in A/m" is m/m". As st is not in m/m", it must be a unitin A/m",
and as sta = 0in A/m", a mustbe 0in A/m", i.e.,a € m".

We now prove that the map (8) is surjective. Let % € A,,a €A, s €8S. Because
the only maximal ideal of A containing m”" is m, no maximal ideal contains both s and
m". It follows that (s) + m" = A. Therefore, there exist b € A and g € m" such that
sb + g = 1in A. It follows that s is invertible in A,, /n", and so % is the unique element

of this ring such that s% = a. As s(ba) + gqa = a, the image of ba in A,,,/n" also has

this property and therefore equals % in A, /n". o
PROPOSITION 1.16. In a noetherian ring, only 0 lies in all powers of all maximal ideals.

PROOF. Let a be an element of a noetherian ring A. If a # 0, then{b € A | ba = 0}isa

roper ideal, and so is contained in some maximal ideal m. Then £ is nonzero in 4,,,,
1 m

and so % & (mA,,)" for some n (by the Krull intersection theorem 1.8), which implies
that a ¢ m”" (by 1.15). O

Let A be an integral domain and let f be an element of its field of fractions. If A is
a unique factorization domain (see below), then there is a preferred expression f = %
for f, unique up to multiplying top and bottom by a unit. In general, there is no such
preferred expression.
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Modules of fractions

Let S be a multiplicative subset of the ring A, and let M be an A-module. Define an
equivalence relation on M X S by

(m,s) ~(n,t) < u(tm—sn)=0forsomeu € S.

Write % for the equivalence class containing (m, s), and define addition and scalar
multiplication by the rules:

m,n_mttns %%:M mmneM, s,teS, a€cA.

It is easily checked that these do not depend on the choices of representatives for the
equivalence classes, and that we obtain in this way an S~!A-module

-1 _im
S M—{T|m€M,SeS}
and a homomorphism m +— 2t : M =, 571M of A-modules whose kernel is

1

{a € M | sa = 0 for some s € S}.

PROPOSITION 1.17. The elements of S act invertibly on S~'M, and every homomorphism
from M to an A-module N with this property factors uniquely through ig,

M —5 s1m

1
I3
\ i

N.
PROOF. Similar to the proof of 1.10. o

PROPOSITION 1.18. The functor M - S™'M is exact. In other words, if the sequence of
A-modules

YN YR YL

is exact, then so also is the sequence of S~* A-modules

51 571
sTIM =5 st =5 s-1M,
PROOF. Because Boa = 0, we have 0 = S™1(Boa) = S~!BoS~'a. Therefore Im(S~'a) C
Ker(S~!B). For the reverse inclusion, let % € Ker(S™'B), where m € M and s € S.

Then @ = 0 and so, for some t € S, we have t3(m) = 0. Then S(tm) = 0, and so
tm = a(m') for some m’ € M’. Now

m _tm _ a(m)

-1
S = Is S € Im(S™ a). .

PROPOSITION 1.19. Let A be a ring, and let M be an A-module. The canonical map
M - H{Mm | m a maximal ideal in A}

is injective.
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PROOF. Let m € M map to zero in all M,,,. The annihilator a o fae A|am = 0}of
m is an ideal in A. Because m maps to zero M,,, there exists an s € A \ m such that
sm = 0. Therefore a is not contained in m. Since this is true for all maximal ideals m,
a = A, and so it contains 1. Now m = 1m = 0. 0

COROLLARY 1.20. An A-module M is zero if My, is zero for all maximal ideals m in A.
PROOF. Immediate consequence of the proposition. O

PROPOSITION 1.21. Let A be a ring. A sequence of A-modules

VU VLA Vi *)
is exact if and only if
A Bm

is exact for all maximal ideals m.

PROOF. The necessity is a special case of Proposition 1.18. For the sufficiency, we have
to show that N & Ker(3)/ Im(a) is zero. Because the functor M w M, is exact,

Nn = Ker(ﬁm)/ Im(o‘m)-
If (**) is exact for all m, then N, = 0 for all m, and so N = 0 (by 1.20). O

COROLLARY 1.22. A homomorphism M — N of A-modules is injective (resp. surjective) if
and only if M, — Ny, is injective (resp. surjective) for all maximal ideals m.

PROOF. Apply the proposition to0 - M — N (resp. M — N — 0). O

Direct limits

A directed set is a pair (I, <) comprising a set I and a partial order* < on I such that for
alli, j € I, there existsa k € I with i, j < k.

Let (I, <) be adirected set, and let A be aring. A direct system of A-modules indexed
by (I, <) is a family (M;);cr of A-modules t.ogether with a family (oc;. : M; —» Mj)c; of
A-linear maps such that ocl? = idy, and aiocx; = ocl"( alli < j < k.> An A-module M
together with A-linear maps a' : M; — M such that a' = o/ oocj. foralli < j is the direct
limit (or colimit) of the system (M;, ocg )if

(@) M =J,, @'(M;), and
(b) m; € M; maps to zero in M if and only if it maps to zero in M; for some j > i.

Direct limits of A-algebras are defined similarly.

PROPOSITION 1.23. Let S be a multiplicative subset of A. Then ST A ~ li_r)nAh, where h
runs over the elements of S (partially ordered by division).

“i.e., reflexive transitive antisymmetric.
SRegard I as a category with Hom(a, b) empty unless a < b, in which case it contains a single element.
Then a direct system is a functor from I to the category of A-modules.
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PROOF. When h|h', say, h’ = hg, there is a canonical homomorphism % > % DA, >
Ayy. and so the rings A, form a direct system indexed by the set S. When h € S, the

homomorphism A — S~!A extends uniquely to a homomorphism % > % t A, - STlA

(1.10), and these homomorphisms are compatible with the maps in the direct system.
Now it is easy to see that S~! A satisfies the conditions to be the direct limit of the A,.q

c. Unique factorization

Let A be an integral domain. An element a of A is irreducible if it is not zero, not a unit,
and admits only trivial factorizations, i.e.,

a = bc = b orcis a unit.
An element a is said to be prime if (a) is a prime ideal, i.e.,
albc = alboralc.

If A is noetherian, then every nonzero nonunit element can be expressed as a finite
product of irreducible elements. To see this, suppose that a cannot be so expressed
and that (a) is maximal among the ideals generated by such elements; then a is not
irreducible, so a = bc with neither b nor ¢ a unit; each of (b) and (c) properly contains
(a), and at least one of b or c is not a finite product of irreducible elements, giving a
contradiction.

An integral domain A is called a unique factorization domain (or a factorial
domain) if every nonzero nonunit in A can be written as a finite product of irreducible
elements in exactly one way up to units and the order of the factors. Principal ideal
domains, for example, Z and k[X], are unique factorization domains,

PROPOSITION 1.24. Let A be an integral domain, and let a be an element of A that is
neither zero nor a unit. If a is prime, then a is irreducible, and the converse holds when A
is a unique factorization domain.

PROOF. Assume that a is prime. If a = bc, then a divides bc and so a divides b or c.
Suppose the first, and write b = aq. Now a = bc = aqc, which implies that gc = 1
because A is an integral domain, and so c is a unit. We have shown that a is irreducible.
For the converse, assume that a is irreducible and that A is a unique factorization
domain. If a|bc, then
bc = aq, some g € A.

On writing each of b, ¢, and g as a product of irreducible elements, and using the
uniqueness of factorizations, we see that a differs from one of the irreducible factors of
b or ¢ by a unit. Therefore a divides b or c. O

COROLLARY 1.25. Let A be a noetherian integral domain. If A is a unique factorization
domain, then every prime ideal of height 1 is principal.

PROOF. Let p be a prime ideal of height 1. Then p contains a nonzero element, and
hence an irreducible element a. We have p D (a) D (0). As (a) is prime and p has height
1, we must have p = (a). o

PROPOSITION 1.26. Let A be a noetherian integral domain. If every irreducible element of
A is prime, then A is a unique factorization domain.



c. Unique factorization 23

PROOF. Suppose that
al...amzbl...bn (9)

with the @; and b; irreducible elements in A. As a, is prime, it divides one of the b;, say,
b;. As b, isirreducible, b; = ua; for some unit . On cancelling a; from both sides of
(9), we obtain the equality

a2 cee am = (ubz)b3 cee bn_

Continuing in this fashion, we find that the two factorizations are the same up to units
and the order of the factors. o

ASIDE. The converse to 1.25 is also true: let a be an irreducible element of A, and let p be
minimal among the prime ideals containing (a); according to the principal ideal theorem (3.51;
CA, 21.3), p has height 1, and so is principal, say, p = (b); now a = bc, and, because a is
irreducible, c is a unit; therefore (a) = (b) = p, and a is prime. See 3.53.

PROPOSITION 1.27 (GAUSS’S LEMMA). Let A be a unique factorization domain with field
of fractions F. If f(X) € A[X] factors into the product of two nonconstant polynomials
in F[X], then it factors into the product of two nonconstant polynomials in A[X].

PROOF. Let f = ghin F[X]. For suitable ¢,d € A, the polynomials g, = cgand h; = dh
have coefficients in A, and so we have a factorization

cdf = g hy in A[X].
If an irreducible element p of A divides cd, then, looking modulo (p), we see that

0=g - hin (A/(p)[X].

According to Proposition 1.24, (p) is prime, and so (A/(p)) [X] is an integral domain.
Therefore, p divides all the coefficients of at least one of the polynomials g, h;, say, g1,
so that g, = pg, for some g, € A[X]. Thus, we have a factorization

(cd/p)f = g in A[X].

Continuing in this fashion, we can remove all the irreducible factors of cd, and so obtain
a factorization of f in A[X]. O

Let A be a unique factorization domain. A nonzero polynomial
f=a+a X+ +a,X"

in A[X] is said to be primitive if the coefficients a; have no common factor other than
units.

Every polynomial f in F[X] can be written f = c(f) - f; with ¢(f) € F and f;
primitive. The element c(f), which is well-defined up to multiplication by a unit in A,
is called the content of f. Note that f € A[X]if and only if c(f) € A.

LEMMA 1.28. The product of two primitive polynomials is primitive.
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PROOF. Let

f=a+a X+ +a,X"
g = bo +b1X+ +ann,

be primitive polynomials, and let p be an irreducible element of A. Let q; , iy < m, be
the first coefficient of f not divisible by p, and b; , j, < n, the first coefficient of g not
divisible by p. Then all the terms in the sum Zi oo a;b; are divisible by p except
a;,b;,, which is not divisible by p. Therefore, p does not divide the (iy + jo)th-coefficient
of fg. We have shown that no irreducible element of A divides all the coefficients of fg,

which must therefore be primitive. o

PROPOSITION 1.29. Let A be a unique factorization domain with field of fractions F. For
polynomials f,g € F[X],
c(fg) = c(f) - c(g);

hence every factor in A[X] of a primitive polynomial is primitive.

PROOF. Let f =c(f)- f; and g = c(g) - g, with f; and g; primitive. Then
fg=c(f)-c@)- f1&

with f,g; primitive, and so c(fg) = c(f)c(g). o

COROLLARY 1.30. An element f € A[X] is irreducible if and only if either
(a) f isconstant, say, f = a, with a an irreducible element of A, or

(b) f is a nonconstant primitive polynomial that is irreducible in F[X].

PROOF. «: If fisasin(a)and f = gh in A[X], then g and h both lie in A and one must
be a unit in A, and hence a unit in A[X]. If f is asin (b) and f = gh, then one of g or
h must be constant because otherwise f would be reducible in F[X]. If it is g that is
constant, then, because f is primitive, g must be a unit in A, and hence in A[X].

=: Let f € A[X] be irreducible. If f is a constant polynomial, say, f = a, then a is
obviously irreducible in A. If f nonconstant, then it must be primitive because otherwise
f =c(f)- f; would be a nontrivial factorization in A[X]. It must also be irreducible in
F|[X], because otherwise it would have a nontrivial factorization in A[X] (by 1.27). g

PROPOSITION 1.31. If A is a unique factorization domain, then so also is A[X].

PROOF. We check that A satisfies the conditions of Proposition 1.26.

Let f € A[X], and write f = c¢(f)f;. Then c(f) is a product of irreducible elements
in A, and f; is a product of irreducible primitive polynomials. This shows that f is a
product of irreducible elements in A[X].

Let a be an irreducible element of A. If a divides fg, then it divides c¢(fg) = c(f)c(g).
As a is prime (1.24), it divides c(f) or c¢(g), and hence also f or g.

Let f be an irreducible primitive polynomial in A[X]. Then f is irreducible in F[X],
and so if f divides the product gh of g, h € A[X], then it divides g or h in F[X]. Suppose
the first, and write fq = g with g € F[X]. Then c¢(q) = c(f)c(q) = c(fq) = c(g) € A,
and so g € A[X]. Therefore f divides g in A[X].

We have shown that every element of A[X] is a product of irreducible elements and
that every irreducible element of A[X] is prime, and so A[X] is a unique factorization
domain (1.26). O
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Polynomial rings
Let k be a field. The elements of the polynomial ring k[X7, ..., X,,] are finite sums
a; a,
Z Capoa, Xy " Xp"s Cajoaq, €K, aj EN,

with the obvious notions of equality, addition, and multiplication. In particular, the
monomials form a basis for k[X7, ..., X,,] as a k-vector space.

The degree, deg(f), of a nonzero polynomial f is the largest total degree of a
monomial occurring in f with nonzero coefficient. Since deg(fg) = deg(f) + deg(g),
k[Xi,...,X,]isanintegral domain and k[ X}, ..., X,,|* = k*. Anelement f of k[ X, ..., X,,]
is irreducible if it is nonconstant and f = gh = g or h is constant.

THEOREM 1.32. Thering k[X., ..., X, ] is a unique factorization domain.

PROOF. Note that
k[Xl, .es an—l][Xn] = k[Xl, .es ,Xn].

This simply says that every polynomial f in n symbols X, ..., X, can be expressed
uniquely as a polynomial in X,, with coefficients in k[X}, ..., X,,_1],

f(Xl, . ,Xn) = ao(Xl, e ’Xn—l)X;'; + -+ ar(Xl, ... ’Xn—l)-

Since, as we noted, k[X] is a unique factorization domain, the theorem follows by
induction from Proposition 1.31. o

COROLLARY 1.33. A nongzero proper principal ideal (f) in k[X, ..., X,,] is prime if and
only if f is irreducible.

PROOF. Special case of Proposition 1.24. o

d. Integral dependence

Let A be a subring of a ring B. An element « of B is said to be integral over A if itis a
root of a monic® polynomial with coefficients in A, i.e., if it satisfies an equation

a"+aq a4+ +a,=0, q €A.

More generally, if f : A — B is an A-algebra, then an element « of B is integral over A

A, we say that B is integral over A.
In the next proof, we shall need to apply a variant of Cramer’s rule: if x;, ..., x,, isa
solution to the system of linear equations

m
Zcijszo, i=1,..,m,
j=1

with coefficients in a ring A, then

det(C)-x; =0, j=1,..,m, (10)

®A polynomial is monic if its leading coefficient is 1, i.e., f(X) = X"+ terms of degree less than n.
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where C is the matrix of coefficients. To prove this, expand out the left hand side of
€11 - CGja Zi CiiXi Cij+1 - Cim
det| : : : : : =0
Cm1 - Cm Jj-1 Zi CmiXi Cm Jj+1 e Cmm
using standard properties of determinants.
An A-module M is faithful if aM = 0, a € A, implies that a = 0.

PROPOSITION 1.34. Let A be a subring of a ring B. An element o of B is integral over A if
and only if there exists a faithful A[a]-submodule M of B that is finitely generated as an
A-module.

PROOF. = : Suppose that
a"+ a4+ +a,=0, aq €A.

Then the A-submodule M of B generated by 1, , ..., ™! has the property that M C M,
and it is faithful because it contains 1.

«: Let M be a faithful A[a]-submodule of B admitting a finite set {e,, ..., e,} of
generators as an A-module. Then, for each i,

ae; = ), a;jej, some a;; € A.
We can rewrite this system of equations as
(¢ —aye; —ape; —ajzes — -+ =

—aye; +(@—ayle, —aye;— - =
=0,
Let C be the matrix of coefficients on the left-hand side. Then Cramer’s formula tells

us that det(C) - ¢; = 0 for all i. As M is faithful and the e; generate M, this implies that
det(C) = 0. On expanding out the determinant, we obtain an equation

a"+ "t + a2+ +¢,=0, ¢ €A. 5

PROPOSITION 1.35. An A-algebra B is finite if it is generated as an A-algebra by a finite
set of elements each of which is integral over A.

PROOF. We may replace A with its image in B. Suppose that B = A[«y, ..., a,,] and that
ocl."i + ailoc?i_l ++a, =0, a;€A i=1,.,m

Any monomial in the ¢; divisible by some oc?i is equal (in B) to a linear combination of
monomials of lower degree. Therefore, B is generated as an A-module by the finite set
of monomials oc;1 et 1< < o

COROLLARY 1.36. An A-algebra B is finite if and only if it is finitely generated and integral
over A.

PROOF. «: Immediate consequence of 1.35.

=: We may replace A with its image in B. Then B is a faithful A[a]-module for all
a € B (because 13 € B), and so 1.34 shows that every element of B is integral over A. As
B is finitely generated as an A-module, it is certainly finitely generated as an A-algebra.q
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PROPOSITION 1.37. Consider rings A C B C C. If B is integral over A and C is integral
over B, then C is integral over A.

PROOF. Lety € C. Then
y"+by"t+--+b,=0

for some b; € B. Now A[by, ..., b,] is finite over A (see 1.35), and A[by, ..., b, |[y] is finite
over A[by, ..., b,], and so it is finite over A. Therefore y is integral over A by 1.34. o

THEOREM 1.38. Let A be a subring of a ring B. The elements of B integral over A form an
A-subalgebra of B.

PROOF. Let o and 8 be two elements of B integral over A. Then A[a, ] is finitely
generated as an A-module (1.35). It is stable under multiplication by a + § and a8 and
it is faithful as an A[a + f]-module and as an A[af]-module (because it contains 14).
Therefore 1.34 shows that o + 8 and «f are integral over A. o

DEFINITION 1.39. The A-subalgebra of B of elements integral over A is called the inte-
gral closure of A in B.

PROPOSITION 1.40. Let A be an integral domain with field of fractions F, and let o be an
element of some field containing F. If a is algebraic over F, then there exists a d € A such
that da is integral over A.

PROOF. By assumption, a satisfies an equation
am+ a1+ 4+a, =0, aq€F.
Let d be a common denominator for the a;, so that da; € A for all i, and multiply the

equation by d":
(da)™ + a;d(da)™ + -+ + a,,d™ = 0.

As ad,...,a,d™ € A, this shows that dua is integral over A. O

COROLLARY 1.41. Let A be an integral domain and let E be an algebraic extension of the
field of fractions of A. Then E is the field of fractions of the integral closure of A in E.

PROOF. In fact, the proposition shows that every element of E is a quotient 3/d with 3
integral over A and d € A. o

DEFINITION 1.42. An integral domain A is said to be integrally closed if it is equal to
its integral closure in its field of fractions F, i.e., if

a €F, aintegralover A = o € A.

An integrally closed integral domain is called an integrally closed domain or normal
domain.

PROPOSITION 1.43. Unique factorization domains are integrally closed.
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PROOF. Let A be a unique factorization domain, and let a/b be an element of its field of
fractions. If a/b ¢ A, then we may suppose that b is divisible by some prime element p
not dividing a. If a/b is integral over A, then it satisfies an equation

(a/b)* + ay(a/b)" + - +a,=0, q €A.
On multiplying through by b", we obtain the equation
a" +a;a" b+ -+ + a,b" = 0.

The element p then divides every term on the left except a”, and hence divides a”. Since
it does not divide a, this is a contradiction. O

Let F C E be fields, and let o € E be algebraic over F. The minimal polynomial of
a over F is the monic polynomial of smallest degree in F[X ] having « as a root. If f is
the minimal polynomial of , then the homomorphism X — « : F[X] — F[a] defines
an isomorphism F[X|/(f) — Fla],i.e., F[x] ~ Fla], x «< a.

PROPOSITION 1.44. Let A be an integrally closed domain, and let E be a finite extension of
the field of fractions F of A. An element of E is integral over A if and only if its minimal
polynomial over F has coefficients in A.

PROOF. Let o € E be integral over A, so that
am +a;a™t+--+a, =0, someq €A, m>0.

Let f(X) be the minimal polynomial of & over F, and let &’ be a conjugate of a, i.e., a
root of f in some splitting field of f. Then f is also the minimal polynomial of &’ over
F, and so there is an F-isomorphism

o: Fla] = Fld'], o(a)=d.
On applying o to the above equation we obtain the equation
™ +a ™ttt a, =0,

which shows that &’ is integral over A. As the coefficients of f are polynomials in the
conjugates of «, it follows from Theorem 1.38 that the coefficients of f(X) are integral
over A. They lie in F, and A is integrally closed, and so they lie in A. This proves the
“only if” part of the statement, and the “if” part is obvious. o

COROLLARY 1.45. Let A C F C E be as in the proposition, and let & be an element of E
integral over A. Then Nmg /p(a) € A, and a divides Nmg /() in Ala].

PROOF. Let
fXO=X"+a X" 1+ +a,

be the minimal polynomial of & over F. Then Nm(«) = (—1)™"a}},, wheren = [E : F[a]]
(FT, 5.45), and so Nm(a) € A. Because f(a) =0,

0=a a™+aa™ !+ - +a,)
=a(ata™ ! + - +a%a, ;) + (=1)™" Nm(a),

and so a divides Nmg /p(a) in Ala]. O
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COROLLARY 1.46. Let A be an integrally closed domain with field of fractions F, and
let f(X) be a monic polynomial in A[X]. Then every monic factor of f(X) in F[X] has
coefficients in A.

PROOF. It suffices to prove this for an irreducible monic factor g of f in F[X]. Let a be
a root of g in some extension field of F. Then g is the minimal polynomial of a. As a is
aroot of f, it is integral over A, and so g has coefficients in A. O

PROPOSITION 1.47. Let A C B be rings, and let A’ be the integral closure of A in B. For
any multiplicative subset S of A, S™1 A’ is the integral closure of S™'A in S™'B.

PROOF. Let 2 € S4" with b € A’ and 5 € S. Then
b"+ab"t+--+a,=0

for some aq; € A, and so

b\"  a (b a,
0 3 v

Therefore b/s is integral over S~1A. This shows that S™1 A’ is contained in the integral
closure of S7!B.
For the converse, let b/s (b € B, s € S) be integral over ST A. Then

1

b\"  a (b\" a,
(E) +E<E> +"'+§—0.

for some a; € A and s; € S. On multiplying this equation by s"s; --- s,,, we find that

s; - s,b € A’, and therefore that % = ‘lel—s’éb eSlA. O
n

COROLLARY 1.48. Let A C B be rings, and let S be a multiplicative subset of A. If A is
integrally closed in B, then ST A is integrally closed in S™'B.

PROOF. Special case of the proposition in which A’ = A. O

PROPOSITION 1.49. The following conditions on an integral domain A are equivalent:
(a) Aisintegrally closed;
(b) A, is integrally closed for all prime ideals p;

(c) A, isintegrally closed for all maximal ideals m.

PROOF. The implication (a)=>(b) follows from 1.48, and (b)=(c) is obvious. It remains
to prove (c)=(a). If c is integral over A, then it is integral over each A,,, and hence lies
in each A,,. It follows that the ideal consisting of the a € A such that ac € A is not
contained in any maximal ideal m, and therefore equals A. Hence 1 - ¢ € A. o

Let E/F be a finite extension of fields. Then
(a,B) = Trg/p(af): EXE = F (11)
is a symmetric bilinear form on E regarded as a vector space over F.

LEMMA 1.50. IfE/F is separable, then the trace pairing (11) is nondegenerate.
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PROOF. Let 8, ..., B, be a basis for E as an F-vector space. We have to show that the
discriminant det(Tr(g;5;)) of the trace pairing is nonzero. Let 4, ..., 0, be the distinct
F-homomorphisms of E into some large Galois extension Q of F. Recall (FT, 5.45) that

Try gk (B) =018+ +0pf (12)

By direct calculation, we have

det(Tr(B;3;)) = det(Y, ok (Bif;)) (by 12)
= det(}, ok (By) - ok (B;))
= det(o(8,)) - det(or(B;))
= det(0y ().

Suppose that det(g;3;) = 0. Then there exist ¢y, ..., c,, € Q such that
D cioi(B) = 0all j.
i
By linearity, it follows that ;. ¢;0;(8) = 0 for all 8 € E, but this contradicts Dedekind’s
theorem on the independence of characters (FT, 5.14). 0

PROPOSITION 1.51. Let A be an integrally closed domain with field of fractions F, and let
B be the integral closure of A in a separable extension E of F of degree m. There exist free
A-submodules M and M’ of E such that

McBcM. (13)
If A is noetherian, then B is a finite A-algebra.

PROOF. Let {f, ..., B,,} be a basis for E over F. According to Proposition 1.40, there
existsad € A such thatd - 3; € B for alli. Clearly {d - 8;,...,d - B,,} is still a basis for E
as a vector space over F, and so we may assume to begin with that each 5; € B. Because
the trace pairing is nondegenerate, there is a dual basis {8/, ..., 8, } of E over F with the
property that Tr(; - ,8;.) = §;; for all i, j. We shall show that

A1+ ABy+ -+ ARy CB CAB + AR, + - + ABy,.

Only the second inclusion requires proof. Let § € B. Then 3 can be written uniquely as
alinear combination § = )} b;8 ; of the 5;. with coefficients b; € F, and we have to show

thateach b; € A. As 8; and 8 are in B, so also is 8 - 3;, and so Tr(8 - ;) € A (1.44). But

Tr(B-B;) = Tl’(z bjﬁ;- “Bi) = ijTr(ﬁ;. “Bi) = ij - 6ij = b;.
J J J

Hence b; € A.
If A is Noetherian, then M’ is a Noetherian A-module, and so B is finitely generated
as an A-module. o

LEMMA 1.52. Let A be a subring of a field K. If K is integral over A, then A is also a field.
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PROOF. Let a be a nonzero element of A. Then a~! € K, and it is integral over A:
@Y +a(@h"t+--+a,=0, gq€A.
On multiplying through by a®~!, we find that
al+a +-+a,a" =0,
from which it follows that a™! € A. -

THEOREM 1.53 (GOING-UP THEOREM). Let A C B be rings with B integral over A.
(a) For every prime ideal p of A, there is a prime ideal q of B such thatqn A = p.
(b) Let p = qN A; then p is maximal if and only if q is maximal.

PROOF. (a) If S is a multiplicative subset of a ring A, then the prime ideals of S™*A are
in one-to-one correspondence with the prime ideals of A not intersecting S (see 1.14).
It therefore suffices to prove (a) after A and B have been replaced by S~'A and S™!B,
where S = A — p. Thus we may assume that A is local, and that p is its unique maximal
ideal. In this case, for all proper ideals b of B, bN A C p (otherwise b D A 5 1). To
complete the proof of (a), we shall show that for all maximal ideals n of B,n N A = p.

Consider B/n D A/(n N A). Here B/n is a field, which is integral over its subring
A/(nn A), and n N A will be equal to p if and only if A/(n N A) is a field. This follows
from Lemma 1.52.

(b) The ring B/q contains A/p, and it is integral over A/p. If q is maximal, then
Lemma 1.52 shows that p is also. For the converse, note that any integral domain
integral over a field is a field because it is a union of integral domains finite over the
field, which are automatically fields (left multiplication by an element is injective, and
hence surjective, being a linear map of a finite-dimensional vector space). o

COROLLARY 1.54. Let A C B be rings with B integral over A. Let p C p’ be prime ideals of
A, and let q be a prime ideal of B such that q N A = p. Then there exists a prime ideal q' of
B containing q and such that ' N A = y/,

B q c ¢

A p cC y.

PROOF. We have A/p C B/q, and B/q is integral over A/p. According to Theorem 1.53,
there exists a prime ideal q”” in B/q such that ¢’ n (A/p) = p’/p. The inverse image q’
of q” in B has the required properties. o

ASIDE 1.55. Let A be a noetherian integral domain, and let B be the integral closure of A in
a finite extension FE of the field of fractions F of A. Is B always a finite A-algebra? When A is
integrally closed and E is separable over F, or A is a finitely generated k-algebra, then the answer
is yes (1.51, 8.3). However, in 1935, Akizuki found an example of a noetherian integral domain
A whose integral closure in its field of fractions is not a finite A-algebra. F.K. Schmidt found
another example at about the same time.”

7According to Matsumura (1986, p. x), finding his example cost Akizuki a year’s hard struggle. For a
discussion of the examples of Akizuki and Schmidt, and generalizations, see Olberding, B., One-dimensional
bad Noetherian domains. Trans. Amer. Math. Soc. 366 (2014), no.8, 4067-4095.
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e. Tensor Products

Tensor products of modules

Let A be aring, and let M, N, and P be A-modules. Amap ¢ : M XN — P of A-modules
is said to be A-bilinear if
p(x +x',y) = p(x,y) +¢(x",y), x,x’ €M, yeN
¢,y +¥) = ¢(x,y) + ¢(x,¥"), xeM, y,yeN
Plax,y) = ap(x,y) = p(x,ay), a€A, x€EM, y€EN,

i.e., if ¢ is A-linear in each variable.
An A-module T together with an A-bilinear map

¢: MXN—>T

MxN 21
is called the tensor product of M and N over A if it has | .
the following universal property: every A-bilinear map ¢ ia! linear

TI
¢ MxXN->T :

factors uniquely through ¢.
As usual, the universal property determines the tensor product uniquely up to a
unique isomorphism. We denote it by M ® 4 N. It is determined by

HomA-linear(M ®A N: T) = HomA-bilinear(M X N: T)~

CONSTRUCTION

Let M and N be A-modules, and let AM*N) pe the free A-module with basis M X N.
Thus each element AM*N) can be expressed uniquely as a finite sum

Zai(xisyi)a aiEAa xiEMa ylEN
Let P be the submodule of AM*N) generated by the following elements

(x+x,9)—-(x,»-,y), x,x€M, yeN
Cy+y)-Gy)-(xy), xeM, yy eN
(ax,y)—a(x,y), a€A, x€M, yeN
(xsa}’)—a(X,Y)’ (IEA, XEM, yEN,
and define
M@y N =AMN)/p,
Write x ® y for the class of (x,y) in M ® 4 N. Then
6, Y)»x®yY: MXN ->MQ@yuN

is A-bilinear — we have imposed the fewest relations necessary to ensure this. Every
element of M ® 4 N can be written as a finite sum®

Zai(xl-®yl-), a; GA, X GM, Vi GN,

%An element of the tensor product of two vector spaces is not necessarily a tensor product of two vectors,
but sometimes a sum of such. This might be considered a mathematical shenanigan but if you start with
the state vectors of two quantum systems it exactly corresponds to the notorious notion of entanglement
which so displeased Einstein.” Georges Elencwajg on mathoverflow.net.




e. Tensor Products 33

and all relations among these symbols are generated by the following relations

x+xX)R®Ry=xQy+x'®y
xQ@Y+Y)=xQy+xQ)
ax®y=a(x®y)=xQay.
The pair (M ® 4 N,(x,y) — x ® y) has the correct universal property because any

A-bilinear map ¢’ : M x N — T’ extends uniquely to an A-linear map AMN) — T/,
which factors uniquely through AM*N) /p.

Tensor products of algebras

Let A and B be k-algebras. A k-algebra C together with homomorphismsi: A - C
and j: B — C is called the tensor product of A and B if it has the following universal
property: for every pair of homomorphisms (of k-algebras)a: A - Rand§: B - R,
there is a unique homomorphism y : C — R such that yoi = o and yoj = £:

J

A—- ¢

S

B

If it exists, the tensor product, is uniquely determined up to a unique isomorphism
by this property. We write it A ®, B. Note that

Hom; (A ® B,R) ~ Hom (A, R) X Hom (B, R)

(homomorphisms of k-algebras).

CONSTRUCTION

Form the tensor product A ® B of A and B regarded as k-vector spaces. There is a
multiplication map A ®, B X A ®; B — A ® B for which

(a®b)a' ®b')=aa’  bb'.
This makes A ®, B into a ring, and the homomorphism
c—rc(1®1D)=c®1=1Qc
makes it into a k-algebra. The maps
ara®l: A-Candb~1Q®b: B> C

are homomorphisms, and they make A ®,, B into the tensor product of A and B in the
above sense.

EXAMPLE 1.56. A k-algebra B, equipped with the given map k — B and the identity map
B — B, has the universal property characterizing k ®,, B, so k ®; B ~ B. In terms of the
constructive definition of tensor products, the isomorphismisc®b +— cb: k®, B — B.
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EXAMPLE 1.57. The ring k[X, ..., X, Xpma1s - » Xman ), €quipped with the obvious in-
clusions

KXy s Xl S KXy oo, Xin] < k[ Xomsts oo s X

is the tensor product of k[ X1, ..., X, ] and k[X 11, ..., X} 4n]- To verify this we only have
to check that, for every k-algebra R, the map

Homk-alg(k[Xla ,Xm+n]’R) - Homk-alg(k[Xl, ]a R) x Homk-alg(k[Xm+1’ ]a R)
induced by the inclusions is a bijection. But this map can be identified with the obvious
bijection

R™" — R™ x R".
In terms of the constructive definition of tensor products, the isomorphism is

f ® g (=g fg . k[Xl, vee ,Xm] ®k k[Xn’H—l’ vee ’Xm+n] - k[Xl, ’Xm+n]'

REMARK 1.58. (a) If (b,) is a family of generators (resp. basis) for B as a k-vector space,
then (1 ® b, ) is a family of generators (resp. basis) for A ®, B as an A-module.
(b) Let k &= Q be fields. Then

Q@ k[Xy, ... X, ] 2 Q1 ® X1, ..., 1 @ X, ] = Q[X), ..., X,].
If A = k[Xy, .., X,]/(81, -, §m), then

Q ®k A~ Q[Xl, vee ’Xn]/(gI’ ,gm)

(c) If A and B are algebras of k-valued functions on sets S and T respectively, then
(f ® g)(x,y) = f(x)g(y) realizes A ®, B as an algebra of k-valued functionson S X T.

f. Transcendence bases

We review the theory of transcendence bases. For the proofs, see Chapter 9 of FT.

1.59. Elements «y, ..., a, of a k-algebra A are said to be algebraically dependent over k
there exists a nonzero polynomial (X1, ..., X,) € k[X,...,X,] such that f(ay,...,a,) = 0.
Otherwise, the o; are said to be algebraically independent over k.

Now let Q be a field containing k.

1.60. For a subset A of Q, we let k(A) denote the smallest subfield of Q containing k
J 15 s X}

8(X1,5 e s X}
with f,g € k[X,...,X,,]. A subset B of Q is algebraically dependent on A if ear(r:lh

element of B is algebraic over k(A).

and A. For example, if A = {x;, ..., X,,,}, then k(A) consists of the quotients

1.61 (FUNDAMENTAL THEOREM). Let A = {«y,...,a,,} and B = {#4, ..., 5,,} be two sub-
sets of Q. Assume that

(a) Ais algebraically independent (over k), and
(b) A is algebraically dependent on B (over k).

Then m < n.
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Note that this becomes the fundamental theorem of linear algebra when replace
“algebraically” with “linearly” — the two topics are formally similar.

1.62. A transcendence basis for Q over k is an algebraically independent set A such
that Q is algebraic over k(A).

1.63. Assume that there is a finite subset A C Q such that Q is algebraic over k(A).
Then
(a) every maximal algebraically independent subset of Q is a transcendence basis;

(b) every subset S of A minimal among those such that Q is algebraic over k(S) is a
transcendence basis; in particular, a finite transcendence basis exists;

(c) all transcendence bases for Q over k have the same finite number of elements
(called the transcendence degree, tr deg, Q, of Q over k).

1.64. Letk ¢ L C Q be fields. Then
tr deg, Q = tr deg, L + tr deg, Q.
Indeed, if A is a transcendence basis for L/k and B is a transcendence basis for Q/L,
then A U B is a transcendence basis for Q/k.
Exercises

1-1. Let k be an infinite field (not necessarily algebraically closed). Show that an
f € k[X;,...,X,] that is identically zero on k" is the zero polynomial (i.e., has all its
coefficients zero).

1-2. Find a minimal set of generators for the ideal
(X +2Y,3X +6Y +3Z,2X +4Y + 32)

in k[X,Y,Z]. What standard algorithm in linear algebra will allow you to answer this
question for any ideal generated by homogeneous linear polynomials? Find a minimal
set of generators for the ideal

(X +2Y + 1,3X + 6Y + 3X +2,2X + 4Y 4 3Z + 3).

1-3. Aring A is said to be normal if A, is an integrally closed domain for all prime
ideals p in A. Show that a noetherian ring is normal if and only if it is a finite product of
normal integral domains.

1-4. Prove the statement in 1.64.



Chapter 2

Algebraic Sets

a. Definition of an algebraic set

An algebraic subset V(S) of k" is the set of common zeros of some collection S of
polynomials in k[ X, ..., X, ],

v(S) ={(a,..,a,) € k™| f(ay,..,a,) =0 all feS}
We refer to V(S) as the zero set of S. Note that
ScS = V(S)> V(S

— more equations means fewer solutions.
Recall that the ideal a generated by a set S consists of the finite sums

Zfigi’ fi € k[Xy, ... X,], & €S.

Such a sum )] f;g; is zero at every point at which the g; are all zero, and so V(S) C V(a),
but the reverse conclusion is also true because S C a. Thus V(S) = V(a) — the zero
set of S is the same as the zero set of the ideal generated by S. Therefore the algebraic
subsets of k™ can also be described as the zero sets of ideals in k[ X1, ..., X}, ].

An empty set of polynomials imposes no conditions, and so V(@) = k". Therefore
k™ is an algebraic subset. It is also the zero set of the zero ideal (0). We write A" for k"
regarded as an algebraic set.

Examples

2.1. If S is a set of homogeneous linear equations,
apn Xy + - +a,X, =0, i=1,..,m,

then V(S) is a subspace of k". If S is a set of nonhomogeneous linear equations,
apXy, + -+ a,, X, =d,, i=1,..,m,

then V(S) is either empty or is the translate of a subspace of k".

2.2. If S consists of the single equation

Y2=X3+aX+b, 4a’+27b*+#0,

36
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then V(S) is an elliptic curve. For example,

—
N

Y2=X3+1 Y2 =X(X%-1)

We generally visualize algebraic sets as though the field k were R, i.e., we draw the real
locus of the curve. However, this can be misleading — see the examples 4.11 and 4.17
below.

2.3. If S consists of the single equation
72 =X*+Y?

then V(S) is a cone.

2.4. A nonzero constant polynomial has no zeros, and so the empty set is algebraic.

2.5. The proper algebraic subsets of A! = k are the finite subsets, because a polynomial
f(X) in one variable X has only finitely many roots, and every finite set is the set of roots
of a polynomial.

2.6. Some generating sets for an ideal will be more useful than others for determining
what the algebraic set is. For example, the ideal

a=X?>+Y2+2%-1, X?+Y*-Y,X-2)

can be generated by'
X—-Z, Y*—-2Y+1, Z>-1+Y.

The middle polynomial has (double) root 1, from which it follows that V(a) consists of
the single point (0, 1, 0).

b. The Hilbert basis theorem

In our definition of an algebraic set, we did not require the set S of polynomials to be
finite, but the Hilbert basis theorem shows that, in fact, every algebraic set is the zero
set of a finite set of polynomials. More precisely, the theorem states that every ideal in
k[X;,...,X,] can be generated by a finite set of elements, and we have already observed
that a set of generators of an ideal has the same zero set as the ideal.

IThis is, in fact, a Grobner basis for the ideal.
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THEOREM 2.7 (HILBERT BASIS THEOREM). The ring k[X1, ..., X, ] is noetherian.
As we noted in the proof of 1.32,
k[Xy, ..., X, = k[Xq, o, X1 11X ]
Thus an induction argument shows that the theorem follows from the next statement.

THEOREM 2.8. If A is noetherian, then so also is A[X].

PROOF. We shall show that every ideal in A[X] is finitely generated. Recall that for a
polynomial
fX)=a X" +a X'+ +a, aq €A, ay#0,

q, is called the leading coefficient of f.

Let a be a proper ideal in A[X ], and let a(i) denote the set of elements of A that occur
as the leading coefficient of a polynomial in a of degree i (we also include 0). Clearly,
a(i) is an ideal in A, and a(i) C a(i + 1) because, if cX’ + -+ € a, then X(cX' + --) € a.

Let b be an ideal of A[X] contained in a. Then b(i) C a(i), and b = a if the two are
equal for all i. To see this, let f be a polynomial in a. Because b(deg f) = a(deg f), there
exists a g € b with the same leading coefficient as f, and so f = g+ f, with f; € a
and deg(f;) < deg(f). Similarly, f; = g, + f, with g; € b and deg(f,) < deg(f;).
Continuing in this fashion, we find that f =g+ g, + g, + --- € b..

As A is noetherian, the sequence

all)cal2)c---Cca(i)C ---
eventually becomes constant, say,
ad)=a(d+1)="---

(and then a(d) contains the leading coefficient of every polynomial in a). For each
i < d, there exists a finite set of generators {a;;, a;,, ..., a;,,} for the ideal a(i) (as A is
noetherian), and we let f;; denote a polynomial in a with leading coefficient g;;. The
ideal b of A[X ] generated by the (finitely many) f;; is contained in a and has the property
that b(i) = a(i) for all i. Therefore b = a, and a is finitely generated. O

ASIDE 2.9. One may ask how many elements are needed to generate a given ideal a in k[ X1, ..., X}, ],
or, what is not quite the same thing, how many equations are needed to define a given algebraic
set V. For n = 1, the ring k[X] is a principal ideal domain, and so every ideal is generated by a
single element. If V is a linear subspace of k", then linear algebra shows that it is the zero set of
n — dim(V) polynomials. All one can say in general, is that at least n — dim(V") polynomials are
needed to define V (see 3.45), but often more are required. Determining exactly how many is an
area of active research — see 3.58.

c. The Zariski topology
Recall that, for ideals a and b in k[ X4, ..., X,,],
acbh = V(a)DV(b).

PROPOSITION 2.10. There are the following relations:
(a) V(0)=k"; V(k[X,,..,X,])=0;
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(b) V(ab) =V(anb)=V(a)uV(b);
(©) V(Xier a) = Ny V(ay) for every family of ideals (a;)ie;.

PROOF. (a)Certainly, V(0) = k", and V(k[X}, ..., X, ]) isempty because 1 € k[X, ..., X,,].
(b) Note that

abcanbcab = V(ab) D V(anb) D V(a)uV(b).

For the reverse inclusions, observe that if a ¢ V(a) U V(b), then there exist f € a,g € b
such that f(a) # 0, g(a) # 0; but then (fg)(a) # 0, and so a ¢ V(ab).

(c) Recall that, by definition, )] a; consists of all finite sums of the form )] f;, f; € a;.
Thus (c) is obvious. O

The proposition shows that the algebraic subsets of A" satisfy the axioms to be the
closed subsets for a topology on A”": the empty set and the whole space are algebraic;
intersections of algebraic sets are algebraic; finite unions of algebraic sets are algebraic.
Thus, there is a topology on A" for which the closed subsets are exactly the algebraic
subsets — this is the Zariski topology on A". The induced topology on a subset V' of
A" is called the Zariski topology on V.

The Zariski topology has many strange properties, but it is nevertheless of great
importance. For the Zariski topology on A!, the closed subsets are the finite subsets
and the whole space, and so the topology is not Hausdorff (in fact, there are no disjoint
nonempty open subsets at all). We shall see in 2.68 below that the proper closed subsets
of A? are the unions of finitely many points and curves. Note that the Zariski topologies
on C and C? are much coarser (have fewer open sets) than the complex topologies.

d. The Hilbert Nullstellensatz

Before examining the relation between the algebraic subsets of A" and the ideals of
k[X.,...,X,], we answer the question of when a collection S of polynomials has a com-
mon zero, i.e., when the system of equations

g(Xl,...,Xn)=0, gES,
is “consistent”. Obviously, the system of equations
gi(Xl""aXn) = O, l = 1, e, m

is inconsistent if there exist f; € k[Xj, ..., X, ] such that )] f;g; = 1, that is, if 1 is in the
ideal (gy, ... , &) generated by the g;, which therefore equals k[X1, ..., X,,]. The converse
to this also holds.

THEOREM 2.11 (HILBERT NULLSTELLENSATZ?). Every proper ideal a in k[X,...,X,]
has a zero in k™.

A point P = (aq, ..., a,) in k" defines a homomorphism “evaluate at P”

F(Xyy s X)) o £(ay, s ay) s K[Xq, s X, ] = K,

2Nullstellensatz = zero-points-theorem.
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whose kernel contains a if P € V(a). Conversely, from a homomorphism ¢ : k[X,,...,X,] -
k of k-algebras whose kernel contains a, we obtain a point P in V(a), namely,

P = (p(X1), ..., (X))

Thus, to prove the theorem, we have to show that there exists a k-algebra homomorphism
k[X1,...,X,]/a = k.

Since every proper ideal is contained in a maximal ideal (see p. 14), it suffices to
prove this for a maximal ideal m. Then K « k[X;,...,X,]/m is a field, and it is finitely
generated as a k-algebra. The next lemma shows that K = k, which completes the proof.

LEMMA 2.12 (ZARISKI'S LEMMA). Letk C K be fields, not necessarily algebraically closed.
IfK is finitely generated as a k-algebra, then it is algebraic over k. (Hence K = k ifk is
algebraically closed.)

PROOF. We begin by showing that k[X ] has infinitely many distinct monic irreducible
polynomials. When k is infinite, the polynomials X—a, a € k, are distinct and irreducible.
When k is finite, we can adapt Euclid’s argument: if p,, ..., p, are monic irreducible
polynomials in k[X], then p; --- p, + 1 is divisible by a monic irreducible polynomial
distinct from py, ..., p,.

We prove the lemma by induction on r, the minimum number of elements required
to generate K as a k-algebra. The case r = 0 being trivial, we may suppose that

K =k[x,...,x,], r>1.

If K is not algebraic over k, then at least one x;, say, X1, is not algebraic over k. Then,
k[x,] is a polynomial ring in one symbol over k, and its field of fractions k(x;) is a
subfield of K. The induction hypothesis applied to k(x;) C K = k(x;)[x,, ..., X,] shows
that K is algebraic over k(x;). In particular, x,, ..., X, are algebraic over k(x;), and so
(1.40) there exists a d € k[x;] such that dx,, ..., dx, are integral over k[x,].

Let f € k(x;). Then f € K = k[x4, ..., x.] and so, for a sufficiently large N, d" f €
k[x;,dx,, ...,dx,]. As the dx; are integral over k[x, ], so also is d” f (by 1.38), and so it
lies in k[x,] (by 1.43). In particular, for any monic irreducible polynomial f € k[x,],
dV/f € k[x;] for some N, but this contradicts the fact that there are infinitely many
distinct such f. o

Let k C K be fields. The lemma shows that if K is finitely generated as a k-algebra,
then it is finitely generated as a k-module (FT, 1.30).

e. The correspondence between algebraic sets and radical
ideals

The ideal attached to a subset of k"
For a subset W of k", we write I(W) for the set of polynomials that are zero on W:
IW)={f € k[X;y,...X,] | f(P)=0allP € W}

Note that
Vcw = I(V)DIW).

Clearly, I(W) is an ideal in k[X, ..., X, ]. There are the following relations:
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(@) I(k") ={0}; I(®) = k[Xy,....X,];
() 1YWy =NIW)).

Only the statement I(k™) = 0 is (perhaps) not obvious. It says that every nonzero

polynomial in k[X], ..., X,,] is nonzero at some point of k. This is true for any infinite
field k (see Exercise 1-1).

EXAMPLE 2.13. Let P be the point (a4, ..., a,), and let
mp = (X; —a,., X, —a,).

Clearly I(P) D mp, but mp is a maximal ideal, because “evaluation at (a4, ..., a,)” defines
an isomorphism
k[Xl, ’X}'l]/(Xl —aq, ... ,Xn - an) - k.

As I(P) is a proper ideal, it must equal mp.

PROPOSITION 2.14. Let W be a subset of k". Then VI(W) is the smallest algebraic subset
of k" containing W. In particular, VI(W) = W if W is an algebraic set.

PROOF. Certainly VI(W) is an algebraic set containing W. Let V = V(a) be another
algebraic set containing W. Then a C I(W), and so V(a) D VI(W). O

Radicals of ideals

The radical of an ideal a in a ring A is

rad(a) = {f|f"€a,somer e N}

PROPOSITION 2.15. Let a be an ideal in a ring A.
(a) The radical of a is an ideal.
(b) rad(rad(a)) = rad(a).

PROOF. (a) If a € rad(a), then clearly fa € rad(a) for all f € A. Suppose thata,b €
rad(a), with, say, a” € a and b* € a. When we expand (a + b)"** using the binomial
theorem, we find that every term has a factor a” or b®, and so lies in a.

(b) If a" € rad(a), then a™ = (a")* € a for some s, and so a € rad(a). o

The radical of the ideal 0 is called the nilradical n of A. Thus, n consists of the
nilpotent elements of A. It is an ideal in A, and A/n is is reduced, i.e., without nonzero
nilpotent elements.

An ideal is said to be radical if it equals its radical. Thus a is radical if and only if
the ring A/a is reduced. Since integral domains are reduced, prime ideals (a fortiori,
maximal ideals) are radical. Note that rad(a) is radical (2.15b), and hence is the smallest
radical ideal containing a.

If a and b are radical, then a N b is radical, but a + b need not be: consider, for
example, a = (X? —Y) and b = (X? + Y); they are both prime ideals in k[X, Y], but
X?’ca+b,X ¢ a+b. (See 2.22 below.)
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The strong Nullstellensatz

For a polynomial f and point P € k", f"(P) = f(P)". Therefore f" is zero at P if and only
if f is zero at P, and so, for any subset W of k", the ideal I(W) is radical. In particular,
IV(a) D rad(a). In fact, the two are equal.

THEOREM 2.16 (STRONG NULLSTELLENSATZ). For any ideal a in k[X4, ..., X,],
IV(a) = rad(a);
in particular, IV(a) = a if a is a radical ideal.

PROOF. We have already noted that IV (a) D rad(a). For the reverse inclusion, we have
to show that if a polynomial h vanishes on V(a), then h™ € a for some N > 0. We may
assume h # 0. Let gy, ..., g,,, generate a, and consider the system of m + 1 equations in
n + 1 symbols,
gX, ... X)) = 0, i=1,..,m,
{ 1-Yh(Xy,..,X,) = O.

If (ay, ..., ay, b) satisfies the first m equations, then (a4, ...,a,) € V(a); consequently,
h(ay,...,a,) = 0, and (a4, ..., a,, b) does not satisfy the last equation. The equations
are inconsistent, and so, according to the original Nullstellensatz, there exist f; €
k[Xy,...,X,, Y] such that

m
1= fi &+ frmer - (1 =Yh)
i=1
(in the ring k[ X7, ..., X, Y]). On applying the homomorphism

{ Xi'_)Xl'

Y h_l . k[Xl,...,Xn, Y] i k(Xl""’X}’I)

to the above equality, we obtain the identity

1 =Zfi(X1"-"Xn’h_l)'gi(Xla"-’Xn) (*)
i=1

in k(Xy,...,X,,). Clearly

polynomial in X, ..., X},

fi(Xlﬂ""Xn’h'_l) = hNi

for some N;. Let N be the largest of the N;. On multiplying (*) by h" we obtain an
equation

m
AN =" (polynomial in X1, ..., X,,) - &(X1, ... . X,
i=1

which shows that hV € a. 0

COROLLARY 2.17. The map a — V(a) defines a one-to-one correspondence between the
set of radical ideals in k[ X, ..., X, ] and the set of algebraic subsets of k"; its inverse is I.

PROOF. We know that IV(a) = a if a is a radical ideal (2.16), and that VI(W) = W if W
is an algebraic set (2.14). Therefore, I and V are inverse bijections. 0
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COROLLARY 2.18. The radical of an ideal in k[X,, ..., X, ] is equal to the intersection of
the maximal ideals containing it.

PROOF. Let a be an ideal in k[X1, ..., X,,|. Because maximal ideals are radical, every
maximal ideal containing a also contains rad(a), and so

rad(a) C ﬂ m.
mDa

For each P = (ay, ..., a,) € k", the ideal mp = (X; — a;, ..., X,, — a,,) is maximal in
k[Xy,...,X,], and
femp & f(P)=0
(see 2.13). Thus mp D aif P € V(a). If f € mp for all P € V(a), then f is zero on V(a),
and so f € IV(a) = rad(a). We have shown that

rad(a) D ﬂ mp D ﬂ m.

PeV(a) mDa O

Remarks
2.19. Because V(0) = k",
I(k™) = IV(0) = rad(0) = 0.

in other words, only the zero polynomial is zero on the whole of k" (which we knew
already from Exercise 1-1).

2.20. The one-to-one correspondence in Corollary 2.17 is order reversing. Therefore
the maximal proper radical ideals correspond to the minimal nonempty algebraic sets.
But the maximal proper radical ideals are simply the maximal ideals in k[X1, ..., X, ],
and the minimal nonempty algebraic sets are the one-point sets. As

I((a,...,q,) = Xy —ag, ... X, —a,)

(see 2.13), we see that the maximal ideals of k[X}, ..., X,,] are exactly the ideals (X; —
a,...,X, —a,) with (a,, ...,a,) € k".

2.21. An algebraic set V(a) is empty if and only if a = k[X}, ..., X,,] (Nullstellensatz,
2.11).

2.22. LetW and W' be algebraic sets. As WNW’ is the largest algebraic subset contained
in both W and W/, (W n W) must be the smallest radical ideal containing both I(W)
and I(W'):

IW W' =rad(I(W) + I(W")).

For example, let W = V(X? —Y) and W' =
V(X% 4+Y); then V(X2 -Y)

IWNW") =rad(X%,Y) = (X,Y)

(assuming char(k) # 2). Note that W n W’ =
{(0,0)}, but when realized as the intersection of VX?+Y)
Y = X?and Y = —X?, it has “multiplicity 2”.
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2.23. Let P be the set of subsets of k" and Q the set of subsets of k[ X, ..., X, ]. Then

I:? - QandV: Q — P define a simple Galois correspondence between P and Q:
they are order reversing maps such that VI(W) > W and IV (a) D a. It follows that I
and V define a one-to-one correspondence between I () and V (Q) (see FT, 7.19). But
the strong Nullstellensatz shows that I () consists exactly of the radical ideals, and (by
definition) V' (Q) consists of the algebraic subsets. Thus we recover Corollary 2.17.

ASIDE 2.24. The algebraic subsets of A" capture only part of the ideal theory of k[X7, ..., X},]
because two ideals with the same radical correspond to the same algebraic subset. There is a
finer notion of an algebraic scheme over k for which the closed algebraic subschemes of A" are
in one-to-one correspondence with the ideals in k[X, ..., X,,] (see Chapter 10 on my website).

f. Finding the radical of an ideal

Typically, an algebraic set V' is defined by a finite set of polynomials {gy, ..., g}, and we
need to find I(V) = rad(gy, ... , &)-

PROPOSITION 2.25. A polynomial h € rad(a) ifand only if 1 € (a,1 — Yh) (the ideal in
k[Xy,...,X,, Y] generated by the elements of aand 1 — Yh).

PROOF. We saw that 1 € (a,1 — Yh) implies h € rad(a) in the course of proving 2.16.
Conversely, from the identities

1=Y"RN + Q=YY =YV + (1 -=Yh)- 14+ Yh + --- + YN"IEN-D)
we see that, if N € a,then1 € a + (1 — Yh). -

Given a set of generators of an ideal in k[ X}, ..., X, ], there is an algorithm for deciding
whether or not a polynomial belongs to the ideal, and hence an algorithm for deciding
whether or not a polynomial belongs to the radical of the ideal. There are even algorithms
for finding a set of generators for the radical. These algorithms have been implemented
in the computer algebra systems CoCoA and Macaulay?2.

g. Properties of the Zariski topology

We now examine more closely the Zariski topology on A" and on its algebraic subsets.
Proposition 2.14 says that, for a subset W of A", VI(W) is the closure of W, and 2.17
says that there is a one-to-one correspondence between the closed subsets of A" and
the radical ideals of k[X7, ..., X,,]. Under this correspondence, the closed subsets of an
algebraic set V' correspond to the radical ideals of k[ X7, ..., X,,] containing I(V).

PROPOSITION 2.26. LetV be an algebraic subset of A".

(a) The points of V are closed for the Zariski topology.

(b) Every ascending chain of open subsets Uy C U, C --- of V eventually becomes
constant. Equivalently, every descending chain of closed subsets of V eventually
becomes constant.

(c) Every open covering of V has a finite subcovering.
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PROOF. (a) We have seen that {(ay, ..., a,)} is the algebraic set defined by the ideal
X —aq, ... X, —ay).

(b) We prove the second statement. A sequence V; D V, D --- of closed subsets of V'
gives rise to a sequence of radical ideals I(V;) C I(V,) C ..., which eventually becomes
constant because k[X1, ..., X, ] is noetherian.

(c) Suppose given an open covering of V, and let U be the collection of open subsets
of V that can be expressed as a finite union of sets in the covering. If U does not contain
V, then every element of U is properly contained in another element, and so there exists
an infinite ascending chain of sets in U (axiom of dependent choice), contradicting (b).

A topological space whose points are closed is said to be T; the condition means
that, for any pair of distinct points, each has an open neighbourhood not containing
the other. A topological space having the property (b) is said to be noetherian. The
condition is equivalent to the following: every nonempty set of closed subsets of I has a
minimal element. A topological space having property (c) is said to be quasi-compact.’
The proof of (c) shows that every noetherian space is quasi-compact. Since any open
subset of a noetherian space is again noetherian, it is also quasi-compact.

h. Decomposition of an algebraic set into irreducible
algebraic sets

A topological space is said to be irreducible if it is not the union of two proper closed
subsets. Equivalent conditions: every pair of nonempty open subsets has nonempty
intersection; every nonempty open subset is dense. By convention, the empty topological
space is not irreducible.

The closure of an irreducible space is irreducible and a nonempty open subset of an
irreducible space is irreducible.

A topological space is connected if it is not the union of two disjoint proper closed
subsets. Therefore, irreducible topological spaces are connected.

In a Hausdorff topological space, any two points have disjoint open neighbourhoods.
Therefore, the only irreducible Hausdorff spaces are those consisting of a single point.

PROPOSITION 2.27. An algebraic set W is irreducible if and only if (W) is prime.

PROOF. Let W be an irreducible algebraic set, and let fg € I(W) — we have to show
that either f or g is in I(W). At each point of W, either f is zero or g is zero, and so
W cV(f)uV(g). Hence

W=WnV({H))uWnV(g)).

As W is irreducible, one of these sets, say, W N V(f), must equal W. But then f € I(W).

Let W be an algebraic set such that I(W) is prime, and let W = V(a) U V(b) with a
and b radical ideals — we have to show that W equals V(a) or V(b). The ideal an b is
radical, and V(anb) = V(a) UV (b) (2.10); hence (W) = anb. If W # V(a), then there
existsan f € a~I(W). Letg € b. Then fg € anb =I(W),and so g € I(W) (here we
use that I(W) is prime). We conclude that b C I(W), and so V(b) D VI(W)) =W.

3Bourbaki’s terminology
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SUMMARY 2.28. There are one-to-one correspondences,

radical ideals in k[ X}, ..., X, ] < algebraic subsets of A"
prime ideals in k[X}, ..., X,,] < irreducible algebraic subsets of A"
maximal ideals in k[X}, ...,X, ] < one-point subsets of A".

EXAMPLE 2.29. Let f € k[X,,...,X,]. We know that k[X, ..., X,,] is a unique factor-
ization domain (1.32), and so (f) is a prime ideal if and only if f is irreducible (1.33).
Thus

fisirreducible = V(f) isirreducible.

On the other hand, suppose that f factors as
f= H f l.m", fi distinct irreducible polynomials.

Then
O =N (f) distinct ideals
rad(f) = (f) (f;) distinct prime ideals
V(f)=UV({fi) V(f,) distinct irreducible algebraic sets.

LEMMA 2.30. Let W be an irreducible topological space. If W = W, U ... U W, with each
W, closed, then W is equal to one of the W,.

