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Introduction

This book is a polished version of my course notes for Math 6283, Several Complex
Variables, given in Spring 2014, Spring 2016, Spring 2019, and Fall 2023 semesters at
the Oklahoma State University. There is more material than can fit in a one semester
class to allow for several different versions of the course. In fact, I did a different
selection each semester I taught it. Quite a few exercises of various difficulty are
sprinkled throughout the text, and I hope a reader is at least attempting or thinking
about most of them. Many are required later in the text. The reader should attempt
exercises in sequence; earlier exercises can help or even be required to solve later
ones.

The prerequisites are a decent knowledge of vector calculus, basic real analysis,
and a working knowledge of complex analysis in one variable. Measure theory
(Lebesgue integral and its convergence theorems) is useful, but it is not essential
except in a couple of places later in the book. The first two chapters and most of the
third are accessible to beginning graduate students after one semester of a standard
single-variable complex analysis graduate course. From time to time (e.g. proof of
Baouendi–Trèves in  chapter 3 , and most of  chapter 4 , and  chapter 5 ), basic knowledge
of differential forms is useful, and in  chapter 6 we use some basic ring theory from
algebra. By design, it can replace the second semester of complex analysis, perhaps
taught with my one-variable book [ L ].

This book is not intended as an exhaustive reference. It is simply a whirlwind tour
of several complex variables. See the end of the book for a  list of books for reference
and further reading. There are also appendices for a list of one-variable results, an
overview of differential forms, some basic algebra, measure theory, and other bits
and pieces of analysis. See  appendix B ,  appendix C ,  appendix D , and  appendix E .

Changes in edition 4: The major addition of this edition is the greatly expanded
chapter on the �̄�-problem,  chapter 4  . Many minor changes and additions throughout,
especially in chapters  1 ,  2 , and  6 , resulted in some renumberings, including some
renumbering of exercises. Finally, I’ve added a short appendix listing some useful
results from analysis, including the very basics of measure theory. See the detailed
listing of changes on the book website:  https://www.jirka.org/scv/ .

https://www.jirka.org/scv/


6 INTRODUCTION

0.1 \ Motivation, single variable, and Cauchy’s formula
We start with some standard notation. We use ℂ for complex numbers, ℝ for real
numbers, ℤ for integers, ℕ = {1, 2, 3, . . .} for natural numbers, 𝑖 =

√
−1. Throughout

this book, the standard terminology of domain means a connected open set. We try
to avoid using it if connectedness is not needed, but sometimes we use it just for
simplicity.

As complex analysis deals with complex numbers, perhaps we should begin with√
−1. Start with the real numbers, ℝ, and add

√
−1 into our field. Call this square

root 𝑖, and write the complex numbers, ℂ, by identifying ℂ with ℝ2 using

𝑧 = 𝑥 + 𝑖𝑦,

where 𝑧 ∈ ℂ and (𝑥, 𝑦) ∈ ℝ2. A subtle philosophical issue is that there are two square
roots of −1. Two chickens are running around in our yard, and because we like to
know which is which, we catch one and write “𝑖” on it. If we happened to have
caught the other chicken, we would have got an exactly equivalent theory, which we
could not tell apart from the original.

Given a complex number 𝑧, its “opposite” is the complex conjugate of 𝑧 and is
defined as

�̄�
def
= 𝑥 − 𝑖𝑦.

The size of 𝑧 is measured by the so-called modulus, which is just the Euclidean distance:

|𝑧 | def
=

√
𝑧�̄� =

√
𝑥2 + 𝑦2.

If 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ for 𝑥, 𝑦 ∈ ℝ, then 𝑥 is called the real part and 𝑦 is called the
imaginary part. We write

Re 𝑧 = Re(𝑥 + 𝑖𝑦) = 𝑧 + �̄�
2 = 𝑥, Im 𝑧 = Im(𝑥 + 𝑖𝑦) = 𝑧 − �̄�

2𝑖 = 𝑦.

A function 𝑓 : 𝑈 ⊂ ℝ𝑛 → ℂ for an open set 𝑈 is said to be continuously
differentiable, or 𝐶1 if the first (real) partial derivatives exist and are continuous.
Similarly, it is 𝐶𝑘 or 𝐶𝑘-smooth if the first 𝑘 partial derivatives all exist and are
continuous. Finally, a function is said to be 𝐶∞ or simply smooth 

*
 if it is infinitely

differentiable, or in other words, if it is 𝐶𝑘 for all 𝑘 ∈ ℕ.
Complex analysis is the study of holomorphic (or complex-analytic) functions.

Holomorphic functions are a generalization of polynomials, and to get there one
leaves the land of algebra to arrive in the realm of analysis. One can do an awful lot
with polynomials, but sometimes they are just not enough. For example, there is no
nonzero polynomial function that solves the simplest of differential equations, 𝑓 ′ = 𝑓 .
We need the exponential function, which is holomorphic.

*While 𝐶∞ is a common definition of smooth, not everyone always means the same thing by the
word smooth. I have seen it mean differentiable, 𝐶1, piecewise-𝐶1, 𝐶∞, holomorphic, . . .
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We start with polynomials. A polynomial in 𝑧 is an expression of the form

𝑃(𝑧) =
𝑑∑
𝑘=0

𝑐𝑘 𝑧
𝑘 ,

where 𝑐𝑘 ∈ ℂ and 𝑐𝑑 ≠ 0. The number 𝑑 is called the degree of the polynomial 𝑃. We
can plug in some number 𝑧 and compute 𝑃(𝑧), to obtain a function 𝑃 : ℂ → ℂ.

We try to write

𝑓 (𝑧) =
∞∑
𝑘=0

𝑐𝑘 𝑧
𝑘

and all is very fine until we wish to know what 𝑓 (𝑧) is for some number 𝑧 ∈ ℂ. We
usually mean

∞∑
𝑘=0

𝑐𝑘 𝑧
𝑘 = lim

𝑑→∞

𝑑∑
𝑘=0

𝑐𝑘 𝑧
𝑘 .

As long as the limit exists, we have a function. You know all this; it is your one-variable
complex analysis. We typically start with the functions and prove that we can expand
into series.

Let𝑈 ⊂ ℂ be open. A function 𝑓 : 𝑈 → ℂ is holomorphic (or complex-analytic) if it
is complex-differentiable at every point, that is, if

𝑓 ′(𝑧) = lim
𝜉∈ℂ→0

𝑓 (𝑧 + 𝜉) − 𝑓 (𝑧)
𝜉

exists for all 𝑧 ∈ 𝑈 .

Importantly, the limit is taken with respect to complex 𝜉. Another vantage point is to
start with a continuously differentiable 

*
 𝑓 , and say 𝑓 = 𝑢 + 𝑖 𝑣 is holomorphic if it

satisfies the Cauchy–Riemann equations:

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
,

𝜕𝑢

𝜕𝑦
= −𝜕𝑣

𝜕𝑥
.

The so-called Wirtinger operators,

𝜕

𝜕𝑧
def
=

1
2

(
𝜕

𝜕𝑥
− 𝑖 𝜕

𝜕𝑦

)
,

𝜕

𝜕�̄�
def
=

1
2

(
𝜕

𝜕𝑥
+ 𝑖 𝜕

𝜕𝑦

)
,

provide an easier way to understand the Cauchy–Riemann equations. These operators
are determined by insisting on

𝜕

𝜕𝑧
𝑧 = 1, 𝜕

𝜕𝑧
�̄� = 0, 𝜕

𝜕�̄�
𝑧 = 0, 𝜕

𝜕�̄�
�̄� = 1.

*Holomorphic functions end up being infinitely differentiable anyway, so this hypothesis is not
overly restrictive.
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The function 𝑓 is holomorphic if and only if

𝜕 𝑓

𝜕�̄�
= 0.

That seems a far nicer statement of the Cauchy–Riemann equations; it is just one
complex equation. It says a function is holomorphic if and only if it depends on 𝑧 but
not on �̄� (perhaps that does not make a whole lot of sense at first glance). We check:

𝜕 𝑓

𝜕�̄�
=

1
2

(
𝜕 𝑓

𝜕𝑥
+ 𝑖

𝜕 𝑓

𝜕𝑦

)
=

1
2

(
𝜕𝑢

𝜕𝑥
+ 𝑖 𝜕𝑣

𝜕𝑥
+ 𝑖 𝜕𝑢

𝜕𝑦
− 𝜕𝑣

𝜕𝑦

)
=

1
2

(
𝜕𝑢

𝜕𝑥
− 𝜕𝑣

𝜕𝑦

)
+ 𝑖

2

(
𝜕𝑣

𝜕𝑥
+ 𝜕𝑢

𝜕𝑦

)
.

This expression is zero if and only if the real parts and the imaginary parts are zero.
In other words,

𝜕𝑢

𝜕𝑥
− 𝜕𝑣

𝜕𝑦
= 0, and 𝜕𝑣

𝜕𝑥
+ 𝜕𝑢

𝜕𝑦
= 0.

That is, the Cauchy–Riemann equations are satisfied.
If 𝑓 is holomorphic, the derivative in 𝑧 is the standard complex derivative you

know and love:
𝜕 𝑓

𝜕𝑧
(𝑧0) = 𝑓 ′(𝑧0) = lim

𝜉→0

𝑓 (𝑧0 + 𝜉) − 𝑓 (𝑧0)
𝜉

.

That is because

𝜕 𝑓

𝜕𝑧
=

1
2

(
𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦

)
+ 𝑖

2

(
𝜕𝑣

𝜕𝑥
− 𝜕𝑢

𝜕𝑦

)
=

𝜕𝑢

𝜕𝑥
+ 𝑖 𝜕𝑣

𝜕𝑥
=

𝜕 𝑓

𝜕𝑥

=
1
𝑖

(
𝜕𝑢

𝜕𝑦
+ 𝑖 𝜕𝑣

𝜕𝑦

)
=

𝜕 𝑓

𝜕(𝑖𝑦) .

A function on ℂ is a function defined on ℝ2 as identified above, and so it is a
function of 𝑥 and 𝑦. Writing 𝑥 = 𝑧+�̄�

2 and 𝑦 = 𝑧−�̄�
2𝑖 , think of it as a function of two

complex variables, 𝑧 and �̄�. Pretend for a moment as if �̄� did not depend on 𝑧. The
Wirtinger operators work as if 𝑧 and �̄� really were independent variables. For instance:

𝜕

𝜕𝑧

[
𝑧2 �̄�3 + 𝑧10] = 2𝑧�̄�3 + 10𝑧9 and 𝜕

𝜕�̄�

[
𝑧2 �̄�3 + 𝑧10] = 𝑧2(3�̄�2) + 0.

A holomorphic function is a function “not depending on �̄�.”
The most important theorem in one variable is the Cauchy integral formula.

Theorem 0.1.1 (Cauchy integral formula). Let 𝑈 ⊂ ℂ be a bounded domain where the
boundary 𝜕𝑈 is a piecewise smooth simple closed path (a Jordan curve). Let 𝑓 : 𝑈 → ℂ

be a continuous function, holomorphic in 𝑈 . Orient 𝜕𝑈 positively (going around counter-
clockwise). Then

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝜕𝑈

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 for all 𝑧 ∈ 𝑈 .
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The Cauchy formula is the essential ingredient we need from one complex variable.
It follows from Green’s theorem 

*
 (Stokes’ theorem in two dimensions). You can look

forward to  Theorem 4.1.1 for a proof of a more general formula, the Cauchy–Pompeiu
integral formula.

As a differential form, 𝑑𝑧 = 𝑑𝑥 + 𝑖 𝑑𝑦. If you are uneasy about differential forms,
you possibly defined the path integral above directly using the Riemann–Stieltjes
integral in your one-complex-variable class. Let us write down the formula in terms
of the standard Riemann integral in a special case. Take the unit disc

𝔻
def
=

{
𝑧 ∈ ℂ : |𝑧 | < 1

}
.

The boundary is the unit circle 𝜕𝔻 =
{
𝑧 ∈ ℂ : |𝑧 | = 1

}
oriented positively, that is,

counter-clockwise. Parametrize 𝜕𝔻 by 𝑒 𝑖𝑡 , where 𝑡 goes from 0 to 2𝜋. If 𝜁 = 𝑒 𝑖𝑡 , then
𝑑𝜁 = 𝑖𝑒 𝑖𝑡𝑑𝑡, and

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝜕𝔻

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 =

1
2𝜋

∫ 2𝜋

0

𝑓 (𝑒 𝑖𝑡)𝑒 𝑖𝑡

𝑒 𝑖𝑡 − 𝑧
𝑑𝑡.

If you are not completely comfortable with path integrals, try to think about how
you would parametrize the path, and write the integral as an integral any calculus
student would recognize.

I venture a guess that 90% of what you learned in a one-variable complex analysis
course (depending on who taught it) is more or less a straightforward consequence of
the Cauchy integral formula. An important theorem from one variable that follows
from the Cauchy formula is the maximum modulus principle (or just the maximum
principle). Let us give its simplest version.

Theorem 0.1.2 (Maximum modulus principle). Suppose 𝑈 ⊂ ℂ is a domain and
𝑓 : 𝑈 → ℂ is holomorphic. If for some 𝑧0 ∈ 𝑈

sup
𝑧∈𝑈

| 𝑓 (𝑧)| = | 𝑓 (𝑧0)|,

then 𝑓 is constant, that is, 𝑓 ≡ 𝑓 (𝑧0).

That is, if the supremum is attained in the interior of the domain, then the function
must be constant. Another way to state the maximum principle is to say: If 𝑓 extends
continuously to the boundary of a domain, then the supremum of | 𝑓 (𝑧)| is attained
on the boundary. In one variable you learned that the maximum principle is really a
property of harmonic functions.

*If you wish to feel inadequate, note that this theorem, on which all of complex analysis (and all of
physics) rests, was proved by George Green, who was the son of a miller and had one year of formal
schooling.
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Theorem 0.1.3 (Maximum principle). Let𝑈 ⊂ ℂ be a domain and ℎ : 𝑈 → ℝ harmonic,
that is,

∇2ℎ =
𝜕2ℎ

𝜕𝑥2 + 𝜕2ℎ

𝜕𝑦2 = 0.

If for some 𝑧0 ∈ 𝑈

sup
𝑧∈𝑈

ℎ(𝑧) = ℎ(𝑧0) or inf
𝑧∈𝑈

ℎ(𝑧) = ℎ(𝑧0),

then ℎ is constant, that is, ℎ ≡ ℎ(𝑧0).

In one variable, if 𝑓 = 𝑢 + 𝑖𝑣 is holomorphic for real-valued 𝑢 and 𝑣, then 𝑢 and 𝑣
are harmonic. Similarly, log| 𝑓 | is harmonic. Locally, a harmonic function is the real
(or imaginary) part of a holomorphic function, so in one complex variable, studying
harmonic functions is almost equivalent to studying holomorphic functions. Things
are decidedly different in two or more variables.

Holomorphic functions admit a power series representation in 𝑧 at each point 𝑎:

𝑓 (𝑧) =
∞∑
𝑘=0

𝑐𝑘(𝑧 − 𝑎)𝑘 .

No �̄� is necessary, since 𝜕 𝑓
𝜕�̄� = 0.

Let us see the proof using the Cauchy integral formula, as we will require this
computation in several variables as well. Given 𝑎 ∈ ℂ and 𝜌 > 0, define the disc of
radius 𝜌 around 𝑎

Δ𝜌(𝑎)
def
=

{
𝑧 ∈ ℂ : |𝑧 − 𝑎 | < 𝜌

}
.

Suppose 𝑈 ⊂ ℂ is open, 𝑓 : 𝑈 → ℂ is holomorphic, 𝑎 ∈ 𝑈 , and Δ𝜌(𝑎) ⊂ 𝑈 (that is,
the closure of the disc is in𝑈 , and so its boundary 𝜕Δ𝜌(𝑎) is also in𝑈).

For 𝑧 ∈ Δ𝜌(𝑎) and 𝜁 ∈ 𝜕Δ𝜌(𝑎),���� 𝑧 − 𝑎𝜁 − 𝑎

���� = |𝑧 − 𝑎 |
𝜌

< 1.

In fact, if |𝑧 − 𝑎 | ≤ 𝜌′ < 𝜌, then
��� 𝑧−𝑎𝜁−𝑎

��� ≤ 𝜌′

𝜌 < 1. Therefore, the geometric series

∞∑
𝑘=0

(
𝑧 − 𝑎
𝜁 − 𝑎

) 𝑘
=

1
1 − 𝑧−𝑎

𝜁−𝑎
=

𝜁 − 𝑎
𝜁 − 𝑧

converges uniformly absolutely for (𝑧, 𝜁) ∈ Δ𝜌′(𝑎)×𝜕Δ𝜌(𝑎) (that is,
∑
𝑘

�� 𝑧−𝑎
𝜁−𝑎

��𝑘 converges
uniformly).
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Let 𝛾 be the path going around 𝜕Δ𝜌(𝑎) once in the positive direction. Compute

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝛾

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁

=
1

2𝜋𝑖

∫
𝛾

𝑓 (𝜁)
𝜁 − 𝑎

𝜁 − 𝑎
𝜁 − 𝑧 𝑑𝜁

=
1

2𝜋𝑖

∫
𝛾

𝑓 (𝜁)
𝜁 − 𝑎

∞∑
𝑘=0

(
𝑧 − 𝑎
𝜁 − 𝑎

) 𝑘
𝑑𝜁

=

∞∑
𝑘=0

(
1

2𝜋𝑖

∫
𝛾

𝑓 (𝜁)
(𝜁 − 𝑎)𝑘+1 𝑑𝜁

)
(𝑧 − 𝑎)𝑘 .

In the last equality, we may interchange the limit on the sum with the integral either
via Fubini’s theorem or via uniform convergence: 𝑧 is fixed and if 𝑀 is the supremum
of

��� 𝑓 (𝜁)𝜁−𝑎

��� = | 𝑓 (𝜁)|
𝜌 on 𝜕Δ𝜌(𝑎), then����� 𝑓 (𝜁)𝜁 − 𝑎

(
𝑧 − 𝑎
𝜁 − 𝑎

) 𝑘 ����� ≤ 𝑀

(
|𝑧 − 𝑎 |

𝜌

) 𝑘
, and |𝑧 − 𝑎 |

𝜌
< 1.