PROOF. When r = 2, the statement is the definition of “irreducible”. Suppose that r > 2.
Then W =W, Uu(W,U..UW,),andso W = W, or W = (W, U ... U W,); if the second,
then W = W, or Wy U ...UW,, etc. O

PROPOSITION 2.31. Let V be a nonempty noetherian topological space. Then V is a finite
union of irreducible closed subsets, V = V| U ... U V,,. If the decomposition is irredundant
in the sense that there are no inclusions among the V;, then the V; are uniquely determined
up to order.

PROOF. Suppose that V' cannot be written as a finite union of irreducible closed subsets.
Then, because V is noetherian, there will be a nonempty closed subset W of V' that
is minimal among those that cannot be written in this way. But W itself cannot be
irreducible, and so W = W, U W,, with W, and W, proper closed subsets of W. Because
W was minimal, each W; is a finite union of irreducible closed subsets. Hence W is also,
which is a contradiction.
Suppose that
V=V,u..uV, =W, u..uwW,

are two irredundant decompositions of V. Then V; = Uj(Vi NW;), and so, because V; is
irreducible, V; = V; n W; for some j. Consequently, there is a function f : {1,...,m} -
{1,...,n} such that V; C Wi for each i. Similarly, there is a function g: {1,...,n} —
{1,...,m} such that W; C Vg for each j. Since V; C Wy C Vgs), we must have
gf(i) = iand V; = Wy); similarly fg = id. Thus f and g are bijections, and the
decompositions differ only in the numbering of the sets. O

The V; given uniquely by the proposition are called the irreducible components of
V. They are exactly the maximal irreducible subsets of V. In Example 2.29, the V(f;)
are the irreducible components of V().
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A connected algebraic set with two irreducible components.

COROLLARY 2.32. Theradical of anideal ain k[X, ..., X, ] is a finite intersection of prime
ideals, rad(a) = p; N ... N p,. If there are no inclusions among the p;, then the p; are
uniquely determined up to order (and they are exactly the minimal prime ideals containing

a).

PROOF. Write V(a) as a union of its irreducible components, V' (a) = U:;l Vi, and let
p; = I(V;). Then rad(a) = p; N ... N p, because they are both radical ideals and

virad(a) = V(@) = [ Jvip) "= V() »).

The uniqueness similarly follows from the proposition. o

Remarks

An irreducible topological space is connected, but a connected topological space need
not be irreducible. For example, the union of two surfaces in 3-space intersecting along
a curve is reducible, but connected.

2.33. An algebraic subset V of A" is disconnected if and only if there exist radical ideals
a and b such that V is the disjoint union of V(a) and V(b), so

{V:V(a)UV(B)zV(anB) = anb=1IV)
d=V(@nV®B)=V(a+b) < a+b=k[X],..,X,]

Then
k[Xi,...,X,] y k[X1,...,X,]

a b

k[V] ~
by Theorem 1.1.

2.34. A Hausdorff space is noetherian if and only if it is finite, in which case its irre-
ducible components are the one-point sets.

2.35. In k[X4,...,X,], a principal ideal (f) is radical if and only if f is square-free,
in which case f is a product of distinct irreducible polynomials, f = f;... f,, and

(N =UDn..nlfo.
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ASIDE 2.36. Let A be a noetherian ring. A proper ideal q in A is primary if every zero-divisor in
A/q is nilpotent. Every ideal a in A can be written as an intersection of primary ideals

a=qN..Nqy,
Choose a minimal such decomposition, and let p; = rad(q;). Then each p; is prime, and
rad(a) = p; N...Npy.
See CA, §19. For the ideal (f) in 2.35, with f = [] f lm’ these decompositions become

=" n..n(fy™) and
rad(f) = (f1) N ... 0 (f)

i. Regular functions; the coordinate ring of an algebraic set

Let V be an algebraic subset of A", and let I(V) = a. The coordinate ring of V is

def

K1 kX, ..., X,]/a.

This is a finitely generated k-algebra. It is reduced because a is radical, but it is not
necessarily an integral domain. An f € k[X}, ..., X,,]| defines a function

P f(P): V —> k.

Functions of this form are said to be regular. Two polynomials f,g € k[X},...,X,]
define the same function on V if and only if they define the same element of k[V'], and
so k[V] is the ring of regular functions on V. The coordinate function

xi:V-ok, (a,..,aq,)aq

isregular, and k[V'] = k[xy, ..., X, ], so the coordinate ring of V' is the k-algebra generated
by the coordinate functions on V.
For an ideal b in k[V], set

Vb)={P eV | f(P)=0,all f € b}
— it is a closed subset of V. Let W = V(b). The quotient maps

k[Xq, ..., X,] k[V]

k[X,,...,X,] » k[V] =

send a regular function on k" to its restriction to V' and then to its restriction to W.
Write 7 for the quotient map k[X1, ...,X,,] » k[V]. Then b — 7~1(b) is a bijection
from the set of ideals of k[V'] to the set of ideals of k[Xy, ..., X, ] containing a, under
which radical, prime, and maximal ideals correspond to radical, prime, and maximal

ideals (because each of these conditions can be checked on the quotient ring, and
k[Xq,...,X,1/7~1(b) ~ k[V]/b). Clearly

V(z~1(6)) = V(b),

and so b — V(b) is a bijection from the set of radical ideals in k[V] to the set of algebraic
sets contained in V.
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Now 2.28 holds for ideals in k[V] and algebraic subsets of V,

radical ideals in k[V] <> algebraic subsets of V
prime ideals in k[V'] « irreducible algebraic subsets of V'

maximal ideals in k[V] < one-point sets of V.

Moreover (see 2.33), the decompositions of a closed subset W of V into a disjoint union
of closed subsets correspond to pairs of radical ideals a, b € k[V] such that

kK[W1] = k[V]/anb =~ k[V]/ax k[V]/b.

For h € k[V], let
D(h) ={a € V | h(a) # 0}.
It is an open subset of V, because its complement is the closed set V((h)). It is empty if
and only if & is zero (2.19).

PROPOSITION 2.37. The sets D(h), h € k[V'], form a base for the topology on V': each D(h)
is open and every open set is a (finite) union of sets D(h).

PROOF. We have already observed that D(h) is open. Every open subset U of V is the
complement of a set V(a), and if f1, ..., f,, generate the ideal a, then U = | D(f;). o

The D(h) are called the basic (or principal) open subsets of V. We sometimes write
vV, for D(h). Note that

D(h) c D(h') < V(h) D V(K)
< rad((h)) c rad((h"))
< h" e (h')somer
< h" =h'g,someg.

Some of this should look familiar: if V' is a topological space, then the zero set of a
family of continuous functions f : V — R is closed, and the set where a continuous
function is nonzero is open.

If the algebraic set V is irreducible, then I(V') is a prime ideal, and k[V'] is an integral

domain. Its field of fractions, k(V) is called the function field of V or the field of
rational functions on V.

j- Regular maps
Let W C k™ and V' C k" be algebraic sets, and let x; denote the ith coordinate function
(by,.esby) > bt V > k.
The ith component ofamap e : W — Vis
def
pi = X;op.

Thus, ¢ is the map
P (@y(P)y e, @n(P)): W =V C k™.
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DEFINITION 2.38. A continuous map ¢ : W — V of algebraic sets is regular if each of
its components g; is a regular function on W.

As the coordinate functions generate k[V'], a continuous map ¢ is regular if and only if
fogisaregular function on W for every regular function f on V. Thus a regular map
@ : W — V of algebraic sets defines a homomorphism f — fop: k[V] — k[W] of
k-algebras, which we sometimes denote by ¢*.

k. Hypersurfaces; finite and quasi-finite maps

A hypersurface in A"*! is the algebraic set H defined by a single nonzero nonconstant
polynomial,
H: f(Ty,..,Tp,X)=0.

We examine the regular map H — A" defined by the projection
(1, e sty X) B> (g, ey Epy).
We can write f in the form
f=aX"+a X"+ +a, q€k[Ty,..,T,], ay#O0.

We assume that m # 0, i.e., that X occurs in f (otherwise, H is a cylinder over a
hypersurface in A"). The fibre of the map H — A" over (¢, ..., t,) € k" is the set of
points (¢, ..., t,, c) such that c is a root of the polynomial

AQo(OX™ + a; (DXL + -+ a, (1), a(t) S ayty, ..., t,) € k.

Suppose first that a, € k, so that ay(t) is a nonzero constant independent of t. Then
the fibre over t consists of the roots of the polynomial

aX™ 4+ a1 (DXL + - 4+ a,(b), (14)

in k[X]. Counting multiplicities, there are exactly m of these. More precisely, let D be
the discriminant of the polynomial*

apX™ + X"+ -+ ay,.

Then D € k[X,...,X,,], and the fibre has exactly m points over the open subset where
D # 0, and fewer then m points over the closed subset where D = 0.> We can picture it
schematically as follows (m = 3):

. >

>

An

4See FT, p. 57 et seq. for discriminants.
5T am ignoring the possibility that D is identically zero. This case occurs when the characteristic is
p # 0, and f is a polynomial in T4, ..., T,,, and XP.
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Now drop the condition that a, is constant. For certain ¢, the degree of (14) may
drop, which means that some roots have “disappeared off to infinity”. For example, if
f(T,X) =TX — 1, then there is one point (¢,1/t) in the fibre over t when ¢t # 0 but no
point when ¢t = 0. Worse, for certain ¢ all coefficients may be zero, in which case the
fibre is a line. In general, there is a nested collection of closed subsets of A" such that
the number of points in the fibre (counting multiplicities) drops as you pass to a smaller
subset, except that over the smallest subset the fibre may be a full line.

DEFINITION 2.39. Letp : W — V be aregular map of algebraic subsets and ¢* : k[V] —
k[W] the corresponding map f + fog on rings.
(a) The map ¢ is dominant if (W) is dense in V, i.e., every nonempty open subset
of V intersects p(W).

(b) The map ¢ is quasi-finite if =1 (P) is finite for allP € V.
(c) The map g is finite if k[ W] is a finite k[V ]-algebra.

Finite maps are quasi-finite. To see this, note that the points of W lying over a point
P of V correspond to the maximal ideals m of k[W] such that ¢*~!(m) = mp, and that
these correspond to the maximal ideals of A = kIW] @k (k[V]/mp). If ¢ is finite,
then A is a finite k-algebra. Let my, ..., m, be maximal ideals in A. Then m; + m; = A
fori # j, and so the map
A—->A/m;X---XA/m,

is surjective (1.1). Thus n is at most the dimension of A as a k-algebra.

As k[W] is finitely generated as a k-algebra, hence as a k[V]-algebra, to say that
k[W1] is a finite k[V']-algebra means that it is integral over k[V] (1.36).

The map H — A" considered above is finite if and only if a, is constant, and quasi-
finite if and only if the polynomials a, ..., a,, have no common zero in k".

PROPOSITION 2.40. A regular map ¢ : W — V is dominant if and only if p* : k[V] —
k[W1 is injective.

PROOF. If ¢ is dominant and f € k[V'] is nonzero, then D(f) intersects p(W), and so
fop # 0. If p is not dominant, then its image is contained in a proper closed subset of
V', which is contained in V(f) for some nonzero f € k[V]; then fop = 0. O

PROPOSITION 2.41. A dominant finite map is surjective.

PROOF. Let ¢ : W — V be dominant and finite. Then ¢* : k[V] — k[W] is injective,
and k[W] is integral over the image of k[V]. According to the going-up theorem (1.53),
for every maximal ideal m of k[V'] there exists a maximal ideal n of k[W] such that
m = n N k[V]. Because of the correspondence between points and maximal ideals, this
implies that @ is surjective. o

1. Noether normalization theorem

Let H be a hypersurface in A"l We show that, after a linear change of coordinates, the
projection map (xq, ..., Xp41) = (X1,...,%,) : A" — A" defines a finite map H — A",
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PROPOSITION 2.42. Let
H: f(Xl’ .es ’XI’H-l) =0

be a hypersurface in A", There exist c,, ..., ¢, € k such that the map H — A" defined by
(X155 Xpg1) P (X1 = C1Xp415 oo s Xy — CpXpg1)
is finite.

PROOF. Letcy,...,c, € k. In terms of the coordinates x{ = X; — C;X,4+1, the hyperplane
H is the zero set of

-1
F&o + aXpgts e X + 0 Xg1, X)) = aOX,T_,_l + alX,T+1 + e

The next lemma shows that the c; can be chosen so that g, is a nonzero constant. This
implies that the map H — A" defined by (x;, ..., X11) F (x], ..., Xp,) is finite. O

LEMMA 2.43. Let k be an infinite field (not necessarily algebraically closed), and let f €
k[Xy,...,X,, T]. There existcy,...,c, € k such that

f&Xy +eiT, ... X, + ¢, T,T) = agT™ + o, T + -+ + qpy,
with ay € k* and all a; € k[X, ..., X,].
PROOF. Let F be the homogeneous part of highest degree of f and let r = deg(F). Then
FX;+cT,..,X,+c,T,T)=F(cy,...,c,, 1)T" + terms of degree < rin T,

because the polynomial F(X; + ¢,T, ..., X, + ¢,T,T) is still homogeneous of degree r
in X;,...,X,, T, and so the coefficient of the monomial 7" can be obtained by setting
each X; equal to zero in F and T to 1. As F(Xy,...,X,,T) is a nonzero homogeneous
polynomial, F(X,, ..., X,, 1) is a nonzero polynomial, and so we can choose the c; so that
F(cy,...,¢,, 1) # 0 (Exercise 1-1). Now

f&X+aT,....X, +¢,T,T) = F(cy, ... ,Cp, 1)T" + terms of degree < rin T,
with F(cy, ..., ¢,, 1) € k*, as required. o
In fact, every algebraic set V admits a finite surjective map to A¢ for some d.

THEOREM 2.44. LetV be an algebraic set. For some natural number d, there exists a finite
surjective map ¢ : V — A4,

This follows from the next statement applied to A = k[V']: the regular functions
X1, ..., Xq defineamapV — A4 which is finite and surjective because k[xy, ..., x ] = A
is finite and injective.

THEOREM 2.45 (NOETHER NORMALIZATION THEOREM). Let A be a finitely generated
k-algebra. There exist elements xq, ..., x4 € A that are algebraically independent over k,
and such that A is finite over k[x,, ..., X4].
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It is not necessary to assume that A is reduced in Theorem 2.45, nor that k is alge-
braically closed, although the proof we give requires it to be infinite (for the general
proof, see CA, 8.1).

Let A = k[x, ..., x,]. We prove the theorem by induction on n. If the x; are alge-
braically independent, there is nothing to prove. Otherwise, the next lemma shows that
A is finite over a subring B = kl[y;, ..., y,—1]- By induction, B is finite over a subring
C = k[zy,...,z4] with z,, ..., z, algebraically independent, and A is finite over C.

LEMMA 2.46. Let A = k[x,, ..., X, ] be a finitely generated k-algebra, and let {x1, ..., x4}
be a maximal algebraically independent subset of {x1, ..., x,}. If n > d, then there exist
C1s - »Cq € k such that A is finite over kK[X; — €1 Xy, o s Xg — CaXp> Xda1s -+ » Xn—1]-

PROOF. By assumption, the set {x1, ..., x4, X,,} is algebraically dependent, and so there
exists a nonzero f € k[X3, ..., X4, T] such that

f(xq, e x4,%,) = 0. (15)
Because {xy, ..., X4} is algebraically independent, T occurs in f, and so
Xy, s Xg, T) = agT™ + a,T™ 1 + -+ 4+ ay,

with q; € k[X1,...,X4], ap # 0, and m > 0.
If ay € k, then (15) shows that x,, is integral over k[x, ..., x4]. Hence x, ..., x,, are
integral over k[xy, ..., X,_; ], and so A is finite over k[x, ..., X,,_1].
If ay ¢ k, then, for a suitable choice of (¢, ..., ¢4) € k, the polynomial
gX1, ., X0, T) E fX + T, o, Xg + 4T, T)
takes the form
gXy, ... X4, T)=bT"+b;T +--- + b,

with b € k* (see 2.43). As

g(x; — C1Xpy e s Xg — Cg Xy, X,) =0 (16)
this shows that x,, is integral over k[x; — ¢1X,, ..., Xq — 4%, ], and so A is finite over
klxy —c1Xx,, oo s X4 — CqXps X415 - » Xp—1] as before. o
Remarks

2.47. For an irreducible algebraic subset V of A", the above argument can be modified
to prove the following more precise statement:
Let x4, ..., X, be the coordinate functions on V; after possibly renumbering
the coordinates, we may suppose that {xi, ..., x4} is a maximal algebraically
independent subset of {x, ..., x,}; then there exist ¢;; € k such that the map

n n
(X1, 0 s Xp) > (x1 - Z C1jXjs ey Xg — Z cdjxj> D A" - Ad
j=d+1 j=d+1

induces a finite surjective map V — A€,
Indeed, Lemma 2.46 shows that there exist ¢y, ..., ¢, € k such that k[V] is finite over
klx, — c1Xp,s ooy Xg — CqXps Xga1s oo » Xn—1]. NOW {Xq, ..., x4} is algebraically dependent
on {x; — ¢1Xx,,...,Xq — cqX,}. If the second set were not algebraically independent,
we could drop one of its elements, but this would contradict 1.61. Therefore {x; —
C1Xps - » Xq — C4X, } is @ maximal algebraically independent subset of {x; — c;x,,, ..., X4 —
CaXn> Xd41s - » Xp—1} and we can repeat the argument.
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m. Dimension
The dimension of a topological space
Let V be a noetherian topological space whose points are closed.

DEFINITION 2.48. The dimension of V is the supremum of the lengths of the chains
VoD VDDV,

of distinct irreducible closed subsets (the length of the displayed chain is d).

2.49. LetVy,...,V,, be the irreducible components of V. Then (obviously)

dim(V) = max(dim(V;)).

2.50. Assume that V is irreducible, and let W be a proper closed subspace of V. Then
every chain Wy, D W; D ---in W extends to achain V' > W D ---,and sodim(W) + 1 <
dim(V). If dim(V) < oo, then dim(W) < dim(V).

Thus an irreducible topological space V' has dimension 0 if and only if it is a point; it
has dimension < 1 if and only if every proper closed subset is a point; and, inductively,
V has dimension < n if and only if every proper closed subset has dimension < n — 1.

The dimension of an algebraic set

DEFINITION 2.51. The dimension of an algebraic set is its dimension as a topological
space.

Because of the correspondence between the prime ideals in k[V'] and irreducible
closed subsets of V,
dim(V) = Krull dimension of k[V].

Note that, if V4, ..., V,, are the irreducible components of V, then
dimV = max dim(V;).
i
When the V; all have the same dimension d, we say that V has pure dimension d. A
one-dimensional algebraic set is called a curve; a two-dimensional algebraic set is called
a surface; and an n-dimensional algebraic set is called an n-fold.

Let V be an irreducible algebraic set and W an algebraic subset of V. If W is irre-
ducible, then its codimension in V is

codimy W & dim V — dim W.
Dimension and transcendent degree
THEOREM 2.52. LetV be an irreducible algebraic set. Then

dim(V) = tr deg, k(V).
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The proof will occupy the rest of this subsection.
Let A be an arbitrary commutative ring. Let x € A, and let Sg,; denote the multi-
plicative subset of A consisting of the elements of the form

x"(1—ax), neN, ae€A.

The boundary Ay, of A at x is defined to be the ring of fractions S{_x l}A.
We write dim(A) for the Krull dimension of A.

PROPOSITION 2.53. Let A be aring and let n € N. Then
dim(A) <n < forallx € A, dim(Ayy) <n-—1.

PROOF. We shall use the one-to-one correspondence between the prime ideals of S~1A
and the prime ideals of A disjoint from S (1.14). We begin with two observations.

(a) Forevery x € A and maximalideal m C A, m N Sy, # @. Indeed, if x € m, then
certainly x € m N Sg,;. On the other hand, if x ¢ m, then it is invertible modulo
m, and so there exists an a € A such that 1 — ax € m (hence also m N Sy).

(b) Let m be a maximal ideal, and let p be a prime ideal contained in m; for every
x € m~ p, we have p N Sy, = @. Indeed, if x*(1 — ax) € p,then 1 —ax € p (as
X & p); hence 1 — ax € m, and so 1 € m, which is a contradiction.

Statement (a) shows that every chain of prime ideals beginning with a maximal ideal
is shortened when passing from A to Ag,,, while statement (b) shows that a maximal
(i.e., nonrefinable) chain of prime ideals of length n is shortened only to n — 1 when x is
chosen appropriately. From this, the proposition follows. O

PROPOSITION 2.54. Let A be an integral domain, and let k be a subfield of A. Then
dim(A) < tr deg, F(A),
where F(A) is the field of fractions of A.

PROOF. Iftr deg, F(A) = oo, there is nothing to prove, and so we suppose that tr deg, F(A) =
n € N. We argue by induction on n. We can replace k with its algebraic closure in A
without changing tr deg, F(A).

Let x € A. If x € k, then it is transcendental over k, and so

tr degk(x)F(A) =n-1

by 1.64; since k(x) C Ay, this implies (by induction) that dim(Agy) <n —1. If x €k,
then 0 = 1 — x™'x € Sy, and so Ay, = 0; again dim(Ay,;) < n — 1. We deduce from
2.53 that dim(A) < n. O

COROLLARY 2.55. The polynomial ring k[ X, ..., X, ] has Krull dimension n.
PROOF. The existence of the sequence of prime ideals
(Xl"" ,Xn) D) (XI’ “ee ’Xn—l) DD (Xl) D) (0)

shows that k[X1, ..., X,,] has Krull dimension at least n, and 2.54 shows that it has Krull
dimension at most n. O
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COROLLARY 2.56. Let A be an integral domain and let k be a subfield of A. If A is finitely
generated as a k-algebra, then

tr deg, F(A) = dim(A).

PROOF. According to the Noether normalization theorem (2.45), A is integral over a
polynomial subring k[x,,...,x,]. Hence F(A) is algebraic over k(xy, ..., Xx,), and so
n = tr deg, F(A). The going up theorem (1.54), implies that a chain of prime ideals
in k[x, ..., x,,] lifts to a chain in A, and so dim(A) > dim(k[x;, ..., X,,]) = n. Now 2.54
shows that dim(A) = n. O

COROLLARY 2.57. LetV be an irreducible algebraic set. Then V has dimension n if and
only if there exists a finite surjective map V. — A"

PROOF. The d in Theorem 2.44 is the dimension of V. O

ASIDE 2.58. Inlinear algebra, we justify saying that a vector space V has dimension n by proving
that its elements are parametrized by n-tuples. It is not true in general that the points of an
algebraic set of dimension n are parametrized by n-tuples. All we can say is Corollary 2.57.

ASIDE 2.59. The inequality in Proposition 2.54 may be strict. Let A and k be as in Corollary
2.56, so that dim A = tr deg;, F(A). When we replace A with A, where p is a nonmaximal prime
ideal, the Krull dimension will drop but the field of fractions will be unchanged.

NOTES. The short proofof 2.55 is based on that in Coquand and Lombardi, Amer. Math. Monthly
112 (2005), no. 9, 826-829.

Examples

EXAMPLE 2.60. LetV = A”. Then k(V) = k(Xj, ..., X,,), which has transcendence basis
X1, ...,X, over k, and so dim(V) = n.

EXAMPLE 2.61. If V is a linear subspace of k" (or a translate of a linear subspace), then
the dimension of V' as an algebraic set is the same as its dimension in the sense of linear
algebra — in fact, k[V'] is canonically isomorphic to k[X; , ..., X;, |, where the X i, are the
“free” variables in the system of linear equations defining V.

More specifically, let ¢ be an ideal in k[X, ..., X,,] generated by linear forms ¢, ..., ¢,,
which we may assume to be linearly independent. Let X; ,...,X;  be such that

X, }

th—r

€1yt X,

ip20>

is a basis for the linear forms in X3, ..., X,,. Then

le,..., /C— ll""’Xin—r]'

This is obvious if the forms are X, ..., X,. In the general case, because {X1, ..., X,;}
and {¢4,...,¢,,X iy e s X, l-yH} are both bases for the linear forms, each element of one set
can be expressed as a linear combination of the elements of the other. Therefore,

Xi,_ 1,

k[X]_,...,Xn] = k[fl,.. fr’Xll’“' ip—r

and so

k Xl""’ /C fl,-- fraXlla-"’Xin_r]/c
~ k[X, X 1

PERIERL S S
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EXAMPLE 2.62. If W is a proper algebraic subset of an irreducible algebraic set V, then
dim(W) < dim(V) (see 2.50).

EXAMPLE 2.63. A point in an algebraic set is a closed irreducible subset. Therefore an
irreducible algebraic set has dimension 0 if and only if it consists of a single point.

EXAMPLE 2.64. A hypersurface in A" has dimension n — 1. It suffices to prove this for
an irreducible hypersurface H. Such an H is the zero set of an irreducible polynomial f
(see 2.29). Let

klxq,...,x,] = k[Xq, ... X, 1/(f), xi=X;+(f),

and let k(x1, ..., x,,) be the field of fractions of k[xy, ..., X, ]. As f is not the zero polyno-
mial, some Xj, say, X,,, occurs in it. Then X,, occurs in every nonzero multiple of f, and
S0 no nonzero polynomial in X7, ..., X,,_; belongs to (f). This means that Xy, ..., X,,_;
are algebraically independent. On the other hand, x,, is algebraic over k(x, ..., X,_1),
and so {xy, ..., X,,_1} is a transcendence basis for k(x,, ..., x,,) over k. (Alternatively, use
2.57.)

EXAMPLE 2.65. Let F(X,Y) and G(X,Y) be nonconstant polynomials with no common
factor. Then each irreducible component of V(F) has dimension 1 (by 2.64), and so
V(F) N V(G) has dimension 0 (by 2.62). Therefore, V(F) N V(G) is a finite set.

PROPOSITION 2.66. Let W be an algebraic subset of codimension 1 in an algebraic set V.
Ifk[V'] is a unique factorization domain, then I[W) = (f) for some f € k[V].

PROOF. Let Wy, ..., W, be the irreducible components of W; then I(W) = () I(W;), and
so, if we can prove I(W;) = (f;), then I(W) = (f; --- f,). This allows us to assume that
W isirreducible. Let p = I(W); it is a prime ideal, and it is not zero because otherwise
dim(W) = dim(V). Therefore it contains an irreducible polynomial f. From (1.33) we
know (f) is prime. If (f) # p , then we have

o (f)D(0) (distinct prime ideals)
and hence
W=V(p) cV({f)cVv (distinct irreducible closed subsets).

But then (2.62)
dim(W) < dim(V(f)) < dimV,

which contradicts the hypothesis. O
COROLLARY 2.67. The algebraic sets of codimension 1 in A" are exactly the hypersurfaces.
PROOF. Combine 2.64 and 2.66. o

EXAMPLE 2.68. We classify the irreducible algebraic sets V of A2. If V has dimension
2, then it equals A2 (by 2.62). If V has dimension 1, then V = V(f), where f is any
irreducible polynomial in I(V') (see 2.66 and its proof). Finally, if V' has dimension zero,
then it is a point. Correspondingly, the following is a complete list of the prime ideals in
k[X,Y]:

(0), (f)with f irreducible, (X —a,Y —b)witha,b € k.
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Exercises
2-1. Find I(W), where W = V(X?,XY?). Check that it is the radical of (X2, XY?).

2-2. Identify k™" with the set of m X n matrices, and let r € N. Show that the set of
matrices with rank < r is an algebraic subset of k"™".

2-3. LetV = {(t,t2,...,t") | t € k}. Show that V is an algebraic subset of k", and that
k[V] ~ k[T] (polynomial ring in one symbol). (Assume char(k) = 0.)

2-4. Let fq,..., fm € Q[X;,...,X,]. If the f; have no common zero in C, prove that
there exist g, ...,8, € Q[X;,...,X,,] such that f,g; + - + f,,g,» = 1. (Hint: linear
algebra).

2-5. Let k C K be algebraically closed fields, and let a be an ideal in k[ X1, ..., X,,]. Show
that if f € K[X;,...,X,] vanishes on V(a), then it vanishes on V(a). Deduce that
the zero set V(a) of a in k" is dense in the zero set V¢ (a) of a in K". [Hint: Choose
a basis (e;);¢; for K as a k-vector space, and write f = )] e;f; (finite sum) with f; €
k(Xi,...,X,1.]

2-6. Let A and B be (not necessarily commutative) Q-algebras of finite dimension over
Q, and let @* be the algebraic closure of Q in C. Show that if there exists a C-algebra
homomorphism C ®g A — C ®q B, then there exists a Q*-algebra homomorphism
0¥ ®g A — Q% ®¢ B. (Hint: The proof takes only a few lines.)

2-7. Let A be finite dimensional k-algebra, where k is an infinite field, and let M and N
be A-modules. Show that if k2! ®y M and k&l ®y N are isomorphic k& ®, A-modules,
then M and N are isomorphic A-modules.

2-8. Show that the subset {(z, €?) | z € C} is not an algebraic subset of C2.



Chapter 3

Affine Algebraic Varieties

In this chapter, we define the structure of a ringed space on an algebraic set. In this way,
we are led to the notion of an affine algebraic variety — roughly speaking, this is an
algebraic set with no preferred embedding into A”. This is in preparation for Chapter 5,
where we define an algebraic variety to be a ringed space that is a finite union of affine
algebraic varieties satisfying a natural separation axiom.

a. Sheaves

Let k be a field (in sections a, b, and d, the field k need not be algebraically closed).

DEFINITION 3.1. Let V be a topological space, and suppose that, for every open subset
U of V we have a set Oy (U) of functions U — k. Then U w Oy (U) is a sheaf of
k-algebras if, for every open subset U of V,

(a) Oy(U)is a k-subalgebra of the algebra of all k-valued functions on U, i.e., Oy (U)
contains the constant functions and f + g and fg whenever it contains f and g.

(b) the restriction of an f in @y, (U) to any open subset U’ of U is in O, (U");
(c) afunction f: U — k lies in Oy (U) if there exists an open covering U =  J,_, U;
of U such that f|U; lies in Oy (U;) for alli € I.

Let U be a union of open subsets U;. If the U; are disjoint, then (b) and (c) require
that
oy = [T, 0v ().

In the general case, they require that

Ov(U) ~ {(fl) (S Hi OV(UI) fiIUi n U] = f]lUl n U] for all l,]}

Examples

3.2. Let V be a topological space, and, for an open subset U of V, let Oy, (U) be the set
of all continuous real-valued functions on U. Then Oy, is a sheaf of R-algebras.

3.3. A function f: U — R on an open subset U of R"” is said to be smooth (infinitely
differentiable) if its partial derivatives of all orders exist and are continuous. This con-
dition is local, i.e., a function on U is smooth if and only if it is smooth on an open
neighbourhood of each point of U. As constant functions and sums and products of

59
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smooth functions are smooth, for any open subset V' of R", the smooth functions on the
open subsets of V form a sheaf of R-algebras.

3.4. A function f: U — C on an open subset U of C", is said to be analytic if it is
described by a convergent power series in a neighbourhood of each point of U. This
condition is local, and so, for any open subset V of C", the analytic functions on the
open subsets of V' form a sheaf of C-algebras.

3.5. Let V be a topological space, and, for an open subset U of V, let Oy,(U) be the set

of all constant functions U — k. If V is not connected, then Oy, is not a sheaf: let U,
and U, be disjoint open subsets of V, and let f be the function on U, U U, that takes the
constant value 0 on U; and the constant value 1 on U,; then f is not in O (U; U U,),
and so condition (3.1c) fails. When “constant” is replaced with “locally constant”, Oy,
becomes a sheaf of k-algebras (in fact, the smallest such sheaf).

3.6. Let V be a topological space, and, for an open subset U of V, let Oy,(U) be the set
of all functions U — k. Then Oy is a sheaf of k-algebras. All our sheaves of k-algebras
are subsheaves of this one.

b. Ringed spaces

A pair (V, Oy) comprising a topological space V and a sheaf of k-algebras on V will be
called a k-ringed space (or just a ringed space when the k is understood). For historical
reasons, we sometimes write I'(U, Oy) for Oy (U) and call its elements the sections of
Oy over U.

Let (V, Oy ) be a k-ringed space. For any open subset U of V, the restriction of Oy, to
the collection of open subsets of U is a sheaf of k-algebras on U.

Let (V, Oy) be a k-ringed space, and let P € V. A germ of a function at P is an
equivalence class of pairs (U, f) with U an open neighbourhood of P and f € Oy (U);
two pairs (U, f) and (U’, f”) are equivalent if the functions f and f’ agree on some open
neighbourhood of P in U N U’. The germs of functions at P form a k-algebra Oy p, called
the stalk of Oy at P. In other words, Oy p is the direct limit,

Oy.p = lim Oy (U),

over the open neighbourhoods U of P. In the interesting cases, Oy p is a local ring with
maximal ideal the set mp of germs zero at P. We often write Op for Oy p.

EXAMPLE 3.7. Let Oy be the sheaf of analytic functionson V = C,and letc € C. A
power series Zn>0 a,(z — o), a, € C,is said to be convergent if it converges on some
open neighbourhood of c. The set of such power series is a C-algebra, and I claim that it
is canonically isomorphic to the stalk Oy . of Oy at c.

To prove this, let f be a analytic function on a neighbourhood U of c¢. Then f has
a unique power series expansion f = )’ a,(z — ¢)" in some (possibly smaller) open
neighbourhood of ¢ (Cartan 1963, 11, 6). Another analytic function f’ on a neighbour-
hood U’ of ¢ has the same power series expansion if and only if f and f’ agree on some
neighbourhood of ¢ contained in U n U’ (ibid., I, 4.3). Thus we have a well-defined
injective map from the ring of germs of analytic functions at c to the ring of convergent
power series, which is obviously surjective.
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c. The ringed space structure on an algebraic set

Let V be an algebraic subset of k". Recall that the basic open subsets of V' are those of

the form
def

D(h) ={Q | h(Q) #0}, hek[V]
A pair g, h € k[V] with h # 0 defines a function

8Q) .
O P

We say that a function is regular if it is locally of this form.

DEFINITION 3.8. Let U be an open subset of V. A function f: U — k is regular at
P € U if there exist g, h € k[V] with h(P) # 0 such that f(Q) = g(Q)/h(Q) for all Q
in some neighbourhood of P. A function f : U — k is regular if it is regular at every
PeU.

Let O (U) denote the set of regular functions on an open subset U of V.

PROPOSITION 3.9. The map U w Oy (U) is a sheaf of k-algebras on V.

PROOF. The condition to be regular is local, and so we only have to check 3.1(a). Clearly,
a constant function is regular. Suppose that f and f’ are regular on U, and let P € U.
By assumption, there ex1st 8,2 ,h,h' € k[V], with h(P) # 0 # h'(P) such that f and

f’ agree with € and g 2. respectively on a neighbourhood U’ of P. Then f + f’ agrees

h h
/
with % on U’,and so f + f’ is regular at P. Similarly, f f’ agrees with szi’ on
U’, and so is regular at P. ]

LEMMA 3.10. Let g, h € k[V]with h # 0. The function
P+ g(P)/h(P)": D(h) > k
is zero if and only if and only if gh = 0 in k[V].

PROOF. If g/h™ is zero on D(h), then gh is zero on V because h is zero on the comple-
ment of D(h). Therefore gh is zero in k[V]. Conversely, if gh = 0, then g(P)h(P) = 0 for
all P € V, and so g(P) = 0 for all P € D(h). O

Let k[V],, denote the ring k[V'] with h inverted (1.11). The lemma shows that the
map

g g(P)
[T (P MK

is well-defined and injective.

ykWh+0Ammx

PROPOSITION 3.11. The map k[V'];, = Oy (D(h)) is an isomorphism of k-algebras.

PROOF. It remains to show that every regular function f on D(h) arises from an element
of k[V'],,. By definition, there exists an open covering D(h) = | J V; of D(h) and elements

gi, h; € k[V] with h; nowhere zero on V; such that f|V; = % We may assume that
i
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each set V is basic, say, V; = D(q;) for some a; € k[V]. By assumption D(qa;) C D(h;),
and so a = h; g for some N € Nand g € k[V] (see p. 49). On D(q;),

g _ 88 gig{
hi h’lg aN '

1

Note that D(af\’ ) = D(aq;). Therefore, after replacing g; with giglf and h; with a?’ , We can
assume that V; = D(h;).
We now have that D(h) = | J D(k;) and that f|D(h;) = & Because D(h) is quasi-

compact, we can assume that the covering is finite. As il = h on D(h;) N D(h;) =
i J

D(h;hy),
hihj(gih; — gjh;) = 0, ie., hihjz-gi = h'h;g; *)
— this follows from Lemma 3.10 if h;h; # 0 and is obvious otherwise. Because D(h) =
UD(h) = UD(3),
V((h) = V((h, ..., hp)),
and so h lies in rad(hZ, ..., hy,): there exist a; € k[V] such that

m
=Y a;hl. ()
i=1

for some N. I claim that f is the function on D(h) defined by &—21 2 aigih alg,

Let P be a point of D(h). Then P will be in one of the D(h;), say D(h ). We have the
following equalities in k[V]:

m m
() (%)
i=1 i=

But f|D(h;) = %, i.e., fh;and g; agree as functions on D(h;). Therefore we have the
j

following equality of functions on D(h;):

m
hfZ;aigihi = fR3hN.
i=
Since hjz. is never zero on D(h j), we can cancel it, to find that, as claimed, the function
fhYN on D(h;) equals that defined by Y’ a;g;h;. -

On taking h = 1 in the proposition, we see that the definition of a regular function
on V in this section agrees with that in Section 2i.

COROLLARY 3.12. Forany P € V, Op ~ k[V ], where mp is the maximal ideal I(P).

PROOF. In the definition of the germs of a sheaf at P, it suffices to consider pairs (f, U)
with U lying in a some basis for the neighbourhoods of P, for example, the basis provided
by the basic open subsets. Therefore,

. 311 . 1.23
Op = lim Oy(D(R) = lim k[V]y = K[Vl

h(P)#0 hgmp O
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Notes

3.13. Let V be an algebraic set and let P be a point on V. Proposition 1.14 says that there
is a canonical one-to-one correspondence between the prime ideals of k[V'] contained in
mp and the prime ideals of Op. In geometric terms, this says that there is a one-to-one
correspondence between the irreducible closed subsets of V' passing through P and the
prime ideals in Op. The irreducible components of V passing through P correspond
to the minimal prime ideals in Op. The ideal p corresponding to an irreducible closed
subset Z consists of the elements of Op that can be represented by a pair (U, f) with

flzou = 0.

3.14. If P lies on a single irreducible component of V, then Oy, p is an integral domain.
As Oy p depends only on (U, Oy |U) for U an open neighbourhood of P, in proving this,
we may suppose that V itself is irreducible, in which case the statement follows from
3.12. On the other hand, if P lies on more than one irreducible component of V, then
Op contains more than one minimal prime ideal (by 3.13), and so (0) is not prime.

3.15. Let V be an algebraic subset of k", and let A = k[V']. Propositions 2.37 and 3.11
allow us to describe (V, Oy,) purely in terms of A:

¢V is the set of maximal ideals in A.

o Foreach f € A,let D(f) = {m | f &€ m}; the topology on V is that for which the
sets D(f) form a base.

o For f € Ay and m € D(h), let f(m) denote the image of f in A,/mA,, ~ k; this
identifies A, with a k-algebra of functions D(h) — k, and Oy, is the unique sheaf
of k-valued functions such that I'(D(h), Oy) = A, for all h € A.

3.16. When V is irreducible, all the rings attached to it can be identified with subrings
of its function field k(V'). For example,

r(D(h), Oy) = {fl—N € k(V) | gek[V], Ne N}

Op = {% € k(V) ‘ h(P) # o}

Lo =), 0

rU,0y) = (\T(DMh),0y)  itU = DH).
Note that every element of k(V') defines a function on some dense open subset of V.
Following tradition, we call the elements of k(V') rational functions on V.!
Examples
3.17. The ring of regular functions on A" is k[ X}, ..., X,,|. For a nonzero polynomial

h(Xj, ..., X,), the ring of regular functions on D(h) is

{h% € k(Xy,...X,) | g € k[Xy,...X,], Ne N}.

IThe terminology is similar to that of “meromorphic function”, which is also not a function on the
whole space.
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For a point P = (ay, ..., a,), the local ring at P is

Op = {% € k(Xy, .., X,) | h(P) # 0}

= k[le ’Xn](Xl—al,...,Xn—an)’
and its maximal ideal consists of those g/h with g(P) = 0.

3.18. Let U = A%~ {(0,0)}. It is an open subset of A2, but it is not a basic open subset
because its complement {(0, 0)} has dimension 0, and so is not of the form V((f)) (see
2.64). Since U = D(X) U D(Y), the ring of regular functions on U is

I'(U,Op:) = k[X,Y]x Nk[X,Y]y
(intersection inside k(X, Y)). Thus, a regular function f on U can be expressed

_g(,Y) _ h(X,Y)

4 XN YyM

We may assume that X } g and Y } h. On multiplying through by XY™, we find that
gX, Y)YM = h(X,Y)XN.

Because X does not divide the left hand side, it cannot divide the right hand side either,
and so N = 0. Similarly, M = 0, and so f € k[X, Y]. We have shown that every regular
function on U extends uniquely to a regular function on A2:

I'(U,Ox2) = k[X,Y] = I'(A2, Op2).

d. Morphisms of ringed spaces

Let (V, Oy) and (W, Oy,) be k-ringed spaces. A continuous map ¢ : V — W is a mor-
phism of k-ringed spaces if

f€0wU) = fope Oy(p~'U)

for all open subsets U of W. If ¢ : V — W is a morphism of k-ringed spaces and U’ and
U are open subsets of V and W such that ¢(U’) C U, then

[ fop: Ow(U) = 0,U"),

is a homomorphism of k-algebras, and these homomorphisms are compatible with
restriction to smaller open subsets.

For example, when (V, Oy) is a k-ringed space and U is an open subset of V, the
inclusion U < V is a morphism of k-ringed spaces (U, Oy |U) — (V, Oy).

A morphism of ringed spaces maps germs of functions to germs of functions. More
precisely, a morphism ¢ : (V, Oy) = (W, Oy,) induces a k-algebra homomorphism

OW,qo(P) - Oypp

for each P € V, which sends the germ represented by (U, f) to the germ represented
by (¢71(U), fop). In the interesting cases, Oy p is a local ring with maximal ideal mp
consisting of the germs represented by pairs (U, f) with f(P) = 0. Then Oy o) = Oy p
maps myp) into mp, i.e., it is a local homomorphism of local rings.
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Examples

3.19. Let V and W be topological spaces endowed with their sheaves Oy, and Oy, of con-
tinuous real valued functions (3.2). As composites of continuous maps are continuous,
every continous map V' — W is a morphism of R-ringed spaces (V, Oy) = (W, Ow).

3.20. LetV and W be open subsets of R" and R" respectively, and let x; be the coordinate
function (ay, ..., a,) — a; : W — R. Recall from advanced calculus that a map

p: V-o>WCR™

is said to be smooth if each of its component functions g; o Xx;op . V — Rissmooth.
Endow V and W with their sheaves of smooth functions (3.3), and letp : V — W be
a continuous map. If ¢ is smooth, then fog is smooth for every smooth function f on
an open subset of W, and so ¢ is a morphism of R-ringed spaces. Conversely, if ¢ is a
morphism of R-ringed spaces, then, in particular, the component functions x;op are
smooth, and so ¢ is smooth.

3.21. Same as 3.20, but replace R with C and “smooth” with “analytic”. A continuous
map ¢ : V — W is analytic if and only if it is a morphism of C-ringed spaces.

e. Affine algebraic varieties

We have just seen that every algebraic set V' C k" has the structure of a k-ringed space
(V, Oy). A k-ringed space isomorphic to one of this form is called an affine algebraic
variety over k. We often shorten (V, Oy,) to V.

Let (V, Oy) and (W, Oy, ) be affine algebraic varieties. Amap ¢ : V — W is regular
(or a morphism of affine algebraic varieties) if it is a morphism of k-ringed spaces.
With these definitions, the affine algebraic varieties become a category. We usually
shorten “affine algebraic variety” to “affine variety”.

In particular, the regular functions define the structure of an affine variety on every
algebraic set. We now regard A" as an affine algebraic variety. The affine varieties we
have constructed so far have all been embedded in A". We now explain how to construct
affine varieties with no preferred embedding.

An affine k-algebra is a reduced finitely generated k-algebra. For such an algebra
A, there exist x; € A such that A = k[xy, ..., X, ], and the kernel of the homomorphism

Xi = X; . k[Xl,...,Xn] - A

isaradical ideal. Therefore 2.18 implies that the intersection of the maximal ideals in A is
0. Moreover, 2.12 implies that, for every maximal ideal m C A, themapk - A - A/m
is an isomorphism. Thus we can identify A/m with k. For f € A, we write f(m) for the
image of f in A/m =k, i.e., f(m) = f (mod m). This allows us to identify elements of
A with functions {maximal ideals in A} — k.

We attach a ringed space (V, Oy ) to A by letting

V = {maximal ideals in A}.

For f € A, let
D(f)={m| f(m)# 0} ={m| f & m}.
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Since D(fg) = D(f) n D(g), there is a topology on V for which the D(f) form a base. A
pair of elements g, h € A, h # 0, defines a function

g(m)
m— ——: D(h) - k.
For U an open subset of V, we define O (U) to be the set of functions f : U — k that
are of this form in some neighbourhood of each point of U.

PROPOSITION 3.22. The pair(V, Oy ) is an affine algebraic variety with I'(D(h), Oy ) ~ Ay,
foreach h € A~{0}.

PROOF. Represent A as a quotient k[X,...,X,|/a = k[x;,...,x,]. Then (V,0Oy) is
isomorphic to the k-ringed space attached to the algebraic set V(a) (see 3.15). -

We write spm(A) for the topological space V, and Spm(A) for the k-ringed space (V, Oy).

ASIDE 3.23. We have shown that we can recover an algebraic set from its ring of regular functions
as the set of maximal ideals in the ring (equipped with the Zariski topology). It may seem strange
to be describing a topological space in terms of maximal ideals in a ring, but the analysts have
been doing this for more than 80 years.

Gel'fand and Kolmogorov (1939) prove that if S; and S, are completely regular
spaces, and if their rings of real-valued continuous functions are algebraically iso-
morphic as rings, then S; and S, are homeomorphic. The proof begins by showing
that there is a one-to-one correspondence between the maximal ideals in the ring
of functions and the points in the underlying space. The space is recovered by
introducing a suitable topology on the set of maximal ideals.

Allen Shields, Banach Algebras, 1939-1989, Math. Intelligencer, Vol 11, no. 3, p15.

f. The category of affine algebraic varieties

For each affine k-algebra A, we have an affine variety Spm(A), and for each affine variety
(V, Oy), we have an affine k-algebra k[V'] of Oy (V). We make this correspondence into
an anti-equivalence of categories.

Letx: A — B be a homomorphism of affine k-algebras. For any h € A, a(h) is
invertible in By, and so the homomorphism A — B — By, extends to a homomor-
phism

a
i — (g) . Ah
h" ath)™
If n is a maximal ideal in B, then m «f a~!(n) is a maximal ideal in A because A/m —

B/n = k is an injective map of k-algebras which implies that A/m = k. Thus « defines
a map

- Boc(h)-

@: spmB — spmA, ¢(n)=a(n)=m.

For m = a~!(n) = p(n), we have a commutative diagram:

A—2% L B

l l

A/m —— B/n.
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Recall that the image of an element f of A in A/m =~ k is denoted by f(m). The
commutativity of the diagram means that, for f € A,

fle(n)) = a(f)(n),ie., fop = aof. *)
Since p~'D(f) = D(fog) (obviously), it follows from (*) that

¢~ (D(f)) = D(a(f)),

and so @ is continuous.

Let f be a regular function on D(h), and write f = g/h™, g € A. Then, from (*) we
see that fog is the function on D(a(h)) defined by a(g)/a(h)™. In particular, it is regular,
and so f — fog maps regular functions on D(h) to regular functions on D(a(h)). It
follows that f — fog sends regular functions on any open subset of spm(A) to regular
functions on the inverse image of the open subset. Thus « defines a morphism of ringed
spaces Spm(B) — Spm(A).

Conversely, by definition, a morphism of ¢ : (V, Oy) — (W, Oy,) of affine algebraic
varieties defines a homomorphism of the associated affine k-algebras k[W] — k[V].

Since these maps are inverse, we have proved the following proposition.

PROPOSITION 3.24. For all affine algebras A and B,
Homy_4jgebra(A, B) — Mor(Spm(B), Spm(A));
for all affine varieties V and W,
Mor(V, W) — Homy_yigebra(K[W1, k[V]).
In terms of categories, Proposition 3.24 says the following.

PROPOSITION 3.25. The functor A ~ Spm A is a contravariant equivalence from the
category of affine k-algebras to the category of affine algebraic varieties over k, with quasi-
inverse (V, Oy ) ~ Oy (V).

g. Explicit description of morphisms of affine varieties

PROPOSITION 3.26. LetV C k™ and W C k" be algebraic subsets. The following condi-
tionsonamap ¢ : V — W are equivalent:

(a) @ is a morphism of ringed spaces (V, Oy) — (W, Oy);
(b) the components ¢, ..., ¢, of ¢ are regular functions on V;
(c) f €eklW] = fopek[V].

PROOF. (a) = (b). By definition ¢; = y;op, where y; is the coordinate function
(b, ., b)) > bt W > k.

Hence this implication follows directly from the definition of a regular map (2.38).

(b) = (c). Themap f — fog is a k-algebra homomorphism from the ring of all
functions W — k to the ring of all functions V' — k, and (b) says that the map sends the
coordinate functions y; on W into k[V']. Since the y; generate k[W] as a k-algebra, this
implies that it sends k[W] into k[V].
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(c) = (a). The map f +— fogp is a homomorphism a : k[W] — k[V]. It therefore
defines a map spm (k[V']) — spm (k[W]), and it remains to show that this coincides
with ¢ when we identify spm (k[V']) with V and spm (k[W]) with W. Let P € V, let
Q = ¢(P), and let mp and m, be the ideals of elements of k[V'] and k[W] that are zero
at P and Q respectively. Then, for f € k[W],

a(f)emp &= f(p(P) =0 < f(Q)=0 < [fem,.
Therefore a=!(mp) = mg, which is what we needed to show. O

The equivalence of (a) and (b) means that ¢ : V' — W is a regular map of algebraic
sets in the sense of Chapter 2 if and only if it is a regular map of the associated affine
algebraic varieties.

Consider equations

Y, = fl(Xl’ 1Xm)

Y, = (X1, ... X0n).

On the one hand, they define a regular map ¢ : A™ — A", namely,

(@1, s @) > (f10a1, oo s Q) oo s (A1 oon s Q).

On the other hand, they define a homomorphism « : k[Y7,...,Y,] = k[X;,...,X,,] of
k-algebras, namely, that sending Y; to f;(X;, ..., X,,). This map coincides with g — gog,
because

a(g)(P) = g(..., fi(P),...) = g(@(P)).

Now consider closed subsets V(a) ¢ A™ and V(b) C A" with a and b radical ideals. I
claim that ¢ maps V(a) into V(b) if and only if a(b) C a. Indeed, suppose ¢(V(a)) C
V(b), and let g € b; for Q € V(a),

a(g)(Q) = g(p(Q) =0,
and so a(g) € IV(a) = a. Conversely, suppose a(b) C a, and let P € V(a); for f € b,
f(p(P)) = a(f)(P) =0,

and so ¢(P) € V(b). When these conditions hold, ¢ is the morphism of affine varieties
V(a) = V(b) corresponding to the homomorphism k[Y7, ..., Y,]/b — k[X,...,X,,]/a
defined by a.

We have shown that the regular maps

V(a) = V(b)
are all of the form
P (f1(P), s [u(P)),  [i € k[Xq, .., X

In particular, they all extend to regular maps A” — A",
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Examples of regular maps

3.27. Let R be a k-algebra. To give a k-algebra homomorphism k[X] — R is the same
as giving an element of R (the image of X under the homomorphism):

Homk—algebra(k [XI,R) ~R.
Therefore
3.24
MOI'(V, Al) ~ Homk_algebra(k[X], k[V]) ~ k[V]

In other words, the regular maps V' — A! are simply the regular functions on V (as we
would hope).

3.28. Let A® = Spmk. Then A° consists of a single point and I'(A°, O40) = k. The
regular maps A° - V, where V is an affine variety, are just the maps of sets, so
Mor(A°, V) ~ V. Alternatively,

1R

MOI‘(AO, V) = Homk-algebra(k[v]a k) v,

where the second map sends « : k[V] — k to the point corresponding to the maximal
ideal Ker(a).

3.29. Let k be of characteristic # 2.
(a) The regular map ¢ — (t2,t3) : Al — A? is bijective onto its image,

V: Y?=X3,

but it is not an isomorphism onto its image because the inverse map is not regular.
In view of 3.25, to prove this it suffices to show that t — (¢2, ) does not induce an
isomorphism on the rings of regular functions.

t (2,3

Al Y2 = X3

We have k[A!] = k[T] and k[V] = k[X,Y]/(Y? — X3) = k[x, y]. The map on rings
is
x—T? yw-T3 klx,y]- k[T],
which is injective, but its image is k[T?, T?] # k[T]. In fact, k[x, y] is not integrally
closed: (y/x)?> — x = 0, and so (y/x) is integral over k[x, y], but y/x & k[x, y] (it maps
to T under the inclusion k(x, y) < k(T)).
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(b) The regular map ¢ = (1 —t2,t(1 —t?)) : A! — A? is bijective onto its image,
V:Y?=X?-X3
except that both +1 map to (0, 0).

1—t2,t(1—1t2)

Al Y2=X2_X3

3.30. Let char(k) = p # 0. The regular map
(aj,...,a,) — (af,...,ag): A" —» A"
is a bijection, but it is not an isomorphism because the corresponding map on rings,
X; o XP 1 kX, o, X ] = K[X, o, X,

is not surjective.

This is the famous Frobenius map. Let k be the algebraic closure of [Fp, and write F
for the map. For each m > 1, there is a unique subfield F,» of k of degree m over [,
and that its elements are the solutions of X?" = X (FT, 4.23). The fixed points of F™ are
precisely the points of A" with coordinates in Fpn. Let f(X;,...,X,) be a polynomial
with coefficients in Fpm, say,

f = Zcil”'inXil X;”, cil"'in e I]:pm.
If f(ay,...,a,) =0, then

. .\ p" ms ms
— i In — P "y
0—(2 CqQy ---an) = E Cqty ety

and so f (af m, s aﬁm) = 0. Here we have used that the binomial theorem takes the
simple form (X + Y)P" = XP" 4+ YP" in characteristic p. Thus F™ maps V(f) into itself,

and its fixed points are the solutions of
fX, ... X,) =0
infFpm.

ASIDE 3.31. Inone of the most beautiful pieces of mathematics of the second half of the twentieth
century, Grothendieck defined a cohomology theory (étale cohomology) and proved a fixed point
formula that allowed him to express the number of solutions of a system of polynomial equations
with coordinates in [F» as an alternating sum of traces of operators on finite-dimensional vector
spaces, and Deligne used this to obtain very precise estimates for the number of solutions. See
my article The Riemann hypothesis over finite fields: from Weil to the present day and my notes
Lectures on Etale Cohomology.
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h. Subvarieties
Let A be an affine k-algebra. For any ideal a in A, we define

V(a) ={m € spm(A) | f(m)=0all f € a}
={m € spm(A) | a C m}.

This is a closed subset of spm(A), and every closed subset is of this form.
Now let a be a radical ideal in A, so that A/a is again an affine k-algebra. Corre-
sponding to the homomorphism A — A/a, we get a regular map

Spm(A/a) - Spm(A).

The image is V(a), and spm(A/a) — V(a) is a homeomorphism. Thus every closed
subset of spm(A) has a natural ringed structure making it into an affine algebraic variety.
We call V(a) with this structure a closed subvariety of V.

PROPOSITION 3.32. Let (V, Oy) be an affine variety and let h be a nonzero element of k[V].
Then
Spm(Ay) = (D(h), Oy |D(h)).

PROOF. The map A — Aj, defines a morphism spm(A4;) — spm(A), and induces an
isomorphism

Spm(A,) — ((D(h), Oy |D(h)) C Spm(A). .

In particular, (D(h), Oy |D(h)) is an affine variety. If V is a closed subvariety of A",
say, V. = V(a) C A", then

(a17 ey an) = (a19 ey a}’l’ h’(al’ see s an)_l) . D(h') - An+1:

defines an isomorphism of D(h) onto V(a, 1 — hX,,,,), thereby realizing D(h) as a closed
subvariety of A"*!, For example,

aw (a,1/a): Al \{0} - V C A2,

is an isomorphism from D(X) = A! \ {0} c A! onto the curve XY = 1in A?,

q
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By an open affine (subset) U of an affine algebraic variety V, we mean an open
subset U such that (U, Oy|U) is an affine algebraic variety. The proposition says that,
for all nonzero h € I'(V, Oy), the open subset of V, where h is nonzero is an open affine.
An open affine subset of an irreducible affine algebraic variety V is irreducible with the
same dimension as V' (2.52).

REMARK 3.33. We have seen that all closed subsets and all basic open subsets of an
affine variety V are again affine varieties with their natural ringed structure, but this
is not true for all open subsets of V. For an open affine subset U, the natural map
U — spmI'(U, Oy ) is a bijection. However, for

UL A2 {0,0)} = D(X) U D(Y) C A2,

we know that I'(U, Ox2) = k[X, Y] (see 3.18), but U — spm k[X, Y] is not a bijection,
because the ideal (X, Y) is not in the image. Clearly (U, O4:|U) is a union of affine
algebraic varieties, and in Chapter 5 we shall recognize it as a (nonaffine) algebraic
variety.

i. Properties of the regular map Spm(«)
PROPOSITION 3.34. Leta . A — B be a homomorphism of affine k-algebras, and let
@ : Spm(B) — Spm(A)

be the corresponding morphism of affine varieties.
(a) Theimage of ¢ is dense for the Zariski topology if and only if a is injective.

(b) The morphism ¢ is an isomorphism from Spm(B) onto a closed subvariety of Spm(A)
if and only if a is surjective.

PROOF. (a) Let f € A. If the image of ¢ is dense, then
fop=0= f=0.

On the other hand, if the image of ¢ is not dense, then the closure of its image is a proper
closed subset of Spm(A), and so there is a nonzero function f € A that is zero on it.
Then fop = 0. (See 2.40.)

(b) If « is surjective, then it defines an isomorphism A/a — B, where a is the kernel
of a. This induces an isomorphism of Spm(B) with its image in Spm(A). The converse
follows from the description of the closed subvarieties of Spm(A) in the last section. -

A regular map ¢ : V — W of affine algebraic varieties is said to be a dominant if its
image is dense in W. The proposition then says that
. . ffog C
¢:V = Wisdominant < I'(W,Oy)—— I'(V, Oy) is injective.
A regular map ¢ : V — W of affine algebraic varieties is said to be a closed immer-
sion if it is an isomorphism of V onto a closed subvariety of W. The proposition then
says that

@: V - Wisaclosed immersion < I'(W,Oy) M) r'(V,Oy) is surjective.
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j- Affine space without coordinates

Let E be a vector space over k of dimension n. The set A(E) of points of E has a natural
structure of an algebraic variety: the choice of a basis for E defines a bijection A(E) - A",
and the inherited structure of an affine algebraic variety on A(E) is independent of the
choice of the basis (because the bijections defined by two different bases differ by an
automorphism of A").

We now give an intrinsic definition of the affine variety A(E). Let V be a finite-
dimensional vector space over a field k. The tensor algebra of V is

T*Vdéf@V@=keavea(V®V)ea(V®V®V)€B---

i>0
with multiplication defined by
(U1®'“®Ui)'(vi®"'®vj-)=Ul®"'®vi®vi®“'®v}

It is a noncommutative k-algebra, and the choice of a basis ey, ..., e,, for V defines an
isomorphism
e e ®-- Qe kieg,...,e,} = TH(V)

to T*V from the k-algebra of noncommuting polynomials in the symbols ey, ..., e,,.
The symmetric algebra S*(V) of V is defined to be the quotient of T*V by the
two-sided ideal generated by the elements

vRYW—-—w®uv, v,welvV.

This algebra is generated as a k-algebra by commuting elements (namely, the elements
of V = V®1), and so is commutative. The choice of a basis ey, ..., ¢, for V defines an
isomorphism

e e ®-- Qe klep,...,e,] = S*(V)
to S*(V) from the commutative polynomial ring in the symbols ey, ..., e,. This shows
that S*(V) is an affine k-algebra. The pair (S*(V), i) comprising S*(V') and the natural
k-linear map i: V — S*(V) has the following universal property: every k-linear map

V — A from V into a k-algebra A extends uniquely to a k-algebra homomorphism
S*(V) — A:

Vv —L 5 5%V)

I

k—% Ell | k-algebra 17)
I
v

A.

As usual, this universal property determines the pair (S*(V'), i) uniquely up to a unique
isomorphism.

We now define A(E) to be Spm(S*(EY)), where EV is the dual vector space. For an
affine k-algebra A,

Mor(Spm(A), A(E)) = Homk—algebra(S*(Ev), A) (3-24)
= Homk-linear(Eva A) (17)
~EQ A (linear algebra).
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In particular,
A(E)k) ~ E.

The choice of a basis ey, ..., e,, for E determines a (dual) basis f, ..., f,, of EY, and hence
an isomorphism of k-algebras k[ f1, ..., f,] = S*(EY). The map of algebraic varieties
A(E) — A" defined by this homomorphism is the isomorphism

e (fi(e),...,fn(e)): E - k™.

k. Birational equivalence

Recall that if V is irreducible, then k[V] is an integral domain, and we let k(') denote
its field of fractions. If U is an open affine subvariety of V, then k[V]| C k[U] C k(V),
and so k(V) is also the field of fractions of k[U].

DEFINITION 3.35. Two irreducible affine algebraic varieties over k are birationally
equivalent if their function fields are isomorphic over k.

PROPOSITION 3.36. Two irreducible affine varieties V and W are birationally equivalent if
and only if there exist open affine subvarieties Uy and Uy, of V and W such that Uy, = Uyy.

PROOF. Let V and W be birationally equivalent irreducible affine varieties, and let
A = k[V] and B = k[W]. We use the isomorphism to identify k(V) and k(W). This
allows us to suppose that A and B have a common field of fractions K. Let x, ..., X,
generate B as k-algebra. As K is the field of fractions of A, there exists a d € A such that
dx; € A for all i; then B C A,. The same argument shows that there existsane € B
such that A; C B,. Now

BCA;CB, = B, C Ay C(B,), =B,,

and so A4, = B,. This shows that the open subvarieties D(de) C V and D(e) C W are
isomorphic. We have proved the “only if” part, and the “if” part is obvious. O

THEOREM 3.37. Every irreducible affine algebraic variety of dimension d is birationally
equivalent to a hypersurface in A%+1,

PROOF. LetV be an irreducible variety of dimension d. According to Proposition 3.38
below, there exist rational functions xy, ..., X4, on V such that k(V') = k(xy, ..., Xg4, Xg41)-
Let f € k[X},...,X4,1] be an irreducible polynomial satisfied by the x;, and let H be the
hypersurface f = 0. Then k(V) ~ k(H) and so V and H are birationally equivalent. -

We review some definitions from FT, Chapter 2. Let F be a field. A polynomial
f € F[X] is separable if it is nonzero and has no multiple roots. Equivalent condition:
ged(f, %) = 1. When f isirreducible, this just says that % # 0 because deg % <degf.
An element of an algebraic extension E of F is separable over F if its minimal polynomial
over F is separable, and E is separable over F if all its elements are separable over F.

PROPOSITION 3.38. Let F be a perfect field and E a finitely generated field extension of F
of transcendence degree d.

(a) IfE = F(xy, ..., X441), then, after the x; have been renumbered, {x,, ..., x4} will be a
transcendence basis for E over F and x4, will be separable over F(xy, ..., X4).
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(b) There exist xq, ..., X441 € E such that E = F(Xq, ..., X441)-

PROOF. First observe that, if F has characteristic p # 0, then, because F is perfect, every
polynomial in X7, ..., X? with coefficients in F is a pth power in F[X, ..., X, ]:

p
. . Ve i i
Dy XX = (Z ail( LX) X ) . (18)

(a) Suppose E = F(xq,...,X441)- Then f(xq,...,x441) = 0 for some nonzero f €
F[X;, ..., X441], which we may take to be irreducible. If all the polynomials 0 f /0X; are
zero, then F has characteristic p # 0 and f is a polynomial in X7, ..., X 5 +1» and hence not
irreducble. Thus some polynomial d f /0X;, which (after renumbering) we may suppose
to be 0 f /90X 441, 1s not zero. Now x4, is separable over F(x, ..., Xg4).

(b) Let {x4, ..., x,,} be a generating set for E over F with n minimal. We assume that
n > d+1 and obtain a contradiction. After renumbering, we may suppose that {x, ..., x4}
is a transcendence basis for E over F (1.63). On applying (a) to F(x, ..., X441), We see
that we may also suppose that x4, is separable over F(x, ..., X4). As X4,, is algebraic
over F(xq, ..., Xq), the primitive element theorem (FT, 5.1), shows that F(xy, ..., Xg4,) =
F(xy,..,xq,y) forsomey € E. Now E = F(Xy, ..., X4, Y, X443, -- » X ), contradicting the
minimality of n. o

In particular, there exists a separating transcendence basis for E/F if E is finitely
generated of finite transcendence degree over F and F is perfect.

1. Dimension

DEFINITION 3.39. The dimension of an affine algebraic variety is the dimension of the
underlying topological space (2.48).

Thus, the dimension of an affine variety V' is the maximum length of a chain
Vo:)Vl:)"':)Vd

of distinct closed irreducible subvarieties. Later in this section, we shall see that it is the
length of every maximal chain of closed irreducible subvarieties.

DEFINITION 3.40. A regular map ¢ : W — V of affine algebraic varieties is finite if the
homomorphism ¢* : k[V] —» k[W] makes k[W] a finite k[V]-algebra.

THEOREM 3.41. LetV be an affine algebraic variety of dimension n. Then there exists a
finitemap V. — A"

PROOF. This is a geometric restatement of the Noether normalization theorem (2.45).5

QUESTION. Let A be a finitely generated k-algebra. Assume that A is an integral domain,
and let d be the transcendence degree of its field of fractions F. Does there exist a
transcendence basis {x, ..., X4} for F over k such that

(a) Ais finite over k[x,, ..., Xx4], and
(b) F is separable over k(xy, ..., Xg)-

According 2.45 and 3.38 there exist transcendence bases satisfying (a) or (b). Does there
always exist one satisfying both?
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THEOREM 3.42. LetV be an irreducible affine algebraic variety and f a nonzero regular
functionon V. If f has a zero in V, then its zero set is of pure codimension 1.

PROOF. Letd = dim(V). When V = A4, we proved this in 2.64, and an argument of
Tate allows us to deduce the general case from the Noether normalization theorem.
Let Z,, ..., Z, be the irreducible components of V(f). We have to show that dim Z; =
dimV — 1 for each i. There exists a point P € Z; not contained in any other Z;. As the
Z; are closed, there exists an open affine neighbourhood U of P in V' not intersecting any
Z;with j # i. Then Z; N U is irreducible, and it is the zero set of the regular function
fIU. We may replace V and f with U and f|U, and so assume that V() is irreducible.
As V(f) is irreducible, the radical of (f) is a prime ideal p in k[V']. According to
Theorem 2.45, there exists an inclusion k[A?] < k[V] realizing k[V'] as a finite k[A¢]-

algebra. The norm wt
€
Sfo = Nmyyy /iany f

of f lies in k[A?] and f divides f, in k[V] (by 1.45). Hence f, € (f) C p, and so
rad(f,) C p N k[A?]. We claim that, in fact,

rad(f,) = p N k[A4].

Letg € pnk[A?]. Theng € p «f rad(f), and so g™ = fh for some h € k[V], m € N.
Taking norms, we find that

8" =Nm(fh) = fo-Nm(h) € (fo),  e=[k(V) : k(A")],

and so g € rad(fy), as claimed.
The inclusion k[A¢] & k[V] therefore induces an inclusion

k[A]/ rad(fo) < k[V1/p.

This makes k[V']/p into a finite algebra over k[A?]/ rad(f,), and so the fields of fractions
of these two k-algebras have the same transcendence degree over k. Hence (2.56)

dim V(p) = dim V().

Clearly f # 0= f, # 0,and f, € p = f, is nonconstant. Therefore dimV(fy) =d — 1
by 2.64. o

We can restate Theorem 3.42 as follows: let V be a closed irreducible subvariety of
A" and let F € k[X4, ..., X, ]; then

14 if F is identically zero on V'
VnVF)=1{ @ if F has no zeros on V
pure codimension 1 otherwise.

COROLLARY 3.43. LetV be an irreducible affine variety, and let Z be a maximal proper
irreducible closed subset of V. Then dim(Z) = dim(V) — 1.

PROOF. Because Z is a proper closed subset of V, there exists a nonzero regular function
f on V vanishing on Z. Let V(f) be the zero set of f in V. Then Z Cc V(f) C V,and Z
must be an irreducible component of V(f) for otherwise it would not be maximal in V.
Thus Theorem 3.42 shows that dim Z = dim V' — 1. 0
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COROLLARY 3.44. LetV be an irreducible affine variety. Every maximal chain
V=VyDdV;D:--DVy (19)
of distinct irreducible closed subsets of V has length d = dim(V).

PROOF. As the chain is maximal, the last set V; must be a point and each V; must be
maximal in V;_;, and so, from 3.43, we find that

dimVy=dimV;+1=dimV,+2=--=dimV,;+d =d.

COROLLARY 3.45. Let V be an irreducible affine variety, and let f1, ..., f, be regular func-
tions on V. Every irreducible component Z of V(f1, ... f,) has codimension at most r:

codim(Z) <r.

PROOF. We use induction onr. Because Z is an irreducible closed subset of V(f7, ..., fr_1),
itis contained in some irreducible component Z’ of V(f1, ... f,_;). By induction, codim(Z") <
r — 1. Also Z is an irreducible component of Z' N V(f,) because

ZCZ/nV(fr)CV(fl’---’fr)

and Z is a maximal irreducible closed subset of V(f1, ..., f;). If f, vanishes identically
on Z’,then Z = Z’' and codim(Z) = codim(Z") < r — 1; otherwise, the theorem shows
that Z has codimension 1 in Z’, and codim(Z) = codim(Z’) +1 < r. O

EXAMPLE 3.46. In the setting of 3.45, the components of V(f1, ..., f,) need not all have
the same dimension, and it is possible for all of them to have codimension < r without
any of the f; being redundant. For example, let V' be the 3-dimensional cone

X, Xs—X,X3=0
in A*. Then V(X;) NV is the union of two planes:
V(X)) NV ={0,0,*,*%)}U{0,x*,0,*)}
Both of these have codimension 1 in V' (as required by 3.42). Similarly,
V(X5) NV ={0,0,*,*)}U{(*,0,x*,0)},

and so Z & V(X;,X,) NV consists of a single plane {(0, 0, *,*)}. Thus, Z still has
codimension 1 in V, but it requires two equations to define it.

PROPOSITION 3.47. Let Z be an irreducible closed subvariety of codimension r in an affine
variety V. Then there exist regular functions f1, ..., f, on V such that Z is an irreducible
component of V(f1, ..., f,) and all irreducible components of V(f1, ..., ) have codimen-
sion r.

PROOF. We know that there exists a chain of irreducible closed subsets

V>Z, D222 =2
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with codim Z; = i. We shall show that there exist f1,..., f, € k[V] such that, for all
s <r, Zg is an irreducible component of V(f1, ..., f,) and all irreducible components of
V(f1,-, fs) have codimension s.

We prove this by induction on s. For s = 1, take any nonzero f; € I(Z;), and apply
Theorem 3.42. Suppose that f1, ..., fi_; have been chosen, and let Y,,Y>, ..., Y,,, be the
irreducible components of V(f71, ..., fs_1), numbered so that Z,_; = Y;. We seek an
element f that is identically zero on Z; but is not identically zero on any Y; — for such
an f, all irreducible components of Y; N V(f,) will have codimension s, and Z; will be
an irreducible component of Y; N V(f;). But no Y; is contained in Z; because Z, has
smaller dimension than Y;, and so I(Z;) is not contained in any of the ideals I(Y;). Now
the prime avoidance lemma (see below) tells us that there exist an f; € I(Z)~ (Ul I (Yi)),
and this is the function we want. O

LEMMA 3.48 (PRIME AVOIDANCE LEMMA). Ifan ideal a of a ring A is not contained in
any of the prime ideals p1, ..., p,, then it is not contained in their union.

PROOF. We may assume that none of the prime ideals p; is contained in a second,
because then we could omit it. E(gr a fixed i, choose an f; € a \ p; and, for each j # i,
choose an f; € p; \ p;. Then h; = H;zl fjliesin each p; with j # i and a, but not in

p; (here we use that p; is prime). The element Z;zl h; is therefore in a but not in any p;
(e'g’ h2a ceey hr € ‘pl but hl g ‘pl) O

EXAMPLE 3.49. When V is an affine variety whose coordinate ring is a unique factor-
ization domain, every closed subset Z of codimension 1 is of the form V() for some
f € k[V] (see 2.66). The condition that k[V] be a unique factorization domain is
definitely needed. Again consider the cone,

V: X1X4 —X2X3 = 0
in A% and let Z and Z' be the planes
Z = {(*’ 0, *’ 0)} Z/ = {(0, *’ 0’ *)}'

Then ZnZ' = {(0,0,0,0)}, which has codimension 2 in Z’. If Z = V(f) for some regular
function f on V, then V(f|Z’) = {(0, ..., 0)}, which has codimension 2, in violation of
3.42. Thus Z is not of the form V(f), and so

k[Xl’XZ’X3’X4]/(X1X4 _X2X3)

is not a unique factorization domain.

Restatement in terms of affine k-algebras

Let A be a finitely generated k-algebra. Assume that A is an integral domain with field
of fractions F.

3.50. The Krull dimension of A, dim A = tr deg, F.
See Corollary 2.56.

3.51 (PRINCIPAL IDEAL THEOREM). Let f1,..., f, beelementsof A. If p is minimal among
the prime ideals containing (f, ..., f,), then ht(p) < r. In particular, ht(p) < r if p can be
generated by r elements.
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See Corollary 3.45.

3.52. Let p be a primeideal in A. If p has height r, then there exist f1, ..., f, € A such that
(a) p is minimal among the prime ideals containing (f1, ..., f,), and

(b) every prime ideal minimal among those containing (f1, ..., f) has height r.
See Proposition 3.47.

3.53. Ifevery prime ideal of height 1 in A is principal, then A is a unique factorization
domain.

In order to prove this, it suffices to show that every irreducible element f of A is
prime (1.26). Let p be minimal among the prime ideals containing (f). According to
3.51, p has height 1, and so it is principal, say, p = (g). As (f) C (), f = gq for some
q € A. Because f is irreducible, g is a unit, and so (f) = (g) = p — the element f is
prime.

3.54. Let p be a minimal nonzero prime ideal in A. Then ht(p) = 1.
According to 3.51, ht(p) < 1 and 3.43 says that it equals 1.

3.55. Every maximal chain of distinct prime ideals

PoD "D Ppg
in A has length dim(A). In particular, all maximal ideals in A have height dim(A).
See Corollary 3.44.

3.56. Let q D p be prime ideals in A. Any two maximal chains of distinct prime ideals

q=PgOPg-1D"DPo=7p
have the same length.
Indeed, if follows from 3.54 that their length is ht(q) — ht(p).

REMARK 3.57. The first four statements (3.50, 3.51, 3.52, 3.53) hold for all noetherian
rings, but with more difficult proofs. The remaining statements (3.54, 3.55, 3.56) may
fail. Rings satisfying 3.56 are said to be catenary. Noncatenary rings are hard to find,
but here is an example of a ring that fails 3.55. Let A = R[X], where R &f k[T]ry is
a discrete valuation ring with maximal ideal (T). The Krull dimension of A is 2, and
(T,X) D (T) D (0) is a maximal chain of prime ideals, but the ideal (1 — TX) is (a)
maximal and (b) has height 1. To see (a), note that

1.13
A/(1=TX) ~ Ry = k(T).

To see (b), note that the ideal (1 — TX) in k[T, X] has height 1, and that A is the ring of
fractions of k[T, X] obtained by inverting the elements of k[T ] \ (T).
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ASIDE 3.58. Proposition 3.47 shows that an irreducible curve C in A3 is an irreducible component
of V(f1, f») for some f1, f, € k[X,Y,Z]. In fact C = V(f, f», f3) for suitable polynomials
f1, f2, and f5 (exercise). Apparently, it is not known whether two polynomials always suffice to
define an irreducible curve in A3.

More generally, one can ask whether an irreducible curve C in A" can be defined by n — 1
polynomials, i.e., do there exist f1, ..., f,_1 € k[X1,...,X,,] such that

C=V(f1, fn1)?
A positive answer to this question is known in the following cases:
(a) k[C]is a Dedekind domain (Mohan Kumar);
(b) kis of nonzero characteristic (Cowsik and Nori).

For proofs, see Chapter 10 of Ischebeck and Rao, Ideals and Reality, Springer 2005.

Exercises

3-1. Show that a map between affine varieties can be continuous for the Zariski topology
without being regular.

3-2. Let V = Spm(A), and let Z = Spm(A/a) C Spm(A). Show that a function f on
an open subset U of Z is regular if and only if, for each P € U, there exists a regular
function f” on an open neighbourhood U’ of P in V such that f and f” agree on U’ N U.

3-3. Find the image of the regular map
(x,y) P (x,xy): A? > A?
and verify that it is neither open nor closed.

3-4. Show that the circle X?+Y? = 1is isomorphic (as an affine variety) to the hyperbola
XY = 1, but that neither is isomorphic to A'. (Assume char(k) # 2.)

3-5. Let C be the curve Y? = X2 + X3, and let ¢ be the regular map
t- ({2 -1,t(t?-1)): Al - C.

Is ¢ an isomorphism?



Chapter 4

Local Study

Geometry is the art of drawing correct conclusions
from incorrect figures. (La géométrie est Lart de
raisonner juste sur des figures fausses.)
Descartes

In this chapter, we examine the structure of an affine algebraic variety near a point.
We begin with the case of a plane curve, since the ideas in the general case are the same
but the proofs are more difficult.

a. Tangent spaces to plane curves

Consider the curve V in the plane defined by a nonconstant polynomial F(X,Y),
V :FX,Y)=0.

We assume that F(X,Y) has no multiple factors, so that (F(X,Y)) is a radical ideal
and I(V) = (F(X,Y)). We can factor F into a product of irreducible polynomials,
F(X,Y)= ][] Fi(X,Y),and then V = | J V(F;) expresses V as a union of its irreducible
components (see 2.29). Each component V(F;) has dimension 1 (by 2.64) and so V has
pure dimension 1.

If F(X,Y) itself is irreducible, then

k[V] = k[X,Y]/(F(X,Y)) = k[x, y]

is an integral domain. Moreover, if F # X — c, then X is transcendental over k, and y
is algebraic over k(x), and so x is a transcendence basis for k(V') over k. Similarly, if
F #Y — ¢, then y is a transcendence basis for k(V') over k.

Let (a, b) be a point on V. If we were doing calculus, we would say that the tangent
space at P = (a, b) is defined by the equation

oF oF _
T (@)X —a)+ S5 b)Y —b) = 0. (20)

This is the equation of a line unless both g—;(a, b) and g—l;(a, b) are zero, in which case

it is the equation of a plane.

- O and 2
We are not doing calculus, but we can define 3% and 3y by

81
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and make the same definition.

DEFINITION 4.1. The tangent space TpV to V at P = (a,b) is the algebraic subset
defined by equation (20).

If g—§(a, b) and g—g(a, b) are not both zero, then Tp(V) is a line through (a, b), and

we say that P is a nonsingular or smooth point of V. Otherwise, Tp(V) has dimension
2, and we say that P is singular or multiple. The curve V is said to be nonsingular or

smooth if all its points are nonsingular.

As in advanced calculus, we often write F for a—F(a, b).

o0xX (a.b) 0X

Examples

For each of the following examples, the reader is invited to sketch the curve. Assume
that char(k) # 2, 3.

4.2. X™ + Y™ = 1. The tangent space at (a, b) is given by the equation
ma™ (X —a) + mb"™ (Y —b) = 0.

All points on the curve are nonsingular unless the characteristic of k divides m, in which
case X™ 4+ Y™ — 1 has multiple factors,

XM+Y"m—1=X"P 4 Y™P —1 = (X" +Y" —1)P.

4.3. Y2 = X3 (sketched in 4.12 below). The tangent space at (a, b) is given by the
equation
—3a*(X —a)+2b(Y —=b) =0.

The only singular point is (0, 0).
4.4. Y? = X2(X + 1) (sketched in 4.10 below). Here again only (0, 0) is singular.

4.5. Y2 = X3 + aX + b. In 2.2 we sketched two nonsingular examples of such curves,
and in 4.10 and 4.11 we sketch two singular examples. The singular points of the curve
are the common zeros of the polynomials

Y2-X3—aX-b, 2Y, 3X’+a,
which consist of the points (¢, 0) with ¢ a common zero of
X3+aX+b, 3X*+a.

As 3X? + a is the derivative of X> + aX + b, we see that V is singular if and only if
X3 + aX + b has a multiple root.

4.6. V = V(FG), where FG has no multiple factors (so F and G are coprime). Then
V = V(F)UV(G), and a point (a, b) is singular if and only if it is

¢ asingular point of V(F),

o asingular point of V(G), or

o apoint of V(F) N V(G).
This follows immediately from the product rule:

d(FG) _ 3G , OF d(FG) _ 4G , F
X =F 6X+6X G, Y =F aY+aY G
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The singular locus

PROPOSITION 4.7. The nonsingular points of a plane curve form a dense open subset of
the curve.

PROOF. LetV = V(F), where F is a nonconstant polynomial in k[ X, Y| without multiple
factors. It suffices to show that the nonsingular points form a dense open subset of each
irreducible component of V, and so we may suppose that V (hence F) is irreducible.
It suffices to show that the set of singular points is a proper closed subset. It is closed
because it is the set of common zeros of the polynomials

oF OF
H a_X, a_Y
It will be proper unless 0F /dX and 0F /dY are both identically zero on V, and hence
both multiples of F, but, as they have lower degree than F, this is impossible unless they
are both zero. Clearly 0F /0X = 0if and only if F is a polynomial in Y (k of characteristic
zero) or is a polynomial in X? and Y (k of characteristic p). A similar remark applies
to 0F/0Y. Thus if 0F /0X and dF /3Y are both zero, then F is constant (characteristic

zero) or a polynomial in X?, YP, and hence a pth power (characteristic p, see (18), p. 75).
These are contrary to our assumptions. o

Thus the singular points form a proper closed subset, called the singular locus.

ASIDE 4.8. In common usage, “singular” means uncommon or extraordinary as in “he spoke
with singular shrewdness”. Thus the proposition says that singular points (mathematical sense)
are singular (usual sense).

b. Tangent cones to plane curves
A polynomial F(X,Y') can be written (uniquely) as a finite sum
F=Fy+F +F,+--+F, + - (21)

with each F,, a homogeneous polynomial of degree m. The term F; will be denoted
F, and called the linear form of F, and the first nonzero term on the right of (21) (the
nonzero homogeneous summand of F of least degree) will be denoted F,, and called the
leading form of F.

If P = (0,0) is on the curve V defined by F, then F;, = 0 and (21) becomes

F = aX + bY + higher degree terms,
and the equation of the tangent space is
aX +bY =0.

DEFINITION 4.9. Let F(X,Y) be a polynomial without square factors, and let V' be the
curve defined by F. If (0,0) € V, then the geometric tangent cone to V at (0,0) is the
zero set of F,.. The tangent cone is the pair (V(F,), k[X,Y]/F,). To obtain the tangent
cone at any other point, translate to the origin, and then translate back.
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Note that the geometric tangent cone at a point on a curve always has dimension
1. While the tangent space tells you whether a point is nonsingular or not, the tangent
cone also gives you information on the nature of a singularity.

In general we can factor F, as

F.(X,Y) = X" [[.(Y —ax)".
Then degF,, & >, r; is called the multiplicity of the singularity. A multiple point is
ordinary if its tangents are nonmultiple, i.e., r; = 1 all i. An ordinary double point is
called a node. There are many names for special types of singularities — see any book,
especially an old book, on algebraic curves.

Examples

The following examples are adapted from Walker 1950. We assume that the characteristic
of k is 0.

4.10. F(X,Y) = X3+X?-Y?. The tangent cone at (0, 0)
is defined by Y2 — X?2. It is the pair of lines Y = +X, and
the singularity is a node.

4.11. F(X,Y) = X3 —X?—Y?2. The origin is an isolated
point of the real locus. It is again a node, but the tangent
cone is defined by Y? + X2, which is the pair of lines
Y = +iX. In this case, the real locus of the tangent cone
is just the point (0,0).

4.12. F(X,Y) = X3 — Y2, Here the origin is a cusp.
The tangent cone is defined by Y2, which is the X-axis

(doubled). ‘\
4.13. F(X,Y) = 2X*-3X?Y+Y?-2Y3+Y*. The origin
is again a double point, but this time it is a tacnode. The

tangent cone is again defined by Y?.

414. F(X,Y) = X*+X?Y?-2X?Y —XY?-Y?. The ori-
gin is again a double point, but this time it is a ramphoid
cusp. The tangent cone is again defined by Y2.
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4.15. F(X,Y) = (X*+Y?)?+3X°?Y — Y. The origin is
an ordinary triple point. The tangent cone is defined by

3X2Y —Y?3, which s the triple of linesY = 0,Y = +1/3X. m

4.16. F(X,Y) = (X2 + Y?)? — 4X?Y?. The origin has
multiplicity 4. The tangent cone is defined by 4X2Y?2,
which is the union of the X and Y axes, each doubled.

4.17. F(X,Y) = X® — X?Y?® — Y°. The tangent cone
is defined by X2Y? + Y, which consists of a triple line
Y? = 0 and a pair of lines Y = +iX.
i

ASIDE 4.18. Note that the real locus of the algebraic curve in 4.17 is smooth even though the
curve itself is singular. Another example of such a curve is Y + 2X2Y — X* = 0. This is singular
at (0,0), but its real locus is the image of R under the analytic map ¢ ~ (3 + 2t, t(¢3 + 2)), which
is injective, proper, and immersive, and hence an embedding into R? with closed image. See
mo098366 for a discussion of this question.

c. Thelocal ring at a point on a curve

PROPOSITION 4.19. Let P be a point on a plane curve V, and let m be the correspond-
ing maximal ideal in k[V']. If P is nonsingular, then dim;(m/m?) = 1, and otherwise
dimy(m/m?) = 2.

PROOF. Assume first that P = (0,0). Then m = (x,y) in k[V] = k[X,Y]/(F(X,Y)) =
k[x,y]. Note that m? = (x?, xy, y%), and

m/m? = (X,Y)/(m? + FX,Y)) = (X,Y)/(X%, XY, Y%, F(X,Y)).

In this quotient, every element is represented by a linear polynomial cx + dy, and the
only relation is Fz(x,y) = 0. Clearly dim,(m/m?) = 1if F, # 0, and dim;(m/m?) = 2
otherwise. Since F, = 0 is the equation of the tangent space, this proves the proposition
in this case.

The same argument works for an arbitrary point (a, b) except that one uses the
variables X’ = X —a and Y’ = Y — b; in essence, one translates the point to the origin.g

We explain what the condition dimy(m/m?) = 1 means for the local ring Op =
k[V]n- Let n be the maximal ideal m - k[V],, of this local ring. The map m — n induces
an isomorphism m/m? — n/n? (see 1.15), and so we have

P nonsingular < dimjym/m? =1 < dimyn/n’=1.

Nakayama’s lemma (1.3) shows that the last condition is equivalent to n being a principal
ideal. As Op has Krull dimension one (2.64), for its maximal ideal to be principal means
that it is a regular local ring of dimension 1 (see 1.6). Thus, for a point P on a curve,

P nonsingular < Op regular.


https://mathoverflow.net/questions/98366/
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PROPOSITION 4.20. Every regular local ring of dimension one is a principal ideal domain.

PROOF. Let A be such a ring, and let m = () be its maximal ideal. According to the
Krull intersection theorem (1.8), ﬂrZO m” = (0). Let a be a proper nonzero ideal in A. As
a is finitely generated, there exists an r € N such thata C m" buta ¢ m’*1, Therefore,
there exists an a = cz” € a such that a ¢ m"*!. The second condition implies that
¢ ¢ m, and so it is a unit. Therefore (7") = (a) Ca C (7"),and soa = (7") = m". We
have shown that all ideals in A are principal.

By assumption, there exists a prime ideal p properly contained in m. Then A/p is
an integral domain. As 7 ¢ p, it is not nilpotent in A/p, and hence not nilpotent in A.

Let a and b be nonzero elements of A. There exist , s € N such thata € m” x m’+!
and b € m*~m**!l. Then a = un” and b = vz’ with u and v units, and ab = uvr’*s # 0.
Hence A is an integral domain. o

It follows from the elementary theory of principal ideal domains that the following
conditions on a principal ideal domain A are equivalent:

(a) A has exactly one nonzero prime ideal;
(b) A has exactly one prime element up to associates;
(c) Aislocal and is not a field.
A ring satisfying these conditions is called a discrete valuation ring.!

THEOREM 4.21. A point P on a plane algebraic curve is nonsingular if and only if Op is
regular, in which case it is a discrete valuation ring.

PRrROOF. The statement summarizes the above discussion. O

d. Tangent spaces to algebraic subsets of A™

Before defining tangent spaces at points of an algebraic subset of A™ we review some
terminology from linear algebra.

LINEAR ALGEBRA

For a vector space k™, let X; be the ith coordinate function a — q;. Thus X1, ..., X,, is
the dual basis to the standard basis for k’:. A linear form )] ;X; can be regarded as an
element of the dual vector space (k)Y « Homy,_jipear(K™, k).

Let A = (q;;) be an n X m matrix. It defines a linear map « : k™ — k", by

m
4 a 2 j=1Hj4j
= Al = .

L
ap ap ZFI apja;

Let A be a discrete valuation ring and 7 a prime element of A. For an element a of the field of fractions
Fof A, let
r ifa =cn" withc € A%,
o ifa=0.

v(a) = {

Then v is an additive valuation on F with discrete value group v(F) = Z Ul {oo} and valuation ring A =
{a € F | v(a) > 0}. The discrete valuation rings are exactly the valuation rings of discrete valuations, which
explains the name.
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LetYy,..., Y, for the coordinate functions on k". Then
m
Yiooc = Z aleJ
j=1
This says that the ith coordinate of a(a) is
m m
Z al](Xja) = Z aijaj.
j=1 j=1

TANGENT SPACES

DEFINITION 4.22. Let V' C k™ be an algebraic subset of k", and let a = I(V). The
tangent space T,(V)toV atapointa = (a,, ..., a,,) of V is the subspace of the vector
space with origin a cut out by the linear equations

Z% X;—a)=0, Fea. 22)
i=1 lla

In other words, T, (A™) is the vector space of dimension m with origin a, and T, (V)
is the subspace of T, (A™) defined by the equations (22).

Write (dX;), for (X; — q;); then the (dX;), form a basis for the dual vector space
T,(A™)Y to T,(A™) — in fact, they are the coordinate functions on T,(A™)V. As in
advanced calculus, we define the differential of a polynomial F € k[X,,...,X,,] ata by
the equation:

OF

(dF), = Z X,

i=1

(dXi)a-

It is again a linear form on T,(A™). In terms of differentials, T, (V) is the subspace of
T,(A™) defined by the equations:

(dF), =0, F €a. (23)
I claim that, in (22) and (23), it suffices to take the F to lie in a generating subset for a.
The product rule for differentiation shows that if G = i H;Fj, then

(dG), = ZHj(a) (dFj)a + Fj(a) - (dH}),.
J

If Fy,...,F, generate a and a € V(a), so that F j(a) = 0 for all j, then this equation
becomes

(dG)y = D Hj(@) - (dF)),.
J

Thus (dF,),, .-, (dF,), generate the k-vector space {(dF), | F € a}.

DEFINITION 4.23. A point a on an algebraic set V' is nonsingular (or smooth) if it lies
on a single irreducible component W of V' and the dimension of the tangent space at a
is equal to the dimension of W; otherwise it is singular (or multiple).



88 4. LOCAL STUDY

Thus, a point a on an irreducible algebraic set V' is nonsingular if and only if
dimT,(V) = dimV. As in the case of plane curves, a point on V is nonsingular if
and only if it lies on a single irreducible component of V' and is nonsingular on it.

Leta = (Fy,...,F,), and let

R OR
oF,; 0X,” 70X
J =Jac(Fy,...,F,) = x| = : :
J OF, OF,
oxX,> 7 0X,

Then the equations defining T, (V') as a subspace of T, (A™) have matrix J(a). Therefore,
linear algebra shows that

dim; T,(V) = m — rank J(a),

and so a is nonsingular if and only if the rank of Jac(Fy, ..., F,)(a) is equal to m —dim(V).
For example, if V' is a hypersurface, say, I(V) = (F(X;, ..., X)), then

Jac(F)(a) = (:—g(a), o a‘%(a)) ,

and a is nonsingular if and only if not all of the partial derivatives gTF vanish at a.
1

We can regard J as a matrix of regular functions on V. For each r,
{a € V |rankJ(a) <r}

is closed in V, because it is the set where certain determinants vanish. Therefore, there
is an open subset U of V' on which rank J(a) attains its maximum value, and the rank
jumps on closed subsets. Later (4.37) we shall show that the maximum value of rank J(a)
is m —dim V, and so the nonsingular points of V' form a nonempty open subset of V.

e. The differential of a regular map

Consider a regular map
p: A" > A" a e (Pi(ag,...,ay), -, Pr(ay, ..., ).
We can think of ¢ as being given by the equations
Y; =P;(Xy,....X,), i=1,..,n.

It corresponds to the map of rings ¢* : k[Y,...,Y, ] — k[X;,...,X,,] sending Y; to
Pi(Xy, s Xp), i = 1,...,1.

Leta € A™, and letb = @(a). Define (dg), : T,(A™) —» Ty,(A") to be the map such
that

a .
@Y po(dp)s = 3 b (dX)),.

0X; .
i.e., relative to the standard bases, (dg), is the map with matrix
oP; oP;
a_Xl(a)’ s m(a)

Jac(Py,...,P,)(a) &

op, oP.
aXZ (a), cesy aX; (a)
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For example, supposea = (0, ...,0)and b = (0, ..., 0), so that T, (A™) = k" and T,(A") =
k™. If

m
P(Xy, ., X)) = Z X+ (higher terms), i=1,..,n,
j=1

then Y;o(dg), = ZJ. ¢;jXj, and the map on tangent spaces is given by the matrix (c;;),
ie., it is simply t — (c;;)t.

Let F € k[X1,...,X,,,]. We can regard F as a regular map A™ — A!, whose differen-
tial will be a linear map

(dF), 1 To(A™) > Ty(AY), b= F(a).

When we identify T, (A!) with k, we obtain an identification of the differential of F
(regarded as a regular map) with the differential of F (regarded as a regular function).

LEMMA 4.24. Let ¢ : A™ — A" be a regular map. If ¢ maps V & V(a) C k™ into
w V(b) C k", then (dp), maps T,(V) into T,(W), b = ¢(a).

PROOF. We are given that
fE€b=> fop € q,

and have to prove that
f €b= (df)o(de), is zero on T, (V).
The chain rule holds in our situation:

of < Of 9Y;
oX; £ 9Y; 68X,

Y] = Pj(Xl’ .es ,Xm), f = f(Yl’ . ’YI’I,)'

If ¢ is the map given by the equations
Y] =Pj(X1""’Xm)’ J = 1,...,n,
then the chain rule implies that

d(fop)a = (dfo(dp)a, b =p(a)
Lett € T,(V); then
(df)po(de)a(t) = d(fop)a(t),
which is zero if f € b because then fop € a. Thus (dp),(t) € Tp(W). o

We therefore get a map (d¢), : T,(V) — Tp(W). The usual rules from advanced
calculus hold. For example,

(dY)po(dp)a = d(Pog)a, b =ep(a).

f. Tangent spaces to affine algebraic varieties

The definition 4.22 of the tangent space at a point on an algebraic set uses the embedding
of the algebraic set into A”. In this section, we give an intrinsic definition of the tangent
space at a point of an affine algebraic variety that makes clear that it depends only on
the local ring at the point.
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Dual numbers

For an affine algebraic variety V and a k-algebra R (not necessarily affine), we let
V(R) = Hom(k[V'],R) (homomorphisms of k-algebras).

For example, if V' C A", then
V(R) ={(ay,...,a,) € R"| f(ay,..,a,) =0forall f € I(V)}.

A homomorphism R — S of k-algebras defines a map V(R) — V(S) of sets.
The ring of dual numbers is k|| < k[X]/(X?), where ¢ = X + (X?). Thus k[¢] =
k & ke as a k-vector space, and

(a+ be)(c+de) =ac+ (ad + bc)e, a,b,c,d €k.
Note that there is a k-algebra homomorphism € — 0: k[e] — k.

DEFINITION 4.25. Let P be a point on an affine algebraic variety V over k. The tangent
spaceto V at P is

To(V) € 1P € V(K[e]) | P’ = P under V(k[e]) — V(K)}.

Thus an element of Tp(V') is a homomorphism of k-algebras « : k[V] — k[e] whose

—0
composite with k[e] 27 kis the point P. To say that k[V'] — k is the point P means that
its kernel is mp, and so mp = a~1((¢)).

PROPOSITION 4.26. LetV be an algebraic subset of A", and let V' = (V, Oy) be V equipped
with its canonical structure of an affine algebraic variety. Let P € V. Then

Tp(V) (as defined in 4.22) ~ Tp(V") (as defined in 4.25).

PROOF. LetI(V) = aandlet P = (ay,..., a,). On rewriting a polynomial F(Xj, ..., X},)
in terms of the variables X; — q;, we obtain the (trivial Taylor) formula,

F(Xpos Xp) = F(ap, s @) + 3 % (X, — a) +R
lla

with R a finite sum of products of at least two terms (X; — q;).
According to 4.25, Tp(V') consists of the elements a + b of k[e]" = k" @ k"¢ lying
in V(k[e]). Let F € a. On setting X; equal to a; + ¢b; in the above formula, we get,

b).
a

Thus, (a; + ¢€by, ..., a, + €b,) lies in V(k[¢]) if and only if (b, ..., b,,) € T (V). o

oF

F(a; +¢by,...,a, +€b,) =¢ (Z X
i

We can restate this as follows. Let V' be an affine algebraic variety, and let P € V.
Choose an embedding V' < A", and let P map to (ay, ..., a,). Then the point

(a1, ...,a,)+ (by,...,b,)e

of A"(k[e]) is an element of Tp(V') (definition 4.25) if and only if (b4, ..., b,,) is an element
of Tp(V) (definition 4.22).
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PROPOSITION 4.27. LetV be an affine variety, and let P € V. There is a canonical isomor-
phism

Tp(V) ~ Hom(Op, k[c]) (local homomorphisms of local k-algebras).

PROOF. By definition, an element of Tp(V) is a homomorphism « : k[V] — k[e] such
that a~1((¢)) = mp. Therefore « maps elements of k[V] ~ mp into (k[e] ~ (¢)) = k[e]*,
and so a extends (uniquely) to a homomorphism a’ : Op — kle]. By construction, o’
is a local homomorphism of local k-algebras, and clearly every such homomorphism
arises in this way from a (unique) element of Tp(V). O

Derivations
DEFINITION 4.28. Let A be a k-algebra and M an A-module. A k-derivation is a map
D: A - M such that

(@) D(c) =0forallc € k;

() D(f +g) = D(f) + D(g);

(c) D(fg)=f-Dg+g-Df (Leibniz’s rule).
Note that the conditions imply that D is k-linear (but not A-linear). The k-derivations
A — M form a k-vector space Der (A, M).

For example, let A be a local k-algebra with maximal ideal m, and assume that

A/m = k. For f € A, let f(m) denote the image of f in A/m. Then f — f(m) € m,

and the map ot
€]

frdf = f—f(m) modm?
is a k-derivation A — m/m? because, modulo m?,
0=(f—f(m)(g—gm))

=—fg+ f(m)g(m) + f - (g — g(m)) + g(f — f(m))
=—d(fe)+f-dg+g-df.

PROPOSITION 4.29. Let (A, m) be as above. There are canonical isomorphisms

Hom(A, k[e]) =~ Dery(A, k) ~ Hom(m/m?, k).

local k-algebra homs k-linear maps

A ff(m)

PROOF. The composite of the maps k ‘ k is the identity, and so, when

regarded as k-vector space, A decomposes into

A=k&m, fo(f(m),f-fm)).

Leta: A — kl[e] be a local homomorphism of k-algebras, and write a(a) = a, +
D,(a)e. Because a is a homomorphism of k-algebras, ay = a(m). We have

a(ab) = (ab)y + D,(ab)e, and
a(a)a(b) = (ag + Dy(a)e)(by + Dg(b)e) = agbg + (agDg(b) + byDy(a))e.

On comparing these expressions, we see that D, satisfies Leibniz’s rule, and therefore is
a k-derivation A — k. Conversely, if D : A — k is a k-derivation, then

a:. amr a(m)+D(a)
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is a local homomorphism of k-algebras A — k[¢], and all such homomorphisms arise in
this way. This proves the first isomorphism.

A derivation D: A — k is zero on k and on m? (by Leibniz’s rule). It therefore
defines a k-linear map m/m? — k. Conversely, a k-linear map m/ m’ = k defines a

derivation by composition

—d
PEiN m/m? - k.

Tangent spaces and differentials

We summarize the above discussion in the context of affine algebraic varieties.

4.30. Let V be an affine algebraic variety, and let P be a point on V. Write mp for the
corresponding maximal ideal in k[V'] and np for the maximal ideal mpOy p in the local
ring at P. There are canonical isomorphisms

Tp(V) ———— Dery(k[V],k) —— Hom(mp/m?, k)

k-linear homs
l l l (24)

Hom(Op, k[e]) —— Der(Op, k) —— Hom(np/n3, k).
local k-algebra homs k-linear homs

In the term Der (k[V'], k) on the top row, k[V'] acts on k through k[V] — k[V]/mp ~ k
(soitdepends on P), and in the term Der; (Op, k) on the bottom row, Op acts on k through
Op — Op/np ~ k. The maps have the following descriptions.
(a) By definition, Tp(V) is the fibre of V(k[e]) — V' (k) over P. To give an element of
Tp(V) amounts to giving a homomorphism « : k[V] — k[e] such that a~1((¢)) =
mp.

(b) The homomorphism « in (a) can be written,

a(f) = f(mp) @ Do(fle, [ €k[V], f(mp) € k, Do (f) € k.

Then D, is a k-derivation k[V] — k, and D, induces a k-linear map mp/ m}% - k.

(c) The homomorphism a : k[V] — k[¢] in (a) extends uniquely to a local homo-
morphism Op — k[e]. Similarly, a k-derivation k[V] — k extends uniquely to a
k-derivation Op — k.

(d) The two vector spaces at the right of the diagram are related through the isomor-
phism mp/m? — np/n3 of (1.15).

4.31. A regular map ¢: V — W defines a map
p(kle]) : V(k[e]) » W(k[e]), which sends the fibre over
P to the fibre over Q o @(P), i.e., it defines a map l l

Tp(V) —2— To(W)

¢
de: Tp(V) = To(W). V(kle]) — W(k[e])
€0 e—0
This map of tangent spaces is called the differential of ¢ l . l
at P. V(k) — W(k)

(a) When V and W are embedded as closed subvarieties of A", dg has the description
in p. 89.
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(b) As a map Hom(Op, k[e]) = Hom(O,, k[e]), dp is induced by ¢* : Og — Op.
(c) Asamap Hom(mp/m?3,k) — Hom(mQ/mé, k), dp isinduced by the map mq/m
mp/m? defined by ¢* : k[W] — k[V].

2
Q

EXAMPLE 4.32. Let E be a finite dimensional vector space over k. Then T,(A(E)) ~ E.

ASIDE 4.33. A map Spm(k|[e]) — V should be thought of as a curve in V but with only the first
infinitesimal structure retained. Thus, the descriptions of the tangent space provided by the
terms in the top row of (24) correspond to the three standard descriptions of the tangent space
in differential geometry: via tangent curves, via derivations, via cotangent spaces (Wikipedia:
TANGENT SPACE).

g. Tangent cones

Let V be an algebraic subset of k", and let a = I(V'). Assume that P = (0,...,0) € V.
Define a, to be the ideal generated by the leading forms F,, of the polynomials F € a.
The geometric tangent cone at P, Cp(V) is V(a,), and the tangent cone is the pair
(V(a,),k[Xq,...,X,]/a,). Obviously, Cp(V) C Tp(V).2

Z If a is principal, say, a = (F), then a,, = (F,), butif a = (Fy, ..., F,), then it need
not be true that a, = (Fy,, ..., F,,). Consider for example a = (XY, XZ + Z(Y? — Z?)).
One can show that this is an intersection of prime ideals, and hence is radical. As the
polynomial

YZ(Y2-Z2) =Y -(XZ+Z(Y* - Z%) - Z - (XY)

lies in a and is homogeneous, it lies in a,, but it is not in the ideal generated by XY, XZ.
In fact, a, = (XY, XZ,YZ(Y? - Z?).

Let A be a local ring with maximal ideal n. The associated graded ring is
gr(A) = 691'20 ni/nitl,
Note that if A = B,, and n = mA, then gr(4) = @ m!/m'*! (because of 1.15).
PROPOSITION 4.34. The homomorphism of k-algebras
klXi,..., Xy1/a, — gr(Op)
sending the class of X; in k[ X, ..., X,,]/ a, to the class of X; in gr(Op) is an isomorphism.
PROOF. Let m be the maximal ideal in k[X}, ..., X,,|/a corresponding to P. Then
gr(0p) = ) mi/mi+!
= > (X1, X)) /X, e, X))+ an (X, X
= Y Xy s X)) /X1, e, X)L+ @y,

where a; is the homogeneous piece of a,, of degree i (that is, the subspace of a,, consisting
of homogeneous polynomials of degree i). But

(X1, s X))/ (X1, e, X)) + a; = ith homogeneous piece of k[X1, ..., X, ]/a.. 4

2There is a more natural definition of the tangent cone as an algebraic scheme — see Chapter 10.
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For an affine algebraic variety V and P € V, we define the geometric tangent cone
Cp(V) of V at P to be Spm(gr(Op)eq), Where gr(Op),q is the quotient of gr(Op) by its
nilradical, and we define the tangent cone to be (Cp(V), gr(Op)).

As in the case of a curve, the dimension of the geometric tangent cone at P is the
same as the dimension of V' (because the Krull dimension of a noetherian local ring is
equal to that of its graded ring; Matsumura 1989, Theorem 13.9). Moreover, gr(Op) is
a polynomial ring in dim V variables if and only if Op is regular (ibid., Exercise 19.1).
Therefore, P is nonsingular (see below) if and only if gr(Op) is a polynomial ring in
dim(V) variables, in which case Cp(V) = Tp(V).

A regular map ¢ : V. — W sending P to Q induces a homomorphism gr(0,) —
gr(Op), and hence a map Cp(V) — Cy(V) of the geometric tangent cones. We say that ¢
isétaleat Pif gr(O,) — gr(Op)isan isomorphism. When P and Q are nonsingular points,
this just says that the map dg : Tp(V) — To(W) on tangent spaces is an isomorphism.

2 The map on the rings k[X;, ..., X,,]/a* defined by a map of algebraic varieties is not
the obvious one, i.e., it is not necessarily induced by the same map on polynomial rings
as the original map. To see what it is, it is necessary to use Proposition 4.34, i.e., it is
necessary to work with the rings gr(Op).

h. Nonsingular points; the singular locus

DEFINITION 4.35. A point P on an affine algebraic variety V is said to be nonsingular
or smooth if it lies on a single irreducible component W of V and dim Tp(V) = dim W;
otherwise the point is said to be singular. A variety is nonsingular if all of its points
are nonsingular. The set of singular points of a variety is called its singular locus.

Thus, on an irreducible variety V of dimension d,
Pisnonsingular < dimy Tp(V) =d < dimy(np/n2) =d.

PROPOSITION 4.36. Let V be anirreducible variety of dimension d, and let P be a nonsingu-
lar point on V. There exist d regular functions f1, ..., f 4 defined in an open neighbourhood
U of P such that P is the only common zero of the f; on U.

PROOF. Because P is nonsingular, there exist regular functions f7, ..., f4 on an open
neighbourhood U of P whose images in Op generate its maximal ideal np. We show that
P is an irreducible component of the zero set of the f1, ..., f4 in U. If not, there exists an
irreducible component Z of V(f1, ..., f4) properly containing P. Write Z = V(p) with p
is a prime ideal in k[U]. As V(p) C V(f1, ..., fq) and Z properly contains P,

(froesfa) TP G mp (ideals in k[U)).
On passing to the local ring Op = k[U],y,, we find (using 1.14) that
(f1ses fa) CPOp & mp (ideals in Op).

This contradicts the assumption that the f; generate np. Hence P is an irreducible
component of V(f, ..., fg). On removing the remaining irreducible components of
V(f1, .., fq) from U, we obtain an open neighbourhood of P with the required property.g
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Let P be a point (possibly singular) on an irreducible variety V. The argument in the
above proof shows that, if f1, ..., f, generate the maximal ideal np in Op, then P is an
irreducible component of V(f1, ..., f;), and sor > d (by 3.45). Nakayama’s lemma (1.3)
shows that f1, ..., f, generate np if and only if their images span np/ nlz,. Thus

dim Tp(V) > dim V, with equality if and only if P is nonsingular.

A point P on V is nonsingular if and only if there exists an open affine neighbour-
hood U of P and functions f1, ... f4 on U such that (f, ..., f4) is the ideal of all regular
functions on U zero at P.

THEOREM 4.37. The set of nonsingular points of an affine algebraic variety V is dense and
open.

PROOF. We first show that the singular locus is closed. We may suppose that V is affine,
say, V = V(a) C A". Let Py, ..., P, generate a. Then the singular locus is the zero set of
the ideal generated by the (n — d) X (n — d) minors of the matrix

4P, aP,

Jac(Py, ..., P,)(a) =

oP, op,
axrl(a) aX;(a)

This is closed.

We next assume that V' is irreducible and prove that Vi, # V. According to 3.36
and 3.37 some nonempty open affine subset of V' is isomorphic to a nonempty open
affine subset of an irreducible hypersurface in A4*!, and so we may suppose that V
itself is an irreducible hypersurface in A4*1, say, equal to the zero set of the nonconstant
irreducible polynomial F(Xy, ..., X441)- The singular locus is the set of common zeros of

the polynomials
OF  GF

0X," " 0X g’

and so it will be proper unless the polynomials 0F /0X; are identically zero on V. As
in the proof of 4.7, if 0F /0X; is identically zero on V(F), then it is the zero polyno-
mial, and so F is a polynomial in Xy, ..., X;_;,X;,1, ... X441 (characteristic zero) or in
X1, X l.p , .. » X441 (characteristic p). Therefore, if the singular locus equals V, then F
is constant (characteristic 0) or a pth power (characteristic p), which contradicts the
hypothesis.

We now consider the general case, in which V has irreducible components V1, ..., V.
Each of V;NV; is a proper closed subset of V;, and we have proved that (V;)ging is a proper
closed subset of V;. It follows that V; N Vi, is a finite union of proper closed subsets of
V;, and so it is proper and closed in V;. Hence the points of V; that are nonsingular on V'
form a nonempty open (hence dense) subset of V;. o

F,

COROLLARY 4.38. IfV isirreducible, then

dimV = mindim Tp(V).
j=51%

PROOF. We know that dim Tp(V) > dim V, with equality if and only if P is nonsingular.
As there exists a nonsingular P, dim V' is the minimum value of dim Tp(V). O
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This formula can be useful in computing the dimension of a variety.

COROLLARY 4.39. An irreducible algebraic variety is nonsingular if and only if the tangent
spaces Tp(V), P € V, have constant dimension.

PROOF. The constant dimension is the dimension of V, and so all points are nonsingu-
lar. o

COROLLARY 4.40. Every variety on which a group acts transitively by regular maps is
nonsingular.

PROOF. The group must act by isomorphisms, and so the tangent spaces have constant
dimension. O

In particular, every group variety (see p. 110) is nonsingular.

Examples

4.41. For the surface Z3 = XY, the only singular point is (0,0, 0). The tangent cone at
(0,0,0) has equation XY = 0, and so it is the union of two planes intersecting in the
Z-axis.

4.42. For the surface V : Z3 = X?Y, the singular locus is the line X = 0 = Z, i.e., the
y-axis. The singularity at (0, 0) is very bad: for example, it lies in the singular set of the
singular set.®> The intersection of the surface with the surface Y = c is the cuspidal curve
X2 = Z3/c. In the picture, each curve lies in a plane Y = ¢ orthogonal to the y-axis, and

has its cusp on the y-axis.
/ // Y

4.43. Let V be the union of the coordinate axes in A3, and let W be the zero set of
XY(X —Y)in A2, Each of V and W is a union of three lines meeting at the origin. Are
they isomorphic as algebraic varieties? Obviously, the origin o is the only singular point
on V or W. An isomorphism V' — W would have to send the singular point o to the

3In fact, it belongs to the worst class of singularities (sx2848895, KReiser).


https://math.stackexchange.com/questions/2848895/

i. Nonsingularity and regularity 97

singular point o and map T,(V') isomorphically onto T,(W). ButV = V(XY,YZ,XZ7),
and so T, (V) has dimension 3, whereas T,,W has dimension 2. Therefore, V and W are
not isomorphic.

i. Nonsingularity and regularity

THEOREM 4.44. Let P be a point on an irreducible variety V. Every generating set for the
maximal ideal np of Op has at least d elements, and there exists a generating set with d
elements if and only if P is nonsingular.

PROOF. If f1,..., f, generate np, then the proof of 4.36 shows that P is an irreducible
component of V(fy, ..., f,) in some open neighbourhood U of P. Therefore 3.45 shows
that 0 > d — r, and so r > d. The rest of the statement has already been noted. O

COROLLARY 4.45. A point P on a variety V is nonsingular if and only if Op is regular.

PROOF. If P lies on a single irreducible component of V, then this is a restatement
of the second part of the theorem. According to CA, 22.3, a regular local ring is an
integral domain. If P lies on more than one irreducible component of a V, then P is
not nonsingular (by definition) and Op is not regular because not an integral domain
(3.14). O

j- Examples of tangent spaces

The description of the tangent space in terms of dual numbers is particularly convenient
when our variety is given to us in terms of its points functor. For example, let M,, be
the set of n X n matrices, and let I be the identity matrix. Write e for I when it is to be
regarded as the identity element of GL,,.

4.46. A matrix I + €A has inverse I — €A in M,,(k[¢]), and so lies in GL,(k[¢]). In fact,
T,(GL,) ={I +cA | A € M,}
~ M, (k).

4.47. On expanding det(I + £A) as a sum of signed products and using that 2 = 0, we
find that
det(I + eA) = I + etrace(A).

Hence
T,(SL,) ={I + A | trace(A) = 0}
~{A € M, (k) | trace(A) = 0}.
4.48. Assume that the characteristic # 2, and let O,, be the orthogonal group:
0,={A€eGL,|A"-A =1}

(A" denotes the transpose of A). This is the group of matrices preserving the quadratic
form Xf + -+ + X2. The determinant defines a surjective regular homomorphism
det: O, — {£1}, whose kernel is defined to be the special orthogonal group SO,,. For
I+¢cA e M,(k[e]),

I+eA)"-(I+eA)=1+cA" +¢€A,
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and so

T.(0,) =T.(SO,) ={I + €A € M,(k[e]) | A is skew-symmetric}
~{A € M, (k) | A is skew-symmetric}.

ASIDE 4.49. On the tangent space T,(GL,) ~ M,, of GL,,, there is a bracket operation

IM,N] < MN - NM

which makes T,(GL,,) into a Lie algebra. For any closed algebraic subgroup G of GL,,, T,(G) is
stable under the bracket operation on T,(GL,) and is a sub-Lie-algebra of M,,, which we denote
Lie(G). The Lie algebra structure on Lie(G) is independent of the embedding of G into GL,, (it
has an intrinsic definition in terms of left invariant derivations), and G ~Lie(G) is a functor
from the category of linear group varieties to that of Lie algebras.

This functor is not fully faithful, for example, every étale homomorphism G — G’ defines an
isomorphism Lie(G) — Lie(G’), but it is nevertheless very useful.

Assume that k has characteristic zero. A connected group variety G is said to be semisimple
if it has no closed connected solvable normal subgroup (except {e}). Such a group G may have a
finite nontrivial centre Z(G), and we call two semisimple groups G and G’ locally isomorphic
if G/Z(G) ~ G'/Z(G’). For example, SL,, is semisimple, with centre y,, the set of diagonal
matrices diag(¢, ..., {) with {" = 1, and SL,, /u, = PSL,,. A Lie algebra is semisimple if it has
no commutative ideal (except {0}). One can prove that

G is semisimple <= Lie(G) is semisimple,

and the map G — Lie(G) defines a one-to-one correspondence between the set of local isomor-
phism classes of semisimple group varieties and the set of isomorphism classes of Lie algebras.
The classification of semisimple group varieties can be deduced from that of semisimple Lie
algebras and a study of the finite coverings of semisimple group varieties arXiv:0705.1348— this
is quite similar to the relation between Lie groups and Lie algebras.

Exercises

4-1. Find the singular points, and the tangent cones at the singular points, for each of
(@) Y3 —Y?2+X3—X?%+3Y%2X + 3X?Y + 2XY;
(b) X*+Y*-Xx2Y? (assume that the characteristic is not 2).

4-2. Let V C A" be an irreducible affine variety, and let P be a nonsingular point
on V. Let H be a hyperplane in A" (i.e., the subvariety defined by a linear equation
>, a;X; = d with not all a; zero) passing through P but not containing Tp(V). Show
that P is a nonsingular point on each irreducible component of V' N H on which it lies.
(Each irreducible component has codimension 1 in V' — you may assume this.) Give
an example with H D Tp(V) and P singular on V N H. Must P be singular on V N H if
H D> Tp(V)?

4-3. Given a smooth point on a variety and a tangent vector at the point, show that
there is a smooth curve passing through the point with the given vector as its tangent
vector (see mo111467).

4-4. Let P and Q be points on varieties V and W. Show that


https://arxiv.org/abs/0705.1348
https://mathoverflow.net/questions/111467/
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4-5. For each n, show that there is a curve C and a point P on C such that the tangent
space to C at P has dimension n (hence C cannot be embedded in A"~1).

4-6. Let I be the n X n identity matrix, and let J be the matrix ( % { ). The symplectic

group Sp, is the group of 2n X 2n matrices A with determinant 1 such that A™-J- A =J.
(Tt is the group of matrices fixing a nondegenerate skew-symmetric form.) Find the
tangent space to Sp,, at its identity element, and also the dimension of Sp,.

4-7. Find aregular map a : V — W which induces an isomorphism on the geometric
tangent cones Cp(V) — Cypy(W) but is not étale at P.

4-8. Show that the cone X% + Y2 = Z? is a normal variety, even though the origin is
singular (characteristic # 2). See p. 177.

4-9. LetV = V(a) C A" Suppose that a # I(V), and for a € V, let T}, be the subspace
of T,(A") defined by the equations (df), = 0, f € a. Clearly, T, D T,(V), but need
they always be different?

4-10. Let W be a finite-dimensional k-vector space, and let Ry, = k @ W endowed with
the k-algebra structure for which W? = 0. Let V be an affine algebraic variety over k.
Show that the elements of V(Ry,) < Homy_yigebra(k[V], Ry) are in natural one-to-one
correspondence with the pairs (P, t) with P € Vandt € W @ Tp(V) (cf. Mumford 1966b,

p- 25).



Chapter 5

Algebraic Varieties

An algebraic variety is a ringed space that is locally isomorphic to an affine algebraic
variety, just as a topological manifold is a ringed space that is locally isomorphic to an
open subset of R". We require both to satisfy a separation axiom.

a. Algebraic prevarieties

As motivation, recall the following definitions.