The key point is writing the Cauchy kernel 1
𝜁−𝑧 as

1
𝜁 − 𝑧 =

1
𝜁 − 𝑎

𝜁 − 𝑎
𝜁 − 𝑧 ,

and then using the geometric series.
Not only have we proved that 𝑓 has a power series, but we computed that the

radius of convergence is at least 𝑅, where 𝑅 is the maximum 𝑅 such that Δ𝑅(𝑎) ⊂ 𝑈 .
We also obtained a formula for the coefficients

𝑐𝑘 =
1

2𝜋𝑖

∫
𝛾

𝑓 (𝜁)
(𝜁 − 𝑎)𝑘+1 𝑑𝜁.

For a set 𝐾, denote the supremum norm:

∥ 𝑓 ∥𝐾
def
= sup

𝑧∈𝐾
| 𝑓 (𝑧)|.

By a brute force estimation, we obtain the very useful Cauchy estimates:

|𝑐𝑘 | =
����� 1
2𝜋𝑖

∫
𝛾

𝑓 (𝜁)
(𝜁 − 𝑎)𝑘+1 𝑑𝜁

����� ≤ 1
2𝜋

∫
𝛾

∥ 𝑓 ∥𝛾
𝜌𝑘+1 |𝑑𝜁 | =

∥ 𝑓 ∥𝛾
𝜌𝑘

.

We differentiate Cauchy’s formula 𝑘 times (using the Wirtinger 𝜕
𝜕𝑧 operator),

𝑓 (𝑘)(𝑧) =
𝜕𝑘 𝑓

𝜕𝑧𝑘
(𝑧) = 1

2𝜋𝑖

∫
𝛾

𝑘! 𝑓 (𝜁)
(𝜁 − 𝑧)𝑘+1 𝑑𝜁,



12 INTRODUCTION

and therefore

𝑘! 𝑐𝑘 = 𝑓 (𝑘)(𝑎) =
𝜕𝑘 𝑓

𝜕𝑧𝑘
(𝑎).

Hence, we can control derivatives of 𝑓 by the size of the function:�� 𝑓 (𝑘)(𝑎)�� = ����𝜕𝑘 𝑓𝜕𝑧𝑘
(𝑎)

���� ≤ 𝑘!∥ 𝑓 ∥𝛾
𝜌𝑘

.

This estimate is one of the key properties of holomorphic functions, and the reason
why the correct topology for the set of holomorphic functions is the same as the
topology for continuous functions. Consequently, obstructions to solving problems
in complex analysis are often topological in character.

For a further review of one-variable results, see  appendix B .



1 \\ Holomorphic Functions in Several
Variables

1.1 \ Onto several variables

Let ℂ𝑛 =

𝑛 times︷             ︸︸             ︷
ℂ ×ℂ × · · · ×ℂ denote the 𝑛-dimensional complex Euclidean space. Denote

by 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛) the coordinates of ℂ𝑛 . Let 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑦 =

(𝑦1, 𝑦2, . . . , 𝑦𝑛)denote the coordinates inℝ𝑛 . Identifyℂ𝑛 withℝ2𝑛 by letting 𝑧 = 𝑥+𝑖𝑦,
that is, 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘 for every 𝑘. As in one complex variable, write �̄� = 𝑥 − 𝑖𝑦. We
call 𝑧 the holomorphic coordinates and �̄� the antiholomorphic coordinates.

Definition 1.1.1. For 𝜌 = (𝜌1, 𝜌2, . . . , 𝜌𝑛) where 𝜌𝑘 > 0 and 𝑎 ∈ ℂ𝑛 , define a polydisc

Δ𝜌(𝑎)
def
=

{
𝑧 ∈ ℂ𝑛 : |𝑧𝑘 − 𝑎𝑘 | < 𝜌𝑘 for 𝑘 = 1, 2, . . . , 𝑛

}
.

Call 𝑎 the center and 𝜌 the polyradius or simply the radius of the polydisc Δ𝜌(𝑎). If
𝜌 > 0 is a number, then

Δ𝜌(𝑎)
def
=

{
𝑧 ∈ ℂ𝑛 : |𝑧𝑘 − 𝑎𝑘 | < 𝜌 for 𝑘 = 1, 2, . . . , 𝑛

}
.

In two variables, a polydisc is sometimes called a bidisc. As there is the unit disc 𝔻 in
one variable, so is there the unit polydisc in several variables:

𝔻𝑛 = 𝔻 ×𝔻 × · · · ×𝔻 = Δ1(0) =
{
𝑧 ∈ ℂ𝑛 : |𝑧𝑘 | < 1 for 𝑘 = 1, 2, . . . , 𝑛

}
.

In more than one complex dimension, it is difficult to draw exact pictures for lack
of real dimensions on our paper. We visualize the unit polydisc in two variables
(bidisc) as in  Figure 1.1 by plotting against the modulus of the variables.

Recall the Euclidean inner product on ℂ𝑛 :

⟨𝑧, 𝑤⟩ def
= 𝑧1�̄�1 + 𝑧2�̄�2 + · · · + 𝑧𝑛�̄�𝑛 .

The inner product gives us the standard Euclidean norm on ℂ𝑛 :

∥𝑧∥ def
=

√
⟨𝑧, 𝑧⟩ =

√
|𝑧1 |2 + |𝑧2 |2 + · · · + |𝑧𝑛 |2.
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|𝑧1 |

|𝑧2 |

𝜕𝔻2

𝔻2

Figure 1.1: The bidisc.

This norm agrees with the standard Euclidean norm on ℝ2𝑛 . Define balls as in ℝ2𝑛 :

𝐵𝜌(𝑎)
def
=

{
𝑧 ∈ ℂ𝑛 : ∥𝑧 − 𝑎∥ < 𝜌

}
,

And the unit ball,
𝔹𝑛

def
= 𝐵1(0) =

{
𝑧 ∈ ℂ𝑛 : ∥𝑧∥ < 1

}
.

A ball centered at the origin can also be pictured by plotting against the modulus
of the variables, since the inequality defining the ball only depends on the moduli
of the variables. Not every domain can be drawn like this, but if it can, it is called a
Reinhardt domain, more on this later. A picture of 𝔹2 is in  Figure 1.2 .

|𝑧1 |

|𝑧2 |

𝜕𝔹2

𝔹2

Figure 1.2: The ball 𝔹2 as a Reinhardt domain.

Definition 1.1.2. Let 𝑈 ⊂ ℂ𝑛 be open. A function 𝑓 : 𝑈 → ℂ is holomorphic if it is
locally bounded 

*
 and holomorphic in each variable separately. That is, 𝑓 is holomorphic

if it is locally bounded and complex-differentiable in each variable separately:

lim
𝜉∈ℂ→0

𝑓 (𝑧1, . . . , 𝑧𝑘 + 𝜉, . . . , 𝑧𝑛) − 𝑓 (𝑧)
𝜉

exists for all 𝑧 ∈ 𝑈 and all 𝑘 = 1, 2, . . . , 𝑛.

*For every 𝑝 ∈ 𝑈 , there is a neighborhood 𝑁 of 𝑝 such that 𝑓 |𝑁 is bounded. Equivalently, 𝑓 is
bounded on compact subsets of𝑈 . It is a deep result of Hartogs that we might in fact just drop “locally
bounded” from the definition and obtain the same set of functions.
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In this book, the words “differentiable” and “derivative” (without the “complex-”)
refer to plain-vanilla real differentiability.

As in one variable, we define the Wirtinger operators

𝜕

𝜕𝑧𝑘

def
=

1
2

(
𝜕

𝜕𝑥𝑘
− 𝑖 𝜕

𝜕𝑦𝑘

)
,

𝜕

𝜕�̄�𝑘

def
=

1
2

(
𝜕

𝜕𝑥𝑘
+ 𝑖 𝜕

𝜕𝑦𝑘

)
.

An alternative definition is to say that a continuously differentiable function 𝑓 : 𝑈 → ℂ

is holomorphic if it satisfies the Cauchy–Riemann equations

𝜕 𝑓

𝜕�̄�𝑘
= 0 for 𝑘 = 1, 2, . . . , 𝑛.

For holomorphic functions, using the natural definition for partial derivatives obtains
the Wirtinger 𝜕

𝜕𝑧𝑘
. Namely, if 𝑓 is holomorphic, then

𝜕 𝑓

𝜕𝑧𝑘
(𝑧) = lim

𝜉∈ℂ→0

𝑓 (𝑧1, . . . , 𝑧𝑘 + 𝜉, . . . , 𝑧𝑛) − 𝑓 (𝑧)
𝜉

.

Due to the following proposition, the alternative definition using the Cauchy–
Riemann equations is just as good as the definition we gave.
Proposition 1.1.3. Let 𝑈 ⊂ ℂ𝑛 be an open set and suppose 𝑓 : 𝑈 → ℂ is holomorphic.
Then 𝑓 is infinitely differentiable.

Proof. Suppose Δ = Δ𝜌(𝑎) = Δ1 × · · · × Δ𝑛 is a polydisc centered at 𝑎, where each Δ𝑘

is a disc, and suppose Δ ⊂ 𝑈 , that is, 𝑓 is holomorphic on a neighborhood of the
closure of Δ. Let 𝑧 be in Δ. Orient 𝜕Δ1 positively and apply the Cauchy formula (after
all 𝑓 is holomorphic in 𝑧1):

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝜕Δ1

𝑓 (𝜁1, 𝑧2, . . . , 𝑧𝑛)
𝜁1 − 𝑧1

𝑑𝜁1.

Apply it again on the second variable, again orienting 𝜕Δ2 positively:

𝑓 (𝑧) = 1
(2𝜋𝑖)2

∫
𝜕Δ1

∫
𝜕Δ2

𝑓 (𝜁1, 𝜁2, 𝑧3, . . . , 𝑧𝑛)
(𝜁1 − 𝑧1)(𝜁2 − 𝑧2)

𝑑𝜁2 𝑑𝜁1.

Applying the formula 𝑛 times, we obtain

𝑓 (𝑧) = 1
(2𝜋𝑖)𝑛

∫
𝜕Δ1

∫
𝜕Δ2

· · ·
∫
𝜕Δ𝑛

𝑓 (𝜁1, 𝜁2, . . . , 𝜁𝑛)
(𝜁1 − 𝑧1)(𝜁2 − 𝑧2) · · · (𝜁𝑛 − 𝑧𝑛)

𝑑𝜁𝑛 · · · 𝑑𝜁2 𝑑𝜁1. (1.1)

As 𝑓 is bounded on the compact set 𝜕Δ1 × · · · × 𝜕Δ𝑛 , we find that 𝑓 is continuous in
Δ, and hence on𝑈 . We may differentiate underneath the integral via the standard
Leibniz rule, because the integrand and its partial derivatives with respect to 𝑥𝑘 and
𝑦𝑘 , where 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘 , are all continuous, as long as 𝑧 is a positive distance away
from 𝜕Δ1 × · · · × 𝜕Δ𝑛 . We may differentiate as many times as we wish. □
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In ( 1.1 ) above, we derived the Cauchy integral formula in several variables. To
write the formula more concisely, we apply Fubini’s theorem to write it as a single
integral. We will write it down using differential forms. If you are unfamiliar with
differential forms, think of the integral as the iterated integral above, and you can read
the next few paragraphs a little lightly. It is enough to understand real differential
forms; we simply allow complex coefficients here. See  appendix C for an overview of
differential forms, or Rudin [ R1 ] for an introduction with all the details.

Given real coordinates 𝑥 = (𝑥1, . . . , 𝑥𝑛), a one-form 𝑑𝑥𝑘 is a linear functional on
tangent vectors such that

〈
𝑑𝑥𝑘 ,

𝜕
𝜕𝑥𝑘

〉
= 1 and

〈
𝑑𝑥𝑘 ,

𝜕
𝜕𝑥ℓ

〉
= 0 if 𝑘 ≠ ℓ , where we use

the pairing notation ⟨𝜔, 𝑣⟩ instead of the functional notation 𝜔(𝑣) as is traditional to
indicate multilinearity. As 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘 and �̄�𝑘 = 𝑥𝑘 − 𝑖𝑦𝑘 ,

𝑑𝑧𝑘 = 𝑑𝑥𝑘 + 𝑖 𝑑𝑦𝑘 , 𝑑�̄�𝑘 = 𝑑𝑥𝑘 − 𝑖 𝑑𝑦𝑘 .

Let 𝛿ℓ
𝑘

be the Kronecker delta, that is, 𝛿𝑘
𝑘
= 1, and 𝛿ℓ

𝑘
= 0 if 𝑘 ≠ ℓ . Then, as expected,〈

𝑑𝑧𝑘 ,
𝜕

𝜕𝑧ℓ

〉
= 𝛿ℓ

𝑘
,

〈
𝑑𝑧𝑘 ,

𝜕

𝜕�̄�ℓ

〉
= 0,

〈
𝑑�̄�𝑘 ,

𝜕

𝜕𝑧ℓ

〉
= 0,

〈
𝑑�̄�𝑘 ,

𝜕

𝜕�̄�ℓ

〉
= 𝛿ℓ

𝑘
.

One-forms are the objects
𝑛∑
𝑘=1

𝛼𝑘 𝑑𝑧𝑘 + 𝛽𝑘 𝑑�̄�𝑘 ,

where 𝛼𝑘 and 𝛽𝑘 are functions (of 𝑧). Two-forms are combinations of wedge products,
𝜔 ∧ 𝜂, of one-forms. A wedge of a two-form and a one-form is a three-form, etc.
An 𝑚-form is an object that can be integrated on a so-called 𝑚-chain, for example,
a 𝑚-dimensional surface. The wedge product takes care of the orientation as it is
anticommutative on one-forms: For one-forms 𝜔 and 𝜂, we have 𝜔 ∧ 𝜂 = −𝜂 ∧ 𝜔.

At this point, we need to talk about orientation in ℂ𝑛 , that is, the ordering of the
real coordinates. There are two natural real-linear isomorphisms of ℂ𝑛 and ℝ2𝑛 . We
identify 𝑧 = 𝑥 + 𝑖𝑦 as either

(𝑥, 𝑦) = (𝑥1, . . . , 𝑥𝑛 , 𝑦1, . . . , 𝑦𝑛) or (𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑛 , 𝑦𝑛).

If we take the natural orientation of ℝ2𝑛 , it is possible (if 𝑛 is even) that we obtain
two opposite orientations on ℂ𝑛 (if 𝑛 is even, the real linear map that takes one
ordering to the other has determinant −1). The orientation we take as the natural
orientation of ℂ𝑛 (in this book) corresponds to the second ordering above, that is,
(𝑥1, 𝑦1, . . . , 𝑥𝑛 , 𝑦𝑛). Either isomorphism may be used in computation as long as it is
used consistently, and the underlying orientation is kept in mind.

Theorem 1.1.4 (Cauchy integral formula). Let Δ ⊂ ℂ𝑛 be a polydisc. Suppose 𝑓 : Δ → ℂ

is a continuous function holomorphic inΔ. Write Γ = 𝜕Δ1×· · ·×𝜕Δ𝑛 oriented appropriately
(each 𝜕Δ𝑘 oriented positively). Then for 𝑧 ∈ Δ

𝑓 (𝑧) = 1
(2𝜋𝑖)𝑛

∫
Γ

𝑓 (𝜁1, 𝜁2, . . . , 𝜁𝑛)
(𝜁1 − 𝑧1)(𝜁2 − 𝑧2) · · · (𝜁𝑛 − 𝑧𝑛)

𝑑𝜁1 ∧ 𝑑𝜁2 ∧ · · · ∧ 𝑑𝜁𝑛 .
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We stated a more general result where 𝑓 is only continuous on Δ and holomorphic
in Δ. The proof of this slight generalization is contained within the next two exercises.

Exercise 1.1.1: Suppose 𝑓 : 𝔻2 → ℂ is continuous and holomorphic on 𝔻2. For every
𝜃 ∈ ℝ, prove

𝑔1(𝜉) = 𝑓 (𝜉, 𝑒 𝑖𝜃) and 𝑔2(𝜉) = 𝑓 (𝑒 𝑖𝜃 , 𝜉)
are holomorphic in 𝔻.

Exercise 1.1.2: Prove the theorem above, that is, the slightly more general Cauchy integral
formula where 𝑓 is only continuous on Δ and holomorphic in Δ.

The Cauchy integral formula shows an important and subtle point about holomor-
phic functions in several variables: The value of the function 𝑓 on Δ is completely
determined by the values of 𝑓 on the set Γ, which is much smaller than the boundary
of the polydisc 𝜕Δ. In fact, Γ is of real dimension 𝑛, while the boundary of the polydisc
is of real dimension 2𝑛 − 1. The set Γ = 𝜕Δ1 × · · · × 𝜕Δ𝑛 is called the distinguished
boundary. See  Figure 1.3 for the distinguished boundary of the bidisc.

|𝑧1 |

|𝑧2 |

𝜕𝔻2

𝔻2

Γ = 𝜕𝔻 × 𝜕𝔻

Figure 1.3: The distinguished boundary of 𝔻2.

The set Γ is a 2-dimensional torus, like the surface of a donut. Whereas the set
𝜕𝔻2 = (𝜕𝔻 ×𝔻) ∪ (𝔻 × 𝜕𝔻) is the union of two filled donuts, or more precisely, it is
both the inside and the outside of the donut put together, and these two things meet
on the surface of the donut. So the set Γ is quite small in comparison to the entire
boundary 𝜕𝔻2.

Exercise 1.1.3: Suppose Δ is a polydisc, Γ its distinguished boundary, and 𝑓 : Δ → ℂ is
continuous on Δ and holomorphic on Δ. Prove | 𝑓 (𝑧)| achieves its maximum on Γ.