DEFINITION 5.1. (a) A topological manifold of dimension n is a ringed space (V, Oy,)
such that V' is Hausdorff and every point of V' has an open neighbourhood U for which
(U, Oy|U) is isomorphic to the ringed space of continuous functions on an open subset
of R" (cf. 3.2).

(b) A differentiable manifold of dimension n is a ringed space such that V is
Hausdorff and every point of V' has an open neighbourhood U for which (U, Oy |U) is
isomorphic to the ringed space of smooth functions on an open subset of R” (cf. 3.3).

(c) A complex manifold of dimension n is a ringed space such that V' is Hausdorff
and every point of V' has an open neighbourhood U for which (U, Oy/|U) is isomorphic
to the ringed space of holomorphic functions on an open subset of C" (cf. 3.4).

These definitions are easily seen to be equivalent to the more classical definitions in
terms of charts and atlases (when stated correctly). Sometimes additional conditions are
imposed on V, for example, that it is connected or have a countable base of open subsets.

DEFINITION 5.2. An algebraic prevariety over k is a k-ringed space (V, Oy,) such that
V is quasi-compact and every point of V' has an open neighbourhood U for which
(U, Oy|U) is isomorphic to the ringed space of regular functions on an algebraic set over
k.

Thus, a k-ringed space (V, Oy/) is an algebraic prevariety over k if there exists a finite
open covering V = | J V; such that (V;, Oy |V;) is an affine algebraic variety over k for all
i. An algebraic variety will be defined to be an algebraic prevariety satisfying a certain
separation condition.

An open subset U of an algebraic prevariety V such that (U, Oy|U) is an affine
algebraic variety is called an open affine (subvariety) in V. Because V is a finite union
of open affines, and in each open affine the open affines (in fact the basic open subsets)
form a base for the topology, it follows that the open affines form a base for the topology
onV.

100
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Let (V, Oy ) be an algebraic prevariety, and let U be an open subset of V. The functions
f: U - klyingin I'(U, Oy) are called regular. Note that if (U;) is an open covering of
V by affine varieties, then f : U — k is regular if and only if f|U; n U is regular for all
i (by 3.1(c)). Thus understanding the regular functions on open subsets of V amounts
to understanding the regular functions on the open affine subvarieties and how these
subvarieties fit together to form V.

EXAMPLE 5.3. (Projective space). Let P" denote k*!  {origin} modulo the equivalence
relation

(ag, ..., a,) ~ (by,...,b,) < (ay,...,a,) = (cby, ...,cb,) some ¢ € k*.

Thus the equivalence classes are the lines through the origin in k"**! (with the origin
omitted). Write (a, : ... : a,) for the equivalence class containing (ay, ..., a,,). For each
i, let

U ={ay:..:aq:..:a)€P|aq #0}.

Then P" = | J U;, and the map

. . 20 a? an\ . Ui n
(ao. e o an) = (a,,a,,a) . Ui_) A
(the term a;/aq; is omitted) is a bijection. In Chapter 6 we shall show that there is a
unique structure of a (separated) algebraic variety on P" for which each U; is an open
affine subvariety of P and each map u; is an isomorphism of algebraic varieties.

b. Regular maps

In each of the examples (5.1a,b,c), a morphism of manifolds (continuous map, smooth
map, holomorphic map respectively) is just a morphism of ringed spaces. This motivates
the following definition.

Let (V, Oy) and (W, Oy, ) be algebraic prevarieties. A map ¢: V — W is said to
be regular if it is a morphism of k-ringed spaces. In other words, a continuous map
¢: V - Wisregularif f —» fogp sends a regular function on an open subset U of W
to a regular function on ¢~ }(U). A composite of regular maps is again regular (this is a
general fact about morphisms of ringed spaces).

Note that we have three categories:

(affine varieties) C (algebraic prevarieties) C (ringed spaces).

Each subcategory is full, i.e., the morphisms Mor(V, W) are the same in the three cate-
gories.

PROPOSITION 5.4. Let (V,Oy) and (W, Oy, ) be prevarieties, and let ¢ : V. — W be a
continuous map (of topological spaces). Let W = | J W be a covering of W by open affines,
and let qo_l(Wj) = UV be a covering ofgo_l(Wj) by open affines. Then ¢ is regular if
and only if its restrictions

eVt Vii—> W;

are regular for all i, j.
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PROOF. We assume that ¢ satisfies this condition, and prove that it is regular. Let f
be a regular function on an open subset U of W. Then f|U n W; is regular for each
W ; (sheaf condition 3.1(b)), and so f oplp~{(U)NV ji is regular for each j, i (this is our
assumption). It follows that fog is regular on ¢~1(U) (sheaf condition 3.1(c)). Thus ¢
is regular. The converse is even easier. o

REMARK 5.5. A differentiable manifold of dimension 7 is locally isomorphic to an open
subset of R". In particular, all manifolds of the same dimension are locally isomorphic.
This is not true for algebraic varieties, for two reasons.

(a) We are not assuming our varieties are nonsingular (see Chapter 4).

(b) The inverse function theorem fails in our context: a regular map that induces
an isomorphism on the tangent space at a point P need not induce an isomorphism in a
neighbourhood of P. However, see 5.55 below.

c. Algebraic varieties

In the study of topological manifolds, the Hausdorff condition eliminates such bizarre
possibilities as the line with the origin doubled in which a sequence tending to the origin
has two limits (see 5.9 below).

It is not immediately obvious how to impose a separation axiom on our algebraic
varieties, because even affine algebraic varieties are not Hausdorff. The key is to restate
the Hausdorff condition. Intuitively, the significance of this condition is that it prevents a
sequence in the space having more than one limit. Thus a continuous map into the space
should be determined by its values on a dense subset, i.e., if ¢; and ¢, are continuous
maps Z — V that agree on a dense subset U of Z, then they should agree on the whole
of Z.! Equivalently, the set where two continuous maps ¢;, ¢, : Z = U agree should be
closed. Surprisingly, affine varieties have this property, provided ¢; and ¢, are required
to be regular maps.

LEMMA 5.6. Let ¢1,9,: Z =3 V regular maps of affine algebraic varieties. The subset of
Z onwhich ¢, and ¢, agree is closed.

PROOF. There are regular functions x; on V such that P — (x;(P), ..., x,,(P)) identifies V
with a closed subset of A" (take the x; to be any set of generators for k[V'] as a k-algebra).
Now x;0¢; and x;0¢, are regular functions on Z, and the set where ¢; and ¢, agree is
ﬂ:;l V(x;09, — X;0¢,), which is closed. -

DEFINITION 5.7. An algebraic prevariety V is said to be separated if it satisfies the
separation axiom:

for any pair of regular maps ¢, ¢, : Z =3 V with Z an affine algebraic variety,
the set{z € Z | ¢,(2) = p,(2)}isclosed in Z.

An algebraic variety over k is a separated algebraic prevariety over k.

Letz € Z, and let z = limu,, with u,, € U. Then ¢,(z) = lim ¢, (u,,) because ¢, is continuous, and
lim g, (u,) = lim @,(u,) = @,(2).

*These are sometimes called “algebraic varieties in the sense of FAC” (see the footnote p. 9). For
Grothendieck, they are the “espaces algébriques de Serre” (EGA I, Appendice); alternatively, they are
reduced separated schemes of finite type over k (assumed to be algebraically closed) with the nonclosed
points omitted — we explain this in Chapter 10. Some authors use a more restrictive definition — they may
require a variety to be connected, irreducible, or quasi-projective — usually because their foundations do
not allow for a more flexible definition.
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PROPOSITION 5.8. Let ¢; and ¢, be regular maps Z = V from an algebraic prevariety Z
to a variety V. The subset of Z on which ¢, and ¢, agree is closed.

PROOF. Let W be the set on which ¢; and ¢, agree. For any open affine U of Z, W N U
is the subset of U on which ¢, |U and ¢,|U agree, and so W N U is closed. This implies
that W is closed because Z is a finite union of open affines. O

EXAMPLE 5.9. (The affine line with the origin doubled.)® Let V; and V, be copies of
Al. Let V* = V,; UV, (disjoint union), and give it the obvious topology. Define an
equivalence relation on V* by

x(inV;)~y(@inV,) < x=yandx #0.

Let V be the quotient space V = V* /~ with the quotient topology,

Then V; and V, are open subspaces of V,V = V; UV,,and V; NV, = Al —{0}. Define
a function on an open subset to be regular if its restriction to each V; is regular. This
makes V into a prevariety but not a variety: it fails the separation axiom because the two
maps

Al=V, sV Al=V,o V*

agree exactly on A! — {0}, which is not closed in A!.

5.10. When V isirreducible, all the rings attached to it have a common field of fractions
k(V) (see p. 115 below). Moreover,
Op ={g/h € k(V) | h(P) # 0}
OyU) = ﬂ{OV(U’) | U' c U, U’ open affine}

= ﬂ{op |P e Ul

d. Maps from varieties to affine varieties

Let (V, Oy) be an algebraic variety, and let «: A — I'(V, Oy) be a homomorphism
from an affine k-algebra A to the k-algebra of regular functions on V. For any P € V,
f = a(f)(P)is a k-algebra homomorphism A — k, and so its kernel ¢(P) is a maximal
ideal in A. In this way, we get a map

p:V - spm(A)

which is easily seen to be regular. Conversely, from a regular map ¢ : V — Spm(A),
we get a k-algebra homomorphism f +— fop: A — I'(V, Oy). Since these maps are
inverse, we have proved the following result.

3This is the algebraic analogue of the standard example of a non Hausdorff topological space. Let R*
denote the real line with the origin removed but with two points a, # a, added. The subspace R ~ {0} has
its usual topology, and, for i = 1, 2, a base for the neighbourhoods of q; is formed by the sets (U ~ {0}) U {a;}
with U an open neighbourhood of 0 in R. Then R* is not Hausdorff because @, and a, cannot be separated
by disjoint open sets. Every sequence that converges to a, also converges to a,. For example, 1/n converges
to both a, and a,.
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PROPOSITION 5.11. For an algebraic variety V and an affine k-algebra A, there is a canon-
ical bijection
Mor(V’ Spm(A)) = Homk-algebra(A’ F(V! OV))

Let V be an algebraic variety such that I'(V, Oy,) is an affine k-algebra. The proposi-
tion shows that the regular map ¢ : V' — Spm(I'(V, Oy)) defined by id;(y ¢, has the
following universal property: every regular map from V to an affine algebraic variety U
factors uniquely through ¢:

vV —2 Spm(I'(V, Oy))
|
13!
]
v

U.
In particular, we recover 3.24: for affine k-algebras A and B,
Hom, (A, B) ~ Mor(Spm(B), Spm(A)).

Let Var, denote the category of algebraic varieties over k and regular maps. The functor
A ~ Spm (A) : Aff, — Var, defines a contravariant equivalence of the first category
with the subcategory of the second whose objects are the affine algebraic varieties.

2 For a nonaffine algebraic variety V, I'(V, Oy ) need not be finitely generated as a
k-algebra.

e. Subvarieties

Let (V, Oy ) be an algebraic variety over k.

Open subvarieties

Let U be an open subset of V. Then U is a union of open affines, and it follows that
(U, Oy|U) is a variety, called an open subvariety of V. A regularmap ¢ : W — Vis
an open immersion if (W) is open in V and ¢ defines an isomorphism W — ¢@(W) of
varieties.

EXAMPLE 5.12. The open subspace U = A2\ {(0, 0)} of A% becomes an algebraic variety
when endowed with the sheaf Q4. |U.

Closed subvarieties

Every closed subset Z of V has a canonical structure of an algebraic variety. Define a
function f on an open subset U of Z to be regular if, for every P € U, there exists a germ
(U’, f") of a regular function at P on V such that f'|{U’' nU = f|U’ N U. This defines
a ringed structure O, on Z. To show that (Z, O,) is a variety it suffices to check that,
for every open affine U C V, the ringed space (U N Z, Oz|U N Z) is an affine algebraic
variety, but this is an easy exercise (Exercise 3-2 to be precise). Such a pair (Z, O,) is
called a closed subvariety of V. A regular map ¢ : W — V is a closed immersion if
@(W) is closed in V and ¢ defines an isomorphism W — ¢(W) of varieties.
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Subvarieties

A subset W of a topological space V is said to be locally closed if every point P in W has
an open neighbourhood U in V such that W N U is closed in U. Equivalent conditions:
W is the intersection of an open and a closed subset of V'; W is open in its closure.

A locally closed subset W of a variety V has a canonical structure of an algebraic
variety. Write W as the intersection W = U N Z of an open and a closed subset. Now
Z is a closed subvariety of V and W is an open subvariety of Z. Alternatively, U is an
open subvariety of V and W is closed subvariety of U. Either way, the structure on W is
characterized by having the following property: the inclusion map W < V is regular,
and a map from a variety to W is regular if and only if it is regular as a map to V.

With this structure, W is called a subvariety of V. A regular map ¢ : W — Visan
immersion if it induces an isomorphism of W onto a subvariety of V. Every immersion
is the composite of an open immersion with a closed immersion (in both orders).

A subvariety of an affine variety is said to be quasi-affine. For example, A%\ {(0,0)}
is quasi-affine but not affine. Note that every quasi-affine variety is an open subvariety
of some affine variety.

Application

PROPOSITION 5.14. A prevariety V is separated if and only if two regular maps from a
prevariety to V agree on the whole prevariety whenever they agree on a dense subset of it.

PROOF. If V is separated, then the set on which a pair of regular maps ¢;,¢,: Z 3 V
agree is closed (5.8), and so must be the whole of the Z if it contains a dense subset.
Conversely, consider a pair of maps ¢;,¢, : Z =3 V, and let S be the subset of Z on
which they agree. We assume that V has the property in the statement of the proposition,
and show that S is closed. Let S be the closure of S in Z. Then S has the structure of a
closed prevariety of Z and the maps ¢, |S and ¢,|S are regular. Because they agree on a
dense subset of S they agree on the whole of S, and so S = S is closed. o

f. Prevarieties obtained by patching

PROPOSITION 5.15. Suppose that the set V' is a finite union V. = Ui o Vi of subsets V; and
that each V; is equipped with ringed space structure. If the following “patching” condition
holds:
foralli, j,VinV;isopeninbothV;and V;and Oy |V;NV; = Oy, Vinv;,

then there is a unique structure of a ringed space on V for which

(a) each inclusion V; & V is a homeomorphism of V; onto an open set, and

(b) foreachi €1, Oy|V; = Oy..
If every V,; is an algebraic prevariety, then so also is V, and to give a regular map fromV
to a prevariety W is the same as giving a family of regular maps ¢; : V; — W such that
ilVinV;=g;lVinV;.

PROOF. One checks easily that the subsets U C V such that UNV; is open for all i are the
open subsets for a topology on V satisfying (a), and that this is the only topology to satisfy
(a). Define Oy (U) to be the set of functions f : U — k such that f{UNV; € Oy, (UNV))
for all i. Again, one checks easily that Oy is a sheaf of k-algebras satisfying (b), and that
it is the only such sheaf.
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For the final statement, if each (V;, OV,-) is a finite union of open affines, so also
is (V, Oy ). Moreover, to give a map ¢ : V' — W amounts to giving a family of maps
@i : Vi = Wsuch that ¢;|V; nV; = ¢;|V; N V; (obviously), and ¢ is regular if and only
@|V; is regular for each i. o

Clearly, the V; may be separated without V' being separated (see, for example, 5.9).
In 5.29 below, we give a condition on an open affine covering of a prevariety sufficient to
ensure that the prevariety is separated.

g. Products of varieties
Let V and W be objects in a category C. A triple
VXW, p:VXW->V, q:VXW->W)

is said to be the product of V and W if it has the following universal property: for every
pair of morphisms Z — V, Z — W in C, there exists a unique morphism Z - V x W
making the diagram

Z
[
l
|
N4

N

v L _vxw 1ow

commute. In other words, the triple is a product if the map
@ > (pop,gqop): Hom(Z,V x W) - Hom(Z,V) x Hom(Z, W)

is a bijection. The product, if it exists, is uniquely determined up to a unique isomor-
phism.

For example, the product of two sets (in the category of sets) is the usual carte-
sian product of the sets, and the product of two topological spaces (in the category of
topological spaces) is the product of the underlying sets endowed with the product
topology.

We shall show that products exist in the category of algebraic varieties. Suppose, for
the moment, that V x W exists. For any prevariety Z, Mor(A°, Z) is the underlying set
of Z; more precisely, for any z € Z, the map A° — Z with image z is regular, and these
are all the regular maps (cf. 3.28). Thus, from the definition of products we have

(underlying set of V X W) ~ Mor(A°, V x W)
~ Mor(A°, V) x Mor(A°, W)
~ (underlying set of V') X (underlying set of W).

Hence, our problem can be restated as follows: given two prevarieties V' and W, define
on the set V' X W the structure of a prevariety such that

(a) the projection maps p,q: VX W 33 V, W are regular, and

(b) amapp: T — V X W of sets (with T an algebraic prevariety) is regular if its
components pog, gog are regular.

There can be at most one such structure on the set V x W. We first consider the affine
case.



g. Products of varieties 107

Products of affine varieties

EXAMPLE 5.16. Leta and bbeidealsin k[Xy, ..., X,,| and k[X,,,11, ... , X;n4n] rESpPECtively,
and let (a, b) be the ideal in k[X1, ..., X4 ] generated by the elements of a and b. Then
there is an isomorphism

kX, X KX gt Xoan] KX e, Xl
f®g— fg: a ®x 5 - @.b)

Again this comes down to checking that the natural map

Homk—alg(k[Xl’ ’Xm+n]/(aa f)), R)

l

Homy_1o(k[X1, .., X ]/a, R) X Homy g1 (K[ X415 -+ s Xignl /0 R)

is a bijection. But the three sets are respectively
V(a, b) = zero set of (a, b) in R™*",
V(a) = zero set of a in R™,
V(b) = zero set of b in R",

and so this is obvious.

The tensor product of two k-algebras A and B has the universal property to be a
product in the category of k-algebras, but with the arrows reversed. Because of the
category anti-equivalence (3.25), this shows that Spm(A ®, B) will be the product of
Spm A and Spm B in the category of affine algebraic varieties once we have shown that
A @y, Bis an affine k-algebra.

PROPOSITION 5.17. Let A and B be k-algebras with A finitely generated.
(a) If A and B are reduced, then so also is A ®;, B.
(b) If A and B are integral domains, then so also is A @y, B.

PROOF. Leta € A ®; B. Then a = Z:;l a; ® b;, some q; € A, b; € B. If one of the b;
is a linear combination of the remaining b;, say, b,, = Z;:l

bilinearity of ®, we find that

¢c;b;, ¢; € k, then, using the

n—1 n—1 n—1
a= Zai®b,~+ Zcian®bi = Z(ai+cian)®bi.
i=1 i=1 i=1

Thus we may suppose that in the original expression of «, the b; are linearly independent
over k.

Now assume A and B to be reduced, and suppose that « is nilpotent. Let m be a
maximal ideal of A. Froma — a: A - A/m = k we obtain homomorphisms

a®b~a®b— ab: A®, B — k®; B — B.

The image D, a;b; of & under this homomorphism is a nilpotent element of B, and hence
is zero (because B is reduced). As the b; are linearly independent over k, this means that
the a; are all zero. Thus, the g; lie in all maximal ideals m of A, and so are zero (see
2.18). Hence a = 0, and we have shown that A ®; B is reduced.
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Now assume that A and B are integral domains, and let a, @’ € A ® B be such
that aa’ = 0. As before, we can write a = 3} @; ® b; and a’ = 3 a] ® b with the sets

{by,b,, ...} and {b}, b}, ...} each linearly independent over k. For each maximal ideal m of

A, we know (3 a;b;)(} a;b)) = 0in B, and so either (3, @;b;) = 0 or (3} a;b!) = 0. Thus
either all the a; € m or all the alf € m. This shows that

spm(A) = V(ay, ..., a,) UV(aj, ..., a,).

As spm(A) is irreducible (see 2.27), it follows that spm(A) equals either V(ay, ..., a,,) or
V(ai, ...,a). In the first case « = 0, and in the second a’ = 0. O

REMARK 5.18. The proof of 5.17 fails when k is not algebraically closed, because then
A/m may be a finite extension of k over which the b; become linearly dependent. The
following examples show that the statement of 5.17 also fails in this case.

(a) Suppose that k is nonperfect of characteristic p, so that there exists an element «
in an algebraic closure of k such that ¢ ¢ k but a? € k. Let k' = k[«], and let a? = a.
Then («a ® 1 —1Q® a) # 0in k' @ k’ (in fact, the elements ' @ a/, 0 < i,j < p—1,
form a basis for k' ®, k’ as a k-vector space), but

a®1-1Qa)=(a®1-1Qa)
=(1®a—-1®a) (becausea € k)
=0.

Thus k’ ®, k' is not reduced, even though k’ is a field.
(b) Let K be a finite separable extension of k and let E be a second field containing k.
By the primitive element theorem (FT, 5.1),

K = kla X1/(fX)),

for some o € K and its minimal polynomial f(X). Assume that E is large enough to split
fisay, f(X) =[], (X — o) with a; € E. Because K /k is separable, the ; are distinct,
and so

E ® K ~ E[X]/(f(X)) (1.58(b))
~ T EX1/X — ay), (1.1)

which is not an integral domain. For example,
CRrC~CIX]/X-)XC[X]/X+i)~CxC.
The proposition allows us to make the following definition.
DEFINITION 5.19. The product of the affine varieties V and W is
(VX W, Opyw) = Spm(k[V] ®; k[W])
with the projection maps p,q: V X W — V, W defined by the homomorphisms

[ f®1:k[V] = k[V] & k[W]
g 1Q®g: k|W] — k[V] ® k[W].

PROPOSITION 5.20. Let V and W be affine varieties.
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(a) Thevariety (V X W, Oyyw) is the product of (V, Oy) and (W, Oy, ) in the category
of affine algebraic varieties; in particular, the set V X W is the product of the sets V
and W and p and q are the projection maps.

(b) IfV and W are irreducible, then so alsois V' X W.

PROOF. (a) As noted at the start of the subsection, the first statement follows from
5.17(a), and the second statement then follows by the argument on p. 106.
(b) This follows from 5.17(b) and 2.27. O

COROLLARY 5.21. LetV and W be affine varieties. For every prevariety T,amap ¢ : T —
V X W is regular if pop and qogp are regular.

PROOF. If pop and gog are regular, then 5.20 implies that ¢ is regular when restricted
to any open affine of T, which implies that it is regular on T o

The corollary shows that V' X W is the product of VV and W in the category of prevari-
eties (hence also in the categories of varieties).

EXAMPLE 5.22. (a) It follows from 1.57 that A™*" endowed with the projection maps

AM (ﬂ Amtn i AR, { pay, ., @pyn) = (ay, .., Q)
q(al’ s am+n) = (am+1’ et am+n)’

is the product of A™ and A”.
(b) It follows from 5.16 that

V() £ V(a,b) % v(p)

is the product of V(a) and V(b).

2 When V and W have dimension > 0, the topology on V' x W is strictly finer than
product topology. For example, for the product topology on A2 = Al x Al, every proper
closed subset is contained in a finite union of vertical and horizontal lines, whereas A?
has many more closed subsets (see 2.68).

Products in general

We now define the product of two algebraic prevarieties V and W.

Write V as a union of open affines V = | V;, and note that V' can be regarded as
the variety obtained by patching the (V;, Oy,); in particular, this covering satisfies the
patching condition (5.15). Similarly, write W as a union of open affines W = (W ;.
Then

vxw=Jvixw,

and the (V; X W, Oviij) satisfy the patching condition. Therefore, we can define
(V X W, Oyyw) to be the variety obtained by patching the (V; X W, OV,-ij)-

PROPOSITION 5.23. With the sheaf of k-algebras Oy just defined, V- X W becomes the
product of V and W in the category of prevarieties. In particular, the structure of prevariety
on V X W defined by the coverings V = |JV; and W = | J W are independent of the
coverings.
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PROOF. LetT be a prevariety,andletp : T — V X W be a map of sets such that pogp and
gog are regular. Then 5.21 implies that the restriction of ¢ to ¢~ 1(V; X W) is regular.
As these open sets cover T, this shows that ¢ is regular. O

PROPOSITION 5.24. IfV and W are separated, then so alsoisV X W.

PROOF. Let ¢y, ¢, be two regular maps U — V X W. The set where ¢, ¢, agree is the
intersection of the sets where pog,, pop, and gog,, gop, agree, which is closed. O

PROPOSITION 5.25. IfV and W are connected, then so alsois V X W.

PROOF. For v, € V, we have continuous maps

W oy x WSS vsw.

Similarly, for wy, € W, we have continuous maps

closed

VeVXwy — VXW.

The images of V and W in V X W intersect in (v,, wy) and are connected, which shows
that (vy, w) and and (v, wy) lie in the same connected component of VX W forallv € V
and w € W. Since v, and w, were arbitrary, this shows that any two points lie in the
same connected component. o

Group varieties

A group variety is an algebraic variety G together with a group structure m (map of
sets G X G — G satisfying the group axioms) such that the maps

m:GxXxG—-G, inv:G—-G, e: A’>G

are regular. A homomorphism of group varieties is a regular map that is also a homo-
morphism of groups.
The algebraic variety,

k[Xll’X12"" ’Xnn]
(det(X;;) — 1)
SL,(k) ={M e M, (k) | detM =1}

SL,, = Spm

becomes a group variety when endowed with its usual group structures. Matrix multi-
plication
n
(aij) : (bij) = (Cij)a Cij = Zl=1 ailblja
is given by polynomials, and Cramer’s rule gives an explicit expression of the entries of
A~! as polynomials in the entries of A. The only affine group varieties of dimension 1

over k are
G,, = Spmk[X,X'] and G, = Spmk[X].

Every finite group N can be made into a group variety by setting
N = Spm(A)

with A the k-algebra of all maps f : N — k.
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h. The separation axiom revisited

By way of motivation, consider a topological space V and the diagonal A C V X V,
AE (x,x) | x € V. If A is closed for the product topology, then every pair of points
(x,y) & A has an open neighbourhood U x U’ such that (U x U') N A = @&. In other
words, if x and y are distinct points in V, then there are open neighbourhoods U and U’
of x and y respectively such that U n U’ = @. Thus V is Hausdorff. Conversely, if V' is
Hausdorff, the reverse argument shows that A is closed.

For a variety V, we let A = Ay (the diagonal) be the subset {(v,v) | v € V}of V X V.

PROPOSITION 5.26. An algebraic prevariety V is separated if and only if Ay is closed.*

PROOF. We shall use the criterion 5.8: V is separated if and only if regular regular maps
to V' agree on a closed subset of their source.
Suppose that Ay, is closed. The map

(@1, 902): Z->VXV, zb(91(2),9:(2)

is regular because its components ¢; and ¢, are regular (definition of a product). In
particular, it is continuous, and so (¢;, ¢,)"}(Ay) is closed, but this is exactly the subset
on which ¢, and ¢, agree.

Conversely, Ay is the set on which the two projection maps V' x V' — V agree, and
so it is closed if V' is separated. o

COROLLARY 5.27. For any prevariety V, the diagonal is a locally closed subset of V X V.

PROOF. Let P € V, and let U be an open affine neighbourhood of P. Then U X U is an
open neighbourhood of (P,P) in V X V, and Ay, N (U X U) = Ay, which is closed in
U X U because U is separated (5.6). O

Thus Ay, is always a subvariety of V' X V, and it r
is closed if and only if V' is separated. The graph

I', of aregular map ¢ : V — W is defined to be
e(v) v, (V)
{(v,p(L) EV XW |VE V]

V

COROLLARY 5.28. For any morphism ¢ : V. — W of prevarieties, the graph I, of ¢ is
locally closed in V X W, and it is closed if W is separated. The map v — (v, p(v)) is an
isomorphism of V onto I';, (as algebraic prevarieties).

PROOF. The map
L, w) P (L), w): VXW - WXW

“Thus does not contradict the fact that V' is not Hausdorff because the Zariski topology on V X V is not
the product topology.
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is regular because its composites with the projections are ¢ and idy,, which are regular.
In particular, it is continuous, and as I',, is the inverse image of Ay, under this map, this
proves the first statement. The second statement follows from the fact that the regular

mapF(pL)V><W—p>Visaninversetov|—>(v,qo(v)):V—>F¢. O

THEOREM 5.29. The following three conditions on a prevariety V are equivalent:
(a) V isseparated;
(b) for every pair of open affines U and U’ in V, U N U’ is an open affine and the map

f®gwr flunu - &lunu : kKIUI ® k[U'] - k[UNU’]

is surjective;

(c) the condition in (b) holds for the sets in some open affine covering of V.

PROOF. Let U and U’ be open affines in V. We shall prove that
(i) if Ay is closed then U N U’ affine,
(i) when U n U’ is affine,

(UxU)NAyisclosed < k[U]®y k[U'] = k[U n U’] is surjective.

Assume (a); then these statements imply (b). Assume that the condition in (b) holds
for the sets in some open affine covering (U;);e; of V. Then (U; X U;j); jyerxs iS an open
affine covering of V' X V, and Ay, N (U; X Uj) is closed in U; X U for each pair (i, j),
which implies (a). Thus, the statements (i) and (ii) imply the theorem.

Proof of (i): The graph of the inclusion U N U’ < V is the subset (U x U’') N Ay,
of (UNU")x V.If Ay is closed, then (U x U’) N Ay, is a closed subvariety of an affine
variety, and hence is affine. Now 5.28 implies that U n U’ is affine.

Proof of (ii): Assume that U n U’ is affine. Then

(UxU")NnAyisclosedin U x U’
<= v (v,0): UNnU" = U x U’isaclosed immersion
< k[U xU’] - k[U nU’] is surjective (3.34).

Since k[U x U’] = k|U] ® k[U’], this completes the proof of (ii). N

In more down-to-earth terms, condition (b) says that U n U’ is affine and every
regular function on U N U’ is a sum of functions of the form P — f(P)g(P) with f and
g regular functions on U and U’.

EXAMPLE 5.30. (a) Let V = P!, and let U, and U, be the standard open subsets (see
5.3). Then U, N U; = Al « {0}, and the maps on rings corresponding to the inclusions
UyNnU; < U, are

f&X) ~ fX): k[X] - k[X,X7']
fX) = fX™Y: k[X] - k[X,X71].

Thus the sets U, and U, satisfy the condition in (b).
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(b) Let V be A! with the origin doubled (see 5.9), and let U and U’ be the upper
and lower copies of Al in V. Then U N U’ = (A! \ 0) is affine, but the maps on rings
corresponding to the inclusions U N U’ < U; are

X=X k[X] - k[X,X7Y]
X X k[X] - k[X, X1

Thus the sets U and U’ fail the condition in (b) (and V is not separated).
(c) Let V be A? with the origin doubled, and let U and U’ be the upper and lower
copies of A% in V. Then U n U’ is not affine (see 3.33).

i. Fibred products

Letp: V - Sand ¢ : W — S be regular maps of algebraic varieties. The set
Vxs W E {(v,w) €V XW | p(v) = (w)}

isclosed in V' X W, because it is the set where gop and oq agree, and so it has a canonical
structure of an algebraic variety (see p. 104). The algebraic variety V Xg W is called
the fibred product of V and W over S. Note that if S consists of a single point, then
VXeW=VXW.

Writing ¢’ for the map (v,w) » w: VxgW — Wand ¢’ for (v,w) —» v: VXW —
V, we get a commutative diagram:

The system (V xg W, ¢’,9") has the following universal property: for any regular maps
a:T—V,B8: T— W such that pa = ¢S, there is a unique regular map (a,8): T —
V' xg W such that the following diagram

commutes. In other words,
Hom(T,V Xg W) ~ Hom(T, V) Xyom(r,s) Hom(T, W).

Indeed, there is a unique such map of sets, namely, t — (a(t), 8(t)), which is regular
because it is asa map into V- X W.

The map ¢’ in the above diagrams is called the base change of ¢ with respect to 1.
For any point P € S, the base change of ¢ : V' — S with respect to P < S is the map
¢~!(P) — P induced by ¢, which is called the fibre of V over P.
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EXAMPLE 5.31. If f: V — Sisaregular map and U is a subvariety of S, then U Xg V is
the inverse image of U in V, ¢~ }(U) = U x4 V.

Notes

5.32. Since a tensor product of rings A ®x B has the opposite universal property to that
of a fibred product, one might hope that

”
Spm(A) Xspm(ry Spm(B) = Spm(A ®g B).

This is true if A ®3 B is an affine k-algebra, but in general it may have nonzero nilpotent
elements. For example, let k have characteristic p, let R = k[X], and consider the
k[X]-algebras

k[X] - k, Xw—a

k[X] = k[X], X XP.

Then
A Qg B =~ k Q[x» k[X] ~ k[X]/(XP — a),

which contains the nilpotent element x — a'/?.
The correct statement is

Spm(A) Xspm(r) SPm(B) ~ Spm(A Qg B/N), (25)

where 9 is the ideal of nilpotent elements in A ®x B. To prove this, note that for any
algebraic variety T,

Mor(T, Spm(A ®g B/MN)) ~ Hom(A Q@ B/N, O+(T)) (5.11)
~ Hom(A ®R B, OT(T))

~ Hom(A, O4(T)) x Hom(B, O;(T))
Hom(R,0¢(T))

~ Mor(T,Spm(A)) X Mor(T,Spm(B)) (5.11).
Mor(T,Spm(R))

For the second isomorphism we used that the ring O7(T) is reduced, and for the third
isomorphism, we used the universal property of A ®x B.

5.33. Fibred products exist also for prevarieties. In this case, V' xg W is only locally
closedin V x W.

ASIDE 5.34. Fibred products may differ depending on whether we are working in the category
of algebraic varieties or algebraic schemes. For example,

Spec(A) Xspec(R) Spec(B) = Spec(A Qg B)

in the category of schemes. Consider the map x ~ x2?: A! A (see 5.49). The fibre ¢~(a)
consists of two points if a # 0, and one point if a = 0. Thus ¢~1(0) = Spm(k[X]/(X)). However,
the scheme-theoretic fibre is Spec(k[X]/(X?)), which reflects the fact that 0 is “doubled” in the
fibre over 0. This will be explained in Chapter 10.
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j- Dimension

Recall p. 45 that, in an irreducible topological space, every nonempty open subset is
dense and irreducible.

Let V be an irreducible algebraic variety V, and let U and U’ be nonempty open
affines in V. Then U n U’ is also a nonempty open affine (5.29), which is dense in U,
and so the restriction map O (U) — Oy (U N U’) is injective. Therefore

klU] Cc k|[U nU’] C k(U),

where k(U) is the field of fractions of k[U], and so k(U) is also the field of fractions of
k[U N U'] and of k[U’].> Thus, attached to V there is a field k(V), called the function
field of V or the field of rational functions on V, which is the field of fractions of k[U]
for any open affine U in V. The dimension of V is defined to be the transcendence degree
of k(V') over k. Note the dim(V) = dim(U) for any open subset U of V. In particular,
dim(V) = dim(U) for U an open affine in V. It follows that some of the results in §2
carry over — for example, if Z is a proper closed subvariety of V, then dim(Z) < dim(V).

PROPOSITION 5.35. Let V and W be irreducible varieties. Then
dim(V x W) = dim(V) + dim(W).
PROOF. We may suppose VV and W to be affine. Write

k[V] = k[x1, ..., X ]
k[W] = k[yla"'ayn]a

where the x and y have been chosen so that {x;, ..., x;} and {y,, ..., y.} are maximal
algebraically independent sets of elements of k[V] and k[W]. Then {xi,..., x4} and
{¥1, ..., V. } are transcendence bases of k(V) and k(W) (see 1.63), and so dim(V) = d and
dim(W) = e. Now®

def

K[V x W] = k[V] @ kIW] D k[xy, ..., 4] @k kly1, .., Yel,

which is a polynomial ring in the symbols x; ® 1,...,x; ® 1,1 ® y1,...,1 ® Y, (see
1.57). In particular, the elements x; ® 1,...,x; ® 1,1 ® y1, ..., 1 ® ¥, are algebraically
independent in k[V] ®; k[W]. Obviously k[V X W] is generated as a k-algebra by the
elements x; ® 1, 1 ® yi,1<i<m,1<j<n, and all of them are algebraic over
k[xi, ..., xq] ®k k[Y1, ... Ve]- Thus the transcendence degree of k(V X W)isd +e. o

We extend the definition of dimension to an arbitrary variety V' as follows. An
algebraic variety is a finite union of noetherian topological spaces, and so is noetherian.
Consequently (see 2.31), V is a finite union V' = |J V; of its irreducible components,
and we define dim(V) = max dim(V;). When all the irreducible components of V have
dimension n, V is said to be pure of dimension n (or to be of pure dimension n).

5If A is an integral domain and f is a nonzero element of A, then A C A s C FF(A) and A and A, have
the same field of fractions. Thus k(U) does not change when we shrink U.

®In general, it is not true that if M’ and N’ are R-submodules of M and N, then M’ ®; N’ is an R-
submodule of M ® N. However, this is true if R is a field, because then M’ and N’ will be direct summands
of M and N, and tensor products preserve direct summands.
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PROPOSITION 5.36. Let V and W be closed subvarieties of A"; for any (nonempty) irre-
ducible component Z of V. N W,

dim(Z) > dim(V) + dim(W) — n;
that is,
codim(Z) < codim(V) + codim(W).

PROOF. In the course of the proof of Theorem 5.29, we saw that V' N W is isomorphic
to A N (V x W), and this is defined by the n equations X; = Y; in V' X W. Thus the
statement follows from 3.45. O
REMARK 5.37. (a) The subvariety

{ X*+Y? =27

Z =0

of A3 is the curve X% + Y2 = 0, which is the pair of lines Y = +iX if k = C; in particular,
the codimension is 2. Note however, that real locus is {(0, 0)}, which has codimension 3.
Thus, Proposition 5.36 becomes false if one looks only at real points (and the pictures
we draw can mislead).

(b) Proposition 5.36 becomes false if A" is replaced by an arbitrary affine variety.
Consider for example the affine cone V'

X1 X4 — X,X; = 0.

It contains the planes,
Z:X,=0=Xy  Z={(+,0,%0)}
7' X, =0=X3; Z' ={(0, ,0, %)}

and Zn Z' = {(0,0,0,0)}. Because V is a hypersurface in A%, it has dimension 3, and
each of Z and Z’ has dimension 2. Thus

codimZnZ' =3£1+1=codimZ + codimZ’.

The proof of 5.36 fails because the diagonal in V' X V' cannot be defined by 3 equations
(it takes the same 4 that define the diagonal in A*) — the diagonal is not a set-theoretic
complete intersection.

k. Dominant maps

As in the affine case, a regular map ¢ : V — W is said to be dominant if its image is
dense in W.
Letp: V — W be a dominant map. For any open subset U of W, the map

f e fop: I'(U,0y) - I'(p~'(V), Oy) *)

is injective. Now assume that V and W are irreducible. On passing to the direct limit in
(*), we get a homomorphism of fields

k(W) = k(V).
If Uy, and Uy, are open affines of V and W such that ¢(Uy,) C Uy, then
k[Uw] — k[Uy]

is injective, so ¢|Uy, : Uy — Uy, is dominant. An elementary, but nontrivial, argument
shows that (V') contains a dense open subset of W (see Theorem 9.1 below).
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1. Rational maps; birational equivalence

Loosely speaking, a rational map from a variety V to a variety W’ is a regular map from a
dense open subset of V to W, and a birational map is a rational map admitting a rational
inverse.

Let V and W be varieties over k, and consider pairs (U, ¢r;), where U is a dense open
subset of V and ¢; is a regular map U — W. Two such pairs (U, ¢y;) and (U’, ) are
said to be equivalent if ¢;; and ¢y agree on U N U’. An equivalence class of pairs is
called a rational map ¢ : V --> W. A rational map g is said to be defined at a point v of
Vifv € U for some (U, @) € ¢. The set U; of v at which ¢ is defined is open, and there
is a regular map ¢, : U; — W such that (Uy, ;) € ¢ — clearly, U; = U(U@U)eqo U and
we can define ¢, to be the regular map such that ¢, |U = ¢ for all (U, ¢y;) € ¢. Hence,
in the equivalence class, there is always a pair (U, ¢r;) with U largest (and U is called
“the open subvariety on which ¢ is defined”).

PROPOSITION 5.38. Let V and V' be irreducible varieties over k. A regular map ¢ : U’ —
U from an open subset U’ of V' onto an open subset U of V defines a k-algebra homomor-
phism k(V) — k(V'), and every such homomorphism arises in this way.

PROOF. The first part of the statement is obvious, so let k(V) < k(V’) be a k-algebra
homomorphism. We use it to identify k(V) with a subfield of k(V’). Let U (resp. U’)
be an open affine subset of V (resp. V’). Let k[U]| = k[xy,...,X,,]. Each x; € k(V’),
which is the field of fractions of k[U’], and so there exists a nonzero d € k[U’] such that
dx; € k[U’] for all i. After inverting d, i.e., replacing U’ with basic open subset, we may
suppose that k[U] C k[U’]. The inclusion k(V) < k(V") is induced by the inclusion
k[U] < k[U’], hence by the corresponding dominant map ¢ : U’ — U. The image of
@ contains an open subset U, of U (see the preceding subsection), and the restriction of
@ to 9~1(U,) — U, is the required map. -

A rational (or regular) map ¢ : V --» W is birational if there exists a rational map
¢’ : W > V such that ¢’op = idy, and pog’ = idy, as rational maps. Two varieties V
and V' are birationally equivalent if there exists a birational map from one to the other.
In this case, there exist dense open subsets U and U’ of V and V’ respectively such that
U~U'.

PROPOSITION 5.39. Two irreducible varieties V and V' are birationally equivalent if and
only if their function fields are isomorphic over k.

PROOF. Assume that k(V) =~ k(V'). We may suppose that V and W are affine, in which
case the existence of U ~ U’ is proved in 3.36. This proves the “if” part, and the “only
if” part is obvious. o

PROPOSITION 5.40. Every irreducible algebraic variety of dimension d is birationally equiv-
alent to a hypersurface in A1,

PROOF. Let V be an irreducible variety of dimension d. According to Proposition
3.38, there exist xq, ..., X4, Xg41 € k(V) such that k(V) = k(xq, ..., X4, Xq41)- Let f €
k[X;, ...,X441] be an irreducible polynomial satisfied by the x;, and let H be the hyper-
surface f = 0. Then k(V) =~ k(H). O
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m. Local study

Everything in Chapter 4, being local, extends mutatis mutandis, to general algebraic
varieties.

5.41. The tangent space Tp(V) at a point P on an algebraic variety V is the fibre of
V(k[e]) = V(k) over P. There are canonical isomorphisms

TP(V) = Derk(OP’ k) = Homk—linear(nP/n%n k)’
where np is the maximal ideal of Op.

5.42. A point P on an algebraic variety V is nonsingular (or smooth) if it lies on a single
irreducible component W and dim Tp(V) = dim W. A point P is nonsingular if and only
if the local ring Op is regular. The singular points form a proper closed subvariety, called
the singular locus.

5.43. A variety is nonsingular (or smooth) if every point is nonsingular.

n. Etale maps

An étale morphism is the analogue in algebraic geometry of a local isomor-
phism of manifolds in differential geometry, a covering of Riemann surfaces
with no branch points in complex analysis, and an unramified extension in
algebraic number theory.

DEFINITION 5.44. A regular map ¢ : V — W of smooth varieties is étale at a point P
of V if the map (dp)p : Tp(V) = Topy(W) is an isomorphism; ¢ is étale if it is étale at
all points of V.
Examples
5.45. A regular map

p: A" > A" a - (Py(ay,...,ay), ..., Pylay, ..., a,))

is étale at a if and only if rank Jac(Py, ..., P,)(a) = n, because the map on the tangent
oP;
3X, (a)> # 0.

spaces has matrix Jac(P, ..., P,,)(a). Equivalent condition: det (

5.46. Let V = Spm(A) be an affine variety, and let f = ), ¢;X' € A[X] be such that
A[X]/(f(X)) is reduced. Let W = Spm(A[X]/(f(X))), and consider the map W — V
corresponding to the inclusion A < A[X]/(f). Thus,

A[X]/(f) «— A[X] W —— VxA!
A V.

The points of W lying over a point a € V are the pairs (a,b) € V x Al such that b is
aroot of Y, ¢;(a)X'. I claim that the map W — V is étale at (a, b) if and only if b is a
simple root of Y ¢;(a)X".



n. Etale maps

119

To see this, write A = k[X], ...

X, 1/a,a=(f1,...,

fr), so that

A[X]/(f):k[X1’7 '7fr’f)-
The tangent spaces to W and V at (a, b) and a respectively are the null spaces of the
matrices
af 1 af 1
( ) ( ) 0
a a afl (a) afl (a)
5f r af r
(a) (a) 0
fn af}’ (a) af}“ (a)
a—Xl(a) (a) (a b)

and the map T, (W) — T,(V) is induced by the projection map k"** — k" omitting
the last coordinate. This map is an isomorphism if and only 1f of (a b)# 0, because

then every solution of the smaller set of equations extends uniquely to a solution of the
larger set. But

] d(X; ci(@)Xx?)

_f(a, b) = L
0).¢ dx

which is zero if and only if b is a multiple root of Zl. c;(a)X!. The intuitive picture is that

W — V is a finite covering with deg(f) sheets, which is ramified exactly at the points
where two or more sheets cross (see p. 50).

(b),

5.47. Consider a dominant map ¢ : V' — W of smooth affine varieties, corresponding
to a map A — B of rings. Suppose that B can be written B = A[Yy,...,Y,]/(Py, ..., Py)
(same number of polynomials as variables). A similar argument to the above shows that

@ is étale if and only if det <g§‘ (a)) is never zero.
J
5.48. The example in 5.46 is typical: in fact, locally, every étale map is of this form. Let
®: V — W be étale at P € V. Then there exist a regular map ¢’ : V/ — W’ of affine
varieties with k[V'] = k[W'][X]/(f(X)), and a commutative diagram

open ,
%4 > Up ¢ — V
immersion
lfp étalel lfp,
open ,
w > Uy < w
immersion

with Up and U, open neighbourhoods of P and Q o @(P). See Milne 1980, I, 3.14, for
the proof, which uses the affine case of Zariski’s main theorem.

The failure of the inverse function theorem for the Zariski topology

5.49. In advanced calculus (or differential topology, or complex analysis), the inverse
function theorem says that a map @ that is étale at a point a is a local isomorphism there,
i.e., there exist open neighbourhoods U and U’ of a and ¢(a) such that ¢ induces an
isomorphism U — U’. This is not true in algebraic geometry, at least not for the Zariski
topology: a map can be étale at a point without being a local isomorphism. Consider, for
example, the map

p: Al > Al ae a?
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and assume the characteristic is # 2. Then g is étale at any point a # 0 because the
Jacobian matrix is (2X), which has rank one for X = a # 0 (alternatively, it is of the
form 5.46 with f(X) = X? —T, where T is the coordinate function on A!, and X2 — a has
distinct roots for a # 0). Nevertheless, I claim that there do not exist nonempty open
subsets U and U’ of A! such that ¢ induces an isomorphism U — U’. If there did, then
@ would define an isomorphism k[U’] — k[U] and hence an isomorphism of the fields
of fractions k(A!) — k(A%). But on the fields of fractions, ¢ corresponds to the map

k(X) = k(X), X X2,
which is not an isomorphism.

5.50. Let V be the plane curve Y2 = X and ¢ the map V — Al, (x,y) —~ x. Then ¢ is
2 : 1 except over 0, and so we may view it schematically as

V X
I

0

Al

However, when viewed as a Riemann surface, V(C) consists of two sheets joined at a
single point O. As a point on the surface moves around O, it shifts from one sheet to the
other. Thus the true picture is more complicated. To get a section to ¢, it is necessary to
remove a line in C from 0 to infinity, which is not closed for the Zariski topology.

It is not possible to fit the graph
of the complex curve Y? = X into
3-space, but the picture at right is
an early depiction of it (from Neu-
mann, Carl, Vorlesungen iiber Rie-
mann’s theorie der Abel’schen inte-
grale, Leipzig: Teubner, 1865).

Etale maps of singular varieties

Using tangent cones, we can extend the notion of an étale morphism to singular varieties.
A regular map ¢ : V' — W induces a homomorphism gr(Oyp)) — gr(Op) for each
P € V. We say that ¢ is étale at P if this is an isomorphism. Note that then there
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is an isomorphism of the geometric tangent cones Cp(V) — Cypy(W), but the map
on the geometric tangent cones may be an isomorphism without ¢ being étale at P.
Roughly speaking, to be étale at P, we need the map on geometric tangent cones to be
an isomorphism and to preserve the “multiplicities” of the components.

It is a fairly elementary result that a local homomorphism of local rings ¢ : A - B
induces an isomorphism on the graded rings if and only if it induces an isomorphism on
the completions. Thus ¢ : V' — W is étale at P if and only if the map (9¢(P) — Opisan
isomorphism. Now 5.53 shows that the choice of a system of local parameters f1, ..., f4
at a nonsingular point P determines an isomorphism Op — k[[X, ..., X4]].

We can rewrite this as follows: let ¢, ...,t; be a system of local parameters at a
nonsingular point P; then there is a canonical isomorphism ®p — k[[ty, ..., t4]]. For
f € Op, the image of f € k[[ty, ..., t4]] can be regarded as the Taylor series of f.

For example, let V = Al, and let P be the point a. Then t = X —a is a local parameter
at a, Op consists of quotients f(X) = g(X)/h(X) with h(a) # 0, and the coefficients
of the Taylor expansion ), _ a,(X — a)" of f(X) can be computed as in elementary

calculus courses: a, = f™(a)/n!.

PROPOSITION 5.51. Letp : W — V be a map of irreducible affine varieties. If k(W) is a
finite separable extension of k(V'), then ¢ is étale on a nonempty open subvariety of W.

PROOF. After passing to open subvarieties, we may assume that W and V' are nonsin-
gular, and that k[W] = k[V][X]/(f (X)), where f(X) is separable when considered as a
polynomial in k(V'). Now the statement follows from 5.46. o

ASIDE 5.52. There is an old conjecture that every étale map ¢ : A" — A" is an isomorphism.
When we write ¢ = (Py, ..., P,,), this becomes the statement:

oP;
if det <—l(a)) is never zero (for a € k™), then ¢ has an inverse.

3X;

op;
X,

(a)) never zero, implies that the polynomial det <g%> is a nonzero
oP; !

ax;
which is known as the Jacobian conjecture, has not been settled even for k = C and n = 2,
despite the existence of several published proofs and innumerable announced proofs. It has
caused many mathematicians a good deal of grief. It is probably harder than it is interesting. See
the Wikipedia: JACOBIAN CONJECTURE.

The condition, det <

constant (by the Nullstellensatz 2.11 applied to the ideal generated by det ( >). This conjecture,

o. Etale neighbourhoods

Let P be a nonsingular point on a variety V of dimension d. A system of local parameters
at P is a family {f7, ..., f4} of germs of regular functions at P generating the maximal
ideal np C Op. Equivalent conditions: the images of f7, ..., fq in np/ nf, generate itas a
k-vector space (see 1.4); or (df;)p, ..., (df4)p is a basis for the dual space to Tp(V). We
also say that f71, ..., f, are local parameters at P.’

PROPOSITION 5.53. Let{f1, ..., fq} be a system of local parameters at a nonsingular point
P of V. Then there is a nonsingular open neighbourhood U of P such that 1, f», ..., fq are
represented by pairs (f1,U), ...,(f4, U) and the map (f1, ..., f4): U = A is étale.

’Sometimes also called local uniformizing parameters at P.


https://en.wikipedia.org/wiki/Jacobian_conjecture
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PROOF. Obviously, the f; are represented by regular functions f; defined on a single
open neighbourhood U’ of P, which, because of 4.37, we can choose to be nonsingular.
The map ¢ = (fy,..., fq): U’ — A9 is étale at P, because the dual map to (d¢), is
(dX;), = (df;)a. The next lemma then shows that ¢ is étale on an open neighbourhood
U ofP. O

LEMMA 5.54. LetV and W be nonsingular varieties. If p : V — W is étale at P, then it is
étale at all points in an open neighbourhood of P.

PROOF. The hypotheses imply that V' and W have the same dimension d, and that their
tangent spaces all have dimension d. We may assume V and W to be affine, say, V C A™
and W C A", and that ¢ is given by polynomials P; (X7, ..., X;)s . » Pp(X1, .. , X)) Then
oP;
3%,
a if and only if the kernel of this map contains a nonzero vector in the subspace T,(W)
of T,(A"). Let f1, ..., f, generate I(V'). Then ¢ is not étale at a if and only if the matrix

o
3X;

oP;
GTJ-(a)

(d@)a : Ta(A™) = Tya)(A") is a linear map with matrix ( (a)), and ¢ is not étale at

(a)

has rank less than m. This is a polynomial condition on a, and so it fails on a closed
subset of W, which does not contain P. 0

Let V be a nonsingular variety, and let P € V. An étale neighbourhood of a point
P of Visapair (Q,7: U — V) with 7 an étale map from a nonsingular variety U to V'
and Q a point of U such that 7(Q) = P.

COROLLARY 5.55. Let V be a nonsingular variety of dimension d, and let P € V. There
is an open Zariski neighbourhood U of P and a map 7 : U — A< realizing (P, U) as an
étale neighbourhood of (0, ...,0) € Ad,

PROOF. This is a restatement of the Proposition. o

ASIDE 5.56. (a) Note the similarity to the definition of a differentiable manifold: every point P on
a nonsingular variety of dimension d has an open neighbourhood that is also a “neighbourhood”
of the origin in A9, There is a “topology” on algebraic varieties for which the “open neighbour-
hoods” of a point are the étale neighbourhoods. Relative to this “topology”, any two nonsingular
varieties are locally isomorphic (this is not true for the Zariski topology). The “topology” is called
the étale topology — see my notes Lectures on Etale Cohomology.

(b) Smooth functions xy, ..., x,, defined on an open neighbourhood U of a point P of a
differential manifold M are local coordinates at P if they are zero at P and the map x4, ..., x, : U —
R" is an isomorphism (of manifolds) from U onto an open submanifold of R".

Compare: regular functions f1, ..., f,, defined on an open neighbourhood U of a point P of
a nonsingular algebraic variety V' are local parameters at P if they are zero at P and the map
fises fn: U > A" is an étale map from U onto an open subvariety U’ of A". In general,
(U; f1, ..., ) cannot be chosen so that the map U — U’ is an isomorphism. However, when
k = C, there exists a neighbourhood U for the complex topology such that f1, ..., f, define an
isomorphism (of complex manifolds) from U onto an open complex submanifold of C".
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The inverse function theorem (for the étale topology)

THEOREM 5.57 (INVERSE FUNCTION THEOREM). Let ¢ : V — W be a regular map. If
@ is étale at P € V, then there exists a commutative diagram

(V,P) <& (U,P) Q= oP)
U an open neighbourhood of P
lg" A pen neig f

(U, P) an étale neighbourhood of Q.
W,Q)

PROOF. According to 5.54, there exists an open neighbourhood U of P such that the
restriction ¢|U of ¢ to U is étale. o

The rank theorem

For vector spaces, the rank theorem says the following: let ¢ : V' — W be a linear map
of k-vector spaces of rank r; then there exist bases for V and W relative to which ¢ has

. (I, 0O . . .
matrix ( 0’ 0). In other words, there is a commutative diagram

174 = w

| |

(X1 5eees Xy )2 (X1 500 X,0,...) K"

A similar result holds locally for differentiable manifolds. In algebraic geometry, there is
the following weaker analogue.

THEOREM 5.58 (RANK THEOREM). Let ¢ : V. — W be a regular map of nonsingular
varieties of dimensions m and n respectively, and let P € V. If rank(Tp(¢)) = n, then there
exists a commutative diagram

olU
Up - Ugp)

létale létale

A™ A"

in which Up and U ,p) are open neighbourhoods of P and ¢(P) respectively and the vertical
maps are étale.

PROOF. Choose a system oflocal parameters g, ..., g, at ¢(P), and let f| = g,09, ..., f, =
g,o¢. Then df,...,df, are linearly independent forms on Tp(V), and there exist
frnsts s fmsuchdfyq,..,df, is abasis for Tp(V)". Then f1,..., f,, is a system of local
parameters at P. According to 5.54, there exist open neighbourhoods Up of P and U p)
of ¢(P) such that the maps

(Froees f) s Up — A
(81,1 8n) : Uppy = AT

are étale. They give the vertical maps in the above diagram. O
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ASIDE 5.59. Tangent vectors at a point P on a smooth manifold V can be defined to be certain
equivalence classes of curves through P (Wikipedia: TANGENT SPACE). For V = A", there is a
similar description with a curve taken to be a regular map from an open neighbourhood U of 0
in A! to V. In the general case there is a map from an open neighbourhood of the point P in X
onto affine space sending P to 0 and inducing an isomorphism from tangent space at P to that at
0 (5.53). Unfortunately, the maps from U C A! to A" need not lift to X, and so it is necessary to
allow maps from smooth curves into X (pull-backs of the covering X — A" by the maps from U
into A"). There is a description of the tangent vectors at a point P on a smooth algebraic variety
V as certain equivalence classes of regular maps from an étale neighbourhood U of 0 in Al to V.

p- Smooth maps

DEFINITION 5.60. A regular map ¢ : V — W of nonsingular varieties is smooth at a
point P of V if (do)p : Tp(V) — Typy(W) is surjective; ¢ is smooth if it is smooth at all
points of V.

THEOREM 5.61. Amap ¢ : V — W issmooth at P € V if and only if there exist open
neighbourhoods Up and U py of P and ¢(P) respectively such that ¢|Up factors into

étale

UP Adim V—dim W x U

q
o) — Ug(p)-

PROOF. Certainly, if ¢|Up factors in this way, it is smooth. Conversely, if ¢ is smooth at
P, then we get a diagram as in the rank theorem. From it we get maps

UP - AM XA" U(P(P) e U¢,(p).
The first is étale, and the second is the projection of A™™" X U, py onto Uy p). o

COROLLARY 5.62. Let V and W be nonsingular varieties. If ¢ : V' — W is smooth at P,
then it is smooth on an open neighbourhood of V.

PROOF. In fact, it is smooth on the neighbourhood Up in the theorem. O

Separable maps

A transcendence basis S of an extension E D F of fields is separating if the algebraic
extension E D F(S) is separable. A finitely generated extension E D F of fields is
separable if it admits a separating transcendence basis.

DEFINITION 5.63. A dominant map ¢ : W — V of irreducible algebraic varieties is
separable if k(W) is a separable extension of k(V).

THEOREM 5.64. Let ¢ : W — V be a regular map of irreducible varieties.

(a) Ifthere exists a nonsingular point P of W such that ¢P is nonsingular and (dg)p is
surjective, then ¢ is dominant and separable.

(b) Conversely if ¢ is dominant and separable, then the set of P € W satisfying (a) is
open and dense.

PROOF. Replace W and V with their open subsets of nonsingular points. Then apply
the rank theorem. 8]
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q. Algebraic varieties as functors

Let R be an affine k-algebra and V' an algebraic variety over k. We define a point of
V with coordinates in R (or an R-point of V') to be a regular map Spm(R) — V. For
example, if V = V(a) C A", then

V(R) ={(ay,...,a,) €ER"| f(a;,...,a,) =0all f € a},

as the terminology suggests. For example, V (k) = V (as a set). In other words, V (as a
set) can be identified with the set of points of V' with coordinates in k.
From the universal property of products, we see that

(VXW)R) =V(R) X W(R).

CAUTION 5.65. If V is the union of two subvarieties, V = V; U V,, then it need not be
true that V(R) = V1(R) U V,(R). For example, for any polynomial f(Xj,...,X,),

A" =D(f)uV(f),
but, in general,
R"#{a€eR"| f(a) e R*}u{a €R"| f(a) = 0}.

In fact, this need not be true even when V; and V, are open in V because that would
require every regular map U — V with U affine to factor through V; or V,, which is
nonsense. For example, V TN {(0,00} =D(X)uUD(Y),butthelineX +Y =1inV is
not contained in D(X;) or D(X,).

THEOREM 5.66. A regular map ¢ . V. — W of algebraic varieties defines a family of
maps of sets, p(R) : V(R) — W(R), one for each affine k-algebra R, such that for every
homomorphism a : R — S of affine k-algebras, the diagram

v®R) 22, ww)

[v@ [ve *)

v(s) 2 wia)

commutes. Every family of maps with this property arises from a unique morphism of
algebraic varieties.