Exercise 1.1.4: A ball is different from a polydisc. Prove that for every 𝑝 ∈ 𝜕𝔹𝑛 there exists
a continuous 𝑓 : 𝔹𝑛 → ℂ, holomorphic on 𝔹𝑛 , such that | 𝑓 (𝑧)| achieves a strict maximum
at 𝑝.
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Exercise 1.1.5: Show that in the real setting, differentiable in each variable separately does
not imply differentiable even if the function is locally bounded. Let 𝑓 (𝑥, 𝑦) = 𝑥𝑦

𝑥2+𝑦2 outside
the origin and 𝑓 (0, 0) = 0. Prove that 𝑓 is a locally bounded function in ℝ2, which is
differentiable in each variable separately (all partial derivatives exist at every point), but 𝑓
is not even continuous. There is something very special about the holomorphic category.

Exercise 1.1.6: Suppose𝑈 ⊂ ℂ𝑛 is open. Prove that 𝑓 : 𝑈 → ℂ is holomorphic if and only
if 𝑓 is locally bounded and for every 𝑎, 𝑏 ∈ ℂ𝑛 , the function 𝜁 ↦→ 𝑓 (𝜁𝑎 + 𝑏) is holomorphic
on the open set {𝜁 ∈ ℂ : 𝜁𝑎 + 𝑏 ∈ 𝑈}.

Exercise 1.1.7: Prove a several complex variables version of Morera’s theorem (see
 Theorem B.4 ). A triangle 𝑇 ⊂ ℂ𝑛 is the closed convex hull of three points, so in-
cluding the inside. Orient 𝑇 in some way and orient 𝜕𝑇 accordingly. A triangle 𝑇 lies
in a complex line if its vertices 𝑎, 𝑏, 𝑐 satisfy 𝜁(𝑏 − 𝑎) = 𝑐 − 𝑎 for some 𝜁 ∈ ℂ. Suppose
𝑈 ⊂ ℂ𝑛 is open and 𝑓 : 𝑈 → ℂ is continuous. Prove that 𝑓 is holomorphic if and only if∫

𝜕𝑇
𝑓 (𝑧) 𝑑𝑧𝑘 = 0

for every triangle 𝑇 ⊂ 𝑈 that lies in a complex line, and every 𝑘 = 1, 2, . . . , 𝑛. Hint: The
previous exercise may be useful.

Exercise 1.1.8: Let 𝑓 : 𝔻2 \ {0} → ℂ be continuous and holomorphic on 𝔻2 \ {0}.
a) Prove that 𝑓 is bounded. Hint: Consider the functions 𝜉 ↦→ 𝑓 (𝜉, 𝑎) and 𝜉 ↦→ 𝑓 (𝑎, 𝜉)

for different 𝑎.
b) Using the Riemann extension in one variable, prove that there exists a continuous
𝐹 : 𝔻2 → ℂ, holomorphic on 𝔻2, such that 𝑓 = 𝐹 on 𝔻2 \ {0}.

1.2 \ Power series representation
As you noticed, writing out all the components can be a pain. Just as we write vectors
as 𝑧 instead of (𝑧1, 𝑧2, . . . , 𝑧𝑛), we similarly define the so-called multi-index notation to
deal with more complicated formulas such as the ones above.

Let 𝛼 ∈ ℕ𝑛
0 be a vector of nonnegative integers (where ℕ0 = ℕ ∪ {0}). We write

𝑧𝛼
def
= 𝑧

𝛼1
1 𝑧𝛼2

2 · · · 𝑧𝛼𝑛𝑛 , |𝑧 |𝛼 def
= |𝑧1 |𝛼1 |𝑧2 |𝛼2 · · · |𝑧𝑛 |𝛼𝑛 ,

1
𝑧

def
=

1
𝑧1𝑧2 · · · 𝑧𝑛

,
𝑧

𝑤

def
=

(
𝑧1
𝑤1
,
𝑧2
𝑤2
, . . . ,

𝑧𝑛

𝑤𝑛

)
,

𝜕|𝛼 |

𝜕𝑧𝛼
def
=

𝜕𝛼1

𝜕𝑧𝛼1
1

𝜕𝛼2

𝜕𝑧𝛼2
2

· · · 𝜕𝛼𝑛

𝜕𝑧𝛼𝑛𝑛
, 𝑑𝑧

def
= 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ · · · ∧ 𝑑𝑧𝑛 ,

|𝛼 | def
= 𝛼1 + 𝛼2 + · · · + 𝛼𝑛 , 𝛼! def

= 𝛼1!𝛼2! · · · 𝛼𝑛!.
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We can also make sense of this notation, especially the notation 𝑧𝛼, if 𝛼 ∈ ℤ𝑛 , that
is, if it includes negative integers. Although usually, 𝛼 is assumed to be in ℕ𝑛

0 .
Furthermore, when we use 1 as a vector, it means (1, 1, . . . , 1). If 𝑧 ∈ ℂ𝑛 , then

1 − 𝑧 = (1 − 𝑧1, 1 − 𝑧2, . . . , 1 − 𝑧𝑛), or 𝑧𝛼+1 = 𝑧
𝛼1+1
1 𝑧𝛼2+1

2 · · · 𝑧𝛼𝑛+1
𝑛 .

It goes without saying that when using this notation it is important to be careful to
always realize which symbol lives where, and most of all, to not get carried away. For
instance, we can interpret 1

𝑧 in different ways depending on whether we interpret 1
as a vector or not, and whether we expect a vector or a number. Best to just keep to
the limited set of cases as given above, and only use it when it is clear what is meant.

In this notation, the Cauchy formula becomes the perhaps deceptively simple

𝑓 (𝑧) = 1
(2𝜋𝑖)𝑛

∫
Γ

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁.

Let us move on to power series. For simplicity, we start with power series at the
origin. Using the multi-index notation, we write such a series as∑

𝛼∈ℕ𝑛
0

𝑐𝛼𝑧
𝛼 .

You must admit that the above is far nicer to write than writing, for example, in ℂ3,

∞∑
𝑘=0

∞∑
ℓ=0

∞∑
𝑚=0

𝑐𝑘ℓ𝑚𝑧
𝑘
1𝑧
ℓ
2𝑧
𝑚
3 , (1.2)

which is not even exactly the definition of the series sum (see below). When it is
clear from context that we are talking about a power series and all the powers are
nonnegative, we write simply ∑

𝛼

𝑐𝛼𝑧
𝛼 .

It is important to note what this means. The sum does not have a natural ordering.
We are summing over 𝛼 ∈ ℕ𝑛

0 , and there is no natural ordering of ℕ𝑛
0 . It makes no

sense to talk about conditional convergence. When we say the series converges, we
mean absolutely. Fortunately, power series converge absolutely, so the ordering does
not matter. If you want to write the limit in terms of partial sums, you pick some
ordering of the multi-indices, 𝛼(1), 𝛼(2), . . ., and then∑

𝛼

𝑐𝛼𝑧
𝛼 = lim

𝑚→∞

𝑚∑
𝑘=1

𝑐𝛼(𝑘)𝑧
𝛼(𝑘).

By the Fubini theorem (for sums) this limit is equal to the iterated sum such as ( 1.2 ).
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A power series
∑

𝛼 𝑐𝛼𝑧
𝛼 converges uniformly absolutely for 𝑧 ∈ 𝑋 when

∑
𝛼 |𝑐𝛼𝑧𝛼 |

converges uniformly for 𝑧 ∈ 𝑋. The geometric series in several variables is the series∑
𝛼 𝑧

𝛼. For 𝑧 ∈ 𝔻𝑛 (unit polydisc),

1
1 − 𝑧 =

1
(1 − 𝑧1)(1 − 𝑧2) · · · (1 − 𝑧𝑛)

=

( ∞∑
𝑘=0

𝑧1
𝑘

) ( ∞∑
𝑘=0

𝑧2
𝑘

)
· · ·

( ∞∑
𝑘=0

𝑧𝑛
𝑘

)
=

∞∑
𝑘1=0

∞∑
𝑘2=0

· · ·
∞∑
𝑘𝑛=0

(
𝑧1
𝑘1𝑧𝑛

𝑘2 · · · 𝑧𝑛 𝑘𝑛
)
=

∑
𝛼

𝑧𝛼 .

The series converges uniformly absolutely on all compact subsets of the unit polydisc:
Any compact set in the unit polydisc is contained in a closed polydisc Δ centered at
0 of radius 1 − 𝜖 for some 𝜖 > 0. The convergence is uniformly absolute on Δ. This
claim follows by simply noting the same fact for each factor is true in one dimension.

Holomorphic functions are precisely those that allow a power series expansion:

Theorem 1.2.1. Let Δ = Δ𝜌(𝑎) ⊂ ℂ𝑛 be a polydisc. Suppose 𝑓 : Δ → ℂ is a continuous
function holomorphic in Δ. Then on Δ, 𝑓 is equal to a power series converging uniformly
absolutely on compact subsets of Δ:

𝑓 (𝑧) =
∑
𝛼

𝑐𝛼(𝑧 − 𝑎)𝛼 . (1.3)

Conversely, if 𝑓 : Δ → ℂ is defined by ( 1.3 ) converging uniformly absolutely on compact
subsets of Δ, then 𝑓 is holomorphic on Δ.

The hypothesis that 𝑓 is continuous on Δ is not necessary. We will prove in a
moment that the power series is unique and hence we could have used an arbitrary
smaller polydisc centered at 𝑎 for the development.

Proof. Suppose a continuous 𝑓 : Δ → ℂ is holomorphic on Δ. Let Γ = 𝜕Δ1 × · · · × 𝜕Δ𝑛
be oriented positively. Take 𝑧 ∈ Δ and 𝜁 ∈ Γ. As in one variable, write the Cauchy
kernel as

1
𝜁 − 𝑧 =

1
𝜁 − 𝑎

(
1

1 − 𝑧−𝑎
𝜁−𝑎

)
=

1
𝜁 − 𝑎

∑
𝛼

(
𝑧 − 𝑎
𝜁 − 𝑎

)𝛼
.

Interpret the formulas as 1
𝜁−𝑧 = 1

(𝜁1−𝑧1)···(𝜁𝑛−𝑧𝑛) ,
1

𝜁−𝑎 = 1
(𝜁1−𝑎1)···(𝜁𝑛−𝑎𝑛) and 𝑧−𝑎

𝜁−𝑎 =(
𝑧1−𝑎1
𝜁1−𝑎1

, . . . , 𝑧𝑛−𝑎𝑛𝜁𝑛−𝑎𝑛

)
. The multivariable geometric series is a product of the geometric

series in one variable, and the geometric series in one variable is uniformly absolutely
convergent on compact subsets of the unit disc. So the series above converges
uniformly absolutely for (𝑧, 𝜁) ∈ 𝐾 × Γ for every compact subset 𝐾 of Δ.
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For 𝑧 ∈ Δ,

𝑓 (𝑧) = 1
(2𝜋𝑖)𝑛

∫
Γ

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁

=
1

(2𝜋𝑖)𝑛
∫
Γ

𝑓 (𝜁)
𝜁 − 𝑎

∑
𝛼

(
𝑧 − 𝑎
𝜁 − 𝑎

)𝛼
𝑑𝜁

=
∑
𝛼

(
1

(2𝜋𝑖)𝑛
∫
Γ

𝑓 (𝜁)
(𝜁 − 𝑎)𝛼+1 𝑑𝜁

)
(𝑧 − 𝑎)𝛼 .

The last equality follows by Fubini or uniform convergence just as it does in one
variable. Uniform absolute convergence (as 𝑧 moves) on compact subsets of the final
series follows from the uniform absolute convergence of the geometric series. It is
also a direct consequence of the Cauchy estimates below. We have shown that

𝑓 (𝑧) =
∑
𝛼

𝑐𝛼(𝑧 − 𝑎)𝛼 , where 𝑐𝛼 =
1

(2𝜋𝑖)𝑛
∫
Γ

𝑓 (𝜁)
(𝜁 − 𝑎)𝛼+1 𝑑𝜁.

Notice how strikingly similar the computation is to one variable.
Let us prove the converse statement. The limit of the series is continuous, as it

is a uniform-on-compact-sets limit of continuous functions, and hence it is locally
bounded in Δ. Next, we restrict to each variable in turn (fixing the others),

𝑧𝑘 ↦→
∑
𝛼

𝑐𝛼(𝑧 − 𝑎)𝛼 .

This one-variable function is holomorphic as it is a uniform limit on compact subsets
of holomorphic functions. Thus 𝑓 is holomorphic by definition. □

The converse statement also follows by applying the Cauchy–Riemann equations
to the series termwise. We leave that as an exercise. First, one must show that
the term-by-term derivative series also converges uniformly absolutely on compact
subsets. Then one applies the theorem from real analysis about derivatives of limits:
If a sequence of functions and the sequences of its derivatives converge uniformly,
then the derivatives converge to the derivative of the limit.

Exercise 1.2.1: Prove the claim above that if a power series converges uniformly absolutely
on compact subsets of a polydisc Δ, then the term-by-term derivative converges. Do the
proof without using the analogous result for single-variable series.

A third way to prove the converse statement of the theorem is to note that
partial sums are holomorphic and write them using the Cauchy formula. Uniform
convergence shows that the limit also satisfies the Cauchy formula, and differentiating
under the integral obtains the result.
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Exercise 1.2.2: Follow the logic above to prove the converse of the theorem without using
the analogous result for single-variable series. Hint: Let Δ′′ ⊂ Δ′ ⊂ Δ be polydiscs with
the same center 𝑎 such that Δ′′ ⊂ Δ′ and Δ′ ⊂ Δ. Apply Cauchy formula on Δ′ for 𝑧 ∈ Δ′′.

Exercise 1.2.3: Suppose that Δ ⊂ ℂ𝑛 is a possibly unbounded polydisc centered at 𝑎 ∈ ℂ𝑛 ,
where by possibly unbounded we mean that some of the factors can be all of ℂ (that is, some
components of the polyradius are allowed to be ∞). Prove that if 𝑓 : Δ → ℂ is holomorphic,
then there is a power series representation

∑
𝛼 𝑐𝛼(𝑧 − 𝑎)𝛼 converging uniformly on compact

subsets to 𝑓 on Δ.

Exercise 1.2.4: One can also do a Laurent series expansion. Suppose 𝑎 ∈ ℂ𝑛 and
𝑈 = Δ1 × · · · × Δ𝑘 × Δ∗

𝑘+1 × · · · × Δ∗
𝑛 ⊂ ℂ𝑛 , where each Δ𝑘 is a disc centered at 𝑎𝑘 or

ℂ, and Δ∗
𝑘
= Δ∗

𝑘
\ {𝑎𝑘}. Prove that if 𝑓 : 𝑈 → ℂ is holomorphic, then there is a series

representation
∑

𝛼 𝑐𝛼(𝑧 − 𝑎)𝛼, where 𝛼𝑘+1, . . . , 𝛼𝑛 now range over all integers, converging
uniformly on compact subsets to 𝑓 on𝑈 .

Proposition 1.2.2. Let Δ = Δ𝜌(𝑎) ⊂ ℂ𝑛 be a polydisc, and Γ its distinguished boundary.
Suppose 𝑓 : Δ → ℂ is a continuous function holomorphic in Δ. Then, for 𝑧 ∈ Δ,

𝜕|𝛼 | 𝑓

𝜕𝑧𝛼
(𝑧) = 1

(2𝜋𝑖)𝑛
∫
Γ

𝛼! 𝑓 (𝜁)
(𝜁 − 𝑧)𝛼+1 𝑑𝜁.

In particular, if 𝑓 is given by ( 1.3 ), then

𝑐𝛼 =
1
𝛼!

𝜕|𝛼 | 𝑓

𝜕𝑧𝛼
(𝑎),

and we have the Cauchy estimates:

|𝑐𝛼 | ≤
∥ 𝑓 ∥Γ
𝜌𝛼 .

Consequently, the coefficients of the power series depend only on the derivatives
of 𝑓 at 𝑎 (and so on the values of 𝑓 in an arbitrarily small neighborhood of 𝑎) and not
the specific polydisc used in the theorem.

Proof. By the Leibniz rule, if 𝑧 ∈ Δ (not on the boundary), we can differentiate under
the integral in the Cauchy formula. We are talking regular real partial differentiation,
and we use it to apply the Wirtinger operator. The point is that

𝜕

𝜕𝑧ℓ

[
1

(𝜁ℓ − 𝑧ℓ )𝑘

]
=

𝑘

(𝜁ℓ − 𝑧ℓ )𝑘+1 .
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Let us do a single derivative to get the idea:

𝜕 𝑓

𝜕𝑧1
(𝑧) = 𝜕

𝜕𝑧1

[
1

(2𝜋𝑖)𝑛
∫
Γ

𝑓 (𝜁1, 𝜁2, . . . , 𝜁𝑛)
(𝜁1 − 𝑧1)(𝜁2 − 𝑧2) · · · (𝜁𝑛 − 𝑧𝑛)

𝑑𝜁1 ∧ 𝑑𝜁2 ∧ · · · ∧ 𝑑𝜁𝑛
]

=
1

(2𝜋𝑖)𝑛
∫
Γ

𝑓 (𝜁1, 𝜁2, . . . , 𝜁𝑛)
(𝜁1 − 𝑧1)2(𝜁2 − 𝑧2) · · · (𝜁𝑛 − 𝑧𝑛)

𝑑𝜁1 ∧ 𝑑𝜁2 ∧ · · · ∧ 𝑑𝜁𝑛 .

How about we do it a second time:

𝜕2 𝑓

𝜕𝑧2
1
(𝑧) = 1

(2𝜋𝑖)𝑛
∫
Γ

2 𝑓 (𝜁1, 𝜁2, . . . , 𝜁𝑛)
(𝜁1 − 𝑧1)3(𝜁2 − 𝑧2) · · · (𝜁𝑛 − 𝑧𝑛)

𝑑𝜁1 ∧ 𝑑𝜁2 ∧ · · · ∧ 𝑑𝜁𝑛 .

Notice the 2 before the 𝑓 . Next derivative, a 3 is coming out. After 𝑚 derivatives in 𝑧1,
you get the constant 𝑚!. It is exactly the same thing that happens in one variable. A
moment’s thought will convince you that the following formula is correct for 𝛼 ∈ ℕ𝑛

0 :

𝜕|𝛼 | 𝑓

𝜕𝑧𝛼
(𝑧) = 1

(2𝜋𝑖)𝑛
∫
Γ

𝛼! 𝑓 (𝜁)
(𝜁 − 𝑧)𝛼+1 𝑑𝜁.

Therefore,

𝛼! 𝑐𝛼 =
𝜕|𝛼 | 𝑓

𝜕𝑧𝛼
(𝑎).

We obtain the Cauchy estimates as before:�����𝜕|𝛼 | 𝑓𝜕𝑧𝛼
(𝑎)

����� =
����� 1
(2𝜋𝑖)𝑛

∫
Γ

𝛼! 𝑓 (𝜁)
(𝜁 − 𝑎)𝛼+1 𝑑𝜁

����� ≤ 1
(2𝜋)𝑛

∫
Γ

𝛼! | 𝑓 (𝜁)|
𝜌𝛼+1 |𝑑𝜁 | ≤ 𝛼!

𝜌𝛼 ∥ 𝑓 ∥Γ. □

As in one-variable theory, the Cauchy estimates prove the following proposition.

Proposition 1.2.3. Let𝑈 ⊂ ℂ𝑛 be an open set. Suppose the sequence 𝑓ℓ : 𝑈 → ℂ converges
uniformly on compact subsets to 𝑓 : 𝑈 → ℂ. If every 𝑓ℓ is holomorphic, then 𝑓 is holomorphic
and the sequence

{
𝜕|𝛼 | 𝑓ℓ
𝜕𝑧𝛼

}
converges to 𝜕|𝛼 | 𝑓

𝜕𝑧𝛼 uniformly on compact subsets.

Exercise 1.2.5: Prove the proposition above.

Given a power series, let𝑊 ⊂ ℂ𝑛 be the set of all points where the series converges
absolutely. The interior of𝑊 is called the domain of convergence of the series. In one
variable, every domain of convergence is a disc and hence is described with a single
number (the radius). In several variables, the domain of convergence is not as easy to
describe. For the multivariable geometric series, the domain of convergence is the
unit polydisc, but in general, the domain of convergence is more complicated.
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Example 1.2.4: In ℂ2, the series
∞∑
𝑘=0

𝑧1𝑧
𝑘
2

converges absolutely exactly on the set{
𝑧 ∈ ℂ2 : |𝑧2 | < 1

}
∪

{
𝑧 ∈ ℂ2 : 𝑧1 = 0

}
.

This set is not quite a polydisc. It is neither an open set nor a closed set, and its closure
is not the closure of the domain of convergence, which is the set

{
𝑧 ∈ ℂ2 : |𝑧2 | < 1

}
.

Example 1.2.5: The series
∞∑
𝑘=0

𝑧𝑘1𝑧
𝑘
2

converges absolutely exactly on the set{
𝑧 ∈ ℂ2 : |𝑧1𝑧2 | < 1

}
.

The picture is definitely more complicated than a polydisc. See  Figure 1.4 .

|𝑧1 |

|𝑧2 |

· · ·

...

Figure 1.4: Domain of convergence of
∑
𝑘 𝑧

𝑘
1𝑧

𝑘
2 .

Exercise 1.2.6: Find the domain of convergence of
∑
𝑘,ℓ

1
ℓ !𝑧

𝑘
1𝑧
ℓ
2 and draw the corresponding

picture.

Exercise 1.2.7: Find the domain of convergence of
∑
𝑘,ℓ 𝑐𝑘ℓ 𝑧

𝑘
1𝑧
ℓ
2 and draw the corresponding

picture if 𝑐ℓℓ = 2ℓ , 𝑐0ℓ = 𝑐𝑘0 = 1 and 𝑐𝑘ℓ = 0 otherwise.

Exercise 1.2.8: Suppose a power series in two variables can be written as a sum of a power
series in 𝑧1 and a power series in 𝑧2. Show that the domain of convergence is a polydisc.
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A domain𝑈 ⊂ ℂ𝑛 is a Reinhardt domain if whenever 𝑧 ∈ 𝑈 and |𝑧𝑘 | = |𝑤𝑘 | for all
𝑘, then 𝑤 ∈ 𝑈 . The domains we were drawing so far are Reinhardt domains. They
are exactly the domains that you can draw by plotting what happens for the moduli
of the variables. A domain is a complete Reinhardt domain if 𝑧 ∈ 𝑈 , then Δ𝑟(0) ⊂ 𝑈

where 𝑟 = (𝑟1, . . . , 𝑟𝑛) and 𝑟𝑘 = |𝑧𝑘 | for all 𝑘. So a complete Reinhardt domain is a
union (possibly infinite) of polydiscs centered at the origin.

Proposition 1.2.6. Let
∑

𝛼 𝑐𝛼𝑧
𝛼 be a convergent power series. Prove that its domain of

convergence is a complete Reinhardt domain.

Exercise 1.2.9: Prove  Proposition 1.2.6 .

Theorem 1.2.7 (Identity theorem). Let𝑈 ⊂ ℂ𝑛 be a domain (connected open set) and let
𝑓 : 𝑈 → ℂ be holomorphic. If 𝑓 |𝑁 ≡ 0 for a nonempty open subset 𝑁 ⊂ 𝑈 , then 𝑓 ≡ 0.

Proof. Let 𝑍 be the set where all derivatives of all orders of 𝑓 are zero; then 𝑁 ⊂ 𝑍,
so 𝑍 is nonempty. The set 𝑍 is closed in𝑈 as all derivatives are continuous. Take an
arbitrary 𝑎 ∈ 𝑍. Expand 𝑓 in a power series around 𝑎 converging to 𝑓 in a polydisc
Δ𝜌(𝑎) ⊂ 𝑈 . As the coefficients are given by derivatives of 𝑓 , the power series is the
zero series. Hence, 𝑓 is identically zero in Δ𝜌(𝑎). Therefore, 𝑍 is open. As 𝑍 is also
closed and nonempty, and𝑈 is connected, we have 𝑍 = 𝑈 . □

The theorem is often used to show that if two holomorphic functions 𝑓 and 𝑔

are equal on a small open set, then 𝑓 ≡ 𝑔. In one variable (see  Theorem B.7 ), the
hypothesis that𝑁 has a limit point in𝑈 (rather than being open) is sufficient. In several
variables, things are not so simple: 𝑓 (𝑧1, 𝑧2) = 𝑧1 is zero on the set {𝑧 ∈ ℂ2 : 𝑧1 = 0},
all of whose points are its limit points. When 𝑛 ≥ 2, zeros are never isolated, see

 Exercise 1.2.21 . For now, let us move on.

Theorem 1.2.8 (Maximum principle). Let 𝑈 ⊂ ℂ𝑛 be a domain. Let 𝑓 : 𝑈 → ℂ be
holomorphic and suppose | 𝑓 (𝑧)| attains a local maximum at some 𝑎 ∈ 𝑈 . Then 𝑓 ≡ 𝑓 (𝑎).

Proof. Suppose | 𝑓 (𝑧)| attains a local maximum at 𝑎 ∈ 𝑈 . Consider a polydisc
Δ = Δ1 × · · · × Δ𝑛 ⊂ 𝑈 centered at 𝑎. The function

𝑧1 ↦→ 𝑓 (𝑧1, 𝑎2, . . . , 𝑎𝑛)

is holomorphic on the disc Δ1 and its modulus attains the maximum at the cen-
ter. Therefore, it is constant by the maximum principle in one variable, that is,
𝑓 (𝑧1, 𝑎2, . . . , 𝑎𝑛) = 𝑓 (𝑎) for all 𝑧1 ∈ Δ1. For any fixed 𝑧1 ∈ Δ1, consider the function

𝑧2 ↦→ 𝑓 (𝑧1, 𝑧2, 𝑎3, . . . , 𝑎𝑛).

This function, holomorphic on the disc Δ2, again attains its maximum modulus at
the center of Δ2 and hence is constant on Δ2. Iterating this procedure, we obtain that
𝑓 (𝑧) = 𝑓 (𝑎) for all 𝑧 ∈ Δ. The identity theorem says that 𝑓 (𝑧) = 𝑓 (𝑎) for all 𝑧 ∈ 𝑈 . □
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Exercise 1.2.10: Let 𝑉 be the volume measure on ℝ2𝑛 and hence on ℂ𝑛 . Suppose Δ

centered at 𝑎 ∈ ℂ𝑛 , and 𝑓 is a function holomorphic on a neighborhood of Δ. Prove

𝑓 (𝑎) = 1
𝑉(Δ)

∫
Δ

𝑓 (𝜁) 𝑑𝑉(𝜁),

where 𝑉(Δ) is the volume of Δ and 𝑑𝑉 is the volume measure. That is, 𝑓 (𝑎) is an average
of the values on a polydisc centered at 𝑎.

Exercise 1.2.11: Prove the maximum principle by using the Cauchy formula instead. Hint:
Use the previous exercise.

Exercise 1.2.12: Prove a several variables analogue of the Schwarz’s lemma: Suppose 𝑓
is holomorphic in a neighborhood of 𝔹𝑛 , 𝑓 (0) = 0, and for some 𝑘 ∈ ℕ we have 𝜕|𝛼 | 𝑓

𝜕𝑧𝛼 (0) = 0
whenever |𝛼 | < 𝑘. Further suppose for all 𝑧 ∈ 𝔹𝑛 , | 𝑓 (𝑧)| ≤ 𝑀 for some 𝑀. Show that

| 𝑓 (𝑧)| ≤ 𝑀∥𝑧∥𝑘 for all 𝑧 ∈ 𝔹𝑛 .

Exercise 1.2.13: Apply the one-variable Liouville’s theorem to prove it for several variables.
That is, suppose 𝑓 : ℂ𝑛 → ℂ is holomorphic and bounded. Prove 𝑓 is constant.

Exercise 1.2.14: Improve Liouville’s theorem slightly in ℂ2. A complex line though the
origin is the image of a linear map 𝐿 : ℂ → ℂ𝑛 .

a) Prove that for every collection of finitely many complex lines through the origin, there
exists an entire nonconstant holomorphic function (𝑛 ≥ 2) bounded (hence constant)
on these complex lines.

b) Prove that if an entire holomorphic function in ℂ2 is bounded on countably many
distinct complex lines through the origin, then it is constant.

c) Find a nonconstant entire holomorphic function in ℂ3 that is bounded on countably
many distinct complex lines through the origin.

Exercise 1.2.15: Prove the several variables version of Montel’s theorem: Suppose { 𝑓𝑘}
is a uniformly bounded sequence of holomorphic functions on an open set𝑈 ⊂ ℂ𝑛 . Show
that there exists a subsequence { 𝑓𝑘 𝑗 } that converges uniformly on compact subsets to some
holomorphic function 𝑓 . Hint: Mimic the one-variable proof.

Exercise 1.2.16: Prove a several variables version of Hurwitz’s theorem: Suppose { 𝑓𝑘}
is a sequence of nowhere zero holomorphic functions on a domain 𝑈 ⊂ ℂ𝑛 converging
uniformly on compact subsets to a function 𝑓 . Show that either 𝑓 is identically zero or that
𝑓 is nowhere zero. Hint: Feel free to use the  one-variable result .
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Exercise 1.2.17: Suppose 𝑝 ∈ ℂ𝑛 is a point and 𝐷 ⊂ ℂ𝑛 is a ball centered at 𝑝 ∈ 𝐷. A
holomorphic function 𝑓 : 𝐷 → ℂ can be analytically continued along a path 𝛾 : [0, 1] →
ℂ𝑛 , 𝛾(0) = 𝑝, if for every 𝑡 ∈ [0, 1] there exists a ball 𝐷𝑡 centered at 𝛾(𝑡), where 𝐷0 = 𝐷,
and a holomorphic function 𝑓𝑡 : 𝐷𝑡 → ℂ, where 𝑓0 = 𝑓 , and for each 𝑡0 ∈ [0, 1] there is an
𝜖 > 0 such that if |𝑡 − 𝑡0 | < 𝜖, then 𝑓𝑡 = 𝑓𝑡0 in 𝐷𝑡 ∩ 𝐷𝑡0 . Prove a several variables version
of the Monodromy theorem: If𝑈 ⊂ ℂ𝑛 is a simply connected domain, 𝐷 ⊂ 𝑈 a ball, and
𝑓 : 𝐷 → ℂ a holomorphic function that can be analytically continued from 𝑝 ∈ 𝐷 to every
𝑞 ∈ 𝑈 , then there exists a unique holomorphic function 𝐹 : 𝑈 → ℂ such that 𝐹 |𝐷 = 𝑓 .

Definition 1.2.9. Let𝑈 ⊂ ℂ𝑛 be an open set. Define O(𝑈) to be the ring of holomorphic
functions 𝑓 : 𝑈 → ℂ. The letter O is used to recognize the fundamental contribution
to several complex variables by Kiyoshi Oka 

*
 .

The set O(𝑈) really is a commutative ring under pointwise addition and mul-
tiplication (exercise below). For us, O(𝑈) will always mean the set of ℂ-valued
functions, however, in the literature the notation is sometimes used to simply denote
holomorphicity no matter the codomain.

Exercise 1.2.18: Prove that O(𝑈) is actually a commutative ring with the operations

( 𝑓 + 𝑔)(𝑧) = 𝑓 (𝑧) + 𝑔(𝑧), ( 𝑓 𝑔)(𝑧) = 𝑓 (𝑧)𝑔(𝑧).

Exercise 1.2.19: Show that O(𝑈) is an integral domain (has no zero divisors) if and only
if 𝑈 is connected. That is, show that 𝑈 being connected is equivalent to the following
property of𝑈 : If ℎ(𝑧) = 𝑓 (𝑧)𝑔(𝑧) is identically zero for 𝑓 , 𝑔 ∈ O(𝑈), then either 𝑓 or 𝑔 is
identically zero.

A function 𝐹 defined on a dense open subset of 𝑈 is meromorphic if locally near
every 𝑝 ∈ 𝑈 , 𝐹 = 𝑓/𝑔 for 𝑓 and 𝑔 holomorphic in some neighborhood of 𝑝. It is from
a deep result of Oka that, for domains𝑈 ⊂ ℂ𝑛 , every meromorphic function can be
represented as 𝑓/𝑔 globally. That is, the ring of meromorphic functions is the field of
fractions of O(𝑈). This problem is the so-called Poincaré problem, and its solution is
no longer positive once one generalizes 𝑈 to complex manifolds. The points of 𝑈
through which 𝐹 does not extend holomorphically are called the poles of 𝐹. Namely,
poles are the points where 𝑔 = 0 for every possible representation 𝑓/𝑔. Unlike in one
variable, in several variables, poles are never isolated points. There is also a new type
of singular point for meromorphic functions in more than one variable:

Exercise 1.2.20: In two variables, one can no longer think of a meromorphic function 𝐹
having the value ∞ when the denominator vanishes. Show that 𝐹(𝑧, 𝑤) = 𝑧/𝑤 achieves all
values ofℂ in every neighborhood of the origin. We call the origin a point of indeterminacy.
*See  https://en.wikipedia.org/wiki/Kiyoshi_Oka .

https://en.wikipedia.org/wiki/Kiyoshi_Oka
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Exercise 1.2.21: Prove that zeros are never isolated in ℂ𝑛 for 𝑛 ≥ 2. Hint: Consider
𝑧1 ↦→ 𝑓 (𝑧1, 𝑧2, . . . , 𝑧𝑛) as you move 𝑧2, . . . , 𝑧𝑛 around, and use, perhaps,  Hurwitz .

1.3 \ Derivatives

Given a function 𝑓 = 𝑢 + 𝑖𝑣, the complex conjugate is 𝑓 = 𝑢 − 𝑖𝑣, defined simply
by 𝑧 ↦→ 𝑓 (𝑧). When 𝑓 is holomorphic, then 𝑓 is called an antiholomorphic function.
An antiholomorphic function is a function that depends on �̄� but not on 𝑧. So if we
write the variable, we write 𝑓 as 𝑓 (�̄�). Let us see why this makes sense. Using the
definitions of the Wirtinger operators,

𝜕 𝑓

𝜕𝑧ℓ
=

𝜕 𝑓

𝜕�̄�ℓ
= 0,

𝜕 𝑓

𝜕�̄�ℓ
=

(
𝜕 𝑓

𝜕𝑧ℓ

)
, for all ℓ = 1, . . . , 𝑛.

For functions that are neither holomorphic or antiholomorphic, we pretend they
depend on both 𝑧 and �̄�. Since we want to write functions in terms of 𝑧 and �̄�, let us
figure out how the chain rule works for Wirtinger derivatives, rather than writing
derivatives in terms of 𝑥 and 𝑦.
Proposition 1.3.1 (Complex chain rule). Suppose 𝑈 ⊂ ℂ𝑛 and 𝑉 ⊂ ℂ𝑚 are open, and
suppose 𝑓 : 𝑈 → 𝑉 and 𝑔 : 𝑉 → ℂ are (real) differentiable mappings. Write the variables
as 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ 𝑈 ⊂ ℂ𝑛 and 𝑤 = (𝑤1, . . . , 𝑤𝑚) ∈ 𝑉 ⊂ ℂ𝑚 . Then for ℓ = 1, . . . , 𝑛,

𝜕

𝜕𝑧ℓ
[𝑔 ◦ 𝑓 ] =

𝑚∑
𝑘=1

(
𝜕𝑔

𝜕𝑤𝑘

𝜕 𝑓𝑘
𝜕𝑧ℓ

+ 𝜕𝑔

𝜕�̄�𝑘

𝜕 𝑓𝑘
𝜕𝑧ℓ

)
,

𝜕

𝜕�̄�ℓ
[𝑔 ◦ 𝑓 ] =

𝑚∑
𝑘=1

(
𝜕𝑔

𝜕𝑤𝑘

𝜕 𝑓𝑘
𝜕�̄�ℓ

+
𝜕𝑔

𝜕�̄�𝑘

𝜕 𝑓𝑘
𝜕�̄�ℓ

)
.