The first sentence just says that R w V(R) is a functor from affine k-algebras to sets,
which is obvious. We prove the second after restating it in terms of categories.

Let Var, (resp. Aff,) denote the category of algebraic varieties over k (resp. affine
algebraic varieties over k). For a variety V, let h?,ff denote the functor sending an affine
variety T = Spm(R) to V(R) = Hom(T,V). We can restate the second sentence of
Theorem 5.66 as follows.

THEOREM 5.67. The functor
V w h¥: Var, — Fun(Aff, Sets)

is fully faithful.
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PROOF. For an algebraic variety V over k, let hy, denote the functor
T ~ Hom(T,V): Var, — Set.
According to the Yoneda lemma (Wikipedia: YONEDA LEMMA) the functor
V w hy @ Varg = Fun(Vary, Sets)

is fully faithful. Let ¢ be a morphism of functors h?,ff - h{“,f,f, and let T be an algebraic
variety. Let (U;);¢r be a finite affine covering of T. Each intersection U; N U is affine

(5.29), and so ¢ gives rise to a commutative diagram

0 — hy(T) — Hi hy(U) — Hith(Uint))
| ,
: o(U;) (UinU;)
4

0 — hy(T) — [ W) == [, v WinU)

in which the pairs of maps are defined by the inclusions U; n U; < U;,U;. As the
rows are exact (5.15, last sentence), this shows that ¢, extends uniquely to a functor
hy — hy», which (by the Yoneda lemma) arises from a unique regular map V. — V'. 4

COROLLARY 5.68. To give an affine group variety over k is the same as giving a functor
G from affine k-algebras to sets such that for some n and finite set S of polynomials in
k[X,X,,...,X,], G is isomorphic to the functor sending R to the set of zeros of S in R".

PROOF. Certainly an affine group variety defines such a functor. Conversely, the con-
ditions imply that G = hy, for an affine algebraic variety V' (unique up to a unique
isomorphism). The multiplication maps G(R) X G(R) — G(R) give a morphism of func-
tors hy X hy, — hy. As hy X hy ~ hyy (by definition of V' X V), we see that they arise
from a regular map m : V x V — V. Similarly, the maps a = a™! : G(R) — G(R) arise
from a regular mapinv: V — V. o

Often a variety is most naturally defined in terms of its points functor. For example,
the group varieties

SL,: R~ {M € M,(R) | det(M) = 1}
GL,: R~ {M € M,(R) | det(M) € R*}
G,: R~ (R, +).

Which functors arise from algebraic varieties?

We now describe the essential image of h — hy, : Var, — Fun(Aff;, Sets). The fibred
product of two maps «; : F; — F3,a, : F, — F; of sets is the set

Fy Xp, Fy = {(x1,%3) | a1(x1) = ax(x,)}.

When F,, F,, F5 are functors and a,, a,, a3 are morphisms of functors, there is a functor
F = Fl XF3 F2 SuCh that

(F1 Xp, F2)(R) = F1(R) Xp &) F2(R)

for all affine k-algebras R.
To simplify the statement of the next proposition, we write U for h;; when U is an
affine variety.
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PROPOSITION 5.69. A functor F ;. Aff, — Setsisin the essential image of Var, if and only
if there exists an affine variety U and a morphism U — F such that

(a) the functor R Cu Xg U is a closed affine subvariety of U X U and the mapsR = U
defined by the projections are open immersions;

(b) the set R(k) is an equivalence relation on U(k), and the map U(k) — F(k) realizes
F(k) as the quotient of U(k) by R(k).

PROOF. Let F = hy for V an algebraic variety. Choose a finite open affine covering
V =|JU;ofV,andlet U = | | U;. Itis again an affine variety (Exercise 5-2). The functor
Ris hy, where U’ is the disjoint union of the varieties U; N U;. These are affine (5.29),
and so U’ is affine. As U’ is the inverse image of Ay, in U X U, it is closed (5.26). This
proves (a), and (b) is obvious.

The converse is omitted for the present. o

ASIDE 5.70. A variety V defines a functor R w V(R) from the category of all k-algebras to Sets.
Again, we call the elements of V(R) the points of V with coordinates in R.
For example, if V is affine,

V(R) = Homk-algebra(k[v]’ R).

More explicitly, if V- C k" and I(V) = (fy, ..., fm), then V(R) is the set of solutions in R" of the
system equations
fiXq,....X,) =0, i=1,..,m.

Note that, when we allow R to have nilpotent elements, it is important to choose the f; to generate
I(V) (i.e., a radical ideal) and not just an ideal a such that V(a) = V.3

For a general variety V, we write V as a finite union of open affines V = Ui V;, and we define
V(R) to be the set of families (a;);e; € Hi 1 Vi(R) such that a; agrees with ot on V; NV for all
i, j € I. This is independent of the choice of the covering, and agrees with the previous definition
when V is affine.

The functor defined by A(E) (see p. 73)isR ~» R @ E.

A criterion for a functor to arise from an algebraic prevariety

5.71. By a functor we mean a functor from the category of affine k-algebras to sets. A
subfunctor U of a functor X is open if, for all maps ¢ : h* — X, the subfunctor p~1(U)
of h* is defined by an open subvariety of Spm(A). A family (U;);c; of open subfunctors
of X is an open covering of X if each U; is open in X and X(K) = | U;(K) for every field
K. A functor X is local if, for all k-algebras R and all finite families (f;); of elements of
A generating A as an ideal, the sequence of sets

X(R) —» HiX(Rfi) =3 Hi’jX(Rfifj)

is exact.
Let A! denote the functor sending a k-algebra R to its underlying set. For a functor
U, let O(U) = Hom(U, A!) — it is a k-algebra.” A functor U is affine if O(U) is an

8Let a be an ideal in k[X}, ...]. If A has no nonzero nilpotent elements, then every k-algebra homomor-
phism k[X}, ...] - A that is zero on a is also zero on rad(a), and so

Hom, (k[X, ...]/a, A) ~ Hom,(k[X}, ...] /rad(a), A).

This is not true if A has nonzero nilpotents.
9Actually, one needs to be more careful to ensure that O(U) is a set; for example, restrict U and A! to
the category of k-algebras of the form k[X,, X, ...]/a for a fixed family of symbols (X;) indexed by N.



128 5. ALGEBRAIC VARIETIES

affine k-algebra and the canonical map U — h®W) is an isomorphism. A local functor
admitting a finite covering by open affines is representable by an algebraic variety over
k.

In the functorial approach to algebraic geometry, an algebraic prevariety over k is
defined to be a functor satisfying this criterion. See, for example, Demazure and Gabriel
1970, 1, §1, 3.11, p. 13.

r. Rational and unirational varieties

In this section, k is an infinite field, not necessarily algebraically closed.

DEFINITION 5.72. Let V be a smooth projective variety over k of dimension #.
(a) V is unirational if there exists a dominant rational map P" --> V.
(b) V is rational if there exists a birational map P" --> V.

(c) V is stably rational if V X P" is rational for some r.

If V is stably rational, then there exists a dominant rational map P"*" --» V, and this
will restrict to a dominant rational map on some linear subspace P" C P"*". Therefore,

rational = stably rational = unirational.

An irreducible variety V is rational if k(') is a pure transcendental extension of k,
and it is unirational if k(V') is contained in a pure transcendental extension of k.

In 1876 (over C), Liiroth proved that every unirational curve is rational (see FT, 9.19).
The Liiroth problem asks whether every unirational variety is rational.

Already for surfaces, this is a difficult problem. In characteristic zero, Castelnuovo
and Severi proved that all unirational surfaces are rational, but in characteristic p # 0,
Zariski showed that some surfaces of the form

zP = f(X,Y),

while obviously unirational, are not rational. Surfaces of this form are now called Zariski
surfaces.

Fano attempted to find counter-examples to the Liiroth problem in dimension 3
among the so-called Fano varieties, but none of his attempted proofs satisfies modern
standards. In 1971-72, three examples of nonrational unirational three-folds were found.
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A little history

In his first proof of the Riemann hypothesis for curves over finite fields, Weil made use
of the Jacobian variety of the curve, but initially he was not able to construct this as
a projective variety. This led him to introduce “abstract” algebraic varieties, neither
affine nor projective (in Weil 1946). Weil first made use of the Zariski topology when
he introduced fibre spaces into algebraic geometry (in 1949). For more on this, see my
article: The Riemann hypothesis over finite fields: from Weil to the present day.

Exercises

5-1. Show that the only regular functions on P! are the constant functions. [Thus
P! is not affine. When k = C, P! is the Riemann sphere (as a set), and one knows
from complex analysis that the only holomorphic functions on the Riemann sphere are
constant. Since regular functions are holomorphic, this proves the statement in this case.
The general case is easier. ]

5-2. Let V be the disjoint union of algebraic varieties V1, ..., V,,. This set has an obvious
topology and ringed space structure for which it is an algebraic variety. Show that V' is
affine if and only if each V; is affine.

5-3. Show that an algebraic variety G equipped with a group structure is a group variety
if the map (x,y) » x7ly: G X G — G is regular.

5-4. Let G be a group variety. Show:

(a) The neutral element e of G is contained in a unique irreducible component G° of
G, which is also the unique connected component of G containing e.

(b) The subvariety G° is a normal subgroup of G of finite index, and every subgroup
variety of G of finite index contains G°.

5-5. Show that every subgroup variety of a group variety is closed.

5-6. Show that a prevariety V is separated if and only if it satisfies the following condi-
tion: a regular map U \ {P} —» V with U a curve and P a nonsingular point on U extends
in at most one way to a regular map U — V.

5-7. Prove the final statement in 5.71.

5-8. Let V be an algebraic variety. Show that the Zariski topology on V' X V agrees with
the product topology if and only dim(V') = 0.



Chapter 6

Projective Varieties

Recall (5.3) that we defined P" to be the set of equivalence classes in k"*+! \ {origin} for
the relation

(ag, ..., a,) ~ (by, ..., b,) < (ay,...,a,) = c(by,...,b,) for some c € k*.

Let (ay : ... : a,) denote the equivalence class of (ay, ..., a,,), and let 7 denote the map
n+l
k {S), .., 0)} L pn
Let U; be the set of (aq : ... : a,) € P" such that q; # 0, and let u; be the bijection
. . a a; a,\ . u; a .
(ag: .. :ay)+— <?i,..., Eﬁ""’ 7’;) U, — A" (a_,- omitted).

In this chapter, we show that " has a unique structure of an algebraic variety for which
these maps become isomorphisms of affine algebraic varieties. A variety isomorphic to
a closed subvariety of P" is called a projective variety, and a variety isomorphic to a
locally closed subvariety of P" is called a quasiprojective variety. Every affine variety is
quasi-projective, but not all algebraic varieties are quasi-projective. We study morphisms
between quasi-projective varieties.

Projective varieties are important for the same reason compact manifolds are im-
portant: results are often simpler when stated for projective varieties, and the “part at
infinity” often plays a role, even when we would like to ignore it. For example, a famous
theorem of Bezout (see 6.37 below) says that a curve of degree m in the projective plane
intersects a curve of degree n in exactly mn points (counting multiplicities). For affine
curves, one has only an inequality.

a. Algebraic subsets of P"

A polynomial F(Xy, ..., X,,) is said to be homogeneous of degree d if it is a sum of terms
i X9 -+ Xn with ig + -+ + i, = d; equivalently,

Qj,....i

F(tX,, ..., tX,) = t4F(X,, ..., X,,)

for all t € k. The polynomials homogeneous of degree d form a subspace k[X, ..., X, 14
of k[ Xy, ..., X, |, and

k[Xo, ... Xl = @D kX, .. Xplas
d>0

130
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in other words, every polynomial F can be written uniquely as a sum F = ), F; with Fy
homogeneous of degree d.

LetP = (qq : .. : a,) € P". Then P also equals (cay : ... : ca,) for any ¢ € k*,
and so we cannot speak of the value of a polynomial F(X, ..., X,,) at P. However, if F is
homogeneous, then F(cay, ..., ca,) = ch(aO, ..., ay), and so it does make sense to say
that F is zero or not zero at P. An algebraic set in P" (or projective algebraic set) is
the set of common zeros in P" of some set of homogeneous polynomials.

EXAMPLE 6.1. Consider the projective algebraic subset of P? defined by the homoge-
neous equation

E:Y?Z=X*+aXZ?+bZ°. (26)
It consists of the points (x : y : 1) on the affine curve E N U,
Y?=X’+aX+b

(see 2.2) together with the point “at infinity” (0 : 1 : 0). Note that E N U, is the affine
curve

Z=X3+aXZ*+bZ3,
and that (0: 1: 0) corresponds to the point (0,0) on E N U;:

z

Z=X3+X7*+273

As (0,0) is nonsingular on E N U, we deduce from (4.5) that E is nonsingular unless
X3+ aX + b has a multiple root. A nonsingular curve of the form (26) is called an elliptic
curve.



132 6. PROJECTIVE VARIETIES

An elliptic curve has a unique structure of a group variety for which the point at
infinity is the zero:

/

P+Q

When a, b € Q, we can speak of the zeros of (26) with coordinates in Q. They also form
a group E(Q), which Mordell showed to be finitely generated. It is easy to compute the
torsion subgroup of E(Q), but there is at present no known algorithm for computing
the rank of E(Q). More precisely, there is an “algorithm” which works in practice, but
which has not been proved to always terminate after a finite amount of time. There is a
very beautiful theory surrounding elliptic curves over Q and other number fields, whose
origins can be traced back almost 1,800 years to Diophantus. (See my book on Elliptic
Curves for all of this.)

Anideal a C k[X, ..., X, ] is said to be graded or homogeneous if it contains with
any polynomial F all the homogeneous components of F, i.e., if

Fea = Fj;€a,alld.

It is straightforward to check that
o anideal is graded if and only if it is generated by (a finite set of) homogeneous
polynomials;
o the radical of a graded ideal is graded;
o an intersection, product, or sum of graded ideals is graded.

For a graded ideal a, we let V(a) denote the set of common zeros of the homogeneous
polynomials in a. Clearly
acCb = V(a) D V(b).

IfFy, ..., F, are homogeneous generators for a, then V(a) is also the set of common zeros
of the F;. Clearly every polynomial in a is zero on every representative of a point in
V(a). We write V£ (a) for the set of common zeros of a in k"*1. It is a cone in k"1, i.e.,
together with any point P it contains the line through P and the origin, and

vatt(a) < {(0, ..., 0)}'

~

V(a) =

The sets V(a) in P" have similar properties to their namesakes in A".
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PROPOSITION 6.2. There are the following relations:
(@ V(O)=P* V(a)=0 < rad(a) D (Xy,...,X,);
(b) V(ab)=V(anb)=V(a)uV(b),
© V(T a) = V(ay.

PROOF. For the second statement in (a), note that

V(a) =0 < Vi) c{Q,..,0)}
< rad(a) D Xy, ..., X;) (strong Nullstellensatz 2.16).

The remaining statements can be proved directly, as in Proposition 2.10, or by using the
relation between V(a) and V2 (a). -

Proposition 6.2 shows that the projective algebraic sets are the closed sets for a
topology on P"* — this is called the Zariski topology on P".

If Cisaconein k"', then I(C) is a graded ideal in k[ X, ..., X,,]: if F(ca, ..., ca,) = 0
for all ¢ € k*, then

ZFd(aO, ., @) - c® = F(cay, ..., ca,) = 0,
d

for infinitely many ¢, and so Y, F4(ay, ... ,a,)X? is the zero polynomial. For a subset S of
P", we define the affine cone over S in k"*! to be

C = 7~ 1(S) u {origin}
and we set
I(S) = I(C).
Note that if S is nonempty and closed, then C is the closure of 771(S) # @, and that I(S)

is spanned by the homogeneous polynomials in k[X,, ..., X, | zero on S.

PROPOSITION 6.3. The maps V and I define inverse bijections between the set of algebraic
subsets of P" and the set of proper graded radical ideals of k[ X, ..., X,,]. An algebraic set
V in P" is irreducible if and only if I(V') is prime; in particular, P" is irreducible.

PROOF. We have bijections

SH—C

{algebraic subsets of P"} ————— {nonempty closed cones in k"+!}

14 1

{proper graded radical ideals in k[X, ..., X,,]}

Here the top map sends S to the affine cone over S, and the maps V and I are in the
sense of projective geometry and affine geometry respectively. The composite of any
three of these maps is the identity map, which proves the first statement because the
composite of the top map with I is I in the sense of projective geometry. Obviously, V is
irreducible if and only if the closure of 7=1(V) is irreducible, which is true if and only if
I(V) is a prime ideal. o



134 6. PROJECTIVE VARIETIES

Note that the graded ideals (X, ..., X,) and k[X,, ..., X,,] are both radical, but
V(Xo, s X)) = 0 = V(k[Xo, ..., X,,])

and so the correspondence between irreducible subsets of P" and radical graded ideals
is not quite one-to-one.

ASIDE 6.4. In English “homogeneous ideal” is more common than “graded ideal”, but we follow
Bourbaki, Alg, I, §11. A graded ring is a pair (S, (S;)4en) comprising a ring S and a family of
additive subgroups S, such that

§= @deN Sd>  SaSe C Sgte>alld,e €N.
Anideal a in S is graded if and only if

a=P,_ (@ns;

this means that it is a graded submodule of (S, (S;)). The quotient of a graded ring S by a graded
ideal a is a graded ring S/a = P, Sa/(a N Sy).

b. The Zariski topology on P"
For a graded polynomial F, let
D(F)={P € P" | F(P) # 0}.

Then, just as in the affine case, D(F) is open and the sets of this type form a base for the
topology of P". As in the opening paragraph of this chapter, we let U; = D(X;).

To each polynomial f(Xj,...,X,), we attach the homogeneous polynomial of the
same degree

* _ydegN (X X
f (XO’-'-’XH)_XO f(XQ’.“,XO)’
and to each homogeneous polynomial F(X, ..., X,,), we attach the polynomial
F.(X1,....X,) =F(Q,Xq, ..., X,).

PROPOSITION 6.5. Each subset U; of P" is open in the Zariski topology on P", and when
we endow it with the induced topology, the bijection

Ui > An, (ao TR an) > (ao, ey Q15 Ajy 1y ey an)
becomes a homeomorphism.

PROOF. It suffices to prove this with i = 0. The set U, = D(X|)), and so it is a basic open
subset in P". Clearly, for any homogeneous polynomial F € k[X, ..., X},],

D(F(X,,...,X,)NnU, =DFQ1,Xy,...,X,,)) = D(F,)
and, for any polynomial f € k[Xy, ..., X,],
D(f) = D(f*) n U.

Thus, under the bijection U, < A", the basic open subsets of A" correspond to the
intersections with U; of the basic open subsets of P”, which proves that the bijection is a
homeomorphism. o
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REMARK 6.6. It is possible to use this to give a different proof that P" is irreducible. We
apply the criterion that a space is irreducible if and only if every nonempty open subset is
dense (see p. 45). Note that each U; is irreducible, and that U; N U; is open and dense in
each of U; and U (as a subset of U, it is the set of points (ap : ... 1 11 ... 1 aj @ ... 1 qp)
with a; # 0). Let U be a nonempty open subset of P"*; then U N U; is open in U;. For
some i, U N U; is nonempty, and so must intersect U; N U;. Therefore U intersects every
Uj, and so is dense in every U. It follows that its closure is all of P".

c. Closed subsets of A" and P"

We identify A" with U,, and examine the closures in P" of closed subsets of A". Note
that
P" = A"UH,, Hy =V(X,).

With each ideal a in k[X}, ..., X,,], we associate the graded ideal a* in k[ X, ..., X}, ]
generated by {f* | f € a}. For a closed subset V of A", set V* = V(a*) with a = I(V).

With each graded ideal a in k[ X, X7, ..., X,,], we associate the ideal a,, in k[ X1, ..., X}, ]
generated by {F,, | F € a}. When V is a closed subset of P", we set V, = V(a,) with
a=I(V).

PROPOSITION 6.7. (a) Let V be a closed subset of A™. Then V* is the closure of V in P",
and (V*), = V. If V. = |JV, is the decomposition of V into its irreducible components,
thenV* = V' is the decomposition of V* into its irreducible components.

(b) Let V be a closed subset of P"*. Then V. = V N A", and if no irreducible component
of V lies in H, or contains H, then V is a proper subset of A", and (V,)* = V.

PROOF. Straightforward. o
Examples
6.8. For
V:Y2=X3+aX+b,
we have
V*:Y?Z=X3+aXZ%+bZ3,
and (V*), =V.

6.9. LetV = V(fy,..., fn); then the closure of V in P" is the union of the irreducible
components of V(f7, ..., f},) not contained in H,. For example, let

V = V(X1 X? +X5) = {(0,0)%

then V(X X, X f + XyX,) consists of the two points (1: 0: 0) (the closure of V) and
(0: 0: 1) (which is contained in H,).!

6.10. ForV =H, =V(X,),wehave V, =@ =V(1)and (V,)* =0 # V.

1Of course, in this case a = (X},X,), a* = (X;,X,), and V* = {(1: 0: 0)}, and so this example does
not contradict the proposition.
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d. The hyperplane at infinity

It is often convenient to think of P" as being A" = U, with a hyperplane added “at
infinity”. More precisely, we identify the set U, with A”". The complement of U, in P" is

Hyo={0:a :..:a,)€P

which can be identified with P*~!,
For example, P! = Al L1 H, (disjoint union), with H,, consisting of a single point,
and P? = A2 U H,, with H, a projective line. Consider the line

1+ aX1 + bX2 =0
in A2, Its closure in P2 is the line
XO + aXl + bX2 = 0.

This line intersects the line H,, = V(X,) at the point (0 : —b : a), which equals
(0 : 1: —a/b)when b # 0. Note that —a/b is the slope of the line 1 + aX; + bX, =0,
and so the point at which a line intersects H,, depends only on the slope of the line:
parallel lines intersect in one point at infinity. We can think of the projective plane P? as
being the affine plane A2 with one point added at infinity for each “direction” in A2,

Similarly, we can think of P" as being A" with one point added at infinity for each
direction in A" — being parallel is an equivalence relation on the lines in A", and there
is one point at infinity for each equivalence class of lines.

We can replace U, with U, in the above discussion, and write P" = U, U H,, with
Hy ={(ag: .. : a,_;: 0)},asin Example 6.1. Note that in this example the point at
infinity on the elliptic curve Y2 = X3 + aX + b is the intersection of the closure of any
vertical line with H,.

e. [P"is an algebraic variety
For each i, write O; for the sheaf on U; C P" defined by the homeomorphism u; : U; —
A",

LEMMA 6.11. Let U;; = U; N Uj; then O;|U;; = O;|U;;. When endowed with this sheaf,
Uij is an affine algebraic variety; moreover, I'(U;;, O;) is generated as a k-algebra by the
Junctions (f|U;;)(g|U;;) with f € I'(U;, 0;), g € I' (U}, O)).

PROOF. It suffices to prove this for (i, j) = (0, 1). All rings occurring in the proof will be
identified with subrings of the field k(X,, X7, ..., X},)-

Recall that
Coe Co e ) a
Up={(ag:a;:..:a,)]ay#0} (ap:ay:..: an)e(a—o,a—o,...,a—Z) e A"
X, X, X, . . X;
Let k| =, =, ..., —] be the subring of k(X,, X;, ..., X,) generated by the quotients —
Xy Xo Xo Xo
it is the polynomial ring in the n symbols AR An element f (Xo’ s Xo) €
X, X,
k[XO s e Xo] defines a map
a a
(ap :ay @ ..: an)»—>f(—1,...,—”): U, — k,

Ao Qo
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and in this way k[ ! XZ ﬁ] becomes identified with the ring of regular functions
Xy X
on Uy, and U, with Spm (k[XO s X_o])
Next consider the open subset of U,
Up ={(ap : ... 1 ay) | ag#0,a; # 0},

Itis D(j%) and is therefore an affine subvariety of (U, Q). The inclusion Uy; & U,
0

corresponds to the inclusion of rings k[% ﬁ] <~ k[ﬁ ,ﬁ, )&] An element

X X, X X X ’ %ol K h
1 0 20 . . a a4n 9o
f(;o S ) fk[ ]deﬁnesthefunctlon(ao | Hf(ao,...,a—o,a—l)
on Uy, .
Similarly,
U, = . . . . . . . ao al’l n
1= {(ao P4 £ T POTIEN an) | a, $é 0}, (ao @ S PN an) > (a—l,..., a—l) €A ,
andweidentifyUlwithSpm(k[ﬁ,&,...,%]).Apolynomialf(;& i )mk[x . %
1 1 1 1 1
defines the map (ay : ... : a,) — f(a",...,a_"): U, - k.
a, a

When regarded as an open subset of Uy, Uy = D(%), and is therefore an affine
1

subvariety of (U, O;), and the inclusion U,; < U, corresponds to the inclusion of

ringsk[ﬁ,...,ﬁ %k[ﬁ,...,x Xl] Anelementf( ﬁ,ﬁ) f ﬁ,...,ﬁ,ﬁ]
Xl Xl Xl Xl XO 1 Xl XO Xl Xl XO
defines the function (qy : ... : a,) f(ao,..., I al) on Uy;.
a; a Qo
The two subrings k[ﬁ oy Xo]a nd k|2, .., 2 Xl]ofk(XO,Xl,...,Xn) are equal,
XO XO X X1 Xl X

and an element of this ring defines the same function on Uy, regardless of which of the
two rings it is considered an element. Therefore, whether we regard Uy, as a subvariety
of U, or of U it inherits the same structure as an affine algebraic variety (3.15). This

. o . X X, Xo- .
proves the first two assertions, and the third is obvious: k[ ;1, s X—“, }?"] is generated by
0 0 1
. . X X,
its subrings k[—l, ] and k %o 2, ey 2. O
Xo "X, X1

PROPOSITION 6.12. There is a unique structure of an algebraic variety on P" for which
each U, is an open affine subvariety of P"* and each map u; is an isomorphism of algebraic
varieties. Moreover, P" is separated.

PROOF. Endow each U; with the structure of an affine algebraic variety for which u; is
an isomorphism. Then P" = | J U;, and the lemma shows that this covering satisfies
the patching condition 5.15, and so P" has a unique structure of a ringed space for
which U; < P" is a homeomorphism onto an open subset of P" and Op:|U; = Oy,.
Moreover, because each U; is an algebraic variety, this structure makes P" into an
algebraic prevariety. Finally, the lemma shows that P" satisfies the condition 5.29(c) to
be separated. o

EXAMPLE 6.13. Let C be the plane projective curve
C:Y2=X3
and assume that char(k) # 2. For each a € k*, there is an automorphism

(x:y:z)|—>(ax:y:a3z):Cﬁ>C.
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Patch two copies of C x A! together along C x (A! — {0}) by identifying (P, a) with
(pa(P),a™!), P € C, a € A! « {0}. One obtains in this way a singular surface that is
not quasi-projective (see Hartshorne 1977, Exercise 7.13). It is even complete — see
below — and so if it were quasi-projective, it would be projective. In Shafarevich 1994,
VI 2.3, there is an example of a nonsingular complete variety of dimension 3 that is not
projective. It is known that every irreducible separated curve is quasi-projective, and
every nonsingular complete surface is projective, and so these examples are minimal.

f. The homogeneous coordinate ring of a projective variety

Recall (p. 115) that attached to each irreducible variety V, there is a field k(V') with the
property that k(V) is the field of fractions of k[U] for any open affine U C V. We now

describe this field in the case that V' = P". Recall that k[U] = k[ ] We regard

this as a subring of k(X, ..., X, ), and wish to identify the field of fractlons of k[Uy] as a
subfield of k(X,, ..., X,,). Every nonzero F € k[U,] can be written

F(é )&) — F*(Xo, ""X}’l)
Xo' " Xo X(c)leg(F)

with F* homogeneous of degree deg(F), and it follows that the field of fractions of k[Uj]

is

G(Xo, ., X))

K(Uo) = {H(XO, X))

' G, H homogeneous of the same degree} U {0}.
Write k(X, ..., X, ), for this field (the subscript 0 is short for ‘subfield of elements of

degree 0”), so that k(P") = k(X, ..., X,,)o. Note that for F = 1n kX, - » Xn)os

(g : oty 280 py g
H(agy,...,a,)
is a well-defined function, which is obviously regular (look at its restriction to U;).
We now extend this discussion to any irreducible projective variety V. Such a V can
be written V = V(p) with p a graded radical ideal in k[X,, ..., X, ], and we define the
homogeneous coordinate ring of V' (with its given embedding) to be

khom[V] = k[X 5 eee ’Xn]/‘p

Note that ky,,, [V] is the ring of regular functions on the affine cone over V; therefore its
dimension is dim(V') + 1. It depends, not only on V, but on the embedding of V' into P",
i.e., it is not intrinsic to V. For example,

v
(ap : ap) P (af : apay @ a?): P — P?

is an isomorphism from P! onto its image »(P') : XoX, = X7 (see 6.23 below), but
knom[P'] = k[X,,X;], which is the affine coordinate ring of the smooth variety A2,
whereas kpom [V(P)] = k[ X, X1, X521/ (XX, — X f), which is the affine coordinate ring
of the singular variety X,X, — X;.

We say that a nonzero f € kyop[V] is homogeneous of degree d if it can be repre-
sented by a homogeneous polynomial F of degree d in k[X, ..., X, ], and we say that 0 is

homogeneous of degree 0.
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LEMMA 6.14. Each element of ky,,[V'] can be written uniquely in the form

f=fot+fa
with f; homogeneous of degree i.

PROOF. Let F represent f; then F can be written F = F,, + --- + F; with F; homoge-
neous of degree i; when read modulo p, this gives a decomposition of f of the required
type. Suppose that f also has a decomposition f = )’ g;, with g; represented by the
homogeneous polynomial G; of degree i. Then F — G € p, and the homogeneity of p
implies that F; — G; = (F — G); € p. Therefore f; = g;. O

It therefore makes sense to speak of homogeneous elements of k[V]. For such an
element h, we define D(h) = {P € V | h(P) # 0}.

Since kpom[V] is an integral domain, we can form its field of fractions ko, (V).
Define

khom(V)o = { % € knom(V) ‘ g and h homogeneous of the same degree} U {0}.

PROPOSITION 6.15. The field of rational functions on V is k(V) = ktbom(W)o-

PROOF. Consider V = Uy N V. As in the case of P", we can identify k[V] with a
subring of ky,,m[V], and then the field of fractions of k[V,] becomes identified with

khom(V)O- m]

g. Regular functions on a projective variety

Let V be an irreducible projective variety, and let f € k(V'). By definition, we can write

f= % with g and & homogeneous of the same degree in ky,,,[V] and h # 0. For any

P=(ay: ..: a,)with h(P) # 0,

aet 8(ag, ., 4y)
Fe)= h(ag, ..., ay)

is well-defined: if (ay, ..., a,) is replaced by (cay, ..., ca,), then both the numerator and

denominator are multiplied by cd¢&®) = ¢deg(h),

We can write f in the form % in many different ways,? but if

/

_8_ 8
f=5=5 k),

then
gh, = g,h (in khom[V])

and so
g(ay, ..., a,) - W' (ay, ...,a,) = g'(ay, ...,a,) - h(ag, ..., a,).

Thus, if '(P) # 0, the two representations give the same value for f(P).

2Unless kyom[V]1s a unique factorization domain, there will be no preferred representation f = %
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PROPOSITION 6.16. Foreach f € k(V) o knom(V)o, there is an open subset U of V, where

f(P) is defined, and P — f(P) is a regular function on U; every regular function on an
open subset of V arises from a unique element of k(V').

PROOF. From the above discussion, we see that f defines a regular function on U =
{J D(h), where h runs over the denominators of expressions f = % with g and h homo-

geneous of the same degree in ky, o, [V].

Conversely, let f be a regular function on an open subset U of V, and let P € U.
Then P lies in the open affine subvariety V' n U, for some i, and so f coincides with the
function defined by some fp € k(V N U;) = k(V) on an open neighbourhood of P. If
S coincides with the function defined by f; € k(V) in a neighbourhood of a second
point Q of U, then fp and f, define the same function on some open affine U’, and so
fp = fq aselements of k[U’] C k(V). This shows that f is the function defined by fp
on the whole of U. O

REMARK 6.17. (a) The elements of k(V') = kyom(V)o should be regarded as the algebraic
analogues of meromorphic functions on a complex manifold; the regular functions on
an open subset U of V are the “meromorphic functions without poles” on U. [In fact,
when k = C, this is more than an analogy: a nonsingular projective algebraic variety
over C defines a complex manifold, and the meromorphic functions on the manifold are
precisely the rational functions on the variety. For example, the meromorphic functions
on the Riemann sphere are the rational functions in z.]

(b) We shall see presently (6.24) that, for any nonzero homogeneous h € kyom[V ],
D(h) is an open affine subset of V. The ring of regular functions on it is

k[D(h)] = {g/h™ | g homogeneous of degree m deg(h)} U {0}.

We shall also see that the ring of regular functions on V itself is just k, i.e., any regular
function on an irreducible (connected will do) projective variety is constant. However, if
U is an open nonaffine subset of V, then the ring I'(U, Oy,) of regular functions can be
almost anything — it need not even be a finitely generated k-algebra!

h. Maps from projective varieties

We describe the morphisms from a projective variety to another variety.

PROPOSITION 6.18. The map
. A" forigin} — P", (ay, ...,a,) = (ag : ... : a,)

is an open morphism of algebraic varieties. A map o : P" — V with V a prevariety is
regular if and only if ccor is regular.

PROOF. The restriction of 77 to D(X;) is the projection

Q,
(ag, ..., a,) — (a—o D

i

: ﬂ) D kTN V(X,) - U,
@

1

which is the regular map of affine varieties corresponding to the map of k-algebras

Xo X -1
k[x;"" Xi] = k[Xg, ., X, ][X;1].
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X
(In the first algebra YJ is to be thought of as a single symbol.) It now follows from

Proposition 5.4 that = ils regular.

Let U be an open subset of k"*1 \ {origin}, and let U’ be the union of all the lines
through the origin that intersect U, that is, U’ = #~!'z(U). Then U’ is again open
in k"1~ {origin}, because U’ = U cU, ¢ € k*, and x — cx is an automorphism of
k"*1\ {origin}. The complement Z of U’ in k"*! \ {origin} is a closed cone, and the proof
of (6.3) shows that its image is closed in P"; but 7(U) is the complement of 7(Z). Thus
7 sends open sets to open sets.

The rest of the proof is straightforward. o

Thus, the regular maps P" — V are just the regular maps A"*! \ {origin} - V
factoring through P" as maps of sets.

REMARK 6.19. Consider polynomials Fy(Xy, ... , X;), .. » Fn (X, -.. , X},,) Of the same de-
gree. The map

(ag @ .. 2 ay) = (Folag, ..., ap) & o : Fplag, ..., a))

obviously defines a regular map to P” on the open subset of P, where not all F; vanish,
that is, on the set | D(F;) = P" \ V(F}, ..., F,)). Its restriction to any subvariety V of P™
will also be regular. It may be possible to extend the map to a larger set by representing
it by different polynomials. Conversely, every such map arises in this way, at least locally.
More precisely, there is the following result.

PROPOSITION 6.20. LetV = V(a) C P"and W = V() CP". Amape:V - Wis
regular if and only if, for every P € V, there exist polynomials

FO(XO’ oo 1Xm)9 .. ’Fn(XO’ e aXm)a
homogeneous of the same degree, such that

® ((bo Lot b}’l,)) = (Fo(bo, cee sy bm) Lt Fn(bo, ey bm))
forall points (by : ... : by,) in some neighbourhood of P in V(a).
PROOF. Straightforward. o

EXAMPLE 6.21. We prove that the circle X? 4+ Y? = Z2 is isomorphic to P! (char(k) # 2).
This equation can be rewritten (X +iY)(X —iY) = Z2, and so, after a change of variables,
the equation of the circle becomes C : XZ = Y?2. Define

p: Pl = C,(a:b)~ (a®: ab : b?).
For the inverse, define

(@a:b:c)m(a:b) ifa#0

‘l,bZC—>[|:Dl byg (@a:b:c)ym»(b:c) ifb#£0"

Note that,

_ 12 C_b
a#0#b, ac=b =>B—a

and so the two maps agree on the set where they are both defined. Clearly, both ¢ and ¥
are regular, and one checks directly that they are inverse.
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i. Some classical maps of projective varieties

A hypersurface of degree m in P" is an algebraic subset defined by nonzero homoge-
neous of degree m > 1. When m = 1, the hypersurface is called a hyperplane. As in
the affine case (2.67), the hypersurfaces in P" are exactly the closed subvarieties of P" of
codimension 1. The intersection of a projective variety W C P" with a hypersurface (of
degree m) is called a hypersurface section (of degree m) of W.

After proving that complements of hyperplane sections are affine, we study some
classical maps of projective varieties.

HYPERPLANE SECTIONS AND COMPLEMENTS

We show that the complement of a hyperplane section of a projective variety is an affine
variety, and deduce that any finite set of points of a projective variety is contained in an
affine subvariety.

6.22. Let L = ), ¢;X; be a nonzero linear form in n + 1 variables. Then the map

(g : .. 1 ay) (%,...,%)

is a bijection of D(L) C P" onto the hyperplane L(X,, X1, ...,X,) = 1 of A**! with
inverse
(ag, ..., a,) — (ag & ... : a,).

Both maps are regular — for example, the components of the first map are the regular

X
functions 5 CJ < As V(L — 1) is affine, so also is D(L) and its ring of regular functions
¢

is to be thought of as a single

is k[ ] In this ring, each quotient

le

1; thus it is a polynomial ring in n symbols; any one symbol

Xn

2c X U aX
bol, and X
symbol, an ZCjECiXi_

for which ¢; # 0 can be omitted.

X;
2 X
ForafixedP =(ay: .. : a,) € P" thesetofc=(cy: ... : ¢,)such that
def
L(P) = D cia; #0
is a nonempty open subset of P" (n > 0). Therefore, for any finite set S of points of P",

fceP" | S c D)}

is a nonempty open subset of P" (because P" is irreducible). In particular, S is contained
in an open affine subset D(L.) of P". Moreover, if S C V, where V is a closed subvariety
of P, then S C V n D(L,): any finite set of points of a projective variety is contained in
an open affine subvariety.

THE VERONESE MAP

The Veronese map embeds P” in a higher dimensional projective space in such a way
that hypersurface sections of subvarieties are transformed into hyperplane sections.
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6.23. Let
I ={(ip, ....1p) €N | 3 i; = m}.

Note that I indexes the monomials of degree m in n + 1 variables. It has ("}") elements
(see 6.39 below). Write v,, ,, = ("™+") — 1, and consider the projective space P”»» whose
coordinates are indexed by I; thus a point of P”»~ can be written (... : b; ; : ..). The
Veronese mapping is defined to be

. i i
..), b =a’..qa,.

v Pt Pm(ag t et ay) o (et by gy 0

i
In other words, the Veronese mapping sends an n + 1-tuple (a, : ... : a,) to the set of
monomials in the a; of degree m. For example, when n = 1 and m = 2, the Veronese
map is

(ap : @) P (af : apay @ aj): Pt - P
Its image is the curve »(P!) : XX, = Xf, and the map

(byo @ byp)ifbyg #1
(b1 : bgy)ifby, #0

is an inverse »(P!) — P!. (Cf. Example 6.22.)
When n = 1 and m is general, the Veronese map is

(bso : bry © bys) H{

(@o:ap) P (af taflay oot alh): P> P™

We shall show that, in the general case, the image of v is a closed subset of P¥»m and
that v defines an isomorphism of projective varieties v : P" — v(P").

First note that the map has the following interpretation: if we regard the coordinates
a; of a point P of P" as being the coefficients of a linear form L = )] a;X; (well-defined
up to multiplication by nonzero scalar), then the coordinates of v(P) are the coefficients
of the homogeneous polynomial L with the binomial coefficients omitted.

As L # 0= L™ # 0, the map v is defined on the whole of P", that is,

(@gy o @) # (0,.,0) = (s by i 5) # (0, ., 0),

Moreover,
Ly#cl,> L;" * cL;"

because k[X, ..., X,,| is a unique factorization domain. Therefore, v is injective, and it is
obvious from its definition that it is regular.

We shall see in the next chapter that the image of any projective variety under a
regular map is closed, but here we can prove directly that v(P") is defined by the system
of equations

biy..i,Djgin = biy.kcyDeg..t,s ip+ jn=kp+ty allh. *)
Obviously P" maps into the algebraic set defined by these equations. Conversely, let

Vi=A{C.. t biy.i, * ) | bo.omo..0 # O
Then v(U;) C V; and v=1(V;) = U,. It is possible to write down a regular map V; — U;
inverse to v|U;: for example, define V;, — P" to be
(oo 2 hyiy 2 o) P (B, 0 P Di—11,0,.0 * bim—1,01,0,..0 * = * bm—1,0,..0,1)-
Finally, one checks that v(P") C | JV;.

As P s v(P") is an isomorphism, for any closed subvariety W of V, »(W) is a
closed subvariety of v(P") (hence of P”=») and v|W : W — »(W) is an isomorphism.
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6.24. The Veronese mapping has a very important property. Let H be the hypersurface
in P" of degree m

iO in —
Diai i X0 Xy =0,

and let L be the hyperplane in P”»m defined by

Z @iy, Xy, -
Then v(H) = v(P")NL,i.e.,
H(a)=0 < L(v(a))=0.

Thus for any closed subvariety W of P", v defines an isomorphism of the hypersurface
section W N H of V onto the hyperplane section »(W) N L of »(W). This observation
often allows us to replace questions about hypersurface sections with questions about
hyperplane sections.

As one example of this, note that v maps the complement of a hypersurface section
of W isomorphically onto the complement of a hyperplane section of »(W'), which we
know to be affine. Thus the complement of any hypersurface section of a projective
variety is an affine variety.

AUTOMORPHISMS OF P"

We show that the automorphisms of P" are exactly the invertible changes of variables.

6.25. A Mébius transformation of P! is a regular map of the form
(x :y)~ (ax + by : cx+dy): P! - P1,

where a, b, c,d € k are such that ad — bc # 0. The Mobius transformations are exactly
the automorphisms of P!, and two quadruples a, b, ¢, d define the same transformation
if and only if one is a nonzero multiple of the other.?> Thus,

Aut(P!) = PGLy(k) & GL,(k)/k*I, wherel = ((1) (1))

A similar statement is true for P". An element A = (q;;) of GL,, defines a regular
map
(Xo w2 Xp) = (ot Dagx; o) PP PY

It is an automorphism with inverse defined by the inverse matrix. Scalar matrices act as
the identity map.

Let PGL,,,; = GL,,; /k*I, where I is the identity matrix, that is, PGL,,, is the
quotient of GL,,,, by its centre. Then PGL,.,, is the complement in P(*+D*~1 of the
hypersurface det(X;;) = 0, and so it is an affine variety with ring of regular functions

k[PGL, 1] = {F(..., Xjj,...)/ det(X;;)™ | deg(F) = m - (n + 1)} U {0}.

It is an affine group variety.

3Therefore, when k = C, the automorphisms of P! coincide with the holomorphic automorphisms of
the Riemann sphere (Cartan 1963, VI1.2.4).
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The homomorphism PGL,,; — Aut(P") is obviously injective. We sketch a proof
that it is surjective.*

First note that the collection of lines in P" has a natural structure of an algebraic
variety and, in particular, a (Zariski) topology. Indeed, the lines in P" correspond to
2-dimensional subspaces of k"*!, and hence to the points on the Grassmann variety
G,(k"*1) (see section 6m below).

Fix a hypersurface

H: F(Xy,..,X,) =0

in P" and consider a line
L={(ay+thy: ..:a,+tb,) |t ek}
in P". The points of H N L are given by the solutions of
F(ay+thy : ... : a,+th,) =0,

which is a polynomial of degree < deg(F) in t unless L C H. Therefore, if L ¢ H, then
H n L contains at most deg(F) points, and it is not hard to show that, for the L in an
open subset of the space of all lines, it will contain exactly deg(F) points. Thus, the
hyperplanes are exactly the closed subvarieties H of P" such that

(a) dim(H) =n —1,
(b) |HNL| =1 foran open set of lines L.

These are geometric conditions, and so any automorphism of P" must map hyperplanes
to hyperplanes. But on an open subset of P, any automorphism takes the form

(bg : ... : by) > (Fy(bg,...,b,) : ... : Fy(bg,...,by,)),

where the F; are homogeneous of the same degree d (see 6.20). Such a map will take
hyperplanes to hyperplanes if and only if d = 1.

THE SEGRE MAP

The Segre map embeds a product of projective spaces into a projective space, and allows
us to show that products of projective varieties are projective.

6.26. The Segre map is

((ag & oo 2 am),(bg & ..t bp)) = (agbg @ .. 2 @;bj 1)) 0 P X P — prntmen,

Woo Wy

The index set for P™" ™+ ig{(i, j) | 0 < i < m, 0 < j < n}. Note that if we interpret the
tuples on the left as the coefficients of two linear forms L; = )} a;X; and L, = ). b Y,
then the image of the pair is the set of coefficients of L, L,, which is a homogeneous form
of degree 2. From this observation, it is obvious that the map is defined on the whole of
P™ x P,

Ly #0# Ly = LiL, #0,

and is injective. Its image is obviously contained the hypersurface

“This is related to the fundamental theorem of projective geometry. See Wikipedia: FUNDAMENTAL
THEOREM OF PROJECTIVE GEOMETRY or E. Artin, Geometric Algebra, Interscience, 1957, Theorem 2.26.
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In fact, the Segre map is an isomorphism

I}j)m X [Ij)n _:) H C I]j)ml’l+m+n.

To see this, note that the Segre map defines an isomorphism from the open affine P x[P"
where ayb, # 0 onto the open affine of H where wy, # 0, with inverse

(Woo & et Wit ) 2 ((Wog o v T Wing)s (Wog & oo & Wop))s

and that a similar statement holds with 0, 0 replaced by i, j.
For example, the map

((ao . al),(bo : bl)) = (aobo : a0b1 . a1b0 . albl): Pl X [FDl g [FD3
w X y z

is an isomorphism from P! x P! onto the hypersurface
H: WZ=XY,

with inverse
w:x:y:z2)(w:y),(w:x)

on the open affine of H where w # 0.

In particular, we see that P! x P! is a projective variety. It is not isomorphic to P?,
because, in P2, any two closed curves intersect (section 6p), whereas, in Pl x P!, this is
not true (consider two vertical lines).

If V and W are closed subvarieties of P and P", then the Segre map sends V X W
isomorphically onto a closed subvariety of P™"*™"+"_ Thus products of projective varieties
are projective.

The product P! x P" contains many disjoint copies of P" as closed subvarieties.
Thus finite disjoint unions of copies of P" are projective, and so finite disjoint unions of
projective varieties are projective.

There is an explicit description of the topology on P x P": the closed subsets are
the sets of common solutions of families of equations

F(Xo, ... ,Xm, Yo, ey Yl’l) =0

with F separately homogeneous in the X; and in the Y.

PROJECTIONS WITH GIVEN CENTRE

Projections with a given centre allow us to map closed subvarieties of a projective space
onto closed subvarieties of a lower-dimensional projective space, possibly with the
introduction of singularities.

6.27. Let L,,...,L,_4 be linearly independent linear forms in n + 1 variables. Their
zero set E in k"*! has dimension d + 1, and so their zero set in P" is a d-dimensional
linear space. Define 7 : P"—E — P" %" lbyr(a) = (L;(a) : ... : L,_4(a)); such a map
is called a projection with centre E. If V is a closed subvariety disjoint from E, then
7 defines a regular map ¢ : V — P"9-1 Its image is closed (7.22, 7.7) and the map
@V — o(V)is finite (8.53).

More generally, if Fy, ..., F, are homogeneous forms of the same degree, and Z =
V(Fy,...,F,), thena ~ (Fy(a) : ... : F.(a))is a morphism P* — Z — P"L,
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By carefully choosing the centre E, it is possible to linearly project any smooth curve
in P" isomorphically onto a curve in P3, and nonisomorphically (but bijectively on an
open subset) onto a curve in P? with only nodes as singularities.> For example, suppose
that we have a nonsingular curve C in P3. To project to P> we need three linear forms
Ly, Ly, L, and the centre of the projection is the point P, where all the forms are zero.
We can think of the map as projecting from the centre P, onto some (projective) plane
by sending the point P to the point where PyP intersects the plane. To project C to a
curve with only ordinary nodes as singularities, one needs to choose P so that it does
not lie on any tangent to C, any trisecant (line crossing the curve in 3 points), or any
chord at whose extremities the tangents are coplanar. See for example Samuel 1966.

Projecting a nonsingular variety in P" to a lower dimensional projective space usually
introduces singularities. Hironaka proved that every singular variety arises in this way
in characteristic zero. See Chapter 8 below.

APPLICATION

PROPOSITION 6.28. Every finite set S of points of a quasi-projective variety V is contained
in an open affine subset of V.

PROOF. Regard V as a subvariety of P", let V be the closure of V in P", and let Z = V\ V.
Because SN Z = @, for each P € S there exists a homogeneous polynomial Fp € I(Z)
such that Fp(P) # 0. We may suppose that the Fp have the same degree. An elementary
argument shows that some linear combination F of the Fp, P € S, is nonzero at each P.
Then F is zero on Z, and so V N D(F) is an open affine of V, but F is nonzero at each P,
and so V N D(F) contains S. o

j- Projective space without coordinates

Let E be a vector space over k of dimension n. The set P(E) of lines through zero in E has
a natural structure of an algebraic variety: the choice of a basis for E defines a bijection
P(E) — P", and the inherited structure of an algebraic variety on P(E) is independent
of the choice of the basis (because the bijections defined by two different bases differ
by an automorphism of P"). Note that in contrast to P", which has n + 1 distinguished
hyperplanes, namely, X, = 0, ..., X,, = 0, no hyperplane in P(E) is distinguished.

k. The functor defined by projective space

Let R be a k-algebra. A submodule M of an R-module N is said to be a direct summand of
N if there exists another submodule M’ of M (a complement of M) such that N = Mé@M’.
Let M be a direct summand of a finitely generated projective R-module N. Then M is
also finitely generated and projective, and so M, is a free R,,-module of finite rank for
every maximal ideal m in R. If M, is of constant rank r, then we say that M has rank r.
See CA, §12.
Let
P*(R) = {direct summands of rank 1 of R"*1}.

>This is best possible: a nonsingular curve of degree d in P2 has genus (d — 1)(d — 2)/2, and so, if g is
not of this form, no curve of genus g can be realized as a nonsingular curve in P2
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Then P" is a functor from k-algebras to sets. When K is a field, every K-subspace of K"+!
is a direct summand, and so P"(K) consists of the lines through the origin in K"*1.
Let H; be the hyperplane X; = 0 in k!, and let

P(R)={L € P"(R) | L ® H;z = R""'}.

Let L € P;(R); then
e, =10+ Z aje;.
J#i
Now
L+ (a))js: Pi(R) - Ui(R) ~R"

is a bijection. These combine to give an isomorphism P"(R) — P"(R):

PR —— ][] P® —= ][] P®nP;®R

0<i<n 0<i,j<n

l l

P*R) — [J u® —= ][] t@®nU;®.

0<i<n 0<i,j<n

Let R be a commutative ring, and let L be a direct summand of rank 1 of R**!. Then
L is a projective R-module of rank 1 and the images sy, is a projective

1. Maps to projective space

In this section, we assume the reader is familiar with the definitions of coherent sheaves
and vector bundles (Chapter 13).

To give a regular map from a variety V' to P" is the same as giving an isomorphism
class of pairs (L, (s, -.- , S,)) where L is an invertible sheaf on V and s, ..., s,, are global
sections of L

Let V be a complete variety. A map ¢ : V — P" is an isomorphism onto its (closed)
image if and only if it separates points and tangent directions (ZMT).

For D a divisor on a variety V, we let

L(D) ={f € k(V) | (f) + D > 0} u{0} = H(V, £L(D)),
IDI ={(f)+D | f € LD}
Thus |D| is the complete linear system containing D.
A projective embedding of an elliptic curve can be constructed as follows: let D = Py,

where P, is the zero element of A, and choose a suitable basis 1, x, y of L(3D); then the
map A — P? defined by {1, x, y} identifies A with the cubic projective curve

Y2Z + a1 XYZ + a;YZ? = X3 + a,X%Z + a,X 7% + a4 73

(see Hartshorne 1977, IV, 4.6). This argument can be extended to every abelian variety.
Under construction.


http://www.urbanfonts.com/blog/wp-content/uploads/2013/04/12.gif
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m. Grassmann varieties

We show that the linear subvarieties of fixed dimension in a given projective space, for
example, the lines in P", form a projective variety.

Let E be a vector space over k of dimension n, and let G4(E) be the set of d-dimensional
subspaces of E. When d = 0 or n, G4(E) has a single element, and so from now on we
assume that 0 < d < n. Fix a basis for E, and let S € G4(E). The choice of a basis
for S then determines a d X n matrix A(S) whose rows are the coordinates of the basis
elements. Changing the basis for S multiplies A(S) on the left by an invertible d x d
matrix. Thus, the family of d X d minors of A(S) is determined up to multiplication by a

n
nonzero constant, and so defines a point P(S) in [P’(d )_1.

n
PROPOSITION 6.29. The map S +— P(S): G4(E) - P(d)_l is injective, with image a
n
closed subset of [FD( d )_1.

We give the proof below. The maps P defined by different bases of E differ by an

automorphism of P( d )_1, and so the statement is independent of the choice of the basis
— later (6.34) we shall give a “coordinate-free description” of the map. The map realizes
G4(E) as a projective algebraic variety called the Grassmann variety of d-dimensional
subspaces of E.

EXAMPLE 6.30. The affine cone over a line in P? is a two-dimensional subspace of k*.
Thus, G,(k*) can be identified with the set of lines in P3. Let L be a line in P3, and let
Xx=(xg:X x5 :x3)andy = (¥ : 1 : Y2 . y3) be distinct points on L. Then

def

x. x.
P(L)=(Po1 : Poz : Po3 : P12 - P13 : Pa3) €EP?, pi ="

J
Vi Yj

b

depends only on L. The map L — P(L) is a bijection from G,(k*) onto the quadric
IT © X01X53 — X02X13 + X3X12 =0
in P°. For a direct elementary proof of this, see (9.41, 9.42) below.

REMARK 6.31. Let S’ be a subspace of E of complementary dimension n — d, and let
G4(E)g be the set of S € G4(V) such that S NS’ = {0}. Fixan S, € G4(E)g, so that
E=S,®S . Forany S € G4(V)g, the projection S — S, given by this decomposition is
an isomorphism, and so S is the graph of a homomorphism S, — S’:

s—s < (s,5)€S.
Conversely, the graph of any homomorphism S, — S’ lies in G4(V)g . Thus,
G4(V)g ~ Hom(S,,S") ~ Hom(E/S’,S’). 27)

The isomorphism G4(V)g ~ Hom(E/S’,S’) depends on the choice of S, — it is the
element of G4(V)g corresponding to 0 € Hom(E/S’, S’). The decomposition E = S,®S’
gives a decomposition

_ [ End(S;) Hom(S’,Sp)
End(E) = (Hom(So?S’) End(S’)O )

and the bijections (27) show that the group (Hom(lso,sf) (1)) acts simply transitively on
Ga(E)s-
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REMARK 6.32. The bijection (27) identifies G4(E)g with the affine variety A(Hom(S,, S’))
defined by the vector space Hom(S,, S”) (cf. p. 73). Therefore, the tangent space to G4(E)
at Sp,

Ts,(G4(E)) = Hom(S,, S") = Hom(S,, E/Sp). (28)

Since the dimension of this space does not depend on the choice of S, this shows that
G4(E) is nonsingular (4.39).

REMARK 6.33. Let B be the set of all bases of E. The choice of a basis for E identifies
B with GL,, which is the principal open subset of A" where det # 0. In particular,
B has a natural structure as an irreducible algebraic variety. The map (ey, ...,€,) —
(e1,...,eq) . B — Gy4(E) is a surjective regular map, and so G4(E) is also irreducible.

REMARK 6.34. The exterior algebra AE = P, /\d E of E is the quotient of the tensor
algebra by the ideal generated by all vectors e ®e, e € E. The elements of /\d E are called
(exterior) d-vectors.The exterior algebra of E is a finite-dimensional graded algebra

over k with \’E =k, \'E = E;ifey, ... e, form an ordered basis for V/, then the (%)
wedge products
e A Aey, (i < <lyg)

form an ordered basis for /\d E. In particular, /\n E has dimension 1. For a subspace S of

E of dimension d, /\d S is the one-dimensional subspace of /\d E spanned by e; A... Aey
for any basis ey, ..., ¢4 of S. Thus, there is a well-defined map

S /\ds: G4(E) - P( /\d E) (29)

which the choice of a basis for E identifies with S — P(S). Note that the subspace
spanned by ey, ..., e, can be recovered from the line through e; A ... A e, as the space of
vectors v such that v A e; A ... Aeg = 0 (cf. 6.35 below).

FIRST PROOF OF PROPOSITION 6.29.

Fix a basis ey, ...,e, of E, and let S, = {(e;,...,eq) and S’ = (eg41,...,€,). Order the

n
coordinates in [FD(d)_1 so that
P(S)=(ap: > qj: .t ),

where a, is the left-most d X d minor of A(S), and @;;,1 <i <d,d < j < n, is the minor
obtained from the left-most d X d minor by replacing the ith column with the jth column.

Let U, be the (“typical”) standard open subset of [F"(g )_1 consisting of the points with

nonzero zeroth coordinate. Clearly,® P(S) € U, if and only if S € G4(E)g. We shall

prove the proposition by showing that P : G4(E)s — U, is injective with closed image.
For S € G4(E)g, the projection S — S is bijective. Foreachi, 1 <i < d, let

r_
e —ei+2d<anaijej (30)

If e € S’ N S is nonzero, we may choose it to be part of the basis for S, and then the left-most d x d
submatrix of A(S) has a row of zeros. Conversely, if the left-most d X d submatrix is singular, we can change
the basis for S so that it has a row of zeros; then the basis element corresponding to the zero row lies in
S'nS.
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denote the unique element of S projecting to e;. Then e;, s e; is a basis for S. Conversely,

for any (a;;) € k%"~9, the e/ defined by (30) span an S € G,4(E)s and project to the
e;. Therefore, S < (a;;) gives a one-to-one correspondence Gy(E)s < k%"=% (this is a
restatement of (27) in terms of matrices).

Now, if S < (a;;), then

P(S)=1: .. qj: it filag): ).

where f(q;;) is a polynomial in the a;; whose coefficients are independent of S. Thus,
P(S) determines (q;;) and hence also S. Moreover, the image of P : G4(E)g — U, is the
graph of the regular map

n
( , aij, ) = ( , fk(aij), ) . Ad(n_d) - A(d)_d(n_d)_l,

which is closed (5.28).

SECOND PROOF OF PROPOSITION 6.29.

An exterior d-vector v is said to be pure (or decomposable) if there exist vectors
e1,...,eq € Vsuch thatv = e; A ... A eg. According to 6.34, the image of G4(E) in

P( /\d E) consists of the lines through the pure d-vectors.

LEMMA 6.35. Let w be a nonzero d-vector and let
Mw)={veE|vAw=0}

then dim; M(w) < d, with equality if and only if w is pure.

PROOF. Letey,...,e,, be a basis of M(w), and extend it to a basis ey, ..., e,,, ...,e, of V.
Write
w = Z ailmideil Ao A eid, ail-"id ek.

1Si1<...<id

If there is a nonzero term in this sum in which e j does not occur, then e iAw # 0.
Therefore, each nonzero term in the sum is of the form ae; A ... A e, A .... It follows that
m <d,andm =difand onlyif w = ae; A ... Aeg with a # 0. o

For a nonzero d-vector w, let [w] denote the line through w. The lemma shows that

[w] € G4(E) if and only if the linear mapv —» vAw: E /\d+1 Ehasrank <n-—d
(in which case the rank is n — d). Thus G4(E) is defined by the vanishing of the minors
of order n — d + 1 of this map.

In more detail, the map

d d+1
w— UL VAW): /\ E—»Homk(E,/\ E)
is injective and linear, and so defines an injective regular map
d d+1
P( /\ E) & P(Hom,(E, /\ E)).