(1.4)

Proof. Write 𝑓 = 𝑢 + 𝑖𝑣, 𝑧 = 𝑥 + 𝑖𝑦, 𝑤 = 𝑠 + 𝑖𝑡, and let 𝑓 be a function of 𝑧, and 𝑔 be a
function of 𝑤. The composition plugs in 𝑓 for 𝑤, and so it plugs in 𝑢 for 𝑠, and 𝑣 for 𝑡.
Using the standard chain rule,

𝜕

𝜕𝑧ℓ
[𝑔 ◦ 𝑓 ] = 1

2

(
𝜕

𝜕𝑥ℓ
− 𝑖 𝜕

𝜕𝑦ℓ

)
[𝑔 ◦ 𝑓 ]

=
1
2

𝑚∑
𝑘=1

(
𝜕𝑔

𝜕𝑠𝑘

𝜕𝑢𝑘
𝜕𝑥ℓ

+ 𝜕𝑔

𝜕𝑡𝑘

𝜕𝑣𝑘
𝜕𝑥ℓ

− 𝑖
(
𝜕𝑔

𝜕𝑠𝑘

𝜕𝑢𝑘
𝜕𝑦ℓ

+ 𝜕𝑔

𝜕𝑡𝑘

𝜕𝑣𝑘
𝜕𝑦ℓ

))
=

𝑚∑
𝑘=1

(
𝜕𝑔

𝜕𝑠𝑘

1
2

(
𝜕𝑢𝑘
𝜕𝑥ℓ

− 𝑖 𝜕𝑢𝑘
𝜕𝑦ℓ

)
+ 𝜕𝑔

𝜕𝑡𝑘

1
2

(
𝜕𝑣𝑘
𝜕𝑥ℓ

− 𝑖 𝜕𝑣𝑘
𝜕𝑦ℓ

))
=

𝑚∑
𝑘=1

(
𝜕𝑔

𝜕𝑠𝑘

𝜕𝑢𝑘
𝜕𝑧ℓ

+
𝜕𝑔

𝜕𝑡𝑘

𝜕𝑣𝑘
𝜕𝑧ℓ

)
.
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For 𝑘 = 1, . . . , 𝑚,

𝜕

𝜕𝑠𝑘
=

𝜕

𝜕𝑤𝑘
+ 𝜕

𝜕�̄�𝑘
,

𝜕

𝜕𝑡𝑘
= 𝑖

(
𝜕

𝜕𝑤𝑘
− 𝜕

𝜕�̄�𝑘

)
.

Continuing:

𝜕

𝜕𝑧ℓ
[𝑔 ◦ 𝑓 ] =

𝑚∑
𝑘=1

(
𝜕𝑔

𝜕𝑠𝑘

𝜕𝑢𝑘
𝜕𝑧ℓ

+
𝜕𝑔

𝜕𝑡𝑘

𝜕𝑣𝑘
𝜕𝑧ℓ

)
=

𝑚∑
𝑘=1

((
𝜕𝑔

𝜕𝑤𝑘

𝜕𝑢𝑘
𝜕𝑧ℓ

+
𝜕𝑔

𝜕�̄�𝑘

𝜕𝑢𝑘
𝜕𝑧ℓ

)
+ 𝑖

(
𝜕𝑔

𝜕𝑤𝑘

𝜕𝑣𝑘
𝜕𝑧ℓ

−
𝜕𝑔

𝜕�̄�𝑘

𝜕𝑣𝑘
𝜕𝑧ℓ

))
=

𝑚∑
𝑘=1

(
𝜕𝑔

𝜕𝑤𝑘

(
𝜕𝑢𝑘
𝜕𝑧ℓ

+ 𝑖 𝜕𝑣𝑘
𝜕𝑧ℓ

)
+

𝜕𝑔

𝜕�̄�𝑘

(
𝜕𝑢𝑘
𝜕𝑧ℓ

− 𝑖 𝜕𝑣𝑘
𝜕𝑧ℓ

))
=

𝑚∑
𝑘=1

(
𝜕𝑔

𝜕𝑤𝑘

𝜕 𝑓𝑘
𝜕𝑧ℓ

+ 𝜕𝑔

𝜕�̄�𝑘

𝜕 𝑓𝑘
𝜕𝑧ℓ

)
.

The �̄� derivative works similarly. □

Because of the proposition, when we deal with a possibly nonholomorphic
function 𝑓 , we often write 𝑓 (𝑧, �̄�) and treat 𝑓 as a function of 𝑧 and �̄�.

Remark 1.3.2. It is good to notice the subtlety of what we just said. Formally it seems
as if 𝑧 and �̄� are independent variables when taking derivatives, but in reality, they
are not independent if we actually wish to evaluate the function. Under the hood, a
smooth function that is not necessarily holomorphic is really a function of the real
variables 𝑥 and 𝑦, where 𝑧 = 𝑥 + 𝑖𝑦.

Remark 1.3.3. We could have swapped 𝑧 and �̄�, by flipping the bars everywhere.
There is no difference between the two, they are twins in effect. We just need to know
which one is which. After all, it all starts with taking the two square roots of −1 and
deciding which one is 𝑖 (remember the chickens?). There is no “natural choice” for
that, but once we make that choice we must be consistent. And once we picked which
root is 𝑖, we also picked what is holomorphic and what is antiholomorphic. This is a
subtle philosophical as much as a mathematical point.

Definition 1.3.4. Let 𝑈 ⊂ ℂ𝑛 be open. A mapping 𝑓 : 𝑈 → ℂ𝑚 is said to be
holomorphic if each component is holomorphic. That is, if 𝑓 = ( 𝑓1, . . . , 𝑓𝑚), then each
𝑓𝑘 is a holomorphic function.

As in one variable, the composition of holomorphic functions (mappings) is
holomorphic.

Theorem 1.3.5. Let 𝑈 ⊂ ℂ𝑛 and 𝑉 ⊂ ℂ𝑚 be open sets, and suppose 𝑓 : 𝑈 → 𝑉 and
𝑔 : 𝑉 → ℂ𝑞 are both holomorphic. Then the composition 𝑔 ◦ 𝑓 is holomorphic.
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Proof. The proof is almost trivial by chain rule. Again let 𝑔 be a function of 𝑤 ∈ 𝑉
and 𝑓 be a function of 𝑧 ∈ 𝑈 . For ℓ = 1, . . . , 𝑛 and 𝜈 = 1, . . . , 𝑞, compute

𝜕

𝜕�̄�ℓ
[𝑔𝜈 ◦ 𝑓 ] =

𝑚∑
𝑘=1

©«
𝜕𝑔𝜈
𝜕𝑤𝑘�

�
��7

0
𝜕 𝑓𝑘
𝜕�̄�ℓ

+
�
�
��7

0
𝜕𝑔𝜈
𝜕�̄�𝑘

𝜕 𝑓𝑘
𝜕�̄�ℓ

ª®®¬ = 0. □

For holomorphic mappings the chain rule simplifies, and it formally looks like
the familiar vector calculus rule. Suppose again𝑈 ⊂ ℂ𝑛 and 𝑉 ⊂ ℂ𝑚 are open, and
𝑓 : 𝑈 → 𝑉 and 𝑔 : 𝑉 → ℂ are holomorphic. Name the variables 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈
𝑈 ⊂ ℂ𝑛 and 𝑤 = (𝑤1, . . . , 𝑤𝑚) ∈ 𝑉 ⊂ ℂ𝑚 . In formula ( 1.4 ) for the 𝑧ℓ derivative, the
�̄�ℓ derivative of 𝑔 is zero and the 𝑧ℓ derivative of 𝑓𝑘 is also zero because 𝑓 and 𝑔 are
holomorphic. Therefore, for ℓ = 1, . . . , 𝑛,

𝜕

𝜕𝑧ℓ
[𝑔 ◦ 𝑓 ] =

𝑚∑
𝑘=1

𝜕𝑔

𝜕𝑤𝑘

𝜕 𝑓𝑘
𝜕𝑧ℓ

.

Exercise 1.3.1: Using only the Wirtinger derivatives, prove that a holomorphic function
that is real-valued must be constant.

Exercise 1.3.2: Let 𝑓 be a holomorphic function on ℂ𝑛 . When we write 𝑓 we mean the
function 𝑧 ↦→ 𝑓 (𝑧), and we usually write 𝑓 (�̄�) as the function is antiholomorphic. However,
if we write 𝑓 (𝑧) we really mean 𝑧 ↦→ 𝑓 (�̄�), that is, composing both the function and the
argument with conjugation. Prove 𝑧 ↦→ 𝑓 (𝑧) is holomorphic, and prove 𝑓 is real-valued on
ℝ𝑛 (when 𝑦 = 0) if and only if 𝑓 (𝑧) = 𝑓 (𝑧) for all 𝑧 ∈ ℂ.

For a𝑈 ⊂ ℂ𝑛 , a holomorphic mapping 𝑓 : 𝑈 → ℂ𝑚 , and a point 𝑝 ∈ 𝑈 , define the
holomorphic derivative, sometimes called the (holomorphic) Jacobian matrix,

𝐷 𝑓 (𝑝) def
=

[
𝜕 𝑓𝑘
𝜕𝑧ℓ

(𝑝)
]
𝑘ℓ

.

The notation 𝑓 ′(𝑝) = 𝐷 𝑓 (𝑝) is also used. Unless otherwise stated, if the mapping is
holomorphic, Jacobian will refer to the holomorphic Jacobian.

Exercise 1.3.3: Suppose 𝑈 ⊂ ℂ𝑛 is open, ℝ𝑛 is naturally embedded in ℂ𝑛 . Consider a
holomorphic mapping 𝑓 : 𝑈 → ℂ𝑚 and suppose that 𝑓 |𝑈∩ℝ𝑛 maps into ℝ𝑚 ⊂ ℂ𝑚 . Prove
that given 𝑝 ∈ 𝑈 ∩ℝ𝑛 , the real Jacobian matrix at 𝑝 of the map 𝑓 |𝑈∩ℝ𝑛 : 𝑈 ∩ℝ𝑛 → ℝ𝑚

is equal to the holomorphic Jacobian matrix of the map 𝑓 at 𝑝. In particular, 𝐷 𝑓 (𝑝) is a
matrix with real entries.

By the holomorphic chain rule above, as in the theory of real functions, the
derivative of the composition is the composition of derivatives (multiplied as matrices).
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Proposition 1.3.6 (Chain rule for holomorphic mappings). Let𝑈 ⊂ ℂ𝑛 and 𝑉 ⊂ ℂ𝑚

be open sets. Suppose 𝑓 : 𝑈 → 𝑉 and 𝑔 : 𝑉 → ℂ𝑘 are both holomorphic, and 𝑝 ∈ 𝑈 . Then

𝐷(𝑔 ◦ 𝑓 )(𝑝) = 𝐷𝑔
(
𝑓 (𝑝)

)
𝐷 𝑓 (𝑝).

In shorthand, we often simply write 𝐷(𝑔 ◦ 𝑓 ) = 𝐷𝑔𝐷 𝑓 .

Exercise 1.3.4: Prove the proposition.

Suppose 𝑈 ⊂ ℂ𝑛 , 𝑝 ∈ 𝑈 , and 𝑓 : 𝑈 → ℂ𝑚 is differentiable at 𝑝. Since ℂ𝑛 is
identified with ℝ2𝑛 , the mapping 𝑓 takes 𝑈 ⊂ ℝ2𝑛 to ℝ2𝑚 . The normal vector-
calculus Jacobian at 𝑝 of this mapping (a 2𝑚×2𝑛 real matrix) is called the real Jacobian,
and we write it as 𝐷ℝ 𝑓 (𝑝).
Proposition 1.3.7. Let𝑈 ⊂ ℂ𝑛 be open, 𝑝 ∈ 𝑈 , and 𝑓 : 𝑈 → ℂ𝑛 be holomorphic. Then

|det𝐷 𝑓 (𝑝)|2 = det𝐷ℝ 𝑓 (𝑝).
The expression det𝐷 𝑓 (𝑝) is called the (holomorphic) Jacobian determinant and clearly

it is important to know if we are talking about the holomorphic Jacobian determinant
or the standard real Jacobian determinant det𝐷ℝ 𝑓 (𝑝). Recall from vector calculus
that if the real Jacobian determinant det𝐷ℝ 𝑓 (𝑝) of a smooth mapping is positive,
then the mapping preserves orientation. In particular, the proposition says that
holomorphic mappings preserve orientation.

Proof. Write 𝑓 as (Re 𝑓1, Im 𝑓1, . . . ,Re 𝑓𝑛 , Im 𝑓𝑛) as a function of (𝑥1, 𝑦1, . . . , 𝑥𝑛 , 𝑦𝑛),
using our identification of ℂ𝑛 and ℝ2𝑛 . The statement is about the two Jacobians at 𝑝,
that is, the derivatives at 𝑝. Hence, we can assume that 𝑝 = 0 and 𝑓 is complex linear,
𝑓 (𝑧) = 𝐴𝑧 for some 𝑛 × 𝑛 matrix 𝐴. It is just a statement about matrices. The matrix
𝐴 is the (holomorphic) Jacobian matrix of 𝑓 . Let 𝐵 be the real Jacobian matrix of 𝑓 .

We change the basis of 𝐵 to be (𝑧, �̄�) using 𝑧 = 𝑥 + 𝑖𝑦 and �̄� = 𝑥 − 𝑖𝑦 on both
the target and the source. The change of basis is some invertible complex matrix 𝑀
such that 𝑀−1𝐵𝑀 (the real Jacobian matrix 𝐵 in this new basis) is a matrix of the
derivatives of ( 𝑓1, . . . , 𝑓𝑛 , 𝑓1, . . . , 𝑓𝑛) in terms of (𝑧1, . . . , 𝑧𝑛 , �̄�1, . . . , �̄�𝑛). That is,

𝑀−1𝐵𝑀 =

[
𝐴 0
0 𝐴

]
.

Thus

det(𝐵) = det(𝑀−1𝑀𝐵) = det(𝑀−1𝐵𝑀)
= det(𝐴)det(𝐴) = det(𝐴)det(𝐴) = |det(𝐴)|2 . □

The regular (real) implicit function theorem and the chain rule give that the
implicit function theorem holds in the holomorphic setting. The main thing to
check is to verify that the solution given by the standard implicit function theorem is
holomorphic, which follows by the chain rule.
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Theorem 1.3.8 (Implicit function theorem). Let 𝑈 ⊂ ℂ𝑛 × ℂ𝑚 be an open set, let
(𝑧, 𝑤) ∈ ℂ𝑛 × ℂ𝑚 be our coordinates, and let 𝑓 : 𝑈 → ℂ𝑚 be a holomorphic mapping. Let
(𝑧0, 𝑤0) ∈ 𝑈 be a point such that 𝑓 (𝑧0, 𝑤0) = 0 and such that the 𝑚 × 𝑚 matrix[

𝜕 𝑓𝑘
𝜕𝑤ℓ

(𝑧0, 𝑤0)
]
𝑘ℓ

is invertible. Then there exists an open set 𝑉 ⊂ ℂ𝑛 with 𝑧0 ∈ 𝑉 , open set 𝑊 ⊂ ℂ𝑚 with
𝑤0 ∈𝑊 , 𝑉 ×𝑊 ⊂ 𝑈 , and a holomorphic mapping 𝑔 : 𝑉 →𝑊 , with 𝑔(𝑧0) = 𝑤0 such that
for every 𝑧 ∈ 𝑉 , the point 𝑔(𝑧) is the unique point in𝑊 such that

𝑓
(
𝑧, 𝑔(𝑧)

)
= 0.

Exercise 1.3.5: Prove the holomorphic implicit function theorem above. Hint: Check that
the normal implicit function theorem for 𝐶1 functions applies, and then show that the 𝑔
you obtain is holomorphic.

Exercise 1.3.6: State and prove a holomorphic version of the inverse function theorem.

Exercise 1.3.7: Suppose𝑈 ⊂ ℂ𝑛 is a domain and 𝑓 : 𝑈 → ℂ𝑚 a holomorphic mapping.
a) Prove the vector-valued version of the maximum principle: If ∥ 𝑓 (𝑧)∥ achieves a (local)

maximum at 𝑝 ∈ 𝑈 , then 𝑓 is constant.
b) Find a counterexample to a vector-valued mimimum principle: Find an 𝑓 such that

∥ 𝑓 (𝑧)∥ achieves a nonzero minimum, but where 𝑓 is not constant.

1.4 \ Inequivalence of ball and polydisc
Definition 1.4.1. Two domains 𝑈 ⊂ ℂ𝑛 and 𝑉 ⊂ ℂ𝑛 are said to be biholomorphic or
biholomorphically equivalent if there exists a one-to-one and onto holomorphic map
𝑓 : 𝑈 → 𝑉 such that the inverse 𝑓 −1 : 𝑉 → 𝑈 is holomorphic. The mapping 𝑓 is said
to be a biholomorphic map or a biholomorphism.

As function theory on two biholomorphic domains is the same, one of the
main questions in complex analysis is to classify domains up to biholomorphic
transformations. In one variable, there is the rather striking theorem due to Riemann:
Theorem 1.4.2 (Riemann mapping theorem). If𝑈 ⊂ ℂ is a nonempty simply connected
domain such that𝑈 ≠ ℂ, then𝑈 is biholomorphic to 𝔻.

In one variable, a topological property on𝑈 is enough to classify a whole class of
domains. It is one of the reasons why studying the disc is so important in one variable,
and why many theorems are stated for the disc only. There is no such theorem in
several variables. We will show momentarily that the unit ball and the polydisc,

𝔹𝑛 =
{
𝑧 ∈ ℂ𝑛 : ∥𝑧∥ < 1

}
and 𝔻𝑛 =

{
𝑧 ∈ ℂ𝑛 : |𝑧𝑘 | < 1 for 𝑘 = 1, . . . , 𝑛

}
,
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are not biholomorphically equivalent. Both are simply connected (have no holes), and
they are the two most obvious generalizations of the disc to several variables. They
are homeomorphic, that is, topology does not see any difference.