The condition rank < n — d defines a closed subset W of P(Hom (E, /\‘lerl E)) (once a
basis has been chosen for E, the condition becomes the vanishing of the minors of order

n—d+1ofalinear map E — /\d+1 E), and

Gy(E) = P(N"E)nW.
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Flag varieties

The discussion in the last subsection extends easily to chains of subspaces. Letd =
(dy, ..., d,) be a sequence of integers with 0 < d; < --- < d, < n, and let G4(E) be the set
of flags

F: EDE'D>---DE"'DO0 (31)

with E! a subspace of E of dimension d;. The map

Ga(E) 2% 11, 64.(B) ¢ TT, P\ E)

realizes G4(E) as a closed subset’ 11, G4, (E), and so it is a projective variety, called
a flag variety. The tangent space to G4(E) at the flag F consists of the families of
homomorphisms

¢': EE>E/E', 1<i<r, (32)

that are compatible in the sense that
¢i|Ei+l = §0i+1 mod Ei+1.

ASIDE 6.36. Abasisey,...,e, for E is adapted to the flag F if it contains a basis e, ..., e I for each
E'. Clearly, every flag admits such a basis, and the basis then determines the flag. As in (6.33),
this implies that G4(E) is irreducible. Because GL(FE) acts transitively on the set of bases for E, it
acts transitively on G4(E). For a flag F, the subgroup P(F) stabilizing F is an algebraic subgroup
of GL(E), and the map

g gFy: GI(E)/P(Fy) — Gq(E)

is an isomorphism of algebraic varieties. Because G4(E) is projective, this shows that P(F) is a
parabolic subgroup of GL(E).

n. Bézout’s theorem

Let V be a hypersurface in [P" (that is, a closed subvariety of dimension n — 1). For such
a variety, I(V) = (F(Xy, ..., X,,)) with F a homogenous polynomial without repeated
factors. We define the degree of V' to be the degree of F.

The next theorem is one of the oldest, and most famous, in algebraic geometry.8

THEOREM 6.37. Let C and D be curves in P? of degrees m and n respectively. If C and
D have no irreducible component in common, then they intersect in exactly mn points,
counted with appropriate multiplicities.

PROOF. Decompose C and D into their irreducible components. Clearly it suffices to
prove the theorem for each irreducible component of C and each irreducible component
of D. We can therefore assume that C and D are themselves irreducible.

We know from 2.62 that C N D is of dimension zero, and so is finite. After a change
of variables, we can assume that a # 0 for all points (a : b : ¢) € C N D.

"For example, if u; is a pure d;-vector and u,,, is a pure d;,-vector, then it follows from (6.35) that
M(u;) € M(u;,,) if and only if the map

d;+1 i1 +1
v»—>(v/\ui,v/\ui+1):E—>/\ EGB/\+ E

has rank < n — d; (in which case it has rank n — d;). Thus, G4(E) is defined by the vanishing of many
minors.
8Bézout 1779, but announced earlier by MacLaurin 1720.
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Let F(X,Y,Z) and G(X, Y, Z) be the polynomials defining C and D, and write
F:SoZm+Slzm_1+"'+Sm, G=toZ”+tlz”—1+-~-+tn

with s; and ¢; polynomials in X and Y of degrees i and j respectively. Clearly s,,, # 0 # t,,,
for otherwise F and G would have Z as a common factor. Let R be the resultant (7.27
below; Wikipedia: RESULTANT) of F and G, regarded as polynomials in Z. It is either a
homogeneous polynomial of degree mn in X and Y or it is identically zero. If the latter
occurs, then for every (a, b) € k?, F(a, b, Z) and G(a, b, Z) have a common zero, which

contradicts the finiteness of C N D. Thus R is a nonzero polynomial of degree mn. Write

R(X,Y) = X’"”R*()X(), where R, (T) is a polynomial of degree < mnin T = )X(
Suppose first that deg R, = mn, and let ay, ..., a,,, be the roots of R, (some of them

may be multiple). Each such root can be written o; = Z—i_, and R(a;, b;) = 0. According to
7.28 this means that the polynomials F(a;, b;, Z) and G(a;, b;, Z) have a common root c;.
Thus (a; : b; : ¢;)is a point on C N D, and conversely, if (a : b : c¢)isapointon CND
(so a # 0), then % is a root of R,(T). Thus we see in this case, that C N D has precisely

mn points, provided we take the multiplicity of (a : b : ¢) to be the multiplicity of % as

aroot of R,.

Now suppose that R, has degree r < mn. Then R(X,Y) = X" "P(X,Y), where
P(X,Y)is a homogeneous polynomial of degree r not divisible by X. Obviously R(0, 1) =
0, and so there is a point (0 : 1 : ¢) in C N D, in contradiction with our assumption. -

REMARK 6.38. The above proof has the defect that the notion of multiplicity has been
too obviously chosen to make the theorem come out right. It is possible to show that
the theorem holds with the following more natural definition of multiplicity. Let P be
an isolated point of C N D. There will be an affine neighbourhood U of P and regular
functions f and gon U such that CNU = V(f) and D N U = V(g). We can regard f
and g as elements of the local ring Op, and clearly rad(f, g) = m, the maximal ideal in
Op. It follows that Op /(f, g) is finite-dimensional over k, and we define the multiplicity
of P in C N D to be dim;(Op/(f,g)). For example, if C and D cross transversely at P,
then f and g will form a system of local parameters at P — (f,g) = m — and so the
multiplicity is one.

The attempt to find good notions of multiplicities in very general situations motivated
much of the most interesting work in commutative algebra in the second half of the
twentieth century.

o. Hilbert polynomials

Recall that for a projective variety V' C P", the homogeneous coordinate ring
knom[V] = k[ Xy, ..., X, 1/0 = k[xg, ..., x,],

where b = I(V). The ideal b is graded, and so ky,,[V'] is a graded ring,
Knom[V] = @mzo knom[V 1m>

where kyom[V ], is the k-subspace spanned by the monomials in the x; of degree m. In
particular, kyom[V],, is a finite-dimensional k-vector space, and we define the Hilbert
Junction of V to be

H(V,m) E dimy knom[V 1.


https://en.wikipedia.org/wiki/Resultant
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It is a function N — N. Note that

khom[V]m = k[XO’ ’Xn]m/Bma

so H(V, m) is the codimension, in the space of homogeneous polynomials of degree m
in the X;, of the subspace of those that vanish on V.

EXAMPLE 6.39. By definition ky,on[P"] = k[Xo, ..., X, ], SO kpom[P" ], consists of the
homogeneous polynomials of degree m in X, ..., X,,. There are (4" ) monomials of
degree m in n + 1 variables, so

m+n)= (m+n)---(m+1).

H®",m) = ( n n!

That there are (™" ) monomials can be proved by inductionon m + n. If m = 0 = n,
then (§) = 1, which is correct. A general homogeneous polynomial of degree m can be
written uniquely as

F(XO’XI’ ... ,Xn) - Fl(Xl’ ... ,Xn) +XOF2(X0,X1, .. ,Xn)
with F; homogeneous of degree m and F, homogeneous of degree m — 1. But

(") ="+ (")

because they are the coefficients of X™ in
X + 1™ = (X + 1)(X + 1)mtnL
and this proves the induction.

EXAMPLE 6.40. LetV = {P;, P,, P;} be a set of three points in P2. There exists a nonzero
linear polynomial vanishing at all the points if and only if they are collinear. Thus

1 if the points are collinear

HV,1) = { 2 otherwise.

For m > 2, the map
[ (f(Py), f(P1), f(PR)) 1 k[Xo, X1, X5, — K2
is surjective, and so its kernel has codimension 3. Thus
H(V,m)=3form > 2.

Similarly, if V' is a set of & points P2, then H(V, 1) depends on the dimension of the
subspace spanned by the points, but

HV,m)=6form >4 —1.

The degree of a projective variety is the number of points in the intersection of the
variety and of a general linear variety of complementary dimension. For example, if
V is the hypersurface in P" defined by a homogeneous polynomial of degree § and
H,,...,H,_; are hyperplanes in P", then “in general”,

|VﬂHlﬂﬂHn_1| = 5
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THEOREM 6.41. Let V' C P" be a projective variety. There exists a unique polynomial
P(V,T) € Q[T] such that
P(V,m)=H(V,m)

for all sufficiently large m. Moreover,
P(V,T) = %Td + terms of lower degree,

where d is the dimension of V and § its degree.
PROOF. Omitted (for the present). O

The polynomial P(V,T) in the theorem is called the Hilbert polynomial of V.
Despite the notation, it depends not just on V' but also on its embedding in projective
space.

For example,

P(P",T) = (T :lr n) _ T+ n).n.!. (T + 1)’

and if V is a set of § points in P2, then
P(V,T)=24.
EXAMPLE 6.42. Let V be the image of the Veronese map

(ag:a) P (@ :a’la; :..:a®): P> P, SeN.
0 0 0 1

Then kyom[V ], can be identified with the set of homogeneous polynomials of degree
m - § in two variables (look at the map A2 — A%+! given by the same equations), which
is a space of dimension ém + 1, and so

P(V,T)=06T + 1.
Thus V has dimension 1 (which we knew) and degree 9.

EXAMPLE 6.43. Let V be the curve in P? defined by a homogeneous polynomial F of
degree §. If b is the ideal in k[X,, X;, X, ] corresponding to b, then b,, consists of the
polynomials of degree m divisible by F, and so

m—5+2)

dimb,, = ( 5

if m > &. Therefore, for m > 6,

HV.m) = (m;2)_(m—25+2) —Sm— 5(52—2).
Hence
P(V,T) = 6T — 50 -2)

2

Macaulay2 knows how to compute Hilbert polynomials.
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p- Dimensions

The results for affine varieties extend to projective varieties with one important simplifi-
cation: if V and W are closed subvarieties of dimensions r and sin P* andr + s > n,
then V N W # . For example, any two closed curves in P? intersect.

THEOREM 6.43. Let V = V(a) C P" be a projective variety of dimension > 1, and let
f € k[Xy, ..., X,,| be homogeneous, nonconstant, and & a; then V NV (f) is nonempty and
of pure codimension 1.

PROOF. Since the dimension of a variety is equal to the dimension of any dense open
affine subset, the only part that does not follow immediately from 3.42 is the fact that
VNV(f)is nonempty. Let V3T (a) be the zero set of a in A™*! (that is, the affine cone over
V). Then VT (a) n VT (£) is nonempty (it contains (0, ..., 0)), and so it has codimension
1in V1 (a). Clearly V3 (a) has dimension > 2, and so V3 (a) n V() has dimension
> 1. This implies that the polynomials in a have a zero in common with f other than
the origin, and so V(a) N V(f) # 0. o

COROLLARY 6.44. Let f1, ..., f, be homogeneous nonconstant elements of k[ X, ..., X, 1;
and let Z be an irreducible component of VN V(f1, ... f,). Then codim(Z) < r, and if
dim(V) > r, thenV NV (fy,... f,) is nonempty.

PROOF. Induction on r, as before. O

PROPOSITION 6.45. Let Z be an irreducible closed subvariety of V; if codim(Z) = r, then
there exist homogeneous polynomials f, ..., f, in k[X,, ..., X, | such that Z is an irreducible
component of VNV (f1,..., f).

PROOF. Use the same argument as in the proof 3.47. o

PROPOSITION 6.46. Every pure closed subvariety Z of P" of codimension one is principal,
i.e, I(Z) = (f) for some f homogeneous element of k[ X, ..., X, ]

PROOF. Follows from the affine case. o

COROLLARY 6.47. LetV and W be closed subvarieties of P"; if dim(V)+dim(W) > n, then
V N'W # @, and every irreducible component of it has codim(Z) <codim(V')+codim(W).

PROOF. Write V = V(a) and W = V(b), and consider the affine cones V' = V(a) and
W' = V(b) over them. Then

dim(V") + dim(W’) = dim(V) + 1 + dim(W) + 1> n + 2.

AsV' nW’' # @,V n W has dimension > 1, and so it contains a point other than the
origin. Therefore VN W # (. The rest of the statement follows from the affine case. 5

PROPOSITION 6.48. Let V be a closed subvariety of P" of dimension r < n; then there is a
linear projective variety E of dimension n —r — 1 (that is, E is defined by r + 1 independent
linear forms) such that EN'V = (.
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PROOF. Induction on r. If r = 0, then V is a finite set, and the lemma below shows that
there is a hyperplane in k! not intersecting V.

Suppose that r > 0, and let V1, ...,V be the irreducible components of V. By
assumption, they all have dimension < r. The intersection E; of all the linear projective
varieties containing V; is the smallest such variety. The lemma below shows that there
is a hyperplane H containing none of the nonzero E;; consequently, H contains none of
the irreducible components V; of V, and so each V; N H is a pure variety of dimension
< r — 1 (or is empty). By induction, there is an linear subvariety E’ not intersecting
VNH.TakeE =E'nH. D

LEMMA 6.49. Let W be a vector space of dimension d over an infinite field k, and let
Ey, ..., E, be a finite set of nonzero subspaces of W. Then there is a hyperplane H in W
containing none of the E;.

PROOF. Pass to the dual space V of W. The problem becomes that of showing V' is not a
finite union of proper subspaces Elv Replace each ElV by a hyperplane H; containing
it. Then H; is defined by a nonzero linear form L;. We have to show that [ ] L; is not
identically zero on V. But this follows from the statement that a polynomial in n variables,
with coefficients not all zero, cannot be identically zero on k" (Exercise 1-1). O

Let V and E be as in Proposition 6.48. If E is defined by the linear forms L, ..., L,
then the projection a — (Ly(a) : --- : L,(a)) defines a map V — P". We shall see later
that this map is finite, and so it can be regarded as a projective version of the Noether
normalization theorem.

In general, a regular map from a variety V to P" corresponds to a line bundle on
V and a set of global sections of the line bundle. All line bundles on A" \ {origin} are
trivial (see, for example, Hartshorne II 7.1 and II 6.2), from which it follows that all
regular maps A"*! \ {origin} — P™ are given by a family of homogeneous polynomials.
Assuming this, it is possible to prove the following result.

COROLLARY 6.50. Leta: P" — P™ be regular; if m < n, then o is constant.

PROOF. Let 7 : A" — {origin} — P" be the map (ay, ...,a,) = (qg : .. : a,). Then
aor is regular, and there exist polynomials Fy, ..., F,, € k[Xj, ..., X},,] such that aor is
the map

(ag, ...,a,) — (Fo(a) : ... : F,(a)).

As aor factors through P", the F; must be homogeneous of the same degree. Note that

alag @ ... . a,) =(Fyla) : ... : F(a)).

If m < n and the F; are nonconstant, then 6.43 shows they have a common zero and so
a is not defined on all of P". Hence the F; must be constant. O

q. Products

It is useful to have an explicit description of the topology on some product varieties.
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The topology on P™ x P".

Suppose that we have a collection of polynomials F;(Xy, ... , X;,; Yo, ... Y3), i € I, each
of which is separately homogeneous in the X; and Y;. Then the equations

Fi(XO’ .os ,Xm;Yo,... ,Yn) = 0, l S I,

define a closed subset of P X P", and every closed subset of P™ x P" arises in this way
from a (finite) set of polynomials.

The topology on A™ x P"

The closed subsets of A™ x P" are exactly those defined by sets of equations
Fi(X1, s Xm: Yoo, Yy) =0, i€,

with each F; homogeneous in the Y;.

The topology on V' x P"

Let V be an irreducible affine algebraic variety. We look more closely at the topology
on V X P" in terms of ideals. Let A = k[V], and let B = A[X,,...,X,]. Note that
B = A ® k[Xy,...,X,], and so we can view it as the ring of regular functions on
V x A" for f € Aand g € k[X,, ...,X,], f ® g is the function

(v,a) — f(v)-ga): V x A" - k.

The ring B has an obvious grading — a monomial aX(l)0 ..X,",a € A, has degree > i ¥
— and so we have the notion of a graded ideal b C B. It makes sense to speak of the
zero set V(b) C V x P" of such an ideal. For any ideal a C A, aB is graded, and
V(aB) = V(a) x P".

LEMMA 6.51. (a) For each graded ideal b C B, the set V(b) is closed, and every closed
subset of V X P" is of this form.

(b) The set V(b) is empty if and only if rad(b) D (X, ... , X,)-

(¢) If V is irreducible, then V = V(b) for some graded prime ideal b.

PROOF. (a) In the case that A = k, we proved this in 6.1 and 6.2, and similar arguments
apply in the present more general situation. For example, to see that V(b) is closed, cover
P" with the standard open affines U; and show that V(b) N U; is closed for all i.

The set V(b) is empty if and only if the cone V2(b) c V x A™*! defined by b is
contained in V' X {origin}. But

Diaiy i Xo X ay, €KV,
is zero on V' X {origin} if and only if its constant term is zero, and so
IV x {origin}) = (X, X1, ..., X,).

Thus, the Nullstellensatz shows that V(b) = @ = rad(b) = (X,, ..., X,,). Conversely, if
XN € b for all i, then obviously V(b) is empty.

For (c), note that if V(b) is irreducible, then the closure of its inverse image in
V x A" is also irreducible, and so IV(b) is prime. O
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Exercises

6-1. Show that a point P on a projective curve F(X,Y,Z) = 0 is singular if and only if
0F /0X,0F /dY,and 0F /0Z are all zero at P. If P is nonsingular, show that the tangent
line at P has the (homogeneous) equation

(OF /0X)pX + (3F JY)pY + (9F /0Z)pZ = 0.

Verify that Y2Z = X3 + aXZ? + bZ? is nonsingular if X + aX + b has no repeated root,
and find the tangent line at the point at infinity on the curve.

6-2. Let L be a line in P? and let C be a nonsingular conic in P? (i.e., a curve in P?
defined by a homogeneous polynomial of degree 2). Show that either

(a) L intersects C in exactly 2 points, or

(b) L intersects C in exactly 1 point, and it is the tangent at that point.

6-3. LetV = V(Y —X?,Z — X3) Cc A3. Prove
(@ IV)=(Y -X%Z-X),

(b) ZW—=XY € I(V)* C k[W,X,Y,Z],but ZW —XY & (Y —=X2)*,(Z—X3)*). (Thus,
if Fy, ..., F, generate a, it does not follow that F7, ..., F;' generate a*, even if a*is
radical.)

6-4. Let P, ..., P, be points in P". Show that there is a hyperplane H in P" passing
through P, but not passing through any of Py, ..., P,.

6-5. Is the subset
{@a:b:c)la#0, b#0tu{l:0:0)}
of P2 locally closed?

6-6. Show that the image of the Segre map P x P" — P™HM+n (gee 6.26) is not
contained in any hyperplane of Pmn+m+n,

6-7. Write 0, 1, oo for the points (0: 1), (1: 1),and (1: 0) on P!.
(a) Let a be an automorphism of P! such that
a(0)=0, a(l)=1, o) = co.

Show that « is the identity map.

(b) Let Py, P;, P, be distinct points on P. Show that there exists an & € PGL,(k) such
that
OC(O) =POs OC(].) =P13 OC(OO) =P2'

(c) Deduce that Aut(P!) ~ PGL,(k).
6-8. Show that the functor
R ~ P™(R) = {direct summands of rank 1 of R"**1}

satisfies the criterion 5.71 to arise from an algebraic prevariety. (This gives an alternative
definition of P".)
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6-9. (a) Let V. C A" and W C P™ be algebraic varieties and ¢ : V' — W a map. Show
that ¢ is regular if and only if every point in V has an open neighbourhood U on which
there are regular functions f, ..., f,, such that

p(ay,...,a,) = (folag, -ra,): .t f(a,...,a,))

for all (a4, ...,a,) € U.
(b) Show that, for a regular map ¢ as in (a), it may not be possible to take U = V.
Hint: Let V c A* be the complement of (0,0, 0, 0) in

XY —-ZW =0,

andletp: V — P!send (w,x,y,z) to (x : z) if one of x or z is nonzero and (w, 0, y, 0)
to (w: y). See sx4626969 (Mohan).



Chapter 7

Complete Varieties

Complete varieties are the analogues in the category of algebraic varieties of compact
topological spaces in the category of Hausdorff topological spaces.

If V is compact, then every continuous map V — T with T Hausdorff sends compact
sets to compact sets, hence closed sets to closed sets, i.e., it is a closed map. Moreover, a
Hausdorff space V is compact if and only if the map V' — {point} is universally closed,
i.e., for all topological spaces T, the projection map q: V X T — T is closed (Bourbaki
TG, 1,10.2, Cor. 1 to Thm 1).

a. Definition and basic properties

Definition
DEFINITION 7.1. A prevariety V over k is complete if
(a) itis separated, and

(b) for all algebraic varieties T, the projection map q: V X T — T is closed.
We shall see (7.22) that projective varieties are complete.
EXAMPLE 7.2. The projection map
(x, )~ y: Alx Al - AL

is not closed. For example, the variety V : XY = 1is closed in A? but its image in A!
omits the origin. On the other hand, the projection map P! x Al — Al is closed. The
closure of V in P! x Al is

VE{(x: 2),y) € P x Al | xy = 2%},

and the point ((x : 0),0) of V projects to 0.

Properties

7.3. Closed subvarieties of complete varieties are complete.

Let Z be a closed subvariety of a complete variety V. For any variety T, Z X T is closed in
V X T, and so the restriction of the closed map q: VX T — T to Z X T is also closed.

7.4. Avariety is complete if and only if its irreducible components are complete.

161
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Each irreducible component is closed, and hence complete if the variety is complete (7.3).
Conversely, suppose that the 1rredu01ble components V; of a variety V are complete. If Z
isclosed in V X T, then Z 2 7Zn (Vi xT)isclosed in V; X T. Therefore, q(Z;) is closed
in T, and so q(Z) = | q(Z;) is also closed.

7.5. Products of complete varieties are complete.

LetVy,...,V, be complete varieties, and let T be a variety. The projection (Hl VOXT - T
is the composite of the projections

ViX oo XV, XT 5>V, X+ XV, XT —> -+ >V, XT->T,
all of which are closed.
7.6. Ifp: V — W issurjective and V is complete, then W is complete.

Let T be a variety, and let Z be a closed subset of W x T. Let Z’ be the inverse image of
ZinV xT. Then Z' is closed, and its image in T equals that of Z.

7.7. Letp : V — W be a regular map of varieties. If V is complete, then ¢(V') is a complete
closed subvariety of W. In particular, every complete subvariety of a variety is closed.

Let I, e {(v, p(v))} C VX W be the graph of ¢. It is a closed subset of VX W (because V'
is a variety, see 5.28), and ¢(V') is the projection of I, into W. Therefore (V) is closed,
and 7.6 shows that it is complete. The second statement follows from the first applied to
the inclusion map.

7.8. A regular map V- — P! from a complete connected variety V is either constant or
surjective.

The only proper closed subsets of P! are the finite sets, and such a set is connected if
and only if it consists of a single point. Because ¢(V) is connected and closed, it must
either be a single point (and ¢ is constant) or P! (and ¢ is onto).

7.9. The only regular functions on a complete connected variety are the constant functions.

A regular function on a variety V is a regular map f : V — A! c P!, to which we can
apply 7.8.

7.10. A regular map ¢ : V — W from a complete connected variety to an affine variety
has image equal to a point. In particular, every complete connected affine variety is a point.

Embed W as a closed subvariety of A", and write ¢ = (¢4, ..., ¢,), Where ¢, is the
composite of ¢ with the coordinate function x; : A" — Al. Each g; is a regular function
on V, and hence is constant. (Alternatively, apply 5.11.) This proves the first statement,
and the second follows from the first applied to the identity map.

7.11. In order to show that a variety V is complete, it suffices to check thatq: VXT —» T
is a closed mapping when T is affine (or even an affine space A").

Every variety T can be ertten as a finite union of open affine subvarieties T = | J T;. If
Zisclosedin V X T, then Z = 7N (VX T;)isclosed in V X T;. Therefore, q(Z;) is closed
in T; for alli. As q(Z;) = q(Z) N T}, this shows that q(Z) is closed. This shows that it
suffices to check that V X T' — T is closed for all affine varieties T. But T can be realized
as a closed subvariety of A", and then V' X T — T is closed if V X A" — A" is closed.
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Remarks

7.12. The statement that a complete variety V is closed in every larger variety W perhaps
explains the name: if V' is a complete subvariety of a connected variety W and dimV =
dim W, then V = W. Contrast A" c P".

7.13. Here is another criterion: a variety V' is complete if and only if every regular map
C ~ {P} — V extends uniquely to a regular map C — V; here P is a nonsingular point on
a curve C. Intuitively, this says that all Cauchy sequences have limits in V' and that the
limits are unique.

b. Proper maps

DEFINITION 7.14. A regular map ¢ : V — S of varieties is said to be proper if it is
“universally closed”, that is, if for all regular maps T — S, the base change ¢’ : VXsT — T
of ¢ is closed.

7.15. For example, a variety V' is complete if and only if the map V' — {point} is proper.

7.16. From its very definition, it is clear that the base change of a proper map is proper.
In particular,

(a) ifV is complete, then V X S — S is proper,
(b) if ¢ : V — S is proper, then the fibre ¢~1(P) over a point P of S is complete.

7.17. If ¢ : V — S is proper, and W is a closed subvariety of V, then W %, sis proper.
PROPOSITION 7.18. A composite of proper maps is proper.

PROOF. LetV; — V, — V, be proper maps, and let T be a variety. Consider the diagram

V3 D — V3 XV2 (VZ le T) ~ V3 XVI T

l lclosed

V2 — V2 XVI T

l lclosed

V, e— T.

Both smaller squares are cartesian, and hence so also is the outer square. The statement
is now obvious from the fact that a composite of closed maps is closed. o

COROLLARY 7.19. IfV — S is proper and S is complete, then V is complete.
PROOF. Apply the proposition to V. — S — {point}. o
COROLLARY 7.20. The inverse image of a complete variety under a proper map is complete.

PROOF. Letp: V — Sbe proper, and let Z be a complete subvariety of S. Then VxX¢Z —
Z is proper, and V Xy Z ~ ¢~ 1(2). 0



164 7. COMPLETE VARIETIES

EXAMPLE 7.21. Let f € k[T,...,T,,X,Y] be homogeneous of degree m in X and Y,
and let H be the subvariety of A" x P! defined by

f(Ty, ..., T, X,Y) =0.

The projection map A" x P! — A" defines a regular map H — A", which is proper
(7.22, 7.15). The fibre over a point (¢, ..., t,) € A" is the subvariety of P! defined by the
polynomial

flty, iy 6, X,Y) = agX™ + a; X" 'Y + -+ + @, Y™, a; €k.

Assume that not all g; are zero. Then this is a homogeneous of degree m and so the fibre
always has m points counting multiplicities. The points that “disappeared off to infinity”
when P! was taken to be A! (see p. 50) have literally become the point at infinity on P!.

c. Projective varieties are complete

The reader may skip this section since the main theorem is given a more explicit proof
in Theorem 7.31 below.

THEOREM 7.22. A projective variety is complete.

PROOF. After 7.3, it suffices to prove the Theorem for projective space P" itself; thus we
have to prove that the projection map P" x W — W is a closed mapping in the case that
W is an irreducible affine variety (7.11).

Write p for the projection W X P" — W. We have to show that Z closed in W x P"
implies that p(Z) closed in W. If Z is empty, this is true, and so we can assume it to be
nonempty. Then Z is a finite union of irreducible closed subsets Z; of W x P", and it
suffices to show that each p(Z;) is closed. Thus we may assume that Z is irreducible,
and hence that Z = V(b) with b a graded prime ideal in B = A[X,, ..., X,,] (6.51).

If p(Z) is contained in some closed subvariety W’ of W, then Z is contained in
W' x P", and we can replace W with W’. This allows us to assume that p(Z) is dense in
W, and we now have to show that p(Z) = W.

Because p(Z) is dense in W, the image of the cone V() under the projection
W x A"l — W is also dense in W, and so (see 3.34a) the map A — B/b is injective.

Let w € W: we shall show thatif w ¢ p(Z), i.e., if there does not exist a P € P" such
that (w, P) € Z, then p(Z) is empty, which is a contradiction.

Let m C A be the maximal ideal corresponding to w. Then mB + b is a graded ideal,
and V(mB + b) = V(mB)nV(b) = (w x P"*) nV(b), and so w will be in the image of Z
unless V(mB + b) # @. Butif V(mB + b) = @, then mB + b D (X,, ..., X,,)"N for some N
(by 6.51b), and so mB + b contains the set By, of homogeneous polynomials of degree N.
Because mB and b are graded ideals,

ByCmB+b = By=mBy+Bynb.

In detail: the first inclusion says that an f € By can be written f = g + h withg € mB
and h € b. On equating homogeneous components, we find that f = gy + hy-
Moreover: fy = f;ifg = >, m;b;, m; € m, b; € B, then gy = Y, m;b;y; and hy € b
because b is homogeneous. Together these show f € mBy + By N b.

Let M = By /BynNb, regarded as an A-module. The displayed equation says that M =
mM. The argument in the proof of Nakayama’s lemma (1.3) shows that (1+m)M = 0 for
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some m € m. Because A — B/b is injective, the image of 1 + m in B/b is nonzero. But
M = By /By Nnb C B/b, which is an integral domain, and so the equation (1 +m)M =0
implies that M = 0. Hence By C b, and so XlN € b for all i, which contradicts the
assumption that Z = V(b) is nonempty. o

Notes

7.23. Every complete curve is projective.

7.24. Every nonsingular complete surface is projective (Zariski), but there exist singular
complete surfaces that are not projective (Nagata).

7.25. There exist nonsingular complete three-dimensional varieties that are not projec-
tive (Nagata, Hironaka).

7.26. A nonsingular complete irreducible variety V is projective if and only if every finite
set of points of V' is contained in an open affine subset of V' (Conjecture of Chevalley;
proved by Kleiman'; see 6.22 for the necessity).

d. Elimination theory

When given a system of polynomial equations to solve, we first use some of the equations
to eliminate some of the variables; we then find the solutions of the reduced system, and
go back to find the solutions of the original system. Elimination theory does this more
systematically.

The fact that P" is complete has the following explicit restatement: for each system
of polynomial equations

Pl(Xl"" ,Xm;Yo, cee Yl’l) =0
() 5
Po(Xy, o, X Yop o, Y) = 0

such that each P; is homogeneous in the Y, there exists a system of polynomial equations

Rl(Xl’ .o ,Xm) =0

R/(Xy,....X,,) =0

with the following property; an m-tuple (a4, ..., a,,) is a solution of (**) if and only if
there exists a nonzero n-tuple (by, ..., b,) such that (a,, ..., a,,, by, ... , b,) is a solution of
(*). In other words, the polynomials P;(a e Qs Y5 e Y,,) have a common zero if and
only if R;(ay, ..., a,,) = 0 for all j. The polynomials R; are said to have been obtained
from the polynomials P; by elimination of the variables Y;.

Unfortunately, the proof we gave of the completeness of P”, while short and elegant,
gives no indication of how to construct (**) from (*). The purpose of elimination theory
is to provide an algorithm for doing this.

IKleiman, Steven L., Toward a numerical theory of ampleness. Ann. of Math. (2) 84 1966 293-344
(Theorem 3, p. 327, et seq.). See also, Hartshorne, Robin, Ample subvarieties of algebraic varieties. Lecture
Notes in Mathematics, Vol. 156 Springer, 1970, I §9 p45.
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Elimination theory: special case

LetP = 50X + 5, X" 1 +... +5,,and Q = X" + ;X" + --- + t,, be polynomials. The
resultant of P and Q is defined to be the determinant

So 81 . Sy 1 TOWS
So Sm
fy b Iy
t t
0 n M rOwWS

There are n rows with s; ... s, and m rows with ¢ ... t,, so that the matrix is (m + n) X
(m + n); all blank spaces are to be filled with zeros. The resultant is a polynomial in the
coefficients of P and Q.
PROPOSITION 7.27. The resultant Res(P, Q) = 0 if and only if

(a) both s, and t, are zero; or

(b) the two polynomials have a common root.
PROOF. If (a) holds, then Res(P, Q) = 0 because the first column is zero. Suppose that

is a common root of P and Q, so that there exist polynomials P; and Q, of degrees m — 1
and n — 1 respectively such that

P(X) = (X — )P, (X), QX) = X — 0)Q;(X).
Using these equalities, we find that
PX)Q1(X) — QX)P,(X) = 0. (33)

On equating the coefficients of X m+n—1" .,X,1in (33) to zero, we find that the coeffi-
cients of P; and Q, are the solutions of a system of m + n linear equations in m + n
unknowns. The matrix of coefficients of the system is the transpose of the matrix
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The existence of the solution shows that this matrix has determinant zero, which implies
that Res(P,Q) = 0.

Conversely, suppose that Res(P, Q) = 0 but neither s, nor ¢, is zero. Because the
above matrix has determinant zero, we can solve the linear equations to find polynomials
P, and Q, satisfying (33). A root a of P must be also be a root of P, or of Q. If the former,
cancel X — a from the left hand side of (33), and consider a root 8 of P, /(X — a). As
deg P, < deg P, this argument eventually leads to a root of P that is not a root of P;, and
so must be a root of Q. O
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The proposition can be restated in projective terms. We define the resultant of two
homogeneous polynomials

P(X,Y) = 56X™ + 5; X"7Y + .- +5,Y", QX,Y) =t X"+ - +1,Y",
exactly as in the nonhomogeneous case.

PROPOSITION 7.28. The resultant Res(P, Q) = 0 if and only if P and Q have a common
zero in PL.

PROOF. The zeros of P(X,Y) in P! are of the form:
(a) (1 : 0)in the case that s, = 0;
(b) (a : 1) with a aroot of P(X,1).

Since a similar statement is true for Q(X,Y), 7.28 is a restatement of 7.27. 0

Now regard the coefficients of P and Q as indeterminates. The pairs of polynomials
(P, Q) are parametrized by the space A™*+! x A"+l = AM+1+2_ Consider the closed subset
V(P,Q) in A™+"+2 x P The proposition shows that its projection on A™*+"+2 ig the set
defined by Res(P, Q) = 0. Thus, not only have we shown that the projection of V(P, Q)
is closed, but we have given an algorithm for passing from the polynomials defining the
closed set to those defining its projection.

Elimination theory does this in general. Given a family of polynomials

Pi(Ty, s Ty Xos oor 5 X ),

homogeneous in the X;, elimination theory gives an algorithm for finding polynomials

Rj(Ty, ..., Tp,) such that the Py(ay, ... , @p; Xy, ... , X,,) have a common zero if and only if

Ri(ay,...,a,) = Oforall j. (Theorem 7.22 shows only that the R; exist.)
Macaulay2Web can find the resultant of two polynomials in one variable: for example,

entering

R=ZZ[x,a,b] (and then)

resultant ((x+a) "5, (x+b) ~5,x)

gives the answer (—a + b)?°. Explanation: the polynomials have a common root if and

only if a = b, and this can happen in 25 ways.

Elimination theory: general case

In this subsection, we give a proof of Theorem 7.22, following Cartier and Tate?, that is
more explicit than that given above. Throughout, k is a field (not necessarily algebraically
closed) and K is an algebraically closed field containing k.

THEOREM 7.29. For any graded ideal a in k[X, ..., X,,], exactly one of the following state-
ments is true:

(a) there exists an integer d, > 0 such that a contains every homogeneous polynomial of
degree d > d;

(b) the ideal a has a nontrivial zero in K"+,

2Cartier, P., Tate, J., A simple proof of the main theorem of elimination theory in algebraic geometry.
Enseign. Math. (2) 24 (1978), no. 3-4, 311-317.
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PROOF. Statement (a) says that the radical of a contains (X, ... , X,;), and so the theorem
is a restatement of 6.2(a), which we deduced from the strong Nullstellensatz. For a direct
proof of it, see the article of Cartier and Tate. O

THEOREM 7.30. LetR = € den Ra be a graded k-algebra such that Ry = k, R is generated
as a k-algebra by R,, and Ry is finite-dimensional for all d. Then exactly one of the following
Statements is true:

(a) there exists an integer dy > 0 such that R; = 0 forall d > d;

(b) no Ry = 0, and there exists a k-algebra homomorphism R — K whose kernel is not
equal to R+ & D o1 Ra-

PROOF. The hypotheses on R say that it is a quotient of k[ X, ..., X,,] by a graded ideal.
Therefore 7.30 is a restatement of 7.29. O

Let Py, ..., P, be polynomials in k[T4, ..., Tp; Xo, ... , X, ] with P; homogeneous of de-
gree dj in the variables X, ..., X,,. LetJ be theideal (Py, ..., P,) in k[T, ..., T\; Xg5 - » Xl
and let 2 be the ideal of polynomials f in k[T, ..., T,,] with the following property: there
exists an integer N > 1 such that fX~, ..., fX% all liein J.

THEOREM 7.31. Let V be the zero set of J in A"(K) X P"(K). The projection of V into
A"(K) is the zero set of 2.

Consider the ring B = k[T, ..., T),; X0, ... » X, ] and its subring By = k[T, ..., Tj,]-
Then B is a graded B,-algebra with B, the B,-submodule generated by the monomials of
degree d in X, ..., X,,, and J is a homogeneous (graded) ideal in B. Let A = @deN Ay
be the quotient graded ring B/J = D, Ba/(Bg NJ). Let © be the ideal of elements a
of A, such that aA,; = 0 for all sufficiently large d.

THEOREM 7.32. A ring homomorphism ¢ . Ay — K extends to a ring homomorphism
¥ : A — K not annihilating the ideal A* o D51 Aq if and only if p(&) = 0.

Following Cartier and Tate, we leave it to reader to check that 7.32 is equivalent to
7.31.

Proof of Theorem 7.32

We shall prove 7.32 for any graded ring A = ., Aq satisfying the following two
conditions: -

(a) as an Aj-algebra, A is generated by A;;
(b) for everyd > 0, A, is finitely generated as an A,-module.

In the statement of the theorem, K is any algebraically closed field.

The proof proceeds by replacing A with other graded rings with the properties (a)
and (b) and also having the property that no A, is zero.

Let g : Ay — K be a homomorphism such that (&) = 0, and let 8 = Ker(¢). Then
B is a prime ideal of A, containing ©.

Step 1. Let J be the ideal of elements a of A for which there exists an s € Ay ‘P such
that sa = 0. For every d > 0, the annihilator of the Ay-module A, is contained in &,
hence in P, and soJ N Ay # Ay. The ideal J is graded, and the quotient ring A’ = A/J
has the required properties.
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Step 2. Let A” be the ring of fractions of A’ whose denominators are in X «f A[NB.
Let A:i’ be the set of fractions with numerator in A:i and denominator in . Then
A" =D 50 Al is a graded ring with the required properties, and A is a local ring with
maximal ideal "’ & P’ - Al

Step 3. Let R be the quotient of A” by the graded ideal "’ - A”. As A’/ is a nonzero
finitely generated module over the local ring A], Nakayama’s lemma shows that A/ #
P A!l. Therefore R is graded ring with the required properties, and k = R < Al /P’
is a field.

Step 4. At this point R satisfies the hypotheses of Theorem 7.30. Let € be the composite
of the natural maps

A—-A - A" >R

In degree 0, this is nothing but the natural map from A, to k with kernel . As ¢ has
the same kernel, it factors through ¢,;, making K into an algebraically closed extension
of k. Now, by Theorem 7.30, there exists a k-algebra homomorphism f : R — K such
that f(R") # 0. The composite map ¥ = foc has the required properties. o

For more on elimination theory, see Cox et al. 2015, Chapter 8, Section 5.

ASIDE 7.33. Elimination theory became unfashionable several decades ago — one prominent
algebraic geometer went so far as to announce that Theorem 7.22 eliminated elimination theory
from mathematics,® provoking Abhyankar, who prefers equations to abstractions, to start the
chant “eliminate the eliminators of elimination theory”. With the rise of computers, it has
become fashionable again.

e. Therigidity theorem; abelian varieties

The paucity of maps between complete varieties has some interesting consequences.
First an observation: for any point w € W, the projection map V X W — V defines an
isomorphism V X {w} — V with inverse v — (v,w): V — V X W (this map is regular
because its components are).

THEOREM 7.34 (RIGIDITY THEOREM). Let ¢ : VX W — T be VW
a regular map, and assume that V is complete, V and W are X
irreducible, and T is separated. If p(v, w,) is independent of v ® w
for one wy € W, then p(v,w) = g(w) with g a regular map e
g: W T, e

T

PROOF. Choose a vy € V, and consider the regular map
g:W-oT, we ¢(vy,w).

We shall show that ¢ = goq. Because V is complete, the projectionmapq: VW — W
is closed. Let U be an open affine neighbourhood U of ¢(v,, wy); then T \ U is closed in
T, YT ~U)isclosedin V x W, and

CE glg (T~ 1))

3Weil 1946, p. 31: “The device that follows, which, it may be hoped, finally eliminates from algebraic ge-
ometry the last traces of elimination-theory, is borrowed from C. Chevalley’s Princeton lectures.” Demazure
credits Dieudonné with saying: “Il faut éliminer la théorie de I'élimination.”
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is closed in W. By definition, C consists of the w € W such that (v, w) ¢ U for some
v e V,andso
WiC={weWwW)|elVx{w} cU}

As p(V,wqy) = ¢(vy, W), we see that wy, € W~ C. Therefore W ~ C is nonempty, and
so it is dense in W. As V X {w} is complete and U is affine, ¢(V X {w}) must be a point
whenever w € W~ C (see 7.10); in fact

p(V x {w}) = p(vg, w) = g(w).

We have shown that ¢ and goq agree on the dense subset V X (W~ C) of V X W, and
therefore on the whole of V' X W. O

COROLLARY 7.35. Let @ : V X W — T be a regular map, and assume thatV is complete,
that V and W are irreducible, and that T is separated. If there exist points vy € V, wy € W,
ty € T such that

P(V x {wo}) = {to} = p({ve} x W),
then o(V X W) = {t,}.

PROOF. With g as in the proof of the theorem,
p(v, w) = g(w) = (vy, w) = L. o

In more colloquial terms, the corollary says that if ¢ collapses a vertical and a hor-
izontal slice to a point, then it collapses the whole of V' X W to a point, which must
therefore be “rigid”.

DEFINITION 7.36. An abelian variety is a complete connected group variety.

THEOREM 7.37. Every regular map o : A — B of abelian varieties is the composite of a
homomorphism with a translation; in particular, a regular map o : A — B such that
a(0) = 0 is a homomorphism.

PROOF. After composing a with a translation, we may suppose that a(0) = 0. Consider
the map
p: AXA - B, v(a,d’)=ala+a') —ala) — a(a).

Then ¢(A X 0) = 0 = (0 X A) and so ¢ = 0. This means that « is a homomorphism.
COROLLARY 7.38. The group law on an abelian variety is commutative.

PROOF. Commutative groups are distinguished among all groups by the fact that the
map taking an element to its inverse is a homomorphism: if (gh)~! = g~'h~!, then, on
taking inverses, we find that gh = hg. Since the negative map,a » —a: A — A, takes
the identity element to itself, the theorem shows that it is a homomorphism. o

ASIDE. Abelian varieties arose out of the study of Abelian integrals, whence their name.
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f. Chow’s Lemma

The next theorem is a useful tool in extending results from projective varieties to complete
varieties. It shows that a complete variety is not far from a projective variety.

THEOREM 7.39 (CHOW’S LEMMA). Let V' be a complete irreducible variety. There exists
a projective algebraic variety V' and a surjective regular map f : V' — V such that f
induces an isomorphism f~Y(U) — U for some dense open subset U of V (in particular, f

is birational),
isomorphism

i)y ——u

N n
%4 —>°‘}t° V.

Write V' as a finite union of nonempty open affines, V= U; U ... U U, and let
U = [ U;. Because V is irreducible, U is a dense in V. Realize each U; as a dense open
subset of a projective variety P;. Then P «f Hl. P; is a projective variety (6.26). We shall
construct an algebraic variety V/ and regular maps f: V/ - Vandg: V' - P such
that
(a) f is surjective and induces an isomorphism f~}(U) — U;
(b) gisaclosed immersion (hence V' is projective).
Let ¢, (resp. ¢;) denote the given inclusion of U into V (resp. into P;), and let

P = (Pos P15 > ®Pp) : U=V XPy X - X Py,

be the diagonal map. Weset U" = ¢(U) and V' equal to the closure of U’ in VXP; X-+-XP,,.
The projection maps p: VX P — Vand q: V X P — P restrict to regular maps
f:V'>Vandg: V' - P. Thus, we have a commutative diagram

Po |4
)
U —> Ly« V xP (34)
\ q
8
P.

PROOF OF (a)

In the upper-left triangle of the diagram (34), the maps ¢ and ¢, are isomorphisms from
U onto its images U’ and U. Therefore f restricts to an isomorphism U’ — U. Note that

U, = {(u, gol(u)’ ey gDn(U)) | ue U},

which is the graph of the map (¢4, ...,9,): U — P. Therefore, U’ is closed in U X P
(5.28), and so
U =V'nUxP)=f1(U).

The map f is dominant, and f(V’') = p(V), which is closed because P is complete.
Hence f is surjective.
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PROOF OF (b)

We first show that g is an immersion. As this is a local condition, it suffices to find

open subsets V; C P such that | Jg~!(V;) D V' and each map V' n ¢~ (V) &, V;isan
immersion.
We set
Vi=p'(U)=P; x--xU; X+ XP,

where p; is the projection map P — P;.
We first show that the sets g~1(V;) cover V'. The sets U; cover V, hence the sets
f~Y(U;) cover V', and so it suffices to show that

g (V) o f7UUY

for all i. Consider the diagrams

_ _ f P

qg'(V) — U, i) — v U —— U
[ . [¢i [ ) [G"i [qo o [@i

vxp 2, p vxp 22, p VXxP— P.

The diagram at left is cartesian, i.e., it realizes g~!(V;) as the fibred product
q ' (V)_=(VxP)xp U,

and so it suffices to show that the middle diagram commutes. But U’ is dense in V’,
hence in f~1(U;), and so it suffices to prove that the middle diagram commutes with
f~Y(U;) replaced by U’. But then it becomes the diagram at right, which obviously
commutes.

We next show that

V' ngl(v) = v,
is an immersion for each i. Recall that

Vi=UxP, whereP'=]] P
and so
g N (V) =V xU;xP CV xP.

Let I'; denote the graph of the map
<Ui><Pi iRy JATIN V).

Being a graph, I'; is closed in V' x(U; X P') and the projection map VX (U; x P!) — U;xP
restricts to an isomorphism I'; — U; X P'. In other words, I’} is closed in g~1(V;), and
the projection map q~1(V;) — V; restricts to an isomorphism I'; — V;. As T is closed in
q~1(V;) and contains U’, it contains V'ng~1(V;), and so the projection map g~ *(V;) = V;
restricts to an immersion V' nq~'(V;) = V,.

Finally, V X P is complete because V and P are, and so V' is complete (7.3). Hence
g(V)is closed (7.7), and so g is a closed immersion.
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Notes

7.40. Let V be a complete variety, and let V7, ..., V be the irreducible components of V.
Each V; is complete (7.4), and so there exists a surjective birational regular map Vl.’ -V,
with V! projective (7.39). Now | | V] is projective 6.26, and the composite

|_| Vi, — |_| ViV
is surjective and birational.

7.41. Chow (1956, Lemma 1)* proved essentially the statement 7.42 by essentially the
above argument. He used the lemma to prove that all homogeneous spaces are quasi-
projective. See also EGA 11, 5.6.1.

g. Analytic spaces; Chow’s theorem

We summarize a little of Serre, J-P., Géométrie algébrique et géométrie analytique. Ann.
Inst. Fourier, Grenoble 6 (1955-1956), 1-42, commonly referred to as GAGA.

7.42. The following statement is more general than Theorem 7.39: for every algebraic
variety V, there exists a projective algebraic variety V’ and a birational regular map ¢
from an open dense subset U of V/ onto V whose graph is closed in V' X V; the subset U
equals V' if and only if V is complete (GAGA, p. 12).

PROPOSITION 7.43. An algebraicvariety V over C is complete if and only if V(C) is compact
in the complex topology.

PROOF. The proof uses Chow’s lemma (GAGA, Proposition 6, p. 12). O

A subset V of C" is analytic if every P € V admits an open neighbourhood U in
C" such that V N U is the zero set of a finite collection of holomorphic functions on U.
Analytic subsets are locally closed.

Let V'’ be an open subset of an analytic set V. A function f : V' — C is analytic if,
for every P € V', there exists an open neighbourhood U of P in C" and a holomorphic
function & on U such that f = hon V' N U. The holomorphic functions on open subsets
of V define on V the structure of a C-ringed space.

DEFINITION 7.44. An analytic space is a C-ringed space (V, Oy) satisfying the follow-
ing two conditions:

(a) there exists an open covering V = | J V; of V such that, for each i, the C-ringed
space (V;, Oy |V;) is isomorphic to an analytic set equipped with its sheaf of analytic
1 functions;

(b) the topological space V is Hausdorff.
Let V be an algebraic variety over C. Then V(C) has a natural structure of a complex

analytic space, and so there is a canonical functor V'~ V2" from algebraic varieties over
C to complex analytic spaces (GAGA, §2).

4Chow, Wei-Liang. On the projective embedding of homogeneous varieties. Algebraic geometry and
topology. A symposium in honor of S. Lefschetz, pp. 122-128. Princeton University Press, Princeton, N. J.,
1957.
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We refer the reader to Chapter 13 for the notion of a coherent module. Every coherent
module ¥ on a algebraic variety V over C defines a coherent module 2" & r ®p, Oy
on V2",

THEOREM 7.45. LetV be a projective variety over C. The functor F ~ F2" is an equiva-
lence from the category of coherent Oy -modules to the category of coherent Oy.n-modules,
under which locally free modules correspond to locally free modules. Moreover,

F(Van, OVan) =~ F(V, OV)
PROOF. This summarizes the main results of GAGA (Théorémes 2,3, p. 19, p. 20). g

THEOREM 7.46 (CHOW’S THEOREM). Every closed analytic subset of a projective variety
is algebraic.

PROOF. Let V be a projective space, and let Z be a closed analytic subset of V3. A
theorem of Henri Cartan states that Oz is a coherent analytic sheaf on V", and so
there exists a coherent algebraic sheaf ¥ on V such that #*" = Q4. The support of F
is Zariski closed, and equals Z (GAGA, p. 29). O

In particular, projective analytic spaces are projective algebraic varieties.
THEOREM 7.47. Every compact analytic subset of an algebraic variety is algebraic.

PROOF. Let V be an algebraic variety, and let Z be a compact analytic subset of V".
By Chow’s lemma (7.42), there exists a projective variety V’/, a dense open subset U of
V', and a surjective regular map ¢ : U — V whose graph I' is closed in V x V’. Let
I''=Irn(ZxV’'). As Z and V' are compact and I" is closed, I’ is compact, and so its
projection V" on V"’ is also compact. On the other hand, V" = f~1(Z), which shows that
itis an analytic subset of U, and therefore also of V’. According to Chow’s theorem, it is a
Zariski closed subset of V/ (hence an algebraic variety). Now Z = f(V"") is constructible
(Zariski sense; see 9.7 below), and therefore its Zariski closure coincides with its closure
for the complex topology, but (by assumption) it is closed. O

COROLLARY 7.48. Let V and W be algebraic varieties over C. If V is complete, then every
analyticmap f : V3" — W3 s algebraic.

PROOF. Apply Theorem 7.47 to the graph of f. O

EXAMPLE 7.49. The graph of z — e : C — C s closed in C X C but it is not Zariski
closed.

h. Nagata’s Embedding Theorem

A necessary condition for a prevariety to be an open subvariety of a complete variety is
that it be separated. An important theorem of Nagata says that this condition is also
sufficient.

THEOREM 7.50. Every variety V admits an open immersion V. < W into a complete
variety W.

If V is affine, then one can embed V < A" < P", and take W to be the closure of
V in P". The proof in the general case is quite difficult. See:
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Nagata, Masayoshi. Imbedding of an abstract variety in a complete variety. J.
Math. Kyoto Univ. 2 1962 1-10; A generalization of the imbedding problem
of an abstract variety in a complete variety. J. Math. Kyoto Univ. 3 1963
89-102.

For a modern exposition, see:

Liitkebohmert, W. On compactification of schemes. Manuscripta Math. 80
(1993), no. 1, 95-111.

In the 1970s, Deligne translated Nagata’s work into the language of schemes. His personal
notes are available in three versions.

Deligne, P., Le théoréme de plongement de Nagata, Kyoto J. Math. 50,
Number 4 (2010), 661-670.
Conrad, B., Deligne’s notes on Nagata compactifications. J. Ramanujan
Math. Soc. 22 (2007), no. 3, 205-257.
Vojta, P., Nagata’s embedding theorem, 19pp., 2007, arXiv:0706.1907.

See also:

Temkin, Michael. Relative Riemann-Zariski spaces. Israel J. Math. 185
(2011), 1-42.

A little history

As noted earlier (p. 129), initially Weil was unable to construct the Jacobian variety of
a curve as projective variety, which led him to introduce “abstract varieties” and also
the notion of a complete abstract variety. Later he (and others) showed that Jacobian
varieties are in fact projective.

Exercises

7-1. Identify the set of homogeneous polynomials F(X,Y) = ). g X iY,0<1i,j <m,
with an affine space. Show that the subset of reducible polynomials is closed.

7-2. Let V and W be complete irreducible varieties, and let A be an abelian variety. Let
P and Q be points of V and W. Show that any regular map h: V X W — A such that
h(P,Q) = 0 can be written h = fop+goqwhere f: V - Aandg: W — A areregular
maps carrying P and Q to 0 and p and q are the projections VX W — V,W.



Chapter 8

Normal Varieties; (Quasi-)finite
maps; Zariski’s Main Theorem

We begin by studying normal varieties. Nonsingular varieties are normal, and normal
varieties have some of the good properties of nonsingular varieties, but it is easy to show
that every variety is birationally equivalent to a normal variety. After studying finite and
quasi-finite maps, we discuss the celebrated Zariski’s Main Theorem (ZMT), which says
that every quasi-finite map of algebraic varieties can be obtained from a finite map by
removing a closed subset from the source variety. In its original form, the theorem says
that a birational regular map to a normal algebraic variety fails to be a local isomorphism
only at points where the fibre has dimension > 0.

a. Normal varieties

Recall (1.42) that an integrally closed domain is an integral domain that is integrally
closed in its field of fractions. Moreover (1.49), that an integral domain A is integrally
closed if and only if A,, is integrally closed for every maximal ideal m in A.

DEFINITION 8.1. A point P on an algebraic variety V' is normal if Oy, p is an integrally
closed domain. An algebraic variety is said to be normal if all of its points are normal.

Since the local ring at a point lying on two irreducible components cannot be an integral
domain (3.14), a normal variety is a disjoint union of its irreducible components, which
are therefore its connected components.
PROPOSITION 8.2. The following conditions on an irreducible variety V are equivalent.
(a) Thevariety V is normal.
(b) For all open affine subsets U of V, the ring Oy, (U) is an integrally closed domain.

(c) Forallopen subsets U of V, a rational function on V that satisfies a monic polynomial
equation on U whose coefficients are regular on U is itself regular on U.

PROOF. The equivalence of (a) and (b) follows from 1.49.
(a) = (c). Let U be an open subset of V, and let f € k(V) satisfy

fn + alfn_l + -+ a, = 0, a; € Ov(U),

(equality in k(V)). Then aq; € O, (U) C Op forall P € U,andso f € Op forallP € U.
This implies that f € Oy (U) (5.10).

176
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(c) = (b). The condition applied to an open affine subset U of V implies that
Oy(U) is integrally closed in k(V). 5

Regular local rings are unique factorization domains (Matsumura 1989, Theorem
20.3), hence normal (1.43). Conversely, a normal local domain of dimension one is regular.
Thus nonsingular varieties are normal, and normal curves are nonsingular. However, a
normal surface need not be nonsingular: the cone

X2+Y2-272=0

is normal, but it is singular at the origin — the tangent space at the origin is k3.

The singular locus of a normal variety V' must have dimension < dimV — 2 (see
8.12 below). For example, a normal surface can only have isolated singularities — the
singular locus cannot contain a curve. In particular, the surface Z* = X?Y (see 4.42) is
not normal.

The normalization of an algebraic variety

Let E D F be a finite extension of fields. The extension E/F is said to be normal if the
minimal polynomial of every element of E splits in E. Let F?! be an algebraic closure
of F containing E. The composite in F2 of the fields oF, o € Aut(E/F), is normal
over F (and is called the normal closure of F in Fa)). If E is normal over F, then E
is Galois over EA"E/F) (FT, 3.10), and EAYE/F) is purely inseparable over F (because
Homp(EAYE/F) | Faly consists of a single element).

PROPOSITION 8.3. Let A be a finitely generated k-algebra. Assume that A is an integral
domain, and let E be a finite field extension of its field of fractions F. Then the integral
closure A’ of A in E is a finite A-algebra (hence a finitely generated k-algebra).

PROOF. According to the Noether normalization theorem (2.45), A contains a polyno-
mial subalgebra A, and is finite over A,. Now E is a finite extension of F(4,) and A’
is the integral closure of A, in E, and so we only need to consider the case that A is a
polynomial ring k[X, ..., X4]-

Let E denote the normal closure of E in some algebraic closure of F containing E, and
let A denote the integral closure of A in E. If A is finitely generated as an A-module, then
so is its submodule A’ (because A is noetherian). Therefore we only need to consider
the case that E is normal over F.

According to the above discussion, E D E; D F with E Galois over E; and E; purely
inseparable over F. Let A; denote the integral closure of A in E;. Then A’ is a finite
A;-algebra (1.51), and so it suffices to show that A, is a finite A-algebra. Therefore we
only need to consider the case that E is purely inseparable over F.

In this case, k has characteristic p # 0, and, for each x € E, there is a power g(x) of
p such that x4®) € F. As E is finitely generated over F, there is a single power q of p
such that x? € F for all x € E. Let F¥! denote an algebraic closure of F containing E.
For each i, there is a unique Y; € F# such that Yl.q = X;. Now

F=k(Xy,...Xs) CECk(Yq,.,Yy)

and
A =k[X,,..,X4] C A’ Ck[Y,...,Y4]

because k[Y7, ..., Y] contains A and is integrally closed (1.32, 1.43). Obviously k[ Y1, ..., Y]
is a finite A-algebra, and this implies, as before, that A’ is a finite A-algebra. o
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COROLLARY 8.4. Let A be asin 8.3. If Ay, is normal for some maximal ideal m in A, then
Ay, is normal for some h € A~ m.

PROOF. Let A’ be the integral closure of A inits field of fractions. Then A’ = A[f1, ..., f]

1.47
for some f; € A’. Now (A’ )m = (Am)' = A,,, and so there exists an h € A~ m such
that, for all i, hf; € A. Now A;I = Ay, and so A, is normal. O

The proposition shows that if A is an integral domain finitely generated over k, then
the integral closure A’ of A in a finite extension E of F(A) has the same properties.
Therefore, Spm(A’) is an irreducible algebraic variety, called the normalization of
Spm(A) in E. This construction extends without difficulty to nonaffine varieties.

PROPOSITION 8.5. Let V be an irreducible algebraic variety, and let K be a finite field
extension of k(V'). Then there exists an irreducible algebraic variety W with k(W) =
and a regular map ¢ : W — V such that, for all open affines U in V, ¢~ 1(U) is affine and
k[o~(U)] is the integral closure of k[U] in K.

The map ¢ (or just W) is called the normalization of V in K.

PROOF. For each v € V, let W(v) be the set of maximal ideals in the integral closure
of O,inK. LetW = | |, oy W(v),and let : W — V be the map sending the points of
W (v) to v. For an open affine subset U of V,

¢~} (U) =~ spm(k[U]),

where k[U]’ is the integral closure of k[U] in K. We endow W with the k-ringed space
structure for which

(@~'(U), Owle~'(U)) = Spm(k[U]").
A routine argument shows that (W, Oy ) is an algebraic variety with the required prop-
erties. a]

EXAMPLE 8.6. (a) The normalization of the cuspidal cubic V : Y2 = X3 in k(V) is the
map Al = V, t — (£2,3) (see 3.29).

(b) The normalization of the nodal cubic V : Y? = X3 + X? (4.10) in k(V) is the map
Al 5Vt (2 =1,t3-1).

PROPOSITION 8.7. The normal points in an irreducible algebraic variety form a dense open
subset.

PROOF. Corollary 8.4 shows that the set of normal points is open, and so it remains to
show that it is nonempty. This follows from 4.37 and the fact (difficult to prove) that
nonsingular points are normal, but we shall give a direct proof.