Exercise 1.4.1: Prove that there exists a homeomorphism 𝑓 : 𝔹𝑛 → 𝔻𝑛 , that is, 𝑓 is a
bĳection, and both 𝑓 and 𝑓 −1 are continuous.

Let us stick with 𝑛 = 2. Instead of proving that 𝔹2 and 𝔻2 are biholomorphically
inequivalent we will prove a stronger theorem. First a definition.

Definition 1.4.3. Suppose 𝑓 : 𝑋 → 𝑌 is a continuous map between two topological
spaces. Then 𝑓 is a proper map if for every compact 𝐾 ⊂⊂ 𝑌, the set 𝑓 −1(𝐾) is compact.

The notation “⊂⊂” is a common notation for a relatively compact subset, that
is, the closure is compact in the relative (subspace) topology. Often the distinction
between compact and relatively compact is not important. For instance, in the
definition above we can replace compact with relatively compact. So the notation is
sometimes used if “compact” is meant.

Vaguely, “proper” means that “boundary goes to the boundary.” As a continuous
map, 𝑓 pushes compacts to compacts; a proper map is one where the inverse does
so too. If the inverse is a continuous function, then clearly 𝑓 is proper, but not
every proper map is invertible. For example, the map 𝑓 : 𝔻 → 𝔻 given by 𝑓 (𝑧) = 𝑧2

is proper, but not invertible. The codomain of 𝑓 is important. If we replace 𝑓 by
𝑔 : 𝔻 → ℂ, still given by 𝑔(𝑧) = 𝑧2, then the map is no longer proper. Let us state the
main result of this section.

Theorem 1.4.4 (Rothstein 1935). There exists no proper holomorphic mapping of the unit
bidisc 𝔻2 = 𝔻 ×𝔻 ⊂ ℂ2 to the unit ball 𝔹2 ⊂ ℂ2.

As a biholomorphic mapping is proper, the unit bidisc is not biholomorphically
equivalent to the unit ball in ℂ2. The inequivalence of the ball and the polydisc
was first proved by Poincaré by computing the automorphism groups of 𝔻2 and 𝔹2,
although his proof assumed the maps extended past the boundary. The first complete
proof was by Henri Cartan in 1931, though the theorem is popularly attributed to
Poincaré. It seems standard practice that any general audience talk about several
complex variables contains a mention of Poincaré, and often the reference is to this
exact theorem.

We need some lemmas before we get to the proof of the result. First, a certain
one-dimensional object plays an important role in the geometry of several complex
variables. It allows us to apply one-variable results in several variables. It is especially
important in understanding the boundary behavior of holomorphic functions. It also
prominently appears in complex geometry.
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Definition 1.4.5. A nonconstant holomorphic mapping 𝜑 : 𝔻 → ℂ𝑛 is called an
analytic disc. If the mapping 𝜑 extends continuously to the closed unit disc 𝔻, then
the mapping 𝜑 : 𝔻 → ℂ𝑛 is called a closed analytic disc.

Often we call the image Δ = 𝜑(𝔻) the analytic disc rather than the mapping. For a
closed analytic disc we write 𝜕Δ = 𝜑(𝜕𝔻) and call it the boundary of the analytic disc.

In some sense, analytic discs play the role of line segments in ℂ𝑛 . It is important
to always keep in mind that there is a mapping defining the disc, even if we are more
interested in the set. Obviously for a given image, the mapping 𝜑 is not unique.

Consider the boundaries of the unit bidisc 𝔻 ×𝔻 ⊂ ℂ2 and the unit ball 𝔹2 ⊂ ℂ2.
Notice the boundary of the unit bidisc contains analytic discs {𝑝} ×𝔻 and 𝔻× {𝑝} for
𝑝 ∈ 𝜕𝔻. That is, through every point in the boundary, except for the distinguished
boundary 𝜕𝔻 × 𝜕𝔻, there exists an analytic disc lying entirely inside the boundary.
On the other hand, the ball contains no analytic discs in its boundary.

Proposition 1.4.6. The unit sphere 𝑆2𝑛−1 = 𝜕𝔹𝑛 ⊂ ℂ𝑛 contains no analytic discs.

Proof. Suppose there is a holomorphic function 𝑔 : 𝔻 → ℂ𝑛 such that the image 𝑔(𝔻)
is inside the unit sphere. In other words, for all 𝑧 ∈ 𝔻,

∥𝑔(𝑧)∥2 = |𝑔1(𝑧)|2 + |𝑔2(𝑧)|2 + · · · + |𝑔𝑛(𝑧)|2 = 1.

Without loss of generality (after composing with a unitary matrix), assume that
𝑔(0) = (1, 0, 0, . . . , 0). Consider the first component and notice that 𝑔1(0) = 1. If a sum
of positive numbers is less than or equal to 1, then they all are, and hence |𝑔1(𝑧)| ≤ 1.
The maximum principle says that 𝑔1(𝑧) = 1 for all 𝑧 ∈ 𝔻. But then 𝑔𝑘(𝑧) = 0 for all
𝑘 = 2, . . . , 𝑛 and all 𝑧 ∈ 𝔻. Therefore, 𝑔 is constant and thus not an analytic disc. □

The fact that the sphere contains no analytic discs is the most important geometric
distinction between the boundary of the polydisc and the sphere.

Exercise 1.4.2: Modify the proof to show some stronger results.
a) Let Δ be an analytic disc and Δ ∩ 𝜕𝔹𝑛 ≠ ∅. Prove Δ contains points not in 𝔹𝑛 .
b) Let Δ be an analytic disc. Prove that Δ ∩ 𝜕𝔹𝑛 is nowhere dense in Δ.
c) Find an analytic disc in ℂ2, such that (1, 0) ∈ Δ, Δ ∩ 𝔹2 = ∅, and locally near

(1, 0) ∈ 𝜕𝔹2, the set Δ ∩ 𝜕𝔹2 is the curve defined by Im 𝑧1 = 0, Im 𝑧2 = 0,
(Re 𝑧1)2 + (Re 𝑧2)2 = 1.

Before we prove the theorem, let us make the statement about proper maps taking
boundary to boundary precise.

Lemma 1.4.7. Let 𝑈 ⊂ ℝ𝑛 and 𝑉 ⊂ ℝ𝑚 be bounded domains and let 𝑓 : 𝑈 → 𝑉

be continuous. Then 𝑓 is proper if and only if for every sequence {𝑝𝑘} in 𝑈 such that
𝑝𝑘 → 𝑝 ∈ 𝜕𝑈 , the set of limit points of

{
𝑓 (𝑝𝑘)

}
lies in 𝜕𝑉 .
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Proof. Suppose 𝑓 is proper. Let {𝑝𝑘} be a sequence in 𝑈 such that 𝑝𝑘 → 𝑝 ∈ 𝜕𝑈 .
Take any convergent subsequence

{
𝑓 (𝑝𝑘ℓ )

}
of

{
𝑓 (𝑝𝑘)

}
converging to some 𝑞 ∈ 𝑉 .

Consider 𝐸 =
{
𝑓 (𝑝𝑘ℓ )

}
as a set. Let 𝐸 be the closure of 𝐸 in 𝑉 (subspace topology).

If 𝑞 ∈ 𝑉 , then 𝐸 = 𝐸 ∪ {𝑞} and 𝐸 is compact. Otherwise, if 𝑞 ∉ 𝑉 , then 𝐸 = 𝐸 and
𝐸 is not compact. The inverse image 𝑓 −1(𝐸) is not compact (it contains a sequence
going to 𝑝 ∈ 𝜕𝑈) and hence 𝐸 is not compact either as 𝑓 is proper. Thus 𝑞 ∉ 𝑉 , and
hence 𝑞 ∈ 𝜕𝑉 . As we took an arbitrary convergent subsequence of

{
𝑓 (𝑝𝑘)

}
, 𝑞 was an

arbitrary limit point. Therefore, all limit points are in 𝜕𝑉 .
Let us prove the converse. Suppose that for every sequence {𝑝𝑘} in𝑈 such that

𝑝𝑘 → 𝑝 ∈ 𝜕𝑈 , the set of limit points of
{
𝑓 (𝑝𝑘)

}
lies in 𝜕𝑉 . Take a closed set 𝐸 ⊂ 𝑉

(subspace topology) and suppose 𝑓 −1(𝐸) is not compact. Then there exists a sequence
{𝑝𝑘} in 𝑓 −1(𝐸) such that 𝑝𝑘 → 𝑝 ∈ 𝜕𝑈 , because 𝑓 −1(𝐸) is closed (in𝑈), bounded, but
not compact. The hypothesis then says that the limit points of

{
𝑓 (𝑝𝑘)

}
are in 𝜕𝑉 .

Hence 𝐸 has limit points in 𝜕𝑉 and is not compact. □

Exercise 1.4.3: Let 𝑈 ⊂ ℝ𝑛 and 𝑉 ⊂ ℝ𝑚 be bounded domains and let 𝑓 : 𝑈 → 𝑉 be
continuous. Suppose 𝑓 (𝑈) ⊂ 𝑉 , and 𝑔 : 𝑈 → 𝑉 is defined by 𝑔(𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ 𝑈 .
Prove that 𝑔 is proper if and only if 𝑓 (𝜕𝑈) ⊂ 𝜕𝑉 .

Exercise 1.4.4: Let 𝑓 : 𝑋 → 𝑌 be a continuous function of locally compact Hausdorff
topological spaces. Let 𝑋∞ and 𝑌∞ be the one-point compactifications of 𝑋 and 𝑌. Then 𝑓

is a proper map if and only if it extends as a continuous map 𝑓∞ : 𝑋∞ → 𝑌∞ by letting
𝑓∞ |𝑋 = 𝑓 and 𝑓∞(∞) = ∞.

We now have all the lemmas needed to prove the theorem of Rothstein.

Proof of  Theorem 1.4.4 . Suppose there is a proper holomorphic map 𝑓 : 𝔻2 → 𝔹2. Fix
some 𝑒 𝑖𝜃 in the boundary of the disc 𝔻. Take a sequence 𝑤𝑘 ∈ 𝔻 such that 𝑤𝑘 → 𝑒 𝑖𝜃.
The functions 𝑔𝑘(𝜁) = 𝑓 (𝜁, 𝑤𝑘) map the unit disc into 𝔹2. By  Montel’s theorem 

and by passing to a subsequence, assume that the sequence of functions converges
(uniformly on compact subsets) to a limit 𝑔 : 𝔻 → 𝔹2. As (𝜁, 𝑤𝑘) → (𝜁, 𝑒 𝑖𝜃) ∈ 𝜕𝔻2,
then by  Lemma 1.4.7 , 𝑔(𝔻) ⊂ 𝜕𝔹2, and hence 𝑔 is constant by  Proposition 1.4.6 .

Let 𝑔′
𝑘

denote the derivative (we differentiate each component). The functions 𝑔′
𝑘

converge to 𝑔′ = 0. So for an arbitrary fixed 𝜁 ∈ 𝔻, 𝜕 𝑓
𝜕𝑧1

(𝜁, 𝑤𝑘) → 0. This limit holds
for all 𝑒 𝑖𝜃 and some subsequence of an arbitrary sequence {𝑤𝑘} where 𝑤𝑘 → 𝑒 𝑖𝜃. The
holomorphic mapping 𝑤 ↦→ 𝜕 𝑓

𝜕𝑧1
(𝜁, 𝑤), therefore, extends continuously to the closure

𝔻 and is zero on 𝜕𝔻. We apply the maximum principle or the Cauchy formula and
the fact that 𝜁 was arbitrary to find 𝜕 𝑓

𝜕𝑧1
≡ 0. By symmetry 𝜕 𝑓

𝜕𝑧2
≡ 0. Therefore, 𝑓 is

constant, which is a contradiction as 𝑓 was proper.
The proof is illustrated in  Figure 1.5 . In the picture, on the left-hand side is the

bidisc, and we restrict 𝑓 to the horizontal gray lines (where the second component is
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fixed to be 𝑤𝑘) and take a limit to produce an analytic disc in the boundary of 𝔹2. We
then show that 𝜕 𝑓

𝜕𝑧1
= 0 on the vertical gray line (where the first component is fixed to

be 𝜁). The right-hand side shows the disc where 𝑧1 = 𝜁 is fixed, which corresponds
to the vertical gray line on the left. □

|𝑧2 |

|𝑧1 |

(𝜁, 𝑤𝑘)
(𝜁, 𝑒 𝑖𝜃)

𝑒 𝑖𝜃
𝑤2

𝑤1 𝑤𝑘
(𝜁, 𝑤2)
(𝜁, 𝑤1)

Figure 1.5: The proof of Rothstein’s theorem.

The proof says that the reason why there is not even a proper mapping is the
fact that the boundary of the polydisc contains analytic discs, while the sphere does
not. The proof extends easily to higher dimensions as well, and the proof of the
generalization is left as an exercise.

Theorem 1.4.8. Let𝑈 = 𝑈′ ×𝑈′′ ⊂ ℂ𝑛 ×ℂ𝑘 , 𝑛, 𝑘 ≥ 1, and 𝑉 ⊂ ℂ𝑚 , 𝑚 ≥ 1, be bounded
domains such that 𝜕𝑉 contains no analytic discs. Then there exist no proper holomorphic
mapping 𝑓 : 𝑈 → 𝑉 .

Exercise 1.4.5: Prove  Theorem 1.4.8 .

The key takeaway from this section is that in several variables, to see if two
domains are equivalent, the geometry of the boundaries makes a difference, not just
the topology of the domains.

The following is a fun exercise in one dimension about proper maps of discs:

Exercise 1.4.6: Let 𝑓 : 𝔻 → 𝔻 be a proper holomorphic map. Then

𝑓 (𝑧) = 𝑒 𝑖𝜃
𝑚∏
𝑘=1

𝑧 − 𝑎𝑘
1 − �̄�𝑘𝑧

,

where 𝜃 ∈ ℝ and 𝑎𝑘 ∈ 𝔻 (that is, 𝑓 is a finite Blaschke product). Hint: Consider 𝑓 −1(0).
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In several variables, when 𝔻 is replaced by a ball, this question (what are the
proper maps) becomes far more involved, and if the dimensions of the balls are
different, it is not solved in general.

Exercise 1.4.7: Suppose 𝑓 : 𝑈 → 𝔻 be a proper holomorphic map where 𝑈 ⊂ ℂ𝑛 is a
nonempty domain. Prove that 𝑛 = 1. Hint: Consider the same idea as in  Exercise 1.2.21 .

Exercise 1.4.8: Suppose 𝑓 : 𝔹𝑛 → ℂ𝑚 is a nonconstant continuous map such that 𝑓 |𝔹𝑛
is holomorphic and ∥ 𝑓 (𝑧)∥ = 1 whenever ∥𝑧∥ = 1. Prove that 𝑓 |𝔹𝑛 maps into 𝔹𝑚 and
furthermore that this map is proper.

1.5 \ Cartan’s uniqueness theorem
The following theorem is another analogue of Schwarz’s lemma to several variables.
It says that for a bounded domain, it is enough to know that a self mapping is the
identity at a single point to show that it is the identity everywhere. As there are quite a
few theorems named for Cartan, this one is often referred to as the Cartan’s uniqueness
theorem. It is useful in computing the automorphism groups of certain domains. An
automorphism of𝑈 is a biholomorphic map from𝑈 onto𝑈 . Automorphisms form a
group under composition, called the automorphism group. As exercises, you will use
the theorem to compute the automorphism groups of 𝔹𝑛 and 𝔻𝑛 .

Theorem 1.5.1 (Cartan). Suppose 𝑈 ⊂ ℂ𝑛 is a bounded domain, 𝑎 ∈ 𝑈 , 𝑓 : 𝑈 → 𝑈 is a
holomorphic mapping, 𝑓 (𝑎) = 𝑎, and 𝐷 𝑓 (𝑎) is the identity. Then 𝑓 (𝑧) = 𝑧 for all 𝑧 ∈ 𝑈 .

Exercise 1.5.1: Find a counterexample to the theorem if 𝑈 is unbounded. Hint: For
simplicity take 𝑎 = 0 and𝑈 = ℂ𝑛 .

Before we get into the proof, we write the Taylor series of a function in a nicer way,
splitting it up into parts of different degree. A polynomial 𝑃 : ℂ𝑛 → ℂ is homogeneous
of degree 𝑑 if

𝑃(𝑠𝑧) = 𝑠𝑑𝑃(𝑧)
for all 𝑠 ∈ ℂ and 𝑧 ∈ ℂ𝑛 . A homogeneous polynomial of degree 𝑑 is a polynomial
whose every monomial is of total degree 𝑑. For instance, 𝑧2𝑤 − 𝑖𝑧3 + 9𝑧𝑤2 is
homogeneous of degree 3 in the variables (𝑧, 𝑤) ∈ ℂ2. A polynomial vector-valued
mapping is homogeneous of degree 𝑑 if each component is. If 𝑓 is holomorphic near
𝑎 ∈ ℂ𝑛 , then write the power series of 𝑓 at 𝑎 as

∞∑
𝑚=0

𝑓𝑚(𝑧 − 𝑎),
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where 𝑓𝑚 is a homogeneous polynomial of degree 𝑚. The 𝑓𝑚 is called the degree 𝑚
homogeneous part of 𝑓 at 𝑎. The 𝑓𝑚 would be vector-valued if 𝑓 is vector-valued, such
as in the statement of the theorem. In the proof, we will require the vector-valued
Cauchy estimates (exercise below) 

*
 .

Exercise 1.5.2: Prove a vector-valued version of the Cauchy estimates. Suppose 𝑓 : Δ𝑟(𝑎) →
ℂ𝑚 is continuous function holomorphic on a polydisc Δ𝑟(𝑎) ⊂ ℂ𝑛 . Let Γ denote the
distinguished boundary of Δ. Show that for every multi-index 𝛼,𝜕|𝛼 | 𝑓𝜕𝑧𝛼

(𝑎)
 ≤ 𝛼!

𝑟𝛼
sup
𝑧∈Γ

∥ 𝑓 (𝑧)∥ .

Proof of Cartan’s uniqueness theorem. Without loss of generality, assume 𝑎 = 0. Write 𝑓
as a power series at the origin, written in homogeneous parts:

𝑓 (𝑧) = 𝑧 + 𝑓𝑘(𝑧) +
∞∑

𝑚=𝑘+1
𝑓𝑚(𝑧) = 𝑧 + 𝑓𝑘(𝑧) + higher order terms,

where 𝑘 ≥ 2 is an integer such that 𝑓2(𝑧), 𝑓3(𝑧), . . . , 𝑓𝑘−1(𝑧) is zero. The degree-one
homogeneous part is simply the vector 𝑧, because the derivative of 𝑓 at the origin is
the identity. Compose 𝑓 with itself ℓ times:

𝑓 ℓ (𝑧) = 𝑓 ◦ 𝑓 ◦ · · · ◦ 𝑓︸           ︷︷           ︸
ℓ times

(𝑧).

As 𝑓 (𝑈) ⊂ 𝑈 , then 𝑓 ℓ is a holomorphic map of 𝑈 to 𝑈 . As 𝑈 is bounded, there is
an 𝑀 such that ∥𝑧∥ ≤ 𝑀 for all 𝑧 ∈ 𝑈 . Therefore, ∥ 𝑓 (𝑧)∥ ≤ 𝑀 for all 𝑧 ∈ 𝑈 , and
∥ 𝑓 ℓ (𝑧)∥ ≤ 𝑀 for all 𝑧 ∈ 𝑈 .

Note that

𝑓𝑘
(
𝑓 (𝑧)

)
= 𝑓𝑘

(
𝑧 + higher order terms

)
= 𝑓𝑘(𝑧) + higher order terms.

Therefore,

𝑓 2(𝑧) = 𝑓
(
𝑓 (𝑧)

)
= 𝑓 (𝑧) + 𝑓𝑘

(
𝑓 (𝑧)

)
+ higher order terms

= 𝑧 + 2 𝑓𝑘(𝑧) + higher order terms.

Continuing this procedure,

𝑓 ℓ (𝑧) = 𝑧 + ℓ 𝑓𝑘(𝑧) + higher order terms.
*The normal Cauchy estimates could also be used in the proof of Cartan by applying them

componentwise.
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Suppose Δ𝑟(0) is a polydisc whose closure is in𝑈 . Via Cauchy estimates, for every
multi-index 𝛼 with |𝛼 | = 𝑘,

𝛼!
𝑟𝛼
𝑀 ≥

𝜕|𝛼 | 𝑓 ℓ𝜕𝑧𝛼
(0)

 = ℓ

𝜕|𝛼 | 𝑓𝜕𝑧𝛼
(0)

 .
The inequality holds for all ℓ ∈ ℕ, and so 𝜕|𝛼 | 𝑓

𝜕𝑧𝛼 (0) = 0. Therefore, 𝑓𝑘 ≡ 0. On the
domain of convergence of the expansion, we get 𝑓 (𝑧) = 𝑧, as there is no other nonzero
homogeneous part in the expansion of 𝑓 . As 𝑈 is connected, then the identity
theorem says 𝑓 (𝑧) = 𝑧 for all 𝑧 ∈ 𝑈 . □

As an application, let us classify all biholomorphisms of all bounded circular
domains that fix a point. A circular domain is a domain 𝑈 ⊂ ℂ𝑛 such that if 𝑧 ∈ 𝑈 ,
then 𝑒 𝑖𝜃𝑧 ∈ 𝑈 for all 𝜃 ∈ ℝ.

Corollary 1.5.2. Suppose 𝑈,𝑉 ⊂ ℂ𝑛 are bounded circular domains with 0 ∈ 𝑈 , 0 ∈ 𝑉 ,
and 𝑓 : 𝑈 → 𝑉 is a biholomorphic map such that 𝑓 (0) = 0. Then 𝑓 is linear.

For example, 𝔹𝑛 is circular and bounded. So a biholomorphism of 𝔹𝑛 (an
automorphism) that fixes the origin is linear. Similarly, a polydisc centered at zero is
also circular and bounded. In fact, every Reinhardt domain is circular.

Proof. The map 𝑔(𝑧) = 𝑓 −1 (𝑒−𝑖𝜃 𝑓 (𝑒 𝑖𝜃𝑧)) is an automorphism of𝑈 and via the chain
rule, 𝑔′(0) = 𝐼. Therefore, Cartan says that 𝑓 −1 (𝑒−𝑖𝜃 𝑓 (𝑒 𝑖𝜃𝑧)) = 𝑧, or in other words,

𝑓 (𝑒 𝑖𝜃𝑧) = 𝑒 𝑖𝜃 𝑓 (𝑧).

Write 𝑓 near zero as 𝑓 (𝑧) = ∑∞
𝑚=1 𝑓𝑚(𝑧) where 𝑓𝑚 are homogeneous polynomials of

degree 𝑚 (notice 𝑓0 = 0). Then

∞∑
𝑚=1

𝑒 𝑖𝜃 𝑓𝑚(𝑧) = 𝑒 𝑖𝜃
∞∑
𝑚=1

𝑓𝑚(𝑧) =
∞∑
𝑚=1

𝑓𝑚(𝑒 𝑖𝜃𝑧) =
∞∑
𝑚=1

𝑒 𝑖𝑚𝜃 𝑓𝑚(𝑧).

By the uniqueness of the Taylor expansion, 𝑒 𝑖𝜃 𝑓𝑚(𝑧) = 𝑒 𝑖𝑚𝜃 𝑓𝑚(𝑧), or 𝑓𝑚(𝑧) =

𝑒 𝑖(𝑚−1)𝜃 𝑓𝑚(𝑧), for all 𝑚, all 𝑧, and all 𝜃. If 𝑚 ≠ 1, we obtain that 𝑓𝑚 ≡ 0, which
proves the claim. □

Exercise 1.5.3: Show that every automorphism 𝑓 of 𝔻𝑛 (that is, a biholomorphism
𝑓 : 𝔻𝑛 → 𝔻𝑛) is given as

𝑓 (𝑧) = 𝑃
(
𝑒 𝑖𝜃1 𝑧1 − 𝑎1

1 − �̄�1𝑧1
, 𝑒 𝑖𝜃2 𝑧2 − 𝑎2

1 − �̄�2𝑧2
, . . . , 𝑒 𝑖𝜃𝑛

𝑧𝑛 − 𝑎𝑛
1 − �̄�𝑛𝑧𝑛

)
for 𝜃 ∈ ℝ𝑛 , 𝑎 ∈ 𝔻𝑛 , and a permutation matrix 𝑃.
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Exercise 1.5.4: Given 𝑎 ∈ 𝔹𝑛 , define the linear map 𝑃𝑎𝑧 = ⟨𝑧,𝑎⟩
⟨𝑎,𝑎⟩ 𝑎 if 𝑎 ≠ 0 and 𝑃0𝑧 = 0.

Let 𝑠𝑎 =
√

1 − ∥𝑎∥2. Show that every automorphism 𝑓 of 𝔹𝑛 (that is, a biholomorphism
𝑓 : 𝔹𝑛 → 𝔹𝑛) can be written as

𝑓 (𝑧) = 𝑈 𝑎 − 𝑃𝑎𝑧 − 𝑠𝑎(𝐼 − 𝑃𝑎)𝑧
1 − ⟨𝑧, 𝑎⟩

for a unitary matrix𝑈 and some 𝑎 ∈ 𝔹𝑛 .

Exercise 1.5.5: Using the previous two exercises, show that 𝔻𝑛 and 𝔹𝑛 , 𝑛 ≥ 2, are not
biholomorphic via a method more in the spirit of what Poincaré used: Show that the groups
of automorphisms of the two domains are different groups when 𝑛 ≥ 2.

Exercise 1.5.6: Suppose 𝑈 ⊂ ℂ𝑛 is a bounded open set, 𝑎 ∈ 𝑈 , and 𝑓 : 𝑈 → 𝑈 is a
holomorphic mapping such that 𝑓 (𝑎) = 𝑎. Show that every eigenvalue 𝜆 of the matrix
𝐷 𝑓 (𝑎) satisfies |𝜆| ≤ 1.

Exercise 1.5.7 (Tricky): For any 𝑛, find a domain𝑈 ⊂ ℂ𝑛 such that the only biholomor-
phism 𝑓 : 𝑈 → 𝑈 is the identity 𝑓 (𝑧) = 𝑧. Hint: Take the polydisc (or the ball) and remove
some number of points (be careful in how you choose them). Then show that 𝑓 extends to a
biholomorphism of the polydisc. Then see what happens to those points you took out.

Exercise 1.5.8:
a) Show that Cartan’s uniqueness theorem is not true in the real case, even for rational

functions. That is, find a rational function 𝑅(𝑡) of a real variable 𝑡, such that 𝑅 that
takes (−1, 1) to (−1, 1), 𝑅′(0) = 1, and 𝑅(𝑡) is not the identity. You can even make
𝑅 bĳective.

b) Show that  Exercise 1.5.6  is not true in the real case. For every 𝛼 ∈ ℝ, find a rational
function 𝑅(𝑡) of a real variable 𝑡, such that 𝑅 takes (−1, 1) to (−1, 1) and 𝑅′(0) = 𝛼.

Exercise 1.5.9: Suppose 𝑈 ⊂ ℂ𝑛 is an open set, 𝑎 ∈ 𝑈 , 𝑓 : 𝑈 → 𝑈 is a holomorphic
mapping, 𝑓 (𝑎) = 𝑎, and suppose that |𝜆| < 1 for every eigenvalue 𝜆 of 𝐷 𝑓 (𝑎). Prove that
there exists a neighborhood𝑊 of 𝑎, such that limℓ→∞ 𝑓 ℓ (𝑧) = 𝑎 for all 𝑧 ∈𝑊 .

Exercise 1.5.10: Let𝑈 ⊂ ℂ𝑛 be a bounded open set and 𝑎 ∈ 𝑈 . Show that the mapping
𝜑 ↦→

(
𝜑(𝑎), 𝐷𝜑(𝑎)

)
from the set Aut(𝑈) of automorphisms of𝑈 to ℂ𝑛 ×ℂ𝑛2 is injective.

1.6 \ Riemann extension, zero sets, and injective maps
In one dimension, if a function is holomorphic in𝑈 \ {𝑝} and locally bounded 

*
 in𝑈 ,

in particular bounded near 𝑝, then the function extends holomorphically to𝑈 (see
* 𝑓 : 𝑈 \ 𝑋 → ℂ is locally bounded in 𝑈 if for every 𝑝 ∈ 𝑈 , there is a neighborhood 𝑊 of 𝑝 such

that 𝑓 is bounded on𝑊 ∩ (𝑈 \ 𝑋).
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 Proposition B.22  (i) ). In several variables, the same theorem holds, and the analogue
of a single point is the zero set of a holomorphic function.

Theorem 1.6.1 (Riemann extension theorem). Let𝑈 ⊂ ℂ𝑛 be a domain, 𝑔 ∈ O(𝑈), and
𝑔 is not identically zero. Let 𝑁 = 𝑔−1(0) be the zero set of 𝑔. If 𝑓 ∈ O(𝑈 \ 𝑁) is locally
bounded in𝑈 , then there exists a unique 𝐹 ∈ O(𝑈) such that 𝐹 |𝑈\𝑁 = 𝑓 .

The proof is an application of the Riemann extension theorem from one dimension.
And just as in one dimension, if the function is not bounded, we do not expect an
extension. For instance, 1

𝑔(𝑧) is not bounded near 𝑁 and indeed does not extend
through 𝑁 .

Proof. Take any 𝑝 ∈ 𝑁 , and let 𝐿 be a complex line through 𝑝. That is, 𝐿 is an image
of an affine mapping 𝜑 : ℂ → ℂ𝑛 defined by 𝜑(𝜉) = 𝑎𝜉 + 𝑝, for a vector 𝑎 ∈ ℂ𝑛 . The
composition 𝑔 ◦𝜑 is a holomorphic function of one variable, and it is either identically
zero, or the zero at 𝜉 = 0 is isolated. The function 𝑔 is not identically zero in any
neighborhood of 𝑝 by  the identity theorem  . So there is some line 𝐿 such that 𝑔 ◦ 𝜑 is
not identically zero, or in other words, 𝑝 is an isolated point of 𝐿 ∩ 𝑁 .

Write 𝑧′ = (𝑧1, . . . , 𝑧𝑛−1) and 𝑧 = (𝑧′, 𝑧𝑛). Without loss of generality, 𝑝 = 0 and 𝐿 is
the line obtained by 𝑧′ = 0. So 𝑔 ◦ 𝜑 is 𝜉 ↦→ 𝑔(0, 𝜉). There is a small 𝑟 > 0 such that 𝑔
is nonzero on the set given by |𝑧𝑛 | = 𝑟 and 𝑧′ = 0. By continuity, 𝑔 is nonzero on the
set given by |𝑧𝑛 | = 𝑟 and ∥𝑧′∥ < 𝜖 for some 𝜖 > 0. In particular, for any fixed 𝑠 ∈ ℂ𝑛−1,
with ∥𝑠∥ < 𝜖, setting 𝑧′ = 𝑠, the zeros of 𝜉 ↦→ 𝑔(𝑠, 𝜉) are isolated. See  Figure 1.6 .

𝑔(𝑧) = 0

𝜖

𝑔(𝑧) = 0
𝑧′

𝑧𝑛

𝑟

𝑧′ = 𝑠

Figure 1.6: Good neighborhood of the origin with respect to the zero set of 𝑔.

For ∥𝑧′∥ < 𝜖 and |𝑧𝑛 | < 𝑟, write

𝐹(𝑧′, 𝑧𝑛) =
1

2𝜋𝑖

∫
|𝜉|=𝑟

𝑓 (𝑧′, 𝜉)
𝜉 − 𝑧𝑛

𝑑𝜉.

The function 𝜉 → 𝑓 (𝑧′, 𝜉) is bounded and thus extends holomorphically to the entire
disc of radius 𝑟 by the Riemann extension from one dimension. By Cauchy integral
formula, 𝐹 is equal to 𝑓 at the points where they are both defined. By differentiating
under the integral, the function 𝐹 is holomorphic in all variables.
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In a neighborhood of each point of 𝑁 , 𝐹 is continuous (holomorphic in fact). A
continuous extension of 𝑓 must be unique on the closure of 𝑈 \ 𝑁 in the subspace
topology, (𝑈 \ 𝑁) ∩𝑈 . Due to the identity theorem, the set 𝑁 has empty interior, so
(𝑈 \ 𝑁) ∩𝑈 = 𝑈 . Hence, 𝐹 is the unique continuous extension of 𝑓 to𝑈 . □

Exercise 1.6.1: Let 𝐹 be a meromorphic function on an open set 𝑈 ⊂ ℂ𝑛 . Show that if
𝑝 ∈ 𝑈 is a pole (near 𝑝, 𝐹 = 𝑓/𝑔, and 𝐹 does not extend through 𝑝), then there exists a
sequence {𝑝𝑘} converging to 𝑝 such that 𝐹(𝑝𝑘) → ∞. Namely, 𝐹 is unbounded near 𝑝.

Exercise 1.6.2: Suppose that 𝑈 ⊂ ℂ𝑛 is open and 𝑁 ⊂ 𝑈 is a closed set such that for
every 𝜁 ∈ ℂ, the set {𝑧 ∈ 𝑈 : 𝑧𝑛 = 𝜁} ∩ 𝑁 is countable. Suppose that 𝑓 : 𝑈 \ 𝑁 → ℂ is
holomorphic and locally bounded in𝑈 . Then 𝑓 uniquely extends to a holomorphic function
of𝑈 . Hint: Every countable closed subset of ℂ has isolated points.

Exercise 1.6.3: Suppose 𝑈 = {𝑧 ∈ 𝔻2 : 𝑧1 ≠ 0 and 𝑧2 ≠ 0}. Compute the group of
automorphisms Aut(𝑈). Hint: See  Exercise 1.5.3 .

The set of zeros of a holomorphic function has a nice structure at most points.

Theorem 1.6.2. Suppose𝑈 ⊂ ℂ𝑛 is a domain, 𝑓 ∈ O(𝑈), and 𝑓 is not identically zero. Let
𝑁 = 𝑓 −1(0). Then there exists an open and dense (subspace topology) subset 𝑁reg ⊂ 𝑁 such
that at each 𝑝 ∈ 𝑁reg, after possibly reordering variables, 𝑁 can be locally (that is, in some
neighborhood) written as

𝑧𝑛 = 𝑔(𝑧1, . . . , 𝑧𝑛−1)

for a holomorphic function 𝑔.

Proof. If 𝑁 is locally a graph at 𝑝, then it is a graph for every point of 𝑁 near 𝑝. So
𝑁reg is open. If for every point 𝑝0 ∈ 𝑁 and every neighborhood 𝑊 of 𝑝0, we show
that 𝑁 ∩𝑊 has a regular point, then 𝑁reg is dense. Replacing 𝑁 with 𝑁 ∩𝑊 , it thus
suffices to show 𝑁reg is nonempty.