Let V be an irreducible algebraic variety. According to (3.37, 3.38), V is birationally
equivalent to a hypersurface H in A4*!, d = dim V,

H: aX"+a X" '+--+a,, a€k[Ty,..,Tyl, ay#0, meN;

moreover, Ty, ..., T4 can be chosen to be a separating transcendence basis for k(V) (=
k(H)) over k. Therefore the discriminant D of k(H) over k(T4, ..., T4) (an element of
k[H]) is nonzero.! We shall see that open subset of H where D is nonzero is normal.

!Let B D A be rings. Assume thatg is free of rank m as an A-module, and let §,, ..., 5,, be a basis for B
as an A-module. We call D(B,, ..., 3,,) = det(Trp,4(8;8;)) the discriminant of B/ A (it is well-defined up
to a unit in A). The discriminant of a finite separable extension of fields is nonzero (Proposition 2.26 of my
notes on Algebraic Number Theory).
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Let A = k[T, ..., T4]; then k[H] = A[X]/(apX™ + --- + a,,) = A[x]. Let
y=co+ - +Cp1 X", ¢ € k(Ty,...,Ty), (35)

be an element of k(H) integral over A. For each j € N, Trip)/p( A)(yxj ) is a sum of
conjugates of yx/, and hence is integral over A (cf. the proof of 1.44). As it lies in F(A),
it is an element of A. On multiplying (35) with x/ and taking traces, we get a system of
linear equations

co - Tr(x)) + ¢y - Tr(x"*) + -+ 4+ ¢y - Tr(x™ ) = Tr(yx/), j=0,..,m—1.
By Cramer’s rule (p. 25),
det(Tr(x'*/))-¢c;€ A, 1=0,..,m—1.

But det(Tr(x*/)) = D, and so ¢; € A[D~']. Hence k[H] becomes normal once we invert
the nonzero element D. We have shown that H contains a dense open normal subvariety,
which implies that V' does also. o

PROPOSITION 8.8. For every irreducible algebraic variety V, there exists a surjective regular
map ¢ : V' = V from a normal algebraic variety V' to V such that, for some dense open
subset U of V, ¢ induces an isomorphism ¢~Y(U) — U (in particular ¢ is birational).

PROOF. Proposition 8.7 shows that the normalization of V' in k(V') has this property. 4

8.9. More generally, for a dominant map ¢ : W — V of irreducible algebraic varieties,
there exists a normalization of V in W. For each open affine U in V we have

k[U] c T'(p~'(U), Ow) C k(W).

The integral closure k[U]" of I'(U, Oy) in I'(p~'(U), Oy) is a finite k[U]-algebra (be-
cause it is a k| U ]-submodule of the integral closure of k[U] in k(W)). The normalization
of V in W is a regular map ¢’ : V/ — V such that, for every open affine U in V,

(¢'71(U), Oyr) = Spm(k[UT").

In particular, ¢’ is an affine map. For example, if W and V are affine, then V/ =
Spm(k[V]"), where k[V'] is the integral closure of k[V'] in k[W]. There is a commutative
triangle

w—2" v

N4

b. Regular functions on normal varieties

DEFINITION 8.10. An algebraic variety V is factorial at a point P if Op is a factorial
domain. The variety V is factorial if it is factorial at all points P.

When V is factorial, it does not follow that O, (U) is factorial for all open affines U in V.

A prime divisor Z on a variety V is a closed irreducible subvariety of codimension
1. Let Z be a prime divisor on V, and let P € V; we say that Z is locally principal
at P if there exists an open affine neighbourhood U of P and an f € k[U] such that
I(Z nU) = (f); the regular function f is then called a local equation for Z at P. If
P ¢ Z, then Z is locally principal at P because then we can choose U so that ZNn U = ¢,
and I(ZNnU) = (1).
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PROPOSITION 8.11. An irreducible variety V is factorial at a point P if and only if every
prime divisor on V is locally principal at P.

PROOF. Recall that an integral domain is factorial (finitely generated over a field) if and
only if every prime ideal of height 1 is principal (1.24, 3.53). o

PROPOSITION 8.12. The codimension of the singular locus in a normal variety is at least 2.

PROOF. LetV be a normal algebraic variety of dimension d, and suppose that its singular
locus has an irreducible component W of codimension 1. After replacing V' with an
open subvariety, we may suppose that it is affine and that W is principal, say, W = (f)
(see 8.11). There exists a nonsingular point P on W (4.37). Let (U, f1), ..., (U, f4_1) be
germs of functions at P (on V) whose restrictions to W generate the maximal ideal in
Oy p (cf. 4.36). Then (U, f1),...,(U, f4-1), (U, f) generate the maximal ideal in Oy p,
and so P is nonsingular on V. This contradicts the definition of W. O

SUMMARY 8.13. For an algebraic variety V,
nonsingular = factorial = normal = singular locus has codimension > 2.

o The variety X f + -+ X g is factorial but singular.
o The cone Z? = XY in A3 is normal but not factorial (see 9.39 below).

o The variety Spm(k[X,XY,Y?,Y?]) is a surface in A* with exactly one singular
point, namely, the origin. Its singular locus has codimension 2, but the variety is
not normal (the normalization k[X, XY, Y?2,Y3]is k[X, Y]).

o Every singular curve has singular locus of codimension 1 (hence fails all condi-
tions).

ZEROS AND POLES OF RATIONAL FUNCTIONS ON NORMAL VARIETIES

Let V be a normal irreducible variety. A divisor on V is an element of the free abelian
group Div(V') generated by the prime divisors. Thus a divisor D can be written uniquely
as a finite (formal) sum

D= Z nZ;, n; €7, Z;aprime divisoronV.

The support |D| of D is the union of the Z; corresponding to nonzero n;. A divisor is said
to be effective (or positive) if n; > 0 for all i. We get a partial ordering on the divisors by
defining D > D’ tomean D — D" > 0.

Because V is normal, there is associated with every prime divisor Z on V a discrete
valuation ring O. This can be defined, for example, by choosing an open affine subvari-
ety U of V such that U N Z # §J; then U N Z is a maximal proper closed subset of U, and
so the ideal p corresponding to it is minimal among the nonzero ideals of R = I'(U, O);
S0 Ry, is an integrally closed domain with exactly one nonzero prime ideal pRy, — it is
therefore a discrete valuation ring (4.20), which is defined to be O,. More intrinsically
we can define O to be the set of rational functions on V' that are defined an open subset
U of V intersecting Z.

onto
Let ord, be the valuation k(V)* — Z with valuation ring O; thus, if 7 is a prime
element of O, then
a = unit x 77°79z(@,
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The divisor of a nonzero element f of k(V) is defined to be

div(f) = > ord,(f) - Z.

The sum is over all the prime divisors of V, but in fact ord,(f) = 0 for all but finitely
many Z. In proving this, we can assume that V is affine (because it is a finite union of
affines), say, V' = Spm(R). Then k(V) is the field of fractions of R, and so we can write
f =g/hwith g, h € R, and div(f) = div(g) — div(h). Therefore, we can assume f € R.
The zero set of f, V(f) either is empty or is a finite union of prime divisors, V = | Z;
(see 3.42) and ord,(f) = 0 unless Z is one of the Z;.
The map
f = div(f): k(V)* - Div(V)

is a homomorphism. A divisor of the form div(f) is said to be principal, and two divisors
are said to be linearly equivalent, denoted D ~ D/, if they differ by a principal divisor.

When V is nonsingular, the Picard group Pic(V') of V is defined to be the group of
divisors on V' modulo principal divisors. (The definition of the Picard group of a general
algebraic variety agrees with this definition only for nonsingular varieties; it may differ
for normal varieties.)

THEOREM 8.14. Let V be a normal variety, and let f be rational function on V. If f has
no zeros or poles on an open subset U of V, then f is regular on U.

PROOF. We may assume that V' is connected, hence irreducible, and apply the following
statement (see Chapter 12): if a noetherian integral domain A is normal, then A =
ﬂht(p):l A, (intersection in the field of fractions of A). O

COROLLARY 8.15. A rational function on a normal variety, regular outside a subset of
codimension > 2, is regular everywhere.

PROOF. This is a restatement of the theorem. o

COROLLARY 8.16. LetV and W be affine varieties with V normal, andletp : VZ - W
be a regular map defined on the complement of a closed subset Z of V. If codim(Z) > 2,
then @ extends to a regular map on the whole of V.

PROOF. We may suppose that W is affine, and embed it as a closed subvariety of A".
The map V ~Z - W < A" is given by n regular functions on V \ Z, each of which
extends to V. Therefore V \ Z — A" extends to A", and its image is contained in W. 4

c. Finite and quasi-finite maps

Finite maps

DEFINITION 8.17. Aregularmap ¢ : W — V of algebraic varieties is finite if there exists
a finite covering V = Ul. U; of V by open affines such that, for each i, the set p~1(U;) is
affine and k[p~'(U,)] is a finite k[U;]-algebra.

EXAMPLE 8.18. LetV be anirreducible algebraic variety. The normalizationgp: W — V
of V in a finite extension of k(V) is finite. This follows from the definition 8.5 and
Proposition 8.3.
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The next lemma shows that, for maps of affine algebraic varieties, the above definition
agrees with Definition 2.39.

LEMMA 8.19. A regular map ¢ : W — V of affine algebraic varieties is finite if and only
if k[W1] is a finite k| V' ]-algebra.

PROOF. The necessity being obvious, we prove the sufficiency. For simplicity, we shall
assume in the proof that V- and W are irreducible. Let (U;); be a finite family of open
affines covering V and such that, for each i, the set ¢~1(U,) is affine and k[p~1(U;)] is a
finite k[ U, ]-algebra.

Each Uj is a finite union of basic open subsets of V. These are also basic open subsets
of U;, because D(f) N U; = D(f|U;), and so we may assume that the original U; are
basic open subsets of V, say, U; = D(f;) with f; € A.

Let A = k[V] and B = k[W]. We are given that (fy, ..., f,) = A and that By, is a
finite A -algebra for each i. We have to show that B is a finite A-algebra.

Let {b;1, ..., bim,} generate By, as an Ay -module. After multiplying through by a
power of f;, we may assume that the b;; lie in B. We shall show that the family of all b;;
generate B as an A-module. Letb € B. Then b/1 € By,, so

aj; Qim,

b=—by+-+ —W_lbl-mi, some q;; € Aand r; €N,

7

f fi

The ideal (f ;l, s ;") = A because any maximal ideal containing (f ;1 s s ;”) would
have to contain (f1, ..., f,) = A. Therefore,

1=hyf' + -+ h,f, some h; € A.
Now

b=b-1=hy-bf'+ - +h, bf
= hy(anby + - + Ay bim) + - + hp(@ubpy + - + Qu b, )

as required. O

LEMMA 8.20. Let ¢ : W — V be a regular map with V affine, and let U be an open affine
inV. Then

PROOF. Let U’ = ¢~1(U), so we have to prove
I'(W, Ow) Qv k[U] = T'(U’, Ow)
The map is defined by the k[V]-bilinear pairing
(f,8)~ flur - goply : T(W, Oy) X k[U] - T'(U’, Oy).

When W is affine, the statement is proved in 5.32.
LetS = {f € k[V] | VP € U, f(P) # 0}. Then k[U] = S~'k[V], and so, for any
k[V]-module M, M Qv k[U] ~ S~IM. Hence the functor — ®xqv) k[U] is exact.
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Let W = | W; be a finite open affine covering of W, and consider the commutative
diagram:

0 — I'(W, Ow) Qv k[U] » HF(Wb Ow) @y k[UT 2 [ T(Wij, Ow) @) kU]

i,j l

0 —— (U, 0) — [[TW0' nW,;,0p) —=3 [ [0 nW,;,0p).
i i,j
Here W;; = W; n W;. The rows are exact because Oy is a sheaf. The varieties W; and
W;nW  are all affine, and so the two vertical arrows at right are products of isomorphisms.
This implies that the first is also an isomorphism. o

PROPOSITION 8.21. Let ¢ : W — V be a regular map of algebraic varieties. If ¢ is finite,
then, for every open affine U in V, ¢~ Y(U) is affine and k[¢~*(U)] is a finite k[U]-algebra.

PROOF. Let V; be an open affine covering of V (which we may suppose to be finite) such
that W, o ¢~ 1(V;) is an affine subvariety of W for all i and k[W;] is a finite over k[V;].
Let U be an open affine in V, and let U’ = ¢~}(U). Then I'(U’, Oy) is a subalgebra
of [T, I'(U" n W;, Oy), and so it is an affine k-algebra finite over k[U].> We have a
morphism of varieties over V'

canonical

U’ Spm(I"(U’, Oy))

N

14

which we shall show to be an isomorphism. We know that each of the maps
U'nwW; - Spm(I"(U' N W;, Oy))

isan isomorphism. But Spm(I"(U’'NnW;, Oy,)) is the inverse image of V; in Spm(I"(U’, Oy,)).
Therefore the canonical morphism is an isomorphism over each V;, and so it is an iso-
morphism. o

SUMMARY 8.22. Letp : W — V be a regular map, and consider the following condition
on an open affine subset U of V:

(*) @ '(U)is affine and k[p~!(U)] is a finite over k[U].
The map g is finite if (*) holds for the open affines in some covering of V, in which case
(*) holds for all open affines of V.
PROPOSITION 8.23.  (a) Closed immersions are finite.
(b) The composite of two finite morphisms is finite.
(c) The product of two finite morphisms is finite.

2Recall that a module over a noetherian ring is noetherian if and only if it is finitely generated, and
that a submodule of a noetherian module is noetherian. Therefore, a submodule of a finitely generated
module over a noetherian ring is finitely generated.
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PROOF. (a) Let Z be a closed subvariety of a variety V, and let U be an open affine
subvariety of V. Then Z N U is a closed subvariety of U. It is therefore affine, and the
map Z N U — U corresponds to a map A — A/a of rings, which is obviously finite.

This proves (a). As to be finite is a local condition, it suffices to prove (a) and (b)
for maps of affine varieties. Then the statements become statements in commutative
algebra.

(b) If B is a finite A-algebra and C is a finite B-algebra, then C is a finite A-algebra.
To see this, note that if {b;} is a set of generators for B as an A-module, and {c;} is a set of
generators for C as a B-module, then {b;c;} is a set of generators for C as an A-module.

(c) If B and B’ are respectively finite A and A’-algebras, then B ®; B’ is a finite
A ®) A’-algebra. To see this, note that if {b;} is a set of generators for B as an A-module,
and {b;.} is a set of generators for B’ as an A’-module, then {b; ® b;.} is a set of generators

for B®, B’ asan A ® A’-module. -

By way of contrast, open immersions are rarely finite. For example, the inclusion
Al ~ {0} < A! is not finite because the ring k[T, T~!] is not finitely generated as a
k[T]-module.

THEOREM 8.24. Finite maps of algebraic varieties are closed.

PROOF. It suffices to prove this for affine varieties. Let ¢ : W — V be a finite map of
affine varieties, and let Z be a closed subset of W. The restriction of ¢ to Z is finite (by
8.23a and b), and so we can replace W with Z; we then have to show that Im(gp) is closed.
The map corresponds to a finite map of rings A — B. This will factorsas A — A/a < B,
from which we obtain maps

Spm(B) — Spm(A/a) < Spm(A).

The second map identifies Spm(A/a) with the closed subvariety V(a) of Spm(A), and so
it remains to show that the first map is surjective. This is a consequence of the going-up
theorem (1.53). O

The base change of a finite map
Recall that the base change of a regular map ¢ : V — S is the map ¢’ in the diagram:

VxgW —— v

N

W — S.
PROPOSITION 8.25. The base change of a finite map is finite.

PROOF. We may assume that all the varieties concerned are affine. Then the statement
becomes: if A is a finite R-algebra, then AQ; B/ is a finite B-algebra, which is obvious.q

PROPOSITION 8.26. Finite maps of algebraic varieties are proper.
PROOF. The base change of a finite map is finite, and hence closed. o
COROLLARY 8.27. Let ¢ : V — S be finite; if S is complete, then so also is V.

PROOF. Combine 7.19 and 8.26. 0



c. Finite and quasi-finite maps 185

Quasi-finite maps

Recall that the fibres of a regular map ¢ : W — V are the closed subvarieties ¢! (P)
of W for P € V. As for affine varieties (2.39), we say that a regular map of algebraic
varieties is quasi-finite if all of its fibres are finite.

PROPOSITION 8.28. A finite map ¢ : W — V is quasi-finite.

PROOF. Let P € V; we wish to show that ¢~1(P) is finite. After replacing V with an
affine neighbourhood of P, we may suppose that it is affine, and then W will be affine
also. The map ¢ then corresponds to a map a : A — B of affine k-algebras, and a point
Q of W maps to P if and only oc‘l(mQ) = mp. But this holds if and only if mg O a(mp),
and so the points of W mapping to P are in one-to-one correspondence with the maximal
ideals of B/a(mp)B. Clearly B/a(mp)B is generated as a k-vector space by the image of
any generating set for B as an A-module, and so it is a finite k-algebra. The next lemma
shows that it has only finitely many maximal ideals. o

LEMMA 8.29. A finite k-algebra A has only finitely many maximal ideals.

PROOF. Let my,..., m, be maximal ideals in A. They are coprime in pairs, and so
Theorem 1.1 shows that the map

A—->A/m;X---XA/m,, a (..,q; mod my,...),
is surjective. It follows that
dim; A > Z dim(A/m;) > n
— here dim;, means dimension as a k-vector space. o
Finite and quasi-finite maps of prevarieties are defined as for varieties.

Examples

8.30. The projection from the curve XY = 1 onto the X axis (see p. 71) is quasi-finite
but not finite — its image is not closed in A!, and k[X,X~!] is not finite over k[X].

8.31. The map
t= (12,83 Al 5 V(Y2 -X3) c A?

from the line to the cuspidal cubic is finite because the image of k[X,Y] in k[T] is
k[T?,T3], and {1, T} is a set of generators for k[T] as a k[T?, T*]-module (see 3.29).

8.32. The map A! —» Al, a — a™ is finite.
8.33. The obvious map
(A! with the origin doubled ) — A!

is quasi-finite but not finite (the inverse image of A! is not affine).
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8.34. The map A2 \ {origin} < AZ? is quasi-finite but not finite, because the inverse
image of A2 is not affine (see 3.33). The map

AZ{(0,0)}u x— A2
sending x* to (0, 0) is bijective but not finite (here *= Spm(k) = A?).
8.35. The map in 8.31 and the Frobenius map
(tp, s ty) = (0, D) AT = AP

in characteristic p # 0, are examples of finite bijective regular maps that are not isomor-
phisms.

8.36. Let f be the regular map
() = (Lxy? +y+1): A7 = A%

Then f is (obviously) quasi-finite, but it is not finite. For this we have to show that
k[X,Y] is not integral over its subring k[ A, B], where

A=X
B=XY?>+Y +1.

The minimal polynomial of Y over k[A, B] is
AY*+Y+1-B=0,

which shows that it is not integral over k[ A, B] (see 1.44). Alternatively, one can show
directly that Y can never satisfy an equation

YS+g(ABYS ! +..-+g(A,B)=0,  g(A,B)€k[A,B],

by multiplying the equation by A.
8.37. Let V be the hyperplane

X"+T X" '+ +T,=0
in A", and consider the projection map

(ag, ., ap,x) — (a,...,a,): V> A"

The fibre over a point (a,, ..., a,) € A" is the set of solutions of

X"+a X"+ +a, =0,

and so it has exactly n points, counted with multiplicities. The map is certainly quasi-
finite; it is also finite because it corresponds to the finite map of k-algebras,

k[Tq,....T,] = k[Tq, ..., T, X1/(X* + T: X" L + - + T,).

See also the more general example p. 51.
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8.38. Let V be the hyperplane
T X"+ T X" 14+ 4+T,=0

in A"*2, The projection map

®
(ag, ..., a,,x) ~ (ag,...,a,): V— A"l
0 n 0 n

has finite fibres except for the fibre above o0 = (0, ..., 0), which is A!. Its restriction to
V ~ ¢ 1(0) is quasi-finite, but not finite. Above points of the form (0, ..., 0, %, ..., *) some
of the roots “vanish off to c0”. (Example 8.30 is a special case of this.) See also the more
general example p. 51.

8.39. Let
PX,Y) =Ty X" + T, X" 'Y +--- + T, Y",

and let V be its zero set in P1 X (A"*1\{0}). In this case, the projection map V' — A"*1\{0}
is finite.

d. The fibres of finite maps

Let ¢ : W — V be a finite dominant morphism of irreducible varieties. Then dim(W) =
dim(V), and so k(W) is a finite field extension of k(V). Its degree is called the degree of
the map ¢. The map ¢ is said to be separable if the field k(W) is separable over k(V).
Recall that |S| denotes the number of elements in a finite set S.

THEOREM 8.40. Let ¢ : W — V be a finite surjective regular map of irreducible varieties
with V normal.

(a) ForallP €V, |¢‘1(P)| < deg(p).
(b) The set of points P of V such that |cp‘1(P)| = deg(p) is an open subset of V, and it is
nonempty if ¢ is separable.

Before proving the theorem, we give examples to show that we need W to be separated
and V to be normal in (a), and that we need k(W) to be separable over k(V) for the
second part of (b).

EXAMPLE 8.41. (a) The map
{A! with origin doubled } — A!

has degree one and is one-to-one except over the origin where it is two-to-one.
(b) Let C be the curve Y2 = X3 + X2, and consider the map

t- ({2 -1,t(t?-1)): Al = C.

It is one-to-one except that the points t = +1 both map to 0. On coordinate rings, it
corresponds to the inclusion

x> T2-1

dxylokirl, {5705

and so is of degree one. The ring k[x, y] is not integrally closed — in fact k[T] is the
integral closure of k[x, y] in its field of fractions k(x, y) = k(T).
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(c) The Frobenius map
(ag,...,a,) — (af,...,aﬁ): Al - A"

in characteristic p # 0 is bijective on points, but has degree p". The field extension
corresponding to the map is

k(X1 .., Xy) D k(XD ..., X7)
which is purely inseparable.

LEMMA 8.42. LetQ, ..., Q, bedistinct points on an affine variety V. Then thereis a regular
function f on'V taking distinct values at the Q;.

PROOF. We can embed V as closed subvariety of A", and then it suffices to prove the
statement with V' = A" — almost any linear form will do. o

PROOF (OF 8.40). In proving (a) of the theorem, we may assume that V and W are
affine, and so the map corresponds to a finite map of k-algebras, k[V] — k[W]. Let
¢~ }(P) = {Q4, ..., Q,}. According to the lemma, there exists an f € k[W] taking distinct
values at the Q;. Let

FT)=T"+a;T" ' +--- +a,,

be the minimal polynomial of f over k(V). It has degree m < [k(W) : k(V)] = deg o,
and it has coefficients in k[V'] because V is normal (see 1.44). Now F(f) = 0 implies

F(f(Q)) =0,ie,
FQ)" +a;(P)- fQQ)™ 1+ +a,(P)=0.

Therefore the f(Q;) are all roots of a single polynomial of degree m, and sor < m <
deg(e).

In order to prove the first part of (b), we show that, if there is a point P € V such that
¢~ 1(P) has deg(¢) elements, then the same is true for all points in an open neighbourhood
of P. Choose f as in the last paragraph corresponding to such a P. Then the polynomial

" +ay(P)-T" '+ +an(P) =0 )

has r = degg distinct roots, and so m = r. Consider the discriminant disc F of F.
Because (*) has distinct roots, disc(F)(P) # 0, and so disc(F) is nonzero on an open
neighbourhood U of P. The factorization

k[V] — KVIITI/(F) —L kW]

gives a factorization
W — Spm(k[V][T]/(F)) - V.

Each point P’ € U has exactly m inverse images under the second map, and the first map
is finite and dominant, and therefore surjective (recall that a finite map is closed). This
proves that ¢~1(P’) has at least deg(¢) points for P’ € U, and part (a) of the theorem
then implies that it has exactly deg(¢) points.

We now show that if the field extension is separable, then there exists a point such
that ~!(P) has deg ¢ elements. Because k(W) is separable over k(V), there exists an
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f € k[W] such that k(V)[ f] = k(W). Its minimal polynomial F has degree deg(¢) and
its discriminant is a nonzero element of k[V']. The diagram

W — Spm(k[V][T]/(F)) » V
shows that |¢~!(P)| > deg(¢) for P a point such that disc(f)(P) # 0. O

Let E D F be a finite extension of fields. The elements of E separable over F form
a subfield F’ of E, and the separable degree of E over F is defined to be the degree of
F' over F. The separable degree of a finite surjective map ¢ : W — V of irreducible
varieties is the separable degree of k(W) over k(V).

THEOREM 8.43. Let ¢ : W — V be a finite surjective regular map of irreducible varieties,
and assume that V is normal.

go‘l(P)| < sep deg(p), with equality holding on a dense open subset.

(b) Foralli,
={PeV]|p™'®|<i}

is closedinV.

PROOF. If ¢ is separable, this was proved in 8.40. If ¢ is purely inseparable, then ¢ is

4 F
one-to-one because, for some g, the Frobenius map V¢ ) — V factors through ¢. In
the general case, ¢ factors through the normalization of V in F/, which realizes ¢ as the
composite of a purely inseparable map with a separable map. o

ASIDE 8.44. A finite map from a variety onto a normal variety is open (hence both open and
closed). See 8.52.

e. Zariski’s main theorem

In this section, we explain a fundamental theorem of Zariski.

Statement and proof

An obvious way of constructing nonfinite quasi-finite map is to take a finite map W - V
and remove a closed subset of W. Zariski’s Main Theorem (ZMT) shows that, for algebraic
varieties, every quasi-finite map arises in this way.

THEOREM 8.45 (ZARISKI'S MAIN THEOREM) Every quasi-finite map of algebraic vari-
etiesp : W — V factors into W C—> v’ & v with ¢’ finite and j an open immersion:

open immersion

W ¢ %4

J
? ¢
quasi-finite finite
V.

When ¢ is a dominant map of irreducible varieties, the statement is true with ¢’ : V! -V
equal to the normalization of V in W (in the sense of 8.9).

The key result needed to prove 8.45 is the following statement from commutative
algebra. For a ring A and a prime ideal p in A, x(p) denotes the field of fractions of A/p.
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THEOREM 8.46 (LOCAL VERSION OF ZMT). Let A be a commutativering, andleti: A —
B be a finitely generated A-algebra. Let q be a prime ideal of B, and let p = i~'(q). Finally,
let A’ denote the integral closure of A in B. If B,/ pB, is a finite x(p)-algebra, then there
exists an f € A’ not in q such that the map A} — By is an isomorphism.

PROOF. The proof is quite elementary, but intricate — see §17 of my notes CA. O

Recall that a point v in a topological space V is isolated if {v} is an open subset of V.
The isolated points v of an algebraic variety V' are those such that {v} is both open and
closed. Thus they are the irreducible components of V of dimension 0. Thus, if {v} is
isolated in V, then V = {v} u V', and, if V is affine, then k[V] ~ k x k[V].

Let 9 : W — V be a continuous map of topological spaces. We say that w € W is
isolated in its fibre if it is isolated in the subspace ¢~!(p(w)) of W. Letgp : A — B be
a homomorphism of finitely generated k-algebras, and consider spm(¢) : spm(B) —
spm(A); then n € spm(B) is isolated in its fibre if and only if B, /mB,, is a finite k-
algebra; here m = ¢~ !(n).

PROPOSITION 8.47. Let ¢ : W — V be a regular map of algebraic varieties. The set W' of
points of W isolated in their fibres is open in W.

PROOF. Letw € W’. Let W, and V, be open affine neighbourhoods of w and v = p(w)
such that (W) C V,,and let A = k[V,] and B = k[W]. Let n = {f € B| f(w) = 0}
— it is the maximal ideal in B corresponding to w.

Let A’ be the integral closure of A in B. Theorem 8.46 shows that there exists an
f € A’ not in m such that A} ~ By. Write A’ as the union of the finitely generated

A-subalgebras A; of A’ containing f:

Al = UiAi.

Because A’ is integral over A, each A; is finite over A (see 1.35). We have

Bf 2Alf = UlAlf

Because By is a finitely generated A-algebra, By = A;; for all sufficiently large A;. As the
A; are finite over A, By is quasi-finite over A, and spm(By) is an open neighbourhood of
w consisting of quasi-finite points. O

PROPOSITION 8.48. Every quasi-finite map of affine algebraic varieties p : W — V factors

; J ¢’ o ; : ; ;
intoW — V! — V with j a dominant open immersion and ¢’ finite.

PROOF. Let A = k[V] and B = k[W]. Because ¢ is quasi-finite, Theorem 8.46 shows
that there exist f; € A’ such that the sets spm(B,) form an open covering of W and
A}i ~ By, for all i. As W quasi-compact, finitely many sets spm(By,) suffice to cover
W. The argument in the proof of (8.47) shows that there exists an A-subalgebra A” of
A’, finite over A, which contains f1, ..., f,, and is such that B 2 A}’i for all i. Now the

map W = Spm(B) — Spm(A”’) is an open immersion because it is when restricted to
Spm(By,) for each i. As Spm(A”) — Spm(A) = V is finite, we can take V/ = Spm(A”).g

A regular map ¢ : W — V is said to be affine if ¢~}(U) is an open affine subset of
W whenever U is an open affine subset of V.
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PROPOSITION 8.49. Let ¢ : W — V be an affine map of irreducible algebraic varieties.
Thenthe map j: W — V' from W into the normalization V' of V in W (8.9) is an open
immersion.

PROOF. Let U be an open affine in V. Let A = k[U] and B = k[¢p~!(U)]. The integral
closure A’ of A in B is finite over A because it is contained in the integral closure of A in
k(W), which is finite over A (8.3)). Thus, in the proof of 8.48 we can take A” = A’, and
then ¢~1(U) — Spm(A’) is an open immersion. As Spm(A’) is an open subvariety of V’
and the sets ¢~ }(U) cover W, this implies that j : W — V' is an open immersion. g

As V' — V is finite, this proves Theorem 8.45 in the case that ¢ is an affine map of
irreducible varieties. To deduce the general case of Theorem 8.45 from 8.44 requires
an additional argument. See Theorem 12.83 of Gortz, U. and Wedhorn, T., Algebraic
Geometry 1., Springer Spektrum, Wiesbaden, 2020.

NOTES

8.50. Let ¢ : W — V be a quasi-finite map of algebraic varieties. In 8.45, we may
replace V’ with the closure of the image of j. Thus, there is a factorization ¢ = ¢’oj
with ¢’ finite and j a dominant open immersion.

8.51. Theorem 8.45 is false for prevarieties (see 8.33). However, it is true for separated
maps of prevarieties. A regular map ¢ : V — S of algebraic prevarieties is separated if
the image Ay /g of the map v = (v,v) 1 V — V Xg V is closed.

8.52. If V is normal in 8.45, then ¢’ is open (8.44), and so ¢ is open. Thus, every
quasi-finite map to a normal algebraic variety is open.

ASIDE. The normalization map of an affine cuspidal cubic Y2 = X3 is a universal homeomor-
phism without being an isomorphism. The normalization map of an affine nodal cubic with one
of the points lying over the node removed is a homeomorphism but not a universal homeomor-
phism. In particular, a regular map may be étale and bijective, without being a homeomorphism,
much less an isomorphism. See mo479766.

Applications to quasi-finite maps

Zariski’s main theorem allows us to give a geometric criteria for a regular map to be
finite.

PROPOSITION 8.53. A quasi-finite map ¢ : W — V of algebraic varieties is finite if W is
complete.

PROOF. The map j: W < V' in 8.45 is an isomorphism of W onto its image j(W) in
V'. If W is complete, then j(W) is closed (7.7), and so the restriction of ¢’ to j(W) is
finite. o

PROPOSITION 8.54. A quasi-finite map ¢ : W — V of algebraic varieties is finite if (and
only if) it is proper.

J «
PROOF. Factor ¢ into W & W’ — V with « finite and j an open immersion. Factor j
into
we(w,jw) (w,w"w’
W———"05 W xy W


https://mathoverflow.net/questions/479766/
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The image of the first map is I';, which is closed because W is a variety (see 5.28; W is
separated because it is finite over a variety — exercise). Because ¢ is proper, the second
map is closed. Hence j is an open immersion with closed image. It follows that its
image is a connected component of W’, and that W is isomorphic to that connected
component. o

NOTES

8.55. When W and V are curves, every surjective map W — V is closed. Thus it is easy
to give examples of closed surjective quasi-finite, but nonfinite, maps. Consider, for
example, the map

(AL {0}) U A® - AL,

sending each a € A {0} to a and O € A to 0. This does not violate the Proposition
8.54, because the map is only closed, not universally closed.

Applications to birational maps

Recall (p. 117) that a regular map ¢ : W — V of irreducible varieties is said to be
birational if it induces an isomorphism k(V)) — k(W) on the fields of rational functions.

8.56. One may ask how a birational regular map ¢ : W — V can fail to be an isomor-
phism. Here are three examples.

(a) The inclusion of an open subvariety into a variety is birational.

(b) The map (8.31) from A! to the cuspidal cubic,
Al - C, t- (213,

is birational. Here C is the cubic Y? = X3, and the map k[C] — k[A!] = k[T]
identifies k[C] with the subring k[T2, T3] of k[T]. Both rings have k(T) as their
fields of fractions.

(c) For any smooth variety V and point P € V, there is a regular birational map
@ : V! = V such that the restriction of ¢ to V’ \ ¢~!(P) is an isomorphism onto
V \ P, but ¢~ 1(P) is the projective space attached to the vector space Tp(V). See
the section on blow-ups below.

The next result says that, if we require the target variety to be normal (thereby
excluding example (b)), and we require the map to be quasi-finite (thereby excluding
example (c)), then we are left with (a).

PROPOSITION 8.57. Let ¢ : W — V be a birational regular map of irreducible varieties. If
V is normal and the map ¢ is quasi-finite, then ¢ is an isomorphism from W onto an open
subvariety of V.

PROOF. Factor ¢ as in the Theorem 8.45 (so, in particular, ¢’ : V/ — V is the normaliza-
tion of V in W). For each open affine subset U of V, k[¢'~}(U)] is the integral closure of
k[U] in k(W). Because ¢ is birational, the inclusion k(V) C k(V') = k(W) is an equality.
Now k[U] is integrally closed in k(V) (because V is normal), and so U = ¢'~1(U) (as
varieties). We have shown that ¢’ : V/ — V is an isomorphism locally on the base V,
and hence an isomorphism. O
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8.58. In topology, a continuous bijective map ¢ : W — V need not be a homeomor-
phism, but it is if W is compact and V' is Hausdorff. Similarly, a bijective regular map of
algebraic varieties need not be an isomorphism. Here are three examples:

(a) In characteristic p, the Frobenius map
(X15 ey Xp) > (X7, 0, xB) 1 AP — AR

is bijective and regular, but it is not an isomorphism even though A" is normal.

(b) The map ¢ — (2, %) from A! to the cuspidal cubic (see 8.56b) is bijective, but not
an isomorphism.

(c) Consider the regular map A! — Al sending x to 1/x for x # 0 and 0 to 0. Its graph
I is the union of (0, 0) and the hyperbola xy = 1, which is a closed subvariety of
Al x Al. The projection (x,y) = x: I' — Al is a bijective, regular, birational
map, but it is not an isomorphism even though A! is normal.

If we require the map to be birational (thereby excluding example (a)), V to be normal
(thereby excluding example (b)), and the varieties to be irreducible (thereby excluding
example (c)), then the map is an isomorphism.

PROPOSITION 8.59. Let ¢ : W — V be a bijective regular map of irreducible algebraic
varieties. If the map ¢ is birational and V is normal, then ¢ is an isomorphism.

PROOF. The hypotheses imply that ¢ is an isomorphism of W onto an open subset of V'
(8.57). Because ¢ is bijective, the open subset must be the whole of V. o

In fact, example (a) can be excluded by requiring that ¢ be generically separable
(instead of birational), and (b) can be excluded by requiring that the map be étale.

PROPOSITION 8.60. Let ¢ : W — V be a bijective regular map of irreducible varieties. If
V is normal and k(W) is separably generated over k(V'), then ¢ is an isomorphism.

PROOF. Because g is bijective, dim(W) = dim(V) (see Theorem 9.9 below) and the
separable degree of k(W) over k(V) is 1 (apply 8.40 to the variety V' in 8.45). Hence ¢ is
birational, and we may apply 8.59. O

8.61. In functional analysis, the closed graph theorem states that, if a linear map
@ : W — V between two Banach spaces has a closed graph I o {(w,pw) | w € W},
then ¢ is continuous (Wikipedia: CLOSED GRAPH THEOREM). One can ask whether
a similar statement is true in algebraic geometry. Specifically, if ¢ : W — V is a map
(in the set-theoretic sense) of algebraic varieties V, W whose graph is closed (for the
Zariski topology), then is ¢ a regular map? The answer is no in general. For example,
even in characteristic zero, the map (t2,t3) — ¢ : C — A! inverse to that in 8.56(b) has
closed graph but is not regular. In characteristic p, the inverse of the Frobenius map
x +— xP provides another counterexample. For a third counterexample, see 8.58(c). The
projection 7 from I" to W is a bijective regular map, and so ¢ will be regular if 7 is an
isomorphism. According to 8.60, 7 is an isomorphism if the varieties are irreducible,
W is normal, and 7 is generically separable. In particular, a map between irreducible
normal algebraic varieties in characteristic zero is regular if its graph is closed.


https://en.wikipedia.org/wiki/Closed_graph_theorem
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A condition for an algebraic monoid to be a group

Recall (p. 110) that we defined an algebraic variety V with a group structure VXV — V
to be a group variety if both the multiplication map a,b » a-b: VXV — V and
inversion map a = a~!: V — V are regular. Here we show that the second condition
is unnecssary.

A monoid variety is an algebraic variety G together with the structure of a monoid
defined by regular maps

m: GXxG -G, e:A’-G.
LEMMA 8.62. Let (G, m,e) be a monoid variety. The map

(dm)(ee)
TeG S TeG = T(e,e)(G X G) - Te(G)

is addition.

PROOF. The first isomorphism is (X,Y) — (da).(X) + (dp).(Y), where « is the map
x+(x,e): G- GxGandgisx (e, x). Tocompute (dm) ¢ ((df).(X) + (da).(Y)),
note that moa = idg = mof. O

PROPOSITION 8.63. Let G be an algebraic variety with a group structurem: G X G — G.
If m is regular, then (G, m) is a group variety, i.e., the map a — a~' is regular.

PROOF. Let a € G(k). The translation map L, : x — ax is an isomorphism G — G
because it has an inverse L,-1. Therefore G is homogeneous as an algebraic variety: for
any two points in G, there is an isomorphism G — G mapping one to the other. It follows
that G normal (8.7).
The map
(x,y) P~ (x,xy): GXG > GXG

is regular, bijective, and induces an isomorphism on the tangent spaces at (e, e) (apply
the lemma). It is therefore an isomorphism of algebraic varieties over k. Therefore, its
inverse (x,y) — (x,x~'y) is regular, and so

)~ x1y:GxG -G

is regular. This implies that (G, m) is an algebraic group. O

Variants of Zariski’s main theorem

Mumford 1966a, 111, §9, lists the following variants of ZMT.

Original form (8.57)Lety : W — V be abirational regular map of irreducible varieties.
If V is normal and ¢ is quasi-finite, then ¢ is an isomorphism of W onto an open
subvariety of V.

Topological form Let V' be a normal variety over C, and let v € V. Let S be the
singular locus of V. Then the complex neighbourhoods U of v such that U\ U N S
is connected form a base for the system of complex neighbourhoods of v.

Power series form Let V be a normal variety, and let Oy, ; be the local ring attached to
an irreducible closed subset of V' (cf. p. 180). If Oy ; is an integrally closed integral
domain, then so also is its completion.
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Grothendieck’s form (8.45) Every quasi-finite map of algebraic varieties factors as the
composite of an open immersion with a finite map.

Connectedness theorem Let ¢ : W — V be a proper birational map, and let v be a
(closed) normal point of V. The ¢~(v) is a connected set (in the Zariski topology).

The original form of the theorem was proved by Zariski using a fairly direct argument
whose method does not seem to generalize.* The power series form was also proved
by Zariski, who showed that it implied the original form. The last two forms are much
deeper and were proved by Grothendieck.

NOTES. The original form of the theorem (8.57) is the “Main theorem” of Zariski, O., Foundations
of a general theory of birational correspondences. Trans. Amer. Math. Soc. 53, (1943). 490-542.

f. Stein factorization

The following important theorem shows that the fibres of a proper map are disconnected
only because the fibres of finite maps are disconnected.

THEOREM 8.64 (STEIN FACTORIZATION). Every proper map ¢ : W — V of algebraic

varieties factors into W A w B vwith @1 proper with connected fibres and ¢, finite.
When V is affine, this is the factorization
W = Spm(Oyw (W)) - V.

The first major step in the proof of the theorem is to show that ¢, Oy, is a coherent
sheaf on V (see Chapter 13). Here ¢, Oy is the sheaf of Oy -algebrason V,

U » Ow(p~ (U)).

To say that ¢, Oy, is coherent means that, on every open affine subset U of V, it is the
sheaf of Oy -algebras defined by a finite k[U]-algebra. This, in turn, means that there
exists a regular map ¢, : Spm(p, Oy) — V that, over every open affine subset U of V,
is the map attached by Spm to the map of k-algebras k[U] — Oy (¢~ 1(U)).

The Stein factorization is then

w2 W € Spm(p,0p) 2> V.

By construction, ¢, is finite and ¢, : W — W' has the property that Oy, — @1, Oy
is an isomorphism. That its fibres are connected is a consequence of the following
extension of Zariski’s connectedness theorem to non birational maps.

THEOREM 8.65. Let ¢ : W — V be a proper map such that the map Oy, — ¢, Oy is an
isomorphism. Then the fibres of ¢ are connected.

See Hartshorne 1977, I11, §11.

NOTES. The Stein factorization was originally proved (in 1956) by Stein for complex spaces
(Wikipedia: STEIN FACTORIZATION).

3See Lang, S., Introduction to Algebraic Geometry, 1958, V 2, for Zariski’s original statement and proof
of this theorem. See Springer, T.A., Linear Algebraic Groups, 1998, 5.2.8, for a direct proof of (8.59).
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g. Blow-ups

Under construction.

Let P be a nonsingular point on an algebraic variety V, and let T,(V') be the tangent
space at P. The blow-up of V at P is a regular map V — V that replaces P with the
projective space P(Tp(V)). More generally, the blow-up at P replaces P with P(Cp(V)),
where Cp(V) is the geometric tangent cone at P.

Blowing up the origin in A"

Let O be the origin in A", and let 7 : A" \ {0} — P"! be the map (ay,...,a,) —
(a; : ... : a,). Let I, be the graph of 7, and let A" be the closure of I, in A" x Pr=1,
The map o : A" — A" defined by the projection map A" x P"~! — A" is the blow-up
of A" at O.

Blowing up a point on a variety
Examples

8.66. The nodal cubic

8.67. The cuspidal cubic

h. Resolution of singularities

Let V be an algebraic variety. A desingularization of V is birational regular map
7. W — V such that W is nonsingular and 7 is proper; if V' is projective, then W should
also be projective, and 7 should induce an isomorphism

W ~ r~1(Sing(V)) = V « Sing(V).

In other words, the nonsingular variety W is the same as V' except over the singular
locus of V. When a variety admits a desingularization, then we say that resolution of
singularities holds for V.

Note that with “nonsingular” replaced by “normalization”, the normalization of V
(see 8.5) provides such a map (resolution of abnormalities).

Nagata’s embedding theorem 7.50 shows that it suffices to prove resolution of sin-
gularities for complete varieties, and Chow’s lemma 7.39 then shows that it suffices to
prove resolution of singularities for projective varieties. From now on, we shall consider
only projective varieties.

Resolution of singularities for curves was first obtained using blow-ups (see Chapter
7 of Fulton’s book, Algebraic Curves). Zariski introduced the notion of the normalization
of a variety, and observed that the normalization 7 : V — V of a curve V in k(V) is a
desingularization of V.

There were several proofs of resolution of singularities for surfaces over C, but
the first to be accepted as rigorous is that of Walker (patching Jung’s local arguments;
1935). For a surface V, normalization gives a surface with only point singularities (8.12),
which can then be blown up. Zariski showed that the desingularization of a surface in
characteristic zero can be obtained by alternating normalizations and blow-ups.

The resolution of singularities for three-folds in characteristic zero is much more
difficult, and was first achieved by Zariski (Ann. of Math. 1944). His result was extended


http://www.urbanfonts.com/blog/wp-content/uploads/2013/04/12.gif
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to nonzero characteristic by his student Abhyankar and to all varieties in characteristic
zero by his student Hironaka.

The resolution of singularities for higher dimensional varieties in nonzero character-
istic is one of the most important outstanding problems in algebraic geometry. In 1996,
de Jong proved a weaker result in which, instead of the map 7 being birational, k(W) is
allowed to be a finite extension of k(V).

The article Wikipedia: Resolution of singularities is excellent.

A little history

Normal varieties were introduced by Zariski in a paper, Amer. J. Math. 61, 1939, p. 249-
194. There he noted that the singular locus of a normal variety has codimension at
least 2 and that the system of hyperplane sections of a normal variety relative to a
projective embedding is complete (i.e., is a complete rational equivalence class). Zariski’s
introduction of the notion of a normal variety and of the normalization of a variety was
an important insertion of commutative algebra into algebraic geometry. It is not easy
to give a geometric intuition for “normal”. One criterion is that a variety is normal if
and only if every surjective finite birational map onto it is an isomorphism (8.57). See
mo109395 for a discussion of this question.

Exercises

8-1. Prove that a finite map is an isomorphism if and only if it is bijective and étale. (Cf.
Harris 1992, 14.9.)

8-2. Give an example of a surjective quasi-finite regular map that is not finite (different
from any in the notes).

8-3. Letp : W — V be an affine map. Show that W is separated if V' is separated.

8-4. For every n > 1, find a finite map ¢ : W — V with the following property: for all
1<i<n,

v def {P €V | ¢ }(P) has < i points}

is a nonempty closed subvariety of dimension i.


https://en.wikipedia.org/wiki/Resolution_of_singularities
https://mathoverflow.net/questions/109395/

Chapter 9

Regular Maps and Their Fibres

Consider again the regular map ¢ : A%2 — A2, (x,y) = (x, xy) (Exercise 3-3). The line
Y = cmaps to the line Y = cX. As c runs over the elements of k, this line sweeps out
the whole x, y-plane except for the y-axis, and so the image of ¢ is

C = (A2~ {y-axis}) U{(0,0)},

which is neither open nor closed, and, in fact, is not even locally closed. The fibre over
(a,b)is
point (a,b/a) ifa#0
¢ Y(a,b) =] Y-axis if (a,b) = (0,0)
@ ifa=0,b#0.

From this unpromising example, it would appear that it is not possible to say anything
about the image of a regular map or its fibres. However, it turns out that almost everything
that can go wrong already goes wrong in this example. We shall show:

(a) the image of a regular map is a finite union of locally closed sets;
(b) the dimensions of the fibres can jump only over closed subsets (upper semiconti-
nuity)

(c) the number of elements (if finite) in the fibres can drop only on closed subsets
(lower semicontinuity), provided the map is finite, the target variety is normal,
and k has characteristic zero.

a. The constructibility theorem

THEOREM 9.1. Letp : W — V be a dominant map of irreducible affine algebraic varieties.
Then (W) contains a nonempty open subset of V.

PROOF. Because ¢ is dominant, the map f — fop: k[V] — k[W] is injective (3.34).
According to Lemma 9.4 below, there exists a nonzero a € k[V] such that every ho-
momorphism of k-algebras a : k[V] — k such that a(a) # 0 extends to a homomor-
phism § : k[W] — k. In particular, for any point P in D(a) C V, the homomorphism
g g(P): k[V] — k extends to a homomorphism 3 : k[W] — k. The kernel of 8 is a
maximal ideal of k[W] whose zero set is a point Q of W such that p(Q) = P. o

Before beginning the proof of Lemma 9.4, we should look at an example.

198
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EXAMPLE 9.2. Let A be an affine k-algebra, and let B = A[T]/(f) with f = a,,T™ +
-+ + ag, m > 0. When does a homomorphism a : A — k extend to B? The extensions of
a correspond to roots of the polynomial ae(a,,)T™ + --- + a(ay) in k, and so there exists
an extension unless this is a nonzero constant polynomial. In particular, a extends if

a(ay,) # 0.

LEMMA 9.3. Let Aand B = A[T]/a be affine k-algebras. Assume that A and B are integral
domains, and let ¢ C A be the ideal of leading coefficients of the polynomials in a. Then
every homomorphism a : A — k such that a(c) # 0 extends to a homomorphism B — k.

PROOF. If a = 0, then every homomorphism « extends, and so we may suppose that
a#0.Leta: A — k beahomomorphism such that a(¢) # 0, and choose a polynomial
f =a,T™ + --- + q, in a of least degree such that a(a,,) # 0. Then m > 1 otherwise
B = 0. We shall use induction on m.

Extend a to a homomorphism & : A[T] — k[T] by sending T to T. Then &(a) is an
ideal in k[T].

If &(a) # k[T], then it has a zero c in k (2.11). This means that the homomorphism

h—h(c)

A[T] -2 K[T] k

is zero on a, and so it factors through a homomorphism B = A[T]/a — k. This is an
extension of « to B.
If &(a) = k[T], then a contains a polynomial

g(M)=b,T"+---+by, n>0, a(b,)=--=a(b;)=0, a(by) #0.
On dividing f(T) into g(T), we find that
ale(T) = q()f(T)+KT), deN, qreA[T], degr<m.
On applying & to this equation, we obtain

a(an)?a(by) = &(@a(f) + a(r).

Because &(f) has degree m > 0, we must have &(q) = 0, and so &(r) is a nonzero
constant. We may replace g(T) with r(T'), and so suppose that n < m. If m = 1, such a
g(T) cannot exist, so we may suppose that m > 1.

For a polynomial h(T) = ¢, T" + -+ + ¢y, we let h'(T) = ¢, + --- + ¢, T". The A-module
generated by the polynomials T5h/(T) with s € N and h € a is an ideal o’ in A[T]. If
a’ nk # {0}, then a contains a nonzero polynomial c¢T", so B is generated over A by a
nilpotent, which implies that A = B (recall that B is an integral domain). Otherwise, we

let B' = A[T]/a’, and note that a’ contains the polynomial
g =b,+--+bT", n<m, a(by)#0.

Because deg g’ < m, the induction hypothesis implies that & extends to a homomorphism
B’ = A[T]/a’ — k. Let ¢ denote the image of T in k. Then, forallh = ¢,T" +--- + ¢, € a,
a(c,)+ -+ alcy)c” = 0. On applying this with h = g, we find that ¢ = 0. On applying it
with h = f, we find that a(a,,) = 0, which is a contradiction. This completes the proof.

LEMMA 9.4. Let A C B be affine k-algebras, and assume that A and B are integral do-
mains. For any nonzero b € B, there exists a nonzero a € A with the following property:
every homomorphism o : A — k from A into k such that a(a) # 0 extends to a homomor-
phism 8 : B — k with f(b) # 0.
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PROOF Suppose first that B is generated by a single element, say, B = A[x]. Let a be the
kernel of the homomorphism T + x, A[T] — A[x].
If a = (0), write

b=f(x)=ax"+a;x" ' +--+a, q€A,

and take a = a,. If a : A — k is such that a(ay) # 0, then there exists a ¢ € k such that
f(c) # 0, and we can take § to be the homomorphism Y d;x! — Y a(d;)c’.
If a # (0), let
fM)=a,T"+--+ay, a,#0,

be an element of a of smallest possible degree. Let h(T) € A[T] represent b. As b is
nonzero, h ¢ a. Because f is irreducible over the field of fractions of A, it and h are
coprime over that field. Hence there exist u,v € A[T] and ¢ € A \ {0} such that

uh +vf =c.

It follows now that ca,, satisfies our requirements, for if a(ca,,) # 0, then a can be
extended to 8 : B — k by the preceding lemma, and S(u(x) - b) = 8(c) # 0, and so
B(b) # 0.

In the general case, we can write B = A[Xxy, ..., X,|. There exists an element b,_; €
Alxy, ..., X,_;] with the following property: every homomorphism « : A[xy, ..., x,_1] —
k such that a(b,_;) # 0 extends to a homomorphism 8 : B — k with 8(b) # 0. Then
there existsa b,_, € A[xy, ..., X,_,] etc. Continuing in this fashion, we obtain an element
a € A with the required property. O

ASIDE 9.5. For an alternative proof of Theorem 9.1 using the generic flatness theorem, see 9.28
below.

In order to generalize 9.1 to regular maps of arbitrary varieties, we need the notion
of a constructible set. Let W be a noetherian topological space. A subset C of W is said
to constructible if it is a finite union of sets of the form U N Z with U open and Z closed,

c=J uinz.

1<i<n
On passing to the complements, we find that

c'=Junz,
1<i<n

so the complement of a constructible set is constructible. It follows that finite unions and
finite intersections of constructible sets are constructible. Obviously, if C is constructible
in Wand V c W, then C NV is constructible in V, and it is constructible in W if V' is
open or closed.

A constructible subset of A" is one that is definable by a finite number of polynomials.
More precisely, it is defined by a finite number of statements of the form

fXy, ... X, =0, gXq,....X,) #0

combined using only “and” and “or” (or, better, statements of the form f = 0 combined
using “and”, “or”, and “not”). The next proposition shows that a constructible set C that
is dense in an irreducible variety VV must contain a nonempty open subset of V. Contrast
Q, which is dense in R (real topology), but does not contain an open subset of R, or an
infinite subset of A! that omits an infinite set.
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PROPOSITION 9.6. Let C be a constructible set whose closure C is irreducible. Then C
contains a nonempty open subset of its closure C.

PROOF. We are given that C = | J(U; n Z;) with each U; open and each Z; closed. We
may assume that each set U; N Z; in this decomposition is nonempty. Clearly C C | Z;,
and as C is irreducible, it must be contained in one of the Z;. For this i,

UiﬂZi D Ulﬂ(j D UlﬂC D Ulﬂ(Uanl)= UiﬂZl-.
Thus U; N Z; = U; N C, which is a nonempty open subset of C contained in C. o

THEOREM 9.7. Every regular map ¢ : W — V sends constructible sets to constructible
sets.

PROOF We first show that it suffices to prove the theorem with W and V affine. Write
V as a finite union of open affines, and then write the inverse image of each of the
affines as a finite union of open affines. In this way, we get W = | J, < Wi with each W;
open affine and ¢(W;) contained in an open affine of V. If C is a constructible subset of
W, then ¢(C) = |J._, ¢(C n W;), and so ¢(C) is constructible if each set p(C N W;) is
constructible.

Now assume that W and V are affine, and let C be a constructible subset of W. Let W;
be the irreducible components of W. They are closed in W, and so C N W; is constructible
inW. As p(W) = | ¢(C n W), it is constructible if the (C N W;) are. Hence we may
suppose that W is irreducible. Moreover, C is a finite union of its irreducible components.
As these are closed in C, they are constructible in W. We may therefore assume that C is
also irreducible; C is then an irreducible closed subvariety of W.

We prove the theorem by induction on the dimension of W. If dim(W) = 0, then
the statement is obvious because W is a point. If C # W, then dim(C) < dim(W), and

@(C) is constructible by the induction hypothesis applied to C 2 v. we may therefore
assume that C = W. Replace V with ¢(C). According to Proposition 9.6, C contains

i€l

a dense open subset U’ of W, and Theorem 9.1 applied to U’ %, v shows that »(C)
contains a dense open subset U of V. Write

p(C)=UUpCne (V D)).

Then ¢~ 1(V ~ U) is a proper closed subset of W (the complement of V \ U is dense
in V and ¢ is dominant). As C n ¢~ YV ~ U) is constructible in ¢=1(V \ U), the set
»(C n@~Y(V ~ U)) is constructible in V by induction, which completes the proof.

ASIDE 9.8. Let X be a subset of C". If X is constructible for the Zariski topology on C", then the

closure of X for the Zariski topology is equal to its closure for the complex topology.

b. The fibres of morphisms

We examine the fibres of a regular map ¢ : W — V. After replacing V with the closure
of the image of ¢, we may suppose that ¢ is dominant.

THEOREM 9.9. Let ¢ : W — V be a dominant map of irreducible algebraic varieties.
(a) dim(W) > dim(V).
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(b) IfP € (W), then
dim(p~'(P)) > dim(W) — dim(V)

with equality holding exactly on a nonempty open subset U of V.
(c) Foreachi € N, the set
Vi={P eV |dim(p~'(P)) > i}
is closed in p(W).

In other words, for P in a dense open subset U of V, the dimension of the fibre ¢~ (P)

has the expected value dim(W) — dim(V), and it jumps on the closed complement of U

(possibly empty). It may jump further on closed subsets of the closed complement of U.
Before proving the theorem, we look at an example.

EXAMPLE 9.10. Consider a system of linear equations
n
ZainJ-:O, i=1,...,m,
Jj=1

with coefficients in a field k (not necessarily algebraically closed). The quotient

kX, ..., X
klXy, - Xl ~ k[X, o
(2 ;X))

where X s X, are the “free” variables for the system of equations (cf. 2.61). Thus the
field of fractions of k[X7, ..., X,,] /(2] a;;X ;) has transcendence degree d over k, where
d = n — rank(a;;).

Now consider the subvariety W C V' x A" defined by a system of linear equations

de],

n
ZainJ':O, i=1,...,m,
J=1

with coefficients a;; € k[V]. The projection map ¢ : W — V is surjective, and the above
discussion shows that k(W) has transcendence degree d over k(V'), where

d=n-rankA, A o (aij).

Thus,
dimW = dimV + n — rank(A).

The fibre ¢~!(P) over P € V is the subvariety of A" defined by the system of linear
equations

n
Zal](P)ijo’ i=1,---,m’
j=1

with coefficients in k. It has dimension
dim ¢~'(P) = n —rank A(P), A(P) = (a;;(P)).

Letr = rank(A). Then rank A(P) = r on the open subset U of V where some r X r-minor
of A does not vanish, and it drops on the closed complement of U. Correspondingly,
dim¢~!(P) = dim W — dim V on U, and it jumps on the closed complement of U.
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PROOF (OF THEOREM 9.9). (a) Because the map is dominant, there is a homomorphism
k(V) & k(W), and obviously tr deg, k(V) < tr deg, k(W) (an algebraically independent
subset of k(V') remains algebraically independent in k(W)).

(b) In proving the first part of (b), we may replace V with an open neighbourhood of
P. In particular, we can assume V to be affine. Let m and n be the dimensions of V' and
W. From Proposition 3.47 we know that there exist regular functions f1, ..., f,, such
that P is an irreducible component of V(f1, ..., f,,,). After replacing V' by a smaller open
neighbourhood of P, we may suppose that P = V(f1, ..., fn). Then ¢~1(P) is the zero
set of the regular functions f; 09, ..., f,,o9, and so (if nonempty) has codimension < m
in W (by 3.45). Hence

dim @~ 1(P) > dim W — m = dim(W) — dim(V).

In proving the second part of (b), we can replace both W and V with open affine
subsets. Since ¢ is dominant, k[V] — k[W] is injective, and we may regard it as an inclu-
sion (we identify a function x on V with xop on W). Then k(V) C k(W), and k(W) has
transcendence degree dim W — dimV = n — m over k(V). Let k[V'] = k[x4, ..., x| and
let k[W] = k[y1, ..., yn]- Then {x1, ..., X;;} contains a transcendence basis for k(V') over
k, which we may suppose to be {x, ..., X,,,}. Similarly, after renumbering, we may sup-
pose that {y, ..., ¥,_} is a transcendence basis for k(W) over k(V). Now {x1, ..., Yn—m}
is a transcendence basis for k(W) over k, and so, for each i > n — m, there is a nonzero
polynomial F;(X, ..., X,,,, Y1, ., Y, m, Y;) such that

Fi(xl,---,xmayly---’yn—m:yi) =0. (37)
Let P € V and let y; denote the restriction of y; to ¢~!(P). Then

kg™ (P)] = k[yy, ... I ]-

The equation (37) is an algebraic relation among the functions x, ..., y; on W. When
restricted to p~!(P), it becomes

Fi(xl(P), ey xm(P), _)71, ,yn_m, _)7[) =0.
If this is a nontrivial algebraic relations for all i, i.e., if none of the polynomials
Fi(x;(P), e s Xpy(P), Y1, oo, Yy, Y)

is the zero polynomial, then trdeg, (k(Jy, ..., n) < n — m, so dim e '(P)<n—m.

Regard F;(xq, ... s X, Y1, e, Yy, Y;) @s a polynomial in the Y with coefficients poly-
nomials in the x. Let U; be the open subset of V where some coefficient of the polynomial
is nonzero — this is nonempty because F; is a nonzero element of K[V ]|[Y1, ..., Y., Yil-
The last remark shows that, for P € (| U;, dim¢~'(P) < n — m, hence = n — m by (a).

Finally, if for a particular point P, dim ¢~!(P) = n — m, then we can modify the
above argument to show that the same is true for all points in an open neighbourhood
of P.

(c) We prove this by induction on the dimension of V' — it is obviously true if
dim V = 0. We know from (b) that there is an open subset U of V such that

dimp '(P)=n—-m < PeU.

Let Z be the complement of U in V; thus Z = V,_,,.;. Let Z;, ..., Z, be the irreducible
components of Z. On applying the induction to the restriction of ¢ to the map ¢~(Z )=
Z; for each j, we obtain the result. o
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Recall that a regular map ¢ : W — V of algebraic varieties is closed if, for example,
W is complete (7.7).

PROPOSITION 9.11. Let ¢ : W — V be a regular surjective closed map of varieties, and let
n € N. If V is irreducible and all fibres ¢~ 1(P) of ¢ are irreducible of dimension n, then W
is irreducible of dimension dim(V) + n.

PROOF. Let Z be an irreducible closed subset of W, and consider the map ¢|Z: Z — V;
it has fibres (p|Z2)~!(P) = ¢~ }(P) N Z. There are three possibilities.

(a) ¢(Z) # V. Then ¢(Z) is a proper closed subset of V.

(b) p(2) =V,dim(Z) < n+dim(V). Then (b) of (9.9) shows that there is a nonempty
open subset U of V such that for P € U,

dim(¢~}(P) N Z) = dim(Z) — dim(V) < n.

Thus, for P € U, the fibre ¢~!(P) is not contained in Z.
(©) ¢(Z) =V,dim(Z) > n + dim(V). Then 9.9(b) shows that

dim(p~'(P)n Z) > dim(Z) — dim(V) > n

for all P; thus ¢~ }(P) c Z forall P € V, and so Z = W; moreover dimZ =
dimV + n.

Now let Z1, ..., Z, be the irreducible components of W. I claim that (c) holds for
at least one of the Z;. Otherwise, there will be an open subset U of V such that for
P in U, ¢~1(P) is contained in none of the Z;; but p~!(P) is irreducible and ¢~'(P) =
U@ 1(P)n Z;), and so this is impossible. O

2 It is possible for all the fibres of regular map W — V to be reducible without W
being reducible. The subvariety of A* x A? with equation x7y; — x5y, = 0 is irreducible,
but the fibres of the projection to the first factor (obtained by fixing the values of y; and
y,) are all reducible. To extend this to P? x P2, pass to the projective closure.

c. Flat maps and their fibres

A flat map is the algebraic analogue of a map whose fibres form a contin-
uously varying family. For example, a surjective regular map of smooth
varieties is flat if and only if all fibres have the same dimension. A finite
map is flat if and only if, over every connected component, all fibres have
the same number of points (counting multiplicities). Flat maps of algebraic
varieties are open.

Flat homomorphisms of rings

Let A be aring and B an A-algebra. If the sequence of A-modules
a B
0->N —->N—N'"-0
is exact, then the sequence of B-modules

BN 25 Bo, N -2, B, N — 0 )
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is exact, but B® 4, N’ — B® 4 N need not be injective. For example, when we tensor the
exact sequence of k[X]-modules

0 - k[x] 2L x) L2170 ko0 — 0

with k, we get the sequence
id
k —0> k =5 k—o.

We prove that (*) is exact. The surjectivity of 1 ® 3 is obvious. Letq: B, N - Q
be the cokernel of 1 @ a. As(1 ® f)o(1 ® a) =1 ® (Boa) = 0, the map 1 ® S factors
through g,

BN 225 Be, N 22 B, N" — 0.

q I

Q

We construct an inverse g to f. If n;,n, € N have the same image in N”, then they
differ by an element of a(N’), and so ¢(b ® n;) = ¢(b ® n,) for all b € B. Hence the
A-bilinear map

BXN —Q, (b,n)~ ¢(bQn)

factors through B x N”, and so defines an A-linear map g: B ®4 N” — Q. This is
inverse to f.

DEFINITION 9.12. An A-algebra B is flat if
M — N injective = B®4 M — B @4 N injective.
It is faithfully flat if, in addition,
B M=0= M=0.

A homomorphism « : A — B of rings is flat (resp. faithfully flat) if it makes B into a
flat (resp. faithfully flat) algebra.

Therefore, an A-algebra B is flat if and only if the functor M w B ® 4 M from
A-modules to B-modules is exact.

EXAMPLE 9.13. If S is a multiplicative subset of A4, then S~!A is a flat A-algebra (1.18).
As tensor products commute with direct sums, and direct sums of exact sequences are
exact, an A-algebra is flat if it is free as an A-module (and faithfully flat if it also nonzero).

PROPOSITION 9.14. Let A — A’ be a homomorphism of rings. If A — B is flat, then so
alsois A’ > B®, A’

PROOF. For any A’-module M,
(B ®AA/)®A’M EB@A (AI ®A’ M) ZB®AM

In other words, tensoring an A’-module M with B ® 4 A’ is the same as tensoring M
(regarded as an A-module) with B. Therefore it preserves exact sequences. o
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PROPOSITION 9.15. Leta : A — B be a homomorphism of rings. Ifa : A — B s flat, then
Ag-1(q) = Bgisflat for all prime ideals q of B; conversely, a © A — Bis flat if Aq-1(y) = By
is flat for all maximal ideals n of B

PROOF. Let q be a prime ideal of B, and let p = a~!(q) — it is a prime ideal in A. If
A — Bisflat, then A, — A, ®4 B ~ S;'B(9.14). The map S,'B — S;'B = B, is flat
(9.13a), and so the composite A, — B, is flat (9.13c).

For the converse, let N’ — N be an injective homomorphism of A-modules, and let
n be a maximal ideal of B. Then A,;, ® 4 (N’ — N) is injective (9.13). Therefore, the map

B, ®s (N> N)~B,®,, (A, ®4 (N - N))

is injective, and so the kernel M of B ® 4 (N’ — N) has the property that M,, = 0. Let
Xx € M,and leta = {b € B | bx = 0}. For each maximal ideal n of B, x maps to zero in
M,, and so a contains an element not in n. Hence a = B, and so x = 0. o

PROPOSITION 9.16. A flat homomorphism o : A — B is faithfully flat if and only if every
maximal ideal m of A is of the form a~1(n) for some maximal ideal n of B, i.e., if and only
if the map

spm(a) : spm(B) — spm(A)

is surjective.
PROOF. =: Let m be a maximal ideal of A, and let M = A/m; then
B®4 M ~ B/a(m)B.

As B®,4 M # 0, we see that a(m)B # B. Therefore a(m) is contained in a maximal
ideal n of B. Now a~1(n) is a proper ideal in A containing m, and hence equals m.

<: Let M be a nonzero A-module. Let x be a nonzero element of M, and let a =
ann(x) < {a € A | ax = 0}. Then a is an ideal in A, and M’ ©Ax ~ A/a. Moreover,
B®4 M’ ~ B/a(a) - B and, because A — B is flat, B ® 4 M’ is a submodule of B ® 4 M.

Because a is proper, it is contained in a maximal ideal m of A, and therefore

a(@) Ca(m)Cn
for some maximal ideal n of A. Hence a(a)-B C n # B,andsoBQ,M D B, M’ # 0.5
COROLLARY 9.17. A flat local homomorphism A — B of local rings is faithfully flat.

PROOF. Let m and n be the (unique) maximal ideals of A and B. By hypothesis, n¢ = m,
and so the statement follows from the proposition. o

Properties of flat homomorphisms of rings

LEMMA 9.18. Let B be an A-algebra, and let p be a prime ideal of A. The prime ideals
of B contracting to p are in natural one-to-one correspondence with the prime ideals of
B ®, x(p).

PROOF. LetS = A~ p. Then x(p) &f S~1(A/p). Therefore we obtain B ® 4 x(p) from
B by first passing to B/pB and then making the elements of A not in p act invertibly.
After the first step, we are left with the prime ideals q of B such that q° D p, and after
the second step only with those such that ¢ N S = @, i.e., such that ¢ = p. o



c. Flat maps and their fibres 207

PROPOSITION 9.19. Let B be a faithfully flat A-algebra. Every prime ideal p of A is of the
form q°¢ for some prime ideal q of B.

PROOF. The ring B ® 4 x(p) is not zero, because x(p) # 0 and A — B is faithfully flat,
and so it has a prime (even maximal) ideal q. For this ideal, q° = p. o

SUMMARY 9.20. A flat homomorphism a : A — B is faithfully flat if the image of
spec(ar) : spec(B) — spec(A)
includes all maximal ideals of A, in which case it includes all prime ideals of A.

THEOREM 9.21 (GOING-DOWN THEOREM FOR FLAT MAPS). Let B be a flat A-algebra.
Let p Dy’ be prime ideals in A, and let q be a prime ideal in B such that q° = p. Then q
contains a prime ideal q' such that q'° = yp’:

B qg D> ¢

A p D y.

PROOF. Because A — B is flat, the homomorphism A, — B, is flat, and because
pA, = (qB,)", it is faithfully flat (9.16). The ideal p’A,, is prime (1.14), and so there
exists a prime ideal of B, lying over p’A,, (by 9.19). The contraction of this ideal to B is
contained in q and contracts to p’ in A. 5

For example, leta : A — Bbeaflatlocal homomorphism oflocal rings. By definition,
a~(n) = m, where m and n are the maximal ideals of A and B. The theorem says that,
for every prime ideal p in A, there exists a prime ideal q in B such that a=(q) = p, i.e.,
the map

SpecB — Spec A

is surjective.

Flat maps of algebraic varieties

DEFINITION 9.22. A regular map ¢ : W — V of algebraic varieties is flat if, for all
P € W, the local homomorphism Oy ,py — Ow p is flat, and it is faithfully flat if it is
flat and surjective.

Open immersions are flat and composites of flat maps are flat.

PROPOSITION 9.23. A regular map ¢ : W — V of affine algebraic varieties is flat (resp.
faithfully flat) if and only if the map f — fop : k[V] — k[W] is flat (resp. faithfully flat).

PROOF. Apply 9.15 and 9.16. 0

THEOREM 9.24. Let ¢ : W — V be a flat map of affine algebraic varieties. Let S’ D S be
closed irreducible subsets of V, and let T be a closed irreducible subset of W such that ¢(T)
is a dense subset of S. Then there exists a closed irreducible subset T' of W containing T
and such that o(T") is a dense subset of S’:

W o> T D> T

bbb

Vv o S >
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PROOF. Inview of the correspondence between closed irreducible subsets and prime ide-
als (2.28), this is just a geometric restatement of Theorem 9.21. Let p = I(S), p’ = I(S’),
and q = I(T). Then p D p’ because S C S’. AsT — S is dominant, the homomorphism

k[S]=k[V]/p — k[T]/q = k[T]

is injective (2.40), and so q° = p. According to Theorem 9. 21 there exists a prime ideal
q’ in k[W] contained in q and such that q’ = p’. Now T < V(q ) has the required
properties. o

COROLLARY 9.25. Let ¢ : W — V be a flat map of algebraic varieties. Let w € W and
let v = @(w). For any closed irreducible subset S of V' through v, there exists a closed

irreducible subset T through w such that ¢(T) C S and the map T %, Sis dominant.

PROOF. When W and V are affine, this is a special case of the theorem. The general case
can be proved by replacing W and V with suitable affine neighbourhoods of w and v.g

THEOREM 9.26 (GENERIC FLATNESS). Let ¢ : W — V be a dominant map of irreducible
algebraic varieties. There exist nonempty open subsets U C V and U’ C W such that

o(U") C U and U’ - U is faithfully flat.

PROOF. In the proof we keep replacing W and V with smaller nonempty open subvari-
eties until they have the required property. First, we may replace W and V with open
affines, so that ¢ is the map Spm(B) — Spm(A) defined by a homomorphism A < B
of integral domains (finitely generated over k). Let F be the field of fractions of A, and
regard B as a subring of F ® 4 B

As F ® 4 B is a finitely generated F-algebra, it contains elements xq, ..., x,,, alge-
braically independent over F and such that F ® 4 B is a finite F[xy, ..., X,,]-algebra (2.45).
After multiplying each x; by an element of A, we may suppose that it lies in B. Let
by, ..., b, generate B as an A-algebra. Each b; satisfies a monic polynomial equation with
coefficients in F[xy, ..., X,,]. If a € A is a common denominator for the coefficients of
these polynomials, then each b; is integral over A,[x, ..., X,,]. As the b; generate B, as
an A,-algebra, this shows that B, is a finite A,[x1, ..., Xx,,,|-algebra (1.36). After replacing
A with A, and B with B,, we may suppose that B is a finite A[x, ..., x,,,]-algebra. We
have constructed the left-hand part of the diagram,

injective

—— > F®uB ——— EQx,,.x

B—mmMmM—
Tf inite Tf inite Tf inite

X, — Flxq,..,x,] — EY F(X1, .y X)

F.

1B

and we now construct the rest. Let E = F(xy,..., xm) be the field of fractions of
F[xl, s X ] Tt is also the field of fractions of A[xl, wes Xy ] Leteq, ..., e, be elements of

.....

expressed as a linear comblnatlon of the ¢; with coefﬁc1ents in E. Let ¢ be a common
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denominator for the coefficients arising from a set of generators for B as an A[xy, ..., X,,]-
module. Then ey, ..., e, generate B, as an A[xy, ..., X,,],-module. In other words, the
map

(C1rmsC) = 2 cie AlXq, o, Xy — By *

is surjective. This map becomes an isomorphism when tensored with E over A[ Xy, ... , X, 1
Thus its kernel M is an A[xy, ..., X, | q-submodule that becomes zero when tensored with
the field of fractions of A[xy, ..., X,;]4- As A[Xy, ..., X, ]4 is an integral domain, M = 0,
and so (¥) is an isomorphism. Let a be some nonzero coefficient of the polynomial g,
and consider the homomorphisms

Agq = Aglxy, s X = Aglx1s e, Xilg = Bag-
The first and third arrows are faithfully flat because their targets are free modules over
their sources, and the second arrow is flat because it is a localization (9.13). In sum, we
have a flat map

D(aq) = Spm(B,q) — Spm(A,) = D(a)

from an open subvariety of W to an open subvariety of V.

Let m be a maximal ideal in A,. Then mA,[x, ..., X,,] does not contain the poly-
nomial g because the coefficient a of q is invertible in A,. Hence mAy[x, ..., x,,]4 is a
proper ideal of Ay[xy, ..., X, ]4. Any maximal ideal of Ay [x;, ..., X, ] containing it will
intersect A, in m, and so the map A, — Ay[xy, ..., x,, ] is faithfully flat by 9.16. Hence
Aq — By, is faithfully flat, which completes the proof. o

THEOREM 9.27. Every flat map ¢ : W — V of algebraic varieties is open.

PROOF. It suffices to show that (W) is open. Let W = V ~ p(V), and let Z;, ..., Z,, be
the irreducible components of the closure W of W. It suffices to show that W contains
every Z;. Suppose not, and let v € Z; n p(W). Then v = ¢p(w) for some w € W, and
according to 9.25 there exists a closed irreducible subset S of W through w such that the
map S — Z; is dominant. This means that there exists an open subset U of V' such that
pW)DUNZ; #0.

LetU' =V~ Ui# Zi. AsV = J, Z; U p(W), we have U’ C Z; U (W), and so

e(W)>UNU.

Note that U and U’ are both open subsets of V meeting Z;. As Z; is irreducible, U N Z;
andU' nZ ; are both dense open subsets of Z;. Hence U N Unz j is nonempty. As
its elements are not in the closure of W, this contradicts the definition of Z i We have
shown that all Z; are contained in W, as required. o

COROLLARY 9.28. Let ¢ : W — V be a dominant map of irreducible algebraic varieties.
There exists a dense open subset U of W such that ¢(U) is open, U = ¢~} (pU), and

v e(U) is flat.

PROOF. According to 9.26, there exists a dense open subset U of V such that ¢~!(U) iR
U isflat. In particular, (p~!(U))is openin V (9.27). Note that o~ (¢(¢p~}(U)) = ¢~ 1 (U).
Let U’ = ¢~}(U). Then U’ is a dense open subset of W, ¢(U’) is open, U’ = ¢p~1(eU’),

and U = e(U") is flat. o
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Fibres and flatness

The notion of flatness allows us to sharpen our earlier results.

PROPOSITION 9.29. Let ¢ : W — V be a dominant map of irreducible algebraic varieties,
and let P € p(W). Then

dim (¢~1(P)) > dim(W) — dim(V) (38)
with equality if o is flat.

PROOF. The inequality was proved in 9.9. Assume that ¢ is flat, and let Z be an irre-
ducible component of ¢~ 1(P).

After replacing V with an open neighbourhood of P and W with an open subset
intersecting Z, we may suppose that both V and W are affine. Let

VoVvVyD>--DV, =1{P}

be a maximal chain of distinct irreducible closed subsets of V' (so m = dim(V') by 3.44).
Now ¢(Z) = {P}, and so, by Theorem 9.24, there exists a chain of irreducible closed
subsets

WOW,D-d2W,=Z

such that p(W;) is a dense subset of V;. Let
Z>7Z,>--2Z,

be a maximal chain of distinct irreducible closed subsets of V (so n = dim(Z)). The
existence of the chain

Wow;>--->W,D>Z D--DZ,

shows that
dim(W) > m + n = dim(V) + dim(Z).

Together with the inequality (38), this gives the equality. o

PROPOSITION 9.30. Let ¢ : W — V be a dominant map of irreducible algebraic varieties.
There exists a dense open subset U of W such that (U) is openin V, U = ¢~ Y(p(U)), and

dim (¢~1(P)) = dim(W) — dim(V).
forallP € p(U).

PROOF. According to Proposition 9.29, the open subset U of W in 9.28 has these proper-
ties. O

PROPOSITION 9.31. Let ¢ : W — V be a dominant map of irreducible varieties. Let S be
a closed irreducible subset of V, and let T be an irreducible component of p~(S) such that
@(T) is dense in S. Then

dim(T) > dim(S) + dim(W) — dim(V)

with equality if ¢ is flat.
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In other words,
codim(S) > codim(T),

with equality if ¢ is flat.

PROOF. When S is a point, this becomes 9.9(b) and 9.29. As we now explain, the general
case can be proved by an easy modification of the proofs of those statements.

In proving the inequality, we may replace V with any open subvariety intersecting S.
In particular, we can assume V to be affine. Let m = codim(S). From Proposition 3.47 we
know that there exist regular functions f1, ..., f,, such that S is an irreducible component
of V(fi,..., fm)- After replacing V by a smaller open subset, we may suppose that
S =V(f1,..., fm)- Then ¢~1(S) is the zero set of the regular functions f;0¢, ..., f,,o,
and every irreducible component has codimension < m in W by 3.45.

When ¢ is flat, we shall prove (more precisely) that, if Z is an irreducible component
of p71(S), then

dim(Z) = dim(S) + dim(W) — dim(V).

After replacing V (resp. W) with an open subvariety that intersects S (resp. Z), we may
suppose that both V and W are affine. Let

VoVyD:--DV,=1{S}

be a maximal chain of distinct irreducible closed subsets (so m = codim(S) by 3.44).
Now ¢(Z) is a dense subset of S, and so (see 9.24) there exists a chain of irreducible
closed subsets

WOW,D>--d2W,=Z

such that p(W;) is a dense subset of V;. Let
Z>Z,D-D2Z,

be a maximal chain of distinct irreducible closed subsets of V (so n = dim(Z)). The
existence of the chain

Wo>W;D>---D2W,,DZ D--D2Z,

shows that
dim(W) > m +n = dim(V) — dim S + dim(Z),
ie.,
codim(Z) > codim(S).
Together with the previous inequality, this implies that codim(Z) = codim(S). O

PROPOSITION 9.32. Let ¢ : W — V be a dominant map of irreducible algebraic varieties.
There exists a dense open subset U of W such that (U) is open in V, U = ¢~ (eU), and

dim(T) = dim(S) + dim(W) — dim(V)

for all closed irreducible subsets S of V intersecting ¢(U) and all irreducible components T
of 9~1(S) intersecting U.

PROOF. According to Proposition 9.31, the open subset U in 9.28 has these properties.q
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FINITE MAPS

PROPOSITION 9.33. Let V be an irreducible algebraic variety. A finite map o : W — V' is
flatif and only if

D7 dimy Og/mp0O,

Q—P

is independent of P € V.

PROOF. It suffices to prove this with V affine, in which case it follows from CA, 12.6
(equivalence of (d) and (e)). -

The integer dimy Oq/mpO, is the multiplicity of Q in its fibre. The theorem says
that a finite map is flat if and only if the number of points in each fibre (counting
multiplicities) is constant.

For example, let V be the subvariety of A"*! defined by an equation

X"+ a, X" 1 +...4a, =0, a€k[Ty,..,T,]

and let ¢ : V' — A" be the projection map (see p. 50). The fibre over a point P of A" is
the set of points (P, c) with ¢ a root of the polynomial

X"+ a,(P)X" ! + ... +a,,(P)=0.

The multiplicity of (P, ¢) in its fibre is the multiplicity of c as a root of the polynomial.
Therefore ), QP dimy Og/mpOy = m for every P, and so the map ¢ is flat.

Criteria for flatness

Let A be alocal noetherian ring with maximal ideal m. A sequence of elements ay, ..., a,
of A is regular if a, is a nonzerodivisor in A, a, is a nonzerodivisor in A/(a,), etc.,
and A/(ay, ..., a,) # 0. According to a theorem of Rees, all maximal regular sequences
a, ..., 4y, a; € m, in A have the same length, called the depth of A. According to the
Auslander-Buchsbaum formula, depth(A) < dim(A). When the two are equal, the
ring is said to be Cohen—-Macaulay. More generally, a noetherian ring A is said to be
Cohen-Macaulay if it is zero or A, is Cohen-Macaulay for all maximal ideals m of A.

THEOREM 9.34. Let ¢ : A — B be a local homomorphism of noetherian local rings, and
let m be the maximal ideal of A. If A is regular, B is Cohen—-Macaulay, and

dim(B) = dim(A) + dim(B/mB),
then @ is flat.
PROOF. See Matsumura 1989, 23.1. o

9.35. There are the following examples.
(a) Zero-dimensional and reduced one-dimensional noetherian rings are Cohen-
Macaulay (ibid. p. 139).
(b) Regular noetherian rings are Cohen-Macaulay (ibid. p. 137).

(c) Letp: A — B be a flat local homomorphism of noetherian local rings, and let m
be the maximal ideal of A. Then B is Cohen—Macaulay if and only if both A and
B/mB are Cohen-Macaulay (ibid. p. 181).
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PROPOSITION 9.36. Let @ : A — B be a finite homomorphism of noetherian rings with A
regular. Then g is flat if and only if B is Cohen-Macaulay.

PROOF. Note that B/mB is zero-dimensional,! hence Cohen-Macaulay, for every maxi-
mal ideal m of A (9.35a), and that ht(n) = ht(n®) for every maximal ideal n of B. If ¢ is
flat, then B is Cohen-Macaulay by (9.35c). Conversely, if B is Cohen-Macaulay, then ¢
is flat by (9.34). O

EXAMPLE 9.37. Let Abeafinite k[X}, ..., X, |-algebra(cf. 2.45). The map k[ X}, ..., X, ] —
A isflatif and only if A is Cohen-Macaulay.

An algebraic variety V is said to be Cohen-Macaulay if Oy, p is Cohen-Macaulay
for all P € V. An affine algebraic variety V is Cohen-Macaulay if and only if k[V] is
Cohen-Macaulay (9.35c). A nonsingular variety is Cohen-Macaulay (9.35b).

THEOREM 9.38. Let V and W be algebraic varieties with V nonsingular and W Cohen-
Macaulay. A regular map ¢ : W — V is flat if and only if

dime~}(P) = dimW — dimV (39)
forallP € V.

PROOF. Immediate consequence of (9.34). O

ASIDE 9 39. The theorem fails with “nonsingular” weakened to “normal”. Let G Lz /27 act

on W ¥ a2 by (x,y) = (—=x,—y), and let V C A3 be the quadric cone defined by TV = U?. The
map

: W=V, (xy)= (uv)=2xp,y%),
has as fibres the orbits for the action (it is the “quotient map” for the action). The variety W is
nonsingular, and V is normal because k[V] = k[X, Y]°. Moreover ¢ is finite, and so its fibres
have constant dimension 0, but it is not flat because

QZ_;P dimy Og/mpO0 =1 5 [ iherwise

contradicting Proposition 9.33. See mo117043.

d. Lines on surfaces

Every algebraic geometer knows the traditional
proof that there exists at least one line on a non-
singular cubic surface in P?

Miles Reid.

As an application of some of the above results, we consider the problem of describing
the set of lines on a surface of degree m in P3. To avoid possible problems, we assume
for the rest of this chapter that k has characteristic zero.

We first need a way of describing lines in P3. Recall that we can associate with
each projective variety V C P" an affine cone over V in k"*!. This allows us to think

'Note that C & B /mB = B®, A/m is a finite k-algebra. Therefore it has only finitely many maximal
ideals. Every prime ideal in C is an intersection of maximal ideals (2.18), but a prime ideal can equal a
finite intersection of ideals only if it equals one of the ideals.
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of points in P? as being one-dimensional subspaces in k%, and lines in P3 as being
two-dimensional subspaces in k*. To such a subspace W C k*, we can attach a one-

dimensional subspace /\2 W in /\2 k* ~ k°, that is, to each line L in [P3, we can attach
point p(L) in P°. Not every point in P> should be of the form p(L) — heuristically, the
lines in P should form a four-dimensional set. (Fix two planes in P3; giving a line in
P3 corresponds to choosing a point on each of the planes.) We shall show that there is
natural one-to-one correspondence between the set of lines in P and the set of points
on a certain hyperspace IT C P°. Rather than using exterior algebras, I shall usually give
the old-fashioned proofs.

Let Lbealinein P> andletx = (xy : x; : X, : x3)andy = (yy : y1 : ¥, : y3) be
distinct points on L. Then

def | X;j X;
p(L) = (Po1 : Poz : Po3 : P12 : P13 ' Pn) € P, pij=|. 7

Yi Yj

s

depends only on L. The p;; are called the Pliicker coordinates of L, after Pliicker (1801-
1868).

In terms of exterior algebras, write e, e;, e,, e; for the canonical basis for k*, so that
x, regarded as a point of k* is ) x;e;, andy = Y. y;e;; then /\2 k* is a 6-dimensional
vector space with basis e;ne;, 0 <i < j < 3,and x.y = )] p;je;ne; with p;; given by the
above formula.

We define p;; for all i, j, 0 < i, j < 3 by the same formula — thus p;; = —pj;.

LEMMA 9.40. The line L can be recovered from p(L) as follows:
L ={(Zj a;poj - Zj a;pij - Zj a;pyj - ZJ- ajpsj) | (ag : ay @ ay @ az) € P

PROOF. Let L be the cone over L in k* — it is a two-dimensional subspace of k* — and
let X = (xg, X1, X3, X3) and 'y = (Yo, Y1, Y2, ¥3) be two linearly independent vectors in L.
Then

L={f(y)x—fX)y | f: k* - k linear}.

Write f = )] a;X;; then
fx—fXy = a;Poj> > ajpijs > ajpzjs > a;ps;)- O
LEMMA 9.41. The point p(L) lies on the quadric IT C P> defined by the equation
X1 X3 — X2 X135 + X3X75 = 0.

PROOF. This can be verified by direct calculation, or by using that

Xo X1 X2 X3

_| Yo Y1 Y2 Y3 | _ B
0= Xg X1 X3 X3 = 2(Po1P23 — Po2P13 + Po3P12)
Yo Y1 Y2 V3
(expansion in terms of 2 X 2 minors). i

LEMMA 9.42. Every point of I1 is of the form p(L) for a unique line L.
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PROOF. Assume py; # 0; then the line through the points (0 : pg; : pos : Po3) and
(po3 : P13 : P23 . 0) has Pliicker coordinates

(=P01Po3 * —Po2Po3 : —p(2)3 ! Po1P23 — Po2P13 * —Po3P13 : —Po3D23)

| S —
—Po3P12

= (Po1 * Po2 : Po3 * P12 * P13 - P23)-

A similar construction works when one of the other coordinates is nonzero, and this
way we get inverse maps. O

Thus we have a canonical one-to-one correspondence
{lines in P3} « {points on IT};

that is, we have identified the set of lines in P with the points of an algebraic variety.
We may now use the methods of algebraic geometry to study the set. (This is a special
case of the Grassmannians discussed in §6.)
We next consider the set of homogeneous polynomials of degree m in 4 variables,
F(Xo,Xl,Xz,X3) = Z aioilizing) ...X;S.
oy +iy+is=m

LEMMA 9.43. The set of homogeneous polynomials of degree m in 4 variables is a vector
space of dimension (3"

PROOF. See the 6.39. o

Let v = (3-';«;1"1) 1= (m+ 1)(mg—2)(m+ 3)
space attached to the vector space of homogeneous polynomials of degree m in 4 variables
(p- 147). Then we have a surjective map

— 1, and regard P” as the projective

P” — {surfaces of degree m in P3},
( . ai0i1i2i3 . ) = V(F), F = ZaioiliZ%X(l)OX?X;ZX?.

The map is not quite injective — for example, X?Y and XY? define the same surface —
but nevertheless, we can (somewhat loosely) think of the points of P as being (possibly
degenerate) surfaces of degree m in P3.

Let I, C IT X P” C P° X P” be the set of pairs (L, F) consisting of a line L in P lying
on the surface F(Xy, X;,X;,X3) = 0.

THEOREM 9.44. The set I',, is an irreducible closed subset of II X P?; it is therefore a
m(m + 1)(m + 5)
¢ +3.

projective variety. The dimension of I, is

EXAMPLE 9.45. For m = 1, T, is the set of pairs consisting of a plane in P and a line
on the plane. The theorem says that the dimension of I'; is 5. Since there are co® planes
in 3, and each has o2 lines on it, this seems to be correct.
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PROOF. We first show that I',, is closed. Let

p(L) = (po1 : Poz * --) F = Zaioili2i3Xé° "'X_?-
From 9.40 we see that L lies on the surface F(X, X;, X,, X3) = 0 if and only if

F(ZbJPOJ . zbjplj . ZbJPZJ . ijpg,J):O, all(bo,...,b3) €k4.

Expand this out as a polynomial in the b; with coefficients polynomials in the a;; ; ;,
and p;;. Then F(...) = 0 for allb € k* if and only if the coefficients of the polynomial
are all zero. But each coefficient is of the form

P( , aioiliZiS’ «.5Po1 - Po2 - )

with P homogeneous separately in the a’s and p’s, and so the set is closed in IT x P” (cf.
the discussion in 6.51).

It remains to compute the dimension of I',,,. We shall apply Proposition 9.11 to the
projection map

(L,F) T, cIIxP’

I

L 1I.

For L € II, ¢~ (L) consists of the homogeneous polynomials of degree m such that
L C V(F) (taken up to nonzero scalars). After a change of coordinates, we can assume
that L is the line
X, =0
{ X1 =0,
i.e., L ={(0,0,*, %)}. Then L lies on F(X,, X;,X,,X3) = 0 if and only if X, or X; occurs
in each nonzero monomial term in F, i.e.,

Feo (L) < a;,, =0wheneveri,=0=1i.

Thus ¢~!(L) is a linear subspace of P”; in particular, it is irreducible. We now compute
its dimension. Recall that F has v +1 coefficients altogether; the number with iy = 0 = i;
ism + 1, and so ¢~!(L) has dimension

(m+1)(m+2)(m+3)
6

m(m+ 1)(m +5) 1

1-(m+1)= 5

We can now deduce from 9.11 that I',, is irreducible and that

m(m + 1)(m + 5) 4

dim(I',,) = dim(IT) + dim(p~\(L)) = 2

3,

as claimed. O
Now consider the other projection. By definition
p~Y(F) = {L | Llies on V(F)}.

EXAMPLE 9.46. Let m = 1. Then v = 3 and dimI'; = 5. The projection 3 : I'; — P3 is
surjective (every plane contains at least one line), and 9.9 tells us that dim~1(F) > 2.
In fact of course, the lines on any plane form a 2-dimensional family, and so % ~}(F) = 2
forall F.
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THEOREM 9.47. When m > 3, the surfaces of degree m containing no line correspond to
an open subset of P”.

PROOF. We have

m(m + 1)(m + 5) 43— (m+1)(m +2)(m + 3)

dimI",, —dimP* = 5 5

+1=4—-(m+1).

Therefore, if m > 3, then dimI'",, < dim P”, and so (I,,,) is a proper closed subvariety
of P”. This proves the claim. o

We now look at the case m = 2. Here dimI'",,, = 10, and v = 9, which suggests that
¥ should be surjective and that its fibres should all have dimension > 1. We shall see
that this is correct.

A quadric is said to be nondegenerate if it is defined by an irreducible polynomial
of degree 2. After a change of variables, any nondegenerate quadric will be defined by
an equation

XW=YZ.

This is just the image of the Segre mapping (see 6.26)
(ao . al), (bo . bl) = (aobo . a0b1 . albo : albl) . [FDl X [P’l g I]:D3.

There are two obvious families of lines on P! x P!, namely, the horizontal family and
the vertical family; each is parametrized by P!, and so is called a pencil of lines. They
map to two families of lines on the quadric:

t()Y = t1W toZ = t1W.

Since a degenerate quadric is a surface or a union of two surfaces, we see that every
quadric surface contains a line, that is, that 3 : I', — P? is surjective. Thus (9.9) tells us
that all the fibres have dimension > 1, and the set where the dimension is > 1 is a proper
closed subset. In fact the dimension of the fibre is > 1 exactly on the set of reducible F’s,
which we know to be closed (this was a homework problem in the original course).

It follows from the above discussion that if F is nondegenerate, then Y~I(F) is
isomorphic to the disjoint union of two lines, p~1(F) ~ P! U P!. Classically, one defines
a regulus to be a nondegenerate quadric surface together with a choice of a pencil of
lines. One can show that the set of reguli is, in a natural way, an algebraic variety R, and
that, over the set of nondegenerate quadrics, ¥ factors into the composite of two regular
maps:

Iy —¥~(S) = pairs (F,L) with L on F;
I
R = set of reguli;
\
P®—S = set of nondegenerate quadrics.

The fibres of the top map are connected, and of dimension 1 (they are all isomorphic to
P!), and the second map is finite and two-to-one. Factorizations of this type occur quite
generally (see the Stein factorization theorem, 8.64).

We now look at the case m = 3. Here dimI'; = 19; v = 19 : we have a map

Y Iy - PO,
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THEOREM 9.48. The set of cubic surfaces containing exactly 27 lines corresponds to an
open subset of P'°; the remaining surfaces either contain an infinite number of lines or a
nongzero finite number < 27.

EXAMPLE 9.49. (a) Consider the Fermat surface
3 3 3 3 _
Xg+X]+X5+X7=0.

Let ¢ be a primitive cube root of one. There are the following lines on the surface,
0<i,j<2

{X0+§iX1=O {X0+§‘iX2=0 {X0+§ix3=o
X, +¢X5=0 X, +¢X;=0 X, +¢x, =0.

There are three sets, each with nine lines, for a total of 27 lines.
(b) Consider the surface
X1X,X5 =X,

In this case, there are exactly three lines. To see this, look first in the affine space where
X, # 0 — here we can take the equation to be X;X,X; = 1. A line in A3 can be written
in parametric form X; = a;t + b;, but a direct inspection shows that no such line lies on
the surface. Now look where X, = 0, that is, in the plane at infinity. The intersection of
the surface with this plane is given by X;X,X; = 0 (homogeneous coordinates), which
is the union of three lines, namely,

X, =0;X,=0;X; =0.

Therefore, the surface contains exactly three lines.
(c) Consider the surface

3 3 _
X7 +X;=0.
Here there is a pencil of lines:
toX1 = 11X,
ton = —tho.

(In the affine space where X, # 0, the equation is X> + Y3 = 0, which contains the line
X=tY=-—tallt)

We now discuss the proof of Theorem 9.48. If 3 : I'; — P'° were not surjective, then
¥(I'5) would be a proper closed subvariety of P'°, and the nonempty fibres would all
have dimension > 1 (by 9.9), which contradicts two of the above examples. Therefore the
map is surjective, and there is an open subset U of P'° where the fibres have dimension
0; outside U, the fibres have dimension > 0.

Given that every cubic surface has at least one line, it is not hard to show that there
is an open subset U’ where the cubics have exactly 27 lines. In fact, U’ can be taken
to be the set of nonsingular cubics. According to 8.26, the restriction of 1 to % ~(U) is
finite, and so we can apply 8.40 to see that all cubics in U — U’ have fewer than 27 lines.

REMARK 9.50. The twenty-seven lines on a cubic surface were discovered in 1849 by
Salmon and Cayley, and have been much studied — see A. Henderson, The Twenty-
Seven Lines Upon the Cubic Surface, Cambridge University Press, 1911. For example, it
is known that the group of permutations of the set of 27 lines preserving intersections
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(thatis,suchthat LNL' # @ < o(L) no(L") # @) is isomorphic to the Weyl group of
the root system of a simple Lie algebra of type E¢, and hence has 25920 elements.

It is known that there is a set of 6 skew lines on a nonsingular cubic surface V. Let
L and L' be two skew lines. Then “in general” a line joining a point on L to a point on
L’ will intersect the surface in exactly one further point. In this way one obtains an
invertible regular map from an open subset of P! x P! to an open subset of V, and hence
V is birationally equivalent to P2.

e. Bertini’s theorem

Let X C P" be a nonsingular projective variety. The hyperplanes H in P" form a
projective space PV (the “dual” projective space). The hyperplanes H not containing X
and such that X N H is nonsingular, form an open subset of P"V. If dim(X) > 2, then
the intersections X N H are connected. For a proof of a weak version of the theorem, see
11.45 (Chapter 11).

f. Birational classification

Recall that two varieties V and W are birationally equivalent if k(V') ~ k(W). This
means that the varieties themselves become isomorphic once a proper closed subset has
been removed from each (3.36).

The main problem of birational algebraic geometry is to classify algebraic varieties
up to birational equivalence by finding a particularly good representative in each equiva-
lence class.

For curves this is easy: in each birational equivalence class there is exactly one
nonsingular projective curve (up to isomorphism). More precisely, the functor V-« k(V)
is a contravariant equivalence from the category of nonsingular projective algebraic
curves over k and dominant maps to the category of fields finitely generated and of
transcendence degree 1 over k.

For surfaces, the problem is already much more difficult because many surfaces,
even projective and nonsingular, will have the same function field. For example, every
blow-up of a point on a surface produces a birationally equivalent surface.

A nonsingular projective surface is said to be minimal if it cannot be obtained from
another such surface by blowing up. The main theorem for surfaces (Enriques 1914,
Kodaira 1966) says that a birational equivalence class contains either

(a) aunique minimal surface, or
(b) a surface of the form C x P! for a unique nonsingular projective curve C.

In higher dimensions, the problem becomes very involved, although much progress
has been made — see Wikipedia: MINIMAL MODEL PROGRAM. For a beautiful article
on the minimal model program, see Notices AMS, Jan. 2024.

Exercises

9-1. Let G be a connected group variety, and consider an action of G on a variety V, i.e.,
aregular map G X V — V such that (gg’)v = g(g'v) forall g,g’ € G and v € V. Show
that each orbit O = Gv of G is open in its closure O, and that O \ O is a union of orbits of
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strictly lower dimension. Deduce that each orbit is a nonsingular subvariety of V, and
that there exists at least one closed orbit.

9-2. Let G = GL, =V, and let G act on V by conjugation. According to the theory of
Jordan canonical forms, the orbits are of three types:

(a) Characteristic polynomial X2 + aX + b; distinct roots.

(b) Characteristic polynomial X? + aX + b; minimal polynomial the same; repeated

roots.

(c) Characteristic polynomial X? + aX + b = (X — a)?; minimal polynomial X — «.
For each type, find the dimension of the orbit, the equations defining it (as a subvariety
of V), the closure of the orbit, and which other orbits are contained in the closure.

(You may assume, if you wish, that the characteristic is zero. Also, you may assume
the following (fairly difficult) result: for any closed subgroup H of an group variety
G, G/H has a natural structure of an algebraic variety with the following properties:
G — G/H is regular, and a map G/H — V is regular if the composite G - G/H — V' is
regular; dimG/H = dimG — dim H.)

[The enthusiasts may wish to carry out the analysis for GL,,.]

9-3. Find 3d? lines on the Fermat projective surface
d d d d _ _ .
Xg+X7+X5+X=0, d>3, (p,d)=1, pthecharacteristic.

9-4. (a) Letp: W — V be a quasi-finite dominant regular map of irreducible varieties.
Show that there are open subsets U’ and U of W and V such that p(U’) C U and
@ : U’ - U is finite.

(b) Let G be a group variety acting transitively on irreducible varieties W and V, and
letp : W — V be G-equivariant regular map satisfying the hypotheses in (a). Then ¢ is
finite, and hence proper.



Solutions to the exercises

1-1 Use induction on n. For n = 1, use that a nonzero polynomial in one variable has
only finitely many roots (which follows from unique factorization, for example). Now
suppose n > 1 and write f = Y. g; X!, with each g; € k[X}, ..., X,,_;]. If f is not the zero
polynomial, then some g; is not the zero polynomial. Therefore, by induction, there
exist (ay, ..., a,_;) € k" ! such that f(ay, ..., a,_;,X,) is not the zero polynomial. Now,
by the degree-one case, there exists a b such that f(ay,...,a,_1,b) # 0.

1-2 (X +2Y, Z); Gaussian elimination (to reduce the matrix of coefficients to row echelon
form); (1), unless the characteristic of k is 2, in which case the ideal is (X + 1,Z + 1).

2-1 W = Y-axis, and so I(W) = (X). Clearly,
(X?%,XY?) c (X) c rad(X?,XY?)

and rad((X)) = (X). On taking radicals, we find that (X) = rad(X?, XY?).

2-2 The d X d minors of a matrix are polynomials in the entries of the matrix, and the
set of matrices with rank < r is the set where all ( + 1) X (r + 1) minors are zero.

2-3 Clearly V = V(X,, — X7, ..., X, — X}). The map

X; - T k[Xq,...,X,] = k[T]
induces an isomorphism k[V'] — k[T]. [Hence t — (t,...,t") is an isomorphism of affine
varieties Al = V]

2-4 On tensoring the exact sequence of Q-vector spaces

0—= (f1yes f) = QXy, ... X, ] = QX .. X0 )/ (f1s e s f) = O

with C, we get an exact sequence of C-vector spaces

0— (f1,er fm) = ClXy,.... X, ] = C[Xq, ... X, 1/(f1,eees ) = O.

As the f; have no common zero in C, the right-most term of the second sequence is zero,
which implies that the same is true of the first sequence.

2-6 The statement Homy_,jgebras(A ®q k, B ®q k) # @ can be interpreted as saying that
a certain set of polynomials has a zero in k.? If the polynomials have a common zero in
C, then the ideal they generate in C[X7, ...] does not contain 1. A fortiori, the ideal they
generate in Q[X}, ...] does not contain 1, and so the Nullstellensatz (2.11) implies that
the polynomials have a common zero in k.

2Choose bases for A and B as Q-vector spaces. Now a linear map from A to B is given by a matrix M.
The condition on the coefficients of the matix for the map to be a homomorphism of algebras is polynomial.

221
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2-7 Regard Hom 4 (M, N) as an affine space over k; the elements not isomorphisms are
the zeros of a polynomial; because M and N become isomorphic over k?, the polynomial
is not identically zero; therefore it has a nonzero in k (Exercise 1-1).

3-1Amapa: Al — Al is continuous for the Zariski topology if the inverse images of
finite sets are finite, whereas it is regular only if it is given by a polynomial P € k[T], so
it is easy to give examples, e.g., any map « such that a~!(point) is finite but arbitrarily
large.

3-3 The image omits the points on the Y-axis except for the origin. The complement of
the image is not dense, and so it is not open, but any polynomial zero on it is also zero at
(0,0), and so it not closed. See the introduction to Chapter 9.

3-4 Let i be an element of k with square —1. The map (x,y) — (x + iy, x — iy) from
the circle to the hyperbola has inverse (x,y) — ((x +¥)/2,(x — y)/2i). The k-algebra
k[X,Y]/(XY — 1) ~ k[X, X "!], which is not isomorphic to k[X] (too many units).

3-5 No, because both +1 and —1 map to (0,0). The map on rings is
k[x,y] = k[T], x+—>T?-1, yw T(T?-1),

which is not surjective (T is not in the image).
4-1 (b) The singular points are the common solutions to

4X3 - 2XY? =0 = X =0orY?=2x?

4Y3 - 2X%Y =0 = Y =0orX?=2Y?

X4+ Y4-X%v?2=0.
Thus, only (0, 0) is singular, and the variety is its own tangent cone.
4-2 Directly from the definition of the tangent space, we have that

T,VnH)CT,(V)NTu(H).
As
dimT,(VNH)>dimVNH=dmV —1=dimT,(V)nT,(H),

we must have equalities everywhere, which proves that a is nonsingular on V N H. (In
particular, it cannot lie on more than one irreducible component.)
The surface Y? = X?+Z is smooth, but its intersection with the X-Y plane is singular.
No, P need not be singular on V N H if H D Tp(V) — for example, we could have
H D V or H could be the tangent line to a curve.

4-4 We can assume V and W to affine, say

I(V)=a Ck[X},..,X]
I(W) =56 Ck[Xpi1s s Xominl-

Ifa = (fy,....f,)and b = (gy,...,8,), then IV X W) = (f1,..., fr>&1>--,&)- Thus,
Tap)(V X W) is defined by the equations

(dfl)a =0,.., (dfr)a =0, (dgl)b =0,.., (dgs)b =0,

which can obviously be identified with T, (V') X Typ,(W).
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4-5 Take C to be the union of the coordinate axes in A". (Of course, if you want C to be
irreducible, then this is more difficult...)

4-6 A matrix A satisfies the equations
I+eA)Y-J-T+cA)=1

if and only if
AT J+J-A=0.

) M
Such an A is of the form < P 0

N) with M, N, P, Q n X n-matrices satisfying

NY=N, P¥=pP, M"=-Q.
The dimension of the space of A’s is therefore

(n+1)
2

nn+ 1) (for N) + 1

— (for P) 4+ n? (for M, Q) = 2n? + n.

4-7 Let C be the curve Y? = X3, and consider the map A' — C,t — (t2,t3). The
corresponding map on rings k[X, Y]/(Y?) — k[T] is not an isomorphism, but the map
on the geometric tangent cones is an isomorphism.

4-8 The singular locus Vg, has codimension > 2 in V, and this implies that V' is normal.

[Idea of the proof: let f € k(V) be integral over k[V], f &€ k[V], f =g/h,g h € k[V];
for any P € V(h)\ V(g), Op is not integrally closed, and so P is singular.]

4-9 No! Let a = (X?Y). Then V(a) is the union of the X and Y axes, and IV (a) = (XY).
Fora = (a,b),

(dX?Y), = 2ab(X —a) + a*(Y — b)
(dXY), = b(X — a) + a(Y — b).

If a # 0 and b = 0, then the equations

(dX?Y), = a’Y =0
(dXY), =aY =0

have the same solutions.

5-1 Let f be regular on P!. Then f|U, = P(X) € k[X], where X is the regular function
(ap: a;) = a;/ay: Uy = k,and f|U; = Q(Y) € k[Y], where Y is (ap: a;) » ap/a;.
On U, NU;, X and Y are reciprocal functions. Thus P(X) and Q(1/X) define the same
function on Uy N U; = Al \{0}. This implies that they are equal in k(X), and must both
be constant.

5-2 Note that I'(V, Oy) = [[ I'(V;, Oy,) — to give a regular function on | | V; is the same
as to give a regular function on each V; (this is the “obvious” ringed space structure).
Thus, if V is affine, it must equal Specm(] [ 4;), where A; = ['(V;, Ovi), andsoV =
| | Specm(A;) (use the description of the ideals in A X B on in Section 1a). Etc..

5-5 Let H be an algebraic subgroup of G. By definition, H is locally closed, i.e., open in
its Zariski closure H. Assume first that H is connected. Then H is a connected algebraic
group, and it is a disjoint union of the cosets of H. It follows that H = H. In the general
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case, H is a finite disjoint union of its connected components; as one component is
closed, they all are.

5-8 The diagonal in V' X V is closed for the Zariski topology. Therefore, if the Zariski
topology on V' X V equals the product topology, then V is Hausdorff for the Zariski
topology, hence has dimension 0.

6-1LetP = (a : b : c), and assume ¢ # 0. Then the tangent line at P = (% : % :1)is

(50) 7 (3), (30,0 (), () 7o

Now use that, because F is homogeneous,

oF oF oF
F = & < Z) e=o.
(a,b,c)=0 = <6X>Pa+(6Y>P+<GZ>PC 0

(This just says that the tangent plane at (a, b, c) to the affine cone F(X,Y,Z) = 0 passes
through the origin.) The point at co is (0 : 1 : 0), and the tangent line is Z = 0, the line
at 0. [The line at oo intersects the cubic curve at only one point instead of the expected
3, and so the line at oo “touches” the curve, and the point at oo is a point of inflexion. |

6-2 The equation defining the conic must be irreducible (otherwise the conic is singular).
After a linear change of variables, the equation will be of the form X? + Y2 = Z2 (this is
proved in calculus courses). The equation of the line in aX + bY = cZ, and the rest is
easy. [Note that this is a special case of Bezout’s theorem (6.37) because the multiplicity
is 2 in case (b).]

6-3 (a) The ring
k[X,Y,Z]/(Y = X2,Z — X3) = k[x,y,z] = k[x] ~ k[X],

which is an integral domain. Therefore, (Y — X 2 Z — X3) is a radical ideal.
(b) The polynomial F = Z—XY = (Z—X3)—-X(Y —X?) € (V) and F* = ZW —XY.
If
ZW —XY = (YW —X?)f + (ZW? - X3)g,

then, on equating terms of degree 2, we would find
ZW — XY = a(YW — X?),

which is false.

6-4LetP = (ay: ...: a,)and Q = (by: ...: b,) be two points of P", n > 2. The
condition that the hyperplane L. : > ¢;X; = 0 pass through P and not through Q is that

Z a;c; = 0, Z bici # 0.

The (n + 1)-tuples (cy, ... , ¢,) satisfying these conditions form a nonempty open subset
of the hyperplane H : Y. a;X; = 0in A"*1. On applying this remark to the pairs (P, P;),
we find that the (n + 1)-tuples ¢ = (cy, ..., ¢,,) such that P lies on the hyperplane L. but
not Py, ..., P, form a nonempty open subset of H.

6-5 The subset
C={a:b:c)la#0, b#0}u{l:0:0)}
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of P? is not locally closed. Let P = (1 : 0 : 0). If the set C were locally closed, then P
would have an open neighbourhood U in P? such that U N C is closed. When we look
in U, P becomes the origin, and

C N U, = (A%« {X-axis}) U {origin}.

The open neighbourhoods U of P are obtained by removing from A? a finite number of
curves not passing through P. It is not possible to do this in such a way that U n C is
closed in U (U N C has dimension 2, and so it cannot be a proper closed subset of U; we
cannot have U N C = U because any curve containing all nonzero points on X-axis also
contains the origin).

6-6 Let ) c;;X;; = 0 be a hyperplane containing the image of the Segre map. We then

have
Zcijaibj =0
foralla = (ay, ..., a,) € k™! and b = (b, ..., b,) € k"*!. In other words,
aCb' =0

foralla € k™! and b € k**!, where C is the matrix (¢; j)- This equation shows that
aC = 0 for all a, and this implies that C = 0.

7-2 Define f(v) = h(v,Q) and g(w) = h(P,w), and let ¢ = h — (fop + goq). Then
(v, Q) = 0 = p(P,w), and so the rigidity theorem (7.35) implies that ¢ is identically
ZETO.
8-2 For example, consider
x> x"
(AT~ {1}) - Al = Al

for n > 1 an integer prime to the characteristic. The map is obviously quasi-finite, but it
is not finite because it corresponds to the map of k-algebras

X X" k[X] - k[X,(X =17

which is not finite (the elements 1/(X — 1)}, i > 1, are linearly independent over k[X],
and so also over k[X"]).

8-3 Assume that V is separated, and consider two regular maps f,g: Z =3 W. We
have to show that the set on which f and g agree is closed in Z. The set where go f
and gog agree is closed in Z, and it contains the set where f and g agree. Replace Z
with the set where pof and @og agree. Let U be an open affine subset of V/, and let
Z' = (pof)~Y(U) = (pog)~X(U). Then f(Z’) and g(Z’) are contained in ¢~!(U), which
is an open affine subset of W, and is therefore separated. Hence, the subset of Z’ on
which f and g agree is closed. This proves the result.

[Note that the problem implies the following statement: if ¢ : W — V is a finite
regular map and V is separated, then W is separated. ]

8-4 Let V = A", and let W be the subvariety of A" x A! defined by the polynomial

I x-Ty=o.

The fibre over (¢4, ..., t,) € A" is the set of roots of [[(X — ¢;). Thus, V,, = A"; V,,_; is
the union of the linear subspaces defined by the equations
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V,._, is the union of the linear subspaces defined by the equations
T,=Tj=T, 1Z i,j,k <nm, Ii,j,kdistinct,

and so on.

9-1 Consider an orbit O = Gv. The map g — gv: G — O is regular, and so O contains
an open subset U of O (9.7). If u € U, then gu € gU, and gU is also a subset of O which
is open in O (because P — gP: V — V is an isomorphism). Thus O, regarded as a
topological subspace of O, contains an open neighbourhood of each of its points, and so
must be open in O.

We have shown that O is locally closed in V, and so has the structure of a subvariety.
From (4.37), we know that it contains at least one nonsingular point P. But then gP is
nonsingular, and every point of O is of this form.

From set theory, it is clear that O \ O is a union of orbits. Since O ~ O is a proper
closed subset of O, all of its subvarieties must have dimension < dim O = dim O.

Let O be an orbit of lowest dimension. The last statement implies that O = O.

9-2 An orbit of type (a) is closed, because it is defined by the equations
Tr(A) = —a, det(A)=b,

. . . . . 0 .
(as a subvariety of V). It is of dimension 2, because the centralizer of (g ,3)’ a#pB,is

%

0 , which has dimension 2.

An orbit of type (b) is of dimension 2, but is not closed: it is defined by the equations

a 0

Tr(A) = —a, det(A) = b, A#(O oc)’ a = root of X% + aX + b.

An orbit of type (c) is closed of dimension 0: it is defined by the equation A = (g 2)

An orbit of type (b) contains an orbit of type (c) in its closure.

9-3 Let ¢ be a primitive dth root of 1. Then, for each i, j, 1 < i,j < d, the following
equations define lines on the surface

{ X, +¢X,

0 { X, +¢'X,
X, +¢7X;

0 {X0+§‘iX3 =0
0 X, + X,

There are three sets of lines, each with d? lines, for a total of 3d? lines.

9-4 (a) Compare the proof of Theorem 9.9.
(b) Use the transitivity, and apply Proposition 8.26.
Hartshorne 1977
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desingularization, 196
differential, 87
dimension, 115

of a topological space, 54

of an affine algebraic variety, 75
of an algebraic set, 54

pure, 54, 115

direct limit, 21

direct system, 21

directed set, 21

discrete valuation ring, 86
divisor, 180

effective, 180

locally principal, 179
positive, 180

prime, 179
principal, 181
support of, 180

domain

factorial, 22

integrally closed, 27
normal, 27

unique factorization, 22

element

integral over a ring, 25
irreducible, 22
prime, 22

fibre, 113
field of rational functions, 49, 115
function

analytic, 173
rational, 63
regular, 48, 61, 101

function field, 49, 115

generate, 12
germ



of a function, 60 local equation, 179

graph local parameters, 121
of a regular map, 111 local ring
group regular, 15
symplectic, 99 local uniformizing parameters, 121
group variety, 110 manifold
Hilbert function, 153 complex, 100
homogeneous, 138 differentiable, 100
homomorphism topological, 100
faithfully flat, 205 map
finite, 12 bilinear, 32
flat, 205 birational, 117
local, 14 Frobenius, 70
of algebras, 12 rational, 117
hyperplane, 142 Segre, 145
hypersurface, 50, 142 Veronese, 143

maximal chain, 55

ideal, 13 minimal surface, 219
generated by a subset, 13 morphism

graded, 132, 134
homogeneous, 132
maximal, 13

of affine algebraic varieties, 65
of ringed spaces, 64

mp, 41
primary, 48 multiplicity, 212
prime, 13 of a point, 84
radical, 41
immersion, 105 n-fold, 54
closed, 72, 104 neighbourhood
open, 104 étale, 122
integral closure, 27 nilradical, 41
integral domain, 12 node, 84
integrally closed, 27 nondegenerate quadric, 217
irreducible components, 46 normalization, 178, 179
isolated in its fibre, 190
isomorphic open affine, 72
locally, 98 open subset
basic, 49
x(p), 189 principal, 49
leading form pencil of lines, 217
of a polynomial, 83 Picard group, 181
lemma point
Gauss’s, 23 factorial, 179
Nakayama’s, 15 multiple, 87
prime avoidance, 78 nonsingular, 82, 87
Zariski’s, 40 normal, 176
linear form ordinary multiple, 84
of a polynomial, 83 singular, 87
linearly equivalent, 181 smooth, 82, 87
local condition, 59 with coordinates in a ring, 125
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polynomial
Hilbert, 155
homogeneous, 130
monic, 25
primitive, 23
prevariety
algebraic, 100
separated, 102
product
fibred, 113
of algebraic varieties, 109
of objects, 106
tensor, 33
projection with centre, 146

radical
of an ideal, 41
rational map, 117
real locus, 37
regular map, 50, 101
affine, 190
dominant, 51, 72,116
étale, 94, 118, 120
faithfully flat, 207
finite, 51, 75, 181, 185
flat, 207
of affine algebraic varieties, 65
of algebraic sets, 50
proper, 163
quasi-finite, 51, 185
separable, 124, 187
separated, 191
regular sequence, 212
regulus, 217
resolution of singularities, 196
resultant, 166
ring
associated graded, 93
catenary, 79
coordinate, 48
discrete valuation, 86
graded, 134
local, 14
noetherian, 14
normal, 35
of dual numbers, 90
reduced, 41
regular local, 15
ringed space, 60
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section of a sheaf, 60
semisimple
group, 98
Lie algebra, 98
separable
field extension, 124
separable degree, 189
separating transcendence basis, 124
set
(projective) algebraic, 131
constructible, 200
sheaf
of algebras, 59
singular locus, 83
Spm(A), 66
spm(A), 66
stalk, 60
subring, 12
subset
algebraic, 36
analytic, 173
multiplicative, 16
subspace
locally closed, 105
subvariety, 105
closed, 71
open affine, 100
surface, 54
system of local parameters, 121

T, space, 45
tangent cone, 83, 93
geometric, 83, 93, 94
tangent space, 82, 87
tensor product
of modules, 32
theorem
Bezout’s, 152
Chinese Remainder, 14
going-up, 31
Hilbert basis, 38
Hilbert Nullstellensatz, 39
Noether normalization, 52
Stein factorization, 195
strong Nullstellensatz, 42
Zariski’s main, 189
topological space
connected, 45
irreducible , 45



noetherian, 45

quasi-compact, 45
topology

étale, 122

Zariski, 39, 133

Vary, 104

variety
abelian, 170
affine algebraic, 65
algebraic, 102
Cohen-Macaulay, 213
complete, 161
factorial, 179
flag, 152
Grassmann, 149
group, 110
normal, 176
projective, 130
quasi-affine, 105
quasi-projective, 130
rational, 128
stably rational, 128
unirational, 128

zero set, 36
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