Since 𝑓 is not identically zero, then not all derivatives (of arbitrary order) of 𝑓
vanish identically on 𝑁 . If some first order derivative of 𝑓 does not vanish identically
on 𝑁 , let ℎ = 𝑓 . Otherwise, suppose 𝑘 is such that a derivative of 𝑓 of order 𝑘
does not vanish identically on 𝑁 , and all derivatives of 𝑓 order less than 𝑘 vanish
identically on 𝑁 . Let ℎ be one of the derivatives of order 𝑘 − 1. We obtain a function
ℎ : 𝑈 → ℂ, holomorphic, vanishing on 𝑁 , and such that without loss of generality
the 𝑧𝑛 derivative does not vanish identically on 𝑁 . Then there is some point 𝑝 ∈ 𝑁
such that 𝜕ℎ

𝜕𝑧𝑛
(𝑝) ≠ 0. We apply the implicit function theorem at 𝑝 to find 𝑔 such that

ℎ
(
𝑧1, . . . , 𝑧𝑛−1, 𝑔(𝑧1, . . . , 𝑧𝑛−1)

)
= 0,

and 𝑧𝑛 = 𝑔(𝑧1, . . . , 𝑧𝑛−1) is the unique solution to ℎ = 0 near 𝑝.
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The zero set of ℎ contains 𝑁 , the zero set of 𝑓 . We must show equality near 𝑝. That
is, we need to show that near 𝑝, every zero of ℎ is also a zero of 𝑓 . Write 𝑝 = (𝑝′, 𝑝𝑛).
Then the function

𝜉 ↦→ 𝑓 (𝑝′, 𝜉)

has an isolated zero in a small disc Δ around 𝑝𝑛 and is nonzero on the circle 𝜕Δ. By
 Rouché’s theorem , 𝜉 ↦→ 𝑓 (𝑧′, 𝜉) must have a zero for all 𝑧′ sufficiently close to 𝑝′

(close enough to make | 𝑓 (𝑝′, 𝜉) − 𝑓 (𝑧′, 𝜉)| < | 𝑓 (𝑝′, 𝜉)| for all 𝜉 ∈ 𝜕Δ). Since 𝑔(𝑧′) is
the unique solution 𝑧𝑛 to ℎ(𝑧′, 𝑧𝑛) = 0 near 𝑝 and the zero set of 𝑓 is contained in the
zero set of ℎ, we are done. □

The zero set 𝑁 of a holomorphic function is an example of a so-called subvariety
or an analytic set, although the general definition of a subvariety is more complicated.
See  chapter 6 . Points where 𝑁 is a graph of a holomorphic mapping are called regular
points, and we write them as 𝑁reg as above. In particular, since 𝑁 is a graph of a
single holomorphic function, they are called regular points of (complex) dimension
𝑛 − 1, or (complex) codimension 1. The set of regular points is what is called an
(𝑛−1)-dimensional complex submanifold. It is also a real submanifold of real dimension
2𝑛 − 2. The points on a subvariety that are not regular are called singular points.

To wit, one of important consequences of the theorem is that the zero set of a
holomorphic function is always quite large when 𝑛 ≥ 2.

Example 1.6.3: For 𝑈 = ℂ2, let 𝑓 (𝑧) = 𝑧2
1 − 𝑧2

2 and consider 𝑋 = 𝑓 −1(0). As
∇ 𝑓 = (2𝑧1, 2𝑧2) ≠ 0 outside of the origin, we can solve for 𝑧1 or 𝑧2 and so all points
of 𝑋 \ {0} are regular. In fact, 𝑧1 = 𝑧2 and 𝑧1 = −𝑧2 are the two possibilities. In no
neighborhood of the origin, however, is there a way to uniquely solve for either 𝑧1 or
𝑧2, since you always get two possible solutions: If you could solve 𝑧1 = 𝑔(𝑧2), then
both 𝑧2 = 𝑔(𝑧2) and −𝑧2 = 𝑔(𝑧2) must be true, a contradiction for any nonzero 𝑧2.
Similarly, we cannot solve for 𝑧1. So the origin is a singular point.

To see that you may have needed to use derivatives of the function in the proof of
the theorem, notice that the function 𝜑(𝑧) = (𝑧2

1 − 𝑧
2
2)

2 has the same zero set 𝑋, but
both 𝜕𝜑

𝜕𝑧1
and 𝜕𝜑

𝜕𝑧2
vanish on 𝑋. Using ℎ =

𝜕𝜑
𝜕𝑧1

or ℎ =
𝜕𝜑
𝜕𝑧2

in the proof will work.
Similarly, 𝜓(𝑧) = (𝑧1 − 𝑧2)2(𝑧1 + 𝑧2) has the same zero set 𝑋, and ℎ = 𝜓 will work

at regular points where 𝑧1 = −𝑧2, but ℎ =
𝜕𝜓
𝜕𝑧1

or ℎ =
𝜕𝜓
𝜕𝑧2

must be used where 𝑧1 = 𝑧2.

Example 1.6.4: The theorem is not true in the nonholomorphic setting. The set where
𝑥2

1 + 𝑥
2
2 = 0 in ℝ2 is only the origin, clearly not a graph of any function of one variable.

The first part of the theorem works, but the ℎ you find is either 2𝑥1 or 2𝑥2, and its
zero set is too big.

Exercise 1.6.4: Find all the regular points of the subvariety 𝑋 =
{
𝑧 ∈ ℂ2 : 𝑧2

1 = 𝑧3
2
}
.

Hint: The trick is showing that you’ve found all of them.
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Exercise 1.6.5: Suppose𝑈 ⊂ ℂ𝑛 is a domain and 𝑓 ∈ O(𝑈). Show that the complement
of the zero set,𝑈 \ 𝑓 −1(0), is connected.

Exercise 1.6.6: Suppose𝑈 ⊂ ℂ𝑛 is a domain and 𝑓 ∈ O(𝑈). Show that the zero set 𝑓 −1(0)
is not compact if it is nonempty. Hint: A compact set has a point farthest from the origin.

Remark 1.6.5. It is rather surprising that by a famous theorem of Whitney, any closed
set whatsoever in ℝ𝑛 is the zero set of a 𝐶∞-smooth function.

Let us now prove that a one-to-one holomorphic mapping is biholomorphic, a
result definitely not true in the smooth setting: 𝑥 ↦→ 𝑥3 is smooth, one-to-one, onto
map of ℝ to ℝ, but the inverse is not differentiable.

Theorem 1.6.6. Suppose 𝑈 ⊂ ℂ𝑛 is an open set and 𝑓 : 𝑈 → ℂ𝑛 is holomorphic and
one-to-one. Then the Jacobian determinant is never equal to zero on𝑈 .

In particular, if a holomorphic map 𝑓 : 𝑈 → 𝑉 is one-to-one and onto for two open sets
𝑈,𝑉 ⊂ ℂ𝑛 , then 𝑓 is biholomorphic.

The function 𝑓 is locally biholomorphic, in particular 𝑓 −1 is holomorphic, on the
set where the Jacobian determinant

𝐽 𝑓 (𝑧) = det𝐷 𝑓 (𝑧) = det
[
𝜕 𝑓𝑘
𝜕𝑧ℓ

(𝑧)
]
𝑘ℓ

is not zero. This follows from the inverse function theorem, which is just a special
case of  the implicit function theorem . The trick to prove the theorem above is to
prove that 𝐽 𝑓 is nowhere zero.

In one complex dimension, every holomorphic function 𝑓 can, in the proper
local holomorphic coordinates (and up to adding a constant), be written as 𝑧𝑑 for
𝑑 = 0, 1, 2, . . .: Near a 𝑧0 ∈ ℂ, there exists a constant 𝑐 and a local biholomorphic 𝑔
with 𝑔(𝑧0) = 0 such that 𝑓 (𝑧) = 𝑐 +

(
𝑔(𝑧)

)𝑑. So 𝑓 is one-to-one precisely if 𝑑 = 1. Such
a simple result does not hold in several variables in general, but if the mapping is
locally one-to-one, then the present theorem says that such a mapping can be locally
written as the identity.

Proof of the theorem. We proceed by induction. We know the theorem for 𝑛 = 1.
Suppose 𝑛 > 1 and suppose we know the theorem is true for dimension 𝑛 − 1.

Suppose for contradiction that 𝐽 𝑓 = 0 somewhere. First suppose that 𝐽 𝑓 is not
identically zero. Find a regular point 𝑞 of the zero set of 𝐽 𝑓 . Write the zero set of 𝐽 𝑓
near 𝑞 as

𝑧𝑛 = 𝑔(𝑧1, . . . , 𝑧𝑛−1)
for some holomorphic 𝑔. If we prove the theorem near 𝑞, we are done. Without loss
of generality assume 𝑞 = 0. The biholomorphic (near the origin) map

Ψ(𝑧1, . . . , 𝑧𝑛) =
(
𝑧1, 𝑧2, . . . , 𝑧𝑛−1, 𝑧𝑛 − 𝑔(𝑧1, . . . , 𝑧𝑛−1)

)
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takes the zero set of 𝐽 𝑓 to the set given by 𝑧𝑛 = 0. By considering 𝑓 ◦Ψ−1 instead of
𝑓 , we may assume that 𝐽 𝑓 = 0 on the set given by 𝑧𝑛 = 0. We may also assume that
𝑓 (0) = 0.

If 𝐽 𝑓 vanishes identically, then there is no need to do anything other than a
translation. In either case, we may assume that 0 ∈ 𝑈 , 𝑓 (0) = 0, and 𝐽 𝑓 = 0 when
𝑧𝑛 = 0. Really, all we need is for the set where 𝐽 𝑓 = 0 to be a sufficiently large set.

We wish to show that all the derivatives of 𝑓 in the 𝑧1, . . . , 𝑧𝑛−1 variables
vanish whenever 𝑧𝑛 = 0. This would clearly contradict 𝑓 being one-to-one, as
𝑓 (𝑧1, . . . , 𝑧𝑛−1, 0) would be constant. So for any point on 𝑧𝑛 = 0, consider one of
the components of 𝑓 and one of the derivatives of that component. Without loss of
generality, suppose the point is 0, and for contradiction suppose 𝜕 𝑓1

𝜕𝑧1
(0) ≠ 0. The map

𝐺(𝑧1, . . . , 𝑧𝑛) =
(
𝑓1(𝑧), 𝑧2, . . . , 𝑧𝑛

)
is biholomorphic on a small neighborhood of the origin. The function 𝑓 ◦ 𝐺−1 is
holomorphic and one-to-one on a small neighborhood. By the definition of 𝐺,

𝑓 ◦ 𝐺−1(𝑤1, . . . , 𝑤𝑛) =
(
𝑤1, ℎ(𝑤)

)
,

where ℎ is a holomorphic mapping taking a neighborhood of the origin in ℂ𝑛 to ℂ𝑛−1.
The mapping

𝜑(𝑤2, . . . , 𝑤𝑛) = ℎ(0, 𝑤2, . . . , 𝑤𝑛)

is a one-to-one holomorphic mapping of a neighborhood of the origin in ℂ𝑛−1 to ℂ𝑛−1.
By the induction hypothesis, the Jacobian determinant of 𝜑 is nowhere zero.

If we differentiate 𝑓 ◦ 𝐺−1, we notice 𝐷( 𝑓 ◦ 𝐺−1) = 𝐷 𝑓 ◦ 𝐷(𝐺−1). So at the origin

det𝐷( 𝑓 ◦ 𝐺−1) =
(
det𝐷 𝑓

) (
det𝐷(𝐺−1)

)
= 0.

We obtain a contradiction, as at the origin

det𝐷( 𝑓 ◦ 𝐺−1) = det𝐷𝜑 ≠ 0. □

The theorem is no longer true if the dimensions of the domain and range of the
mapping are not equal.

Exercise 1.6.7: Take the subvariety 𝑋 =
{
𝑧 ∈ ℂ2 : 𝑧2

1 = 𝑧3
2
}
. Find a one-to-one

holomorphic mapping 𝑓 : ℂ → 𝑋. Note that the derivative of 𝑓 vanishes at a certain point.
So  Theorem 1.6.6 has no analogue when the domain and range have different dimension.

Exercise 1.6.8: Find a continuous function 𝑓 : ℝ → ℝ2 that is one-to-one but such that
the inverse 𝑓 −1 : 𝑓 (ℝ) → ℝ is not continuous.
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This is an appropriate place to state a well-known and as yet unsolved conjecture
(and most likely ridiculously hard to solve): the Jacobian conjecture. This conjecture is
a converse to the theorem above in a special case: Suppose 𝐹 : ℂ𝑛 → ℂ𝑛 is a polynomial
map (each component is a polynomial) and the Jacobian derivative 𝐽𝐹 is never zero, then 𝐹 is
invertible with a polynomial inverse. Clearly 𝐹 would be locally one-to-one, but proving
(or disproving) the existence of a global polynomial inverse is the content of the
conjecture.

Exercise 1.6.9: Prove the Jacobian conjecture for 𝑛 = 1. That is, prove that if 𝐹 : ℂ → ℂ

is a polynomial such that 𝐹′ is never zero, then 𝐹 has an inverse, which is a polynomial.

Exercise 1.6.10: Let 𝐹 : ℂ𝑛 → ℂ𝑛 be an injective polynomial map. Prove 𝐽𝐹 is a nonzero
constant.

Exercise 1.6.11: Prove that the Jacobian conjecture is false if “polynomial” is replaced with
“entire holomorphic,” even for 𝑛 = 1.

Exercise 1.6.12: Prove that if a holomorphic 𝑓 : ℂ → ℂ is injective, then it is onto, and
therefore 𝑓 (𝑧) = 𝑎𝑧 + 𝑏 for 𝑎 ≠ 0.

We remark that while every injective holomorphic map of 𝑓 : ℂ → ℂ is onto,
the same is not true in higher dimensions. In ℂ𝑛 , 𝑛 ≥ 2, there exist so-called
Fatou–Bieberbach domains, that is, proper subsets of ℂ𝑛 that are biholomorphic to ℂ𝑛 .



2 \\ Convexity and Pseudoconvexity

2.1 \ Domains of holomorphy & holomorphic extension
It turns out that not every domain inℂ𝑛 is a natural domain for holomorphic functions.

Definition 2.1.1. Let𝑈 ⊂ ℂ𝑛 be a domain 

†
 (connected open set). The set𝑈 is a domain

of holomorphy if there do not exist nonempty open sets 𝑉 and 𝑊 , with 𝑉 ⊂ 𝑈 ∩𝑊 ,
𝑊 ⊄ 𝑈 , and𝑊 connected, such that for every 𝑓 ∈ O(𝑈) there exists an 𝐹 ∈ O(𝑊) with
𝑓 (𝑧) = 𝐹(𝑧) for all 𝑧 ∈ 𝑉 . See  Figure 2.1 .

𝑊
𝑈 𝑉

Figure 2.1: Definition of domain of holomorphy.

The idea is that if a domain𝑈 is not a domain of holomorphy and𝑉 ,𝑊 exist as in
the definition, then 𝑓 “extends across the boundary” somewhere.

Example 2.1.2: The unit ball 𝔹𝑛 ⊂ ℂ𝑛 is a domain of holomorphy. Proof: Consider
𝑈 = 𝔹𝑛 , and suppose 𝑉 ,𝑊 as in the definition exist. As𝑊 is connected and open, it
is path connected. There are points in𝑊 that are not in 𝔹𝑛 , so there is a path 𝛾 in𝑊
going from a point 𝑞 ∈ 𝑉 to some 𝑝 ∈ 𝜕𝔹𝑛 ∩𝑊 , and assume 𝛾 \ {𝑝} ⊂ 𝔹𝑛 . Without
loss of generality (after composing with rotations, that is, unitary matrices), assume
𝑝 = (1, 0, 0, . . . , 0). Consider 𝑓 (𝑧) = 1

1−𝑧1
. The function 𝐹 equals 𝑓 on the component

of 𝔹𝑛 ∩𝑊 that contains 𝑞. But that component contains 𝑝 and so 𝐹 blows up at 𝑝 (so
it cannot be holomorphic). The contradiction shows that no 𝑉 and𝑊 exist.

†Domain of holomorphy can make sense for disconnected sets (not domains), and some authors do
define it so.
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In one dimension, this notion has no real content: Every domain in ℂ is a domain
of holomorphy (exercise below).

Exercise 2.1.1 (Easy): In ℂ, every domain is a domain of holomorphy.

Exercise 2.1.2: If𝑈𝑘 ⊂ ℂ𝑛 are domains of holomorphy (possibly an infinite set of domains),
then the interior of

⋂
𝑘𝑈𝑘 is either empty or every connected component is a domain of

holomorphy.

Exercise 2.1.3 (Easy): Show that a polydisc in ℂ𝑛 is a domain of holomorphy.

Exercise 2.1.4: Suppose 𝑈𝑘 ⊂ ℂ𝑛𝑘 , 𝑘 = 1, . . . , ℓ are domains of holomorphy, show that
𝑈1 × · · · ×𝑈ℓ is a domain of holomorphy. In particular every cartesian product of domains
in ℂ is a domain of holomorphy.

Exercise 2.1.5: Suppose𝑈 ⊂ ℂ𝑛 is a domain of holomorphy and 𝑓 ∈ O(𝑈) is a function.
Show that𝑈 \ 𝑓 −1(𝑈) is a domain of holomorphy.

Exercise 2.1.6:
a) Given 𝑝 ∈ 𝜕𝔹𝑛 , find a function 𝑓 holomorphic on 𝔹𝑛 , 𝐶∞-smooth on 𝔹𝑛 (all real

partial derivatives of all orders extend continuously to 𝔹𝑛), that does not extend
past 𝑝 as a holomorphic function. Hint: For the principal branch of

√· the function
𝜉 ↦→ 𝑒−1/

√
𝜉 is holomorphic for Re 𝜉 > 0 and extends to be continuous (even smooth)

on all of Re 𝜉 ≥ 0.
b) Find a function 𝑓 holomorphic on 𝔹𝑛 that does not extend past any point of 𝜕𝔹𝑛 .

Various notions of convexity will play a big role later on. A set 𝑆 is geometrically
convex if 𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝑆 for all 𝑥, 𝑦 ∈ 𝑆 and 𝑡 ∈ [0, 1]. The exercise below says
that every geometrically convex domain is a domain of holomorphy. Domains of
holomorphy are often not geometrically convex (e.g. every domain in ℂ is a domain
of holomorphy), so classical convexity is not the correct notion, but it is in the right
direction.

Exercise 2.1.7: Show that a geometrically convex domain in ℂ𝑛 is a domain of holomorphy.

In the following, when we say 𝑓 ∈ O(𝑈) extends holomorphically to 𝑉 where
𝑈 ⊂ 𝑉 , we mean that there exists a function 𝐹 ∈ O(𝑉) such that 𝑓 = 𝐹 on𝑈 .
Remark 2.1.3. The subtlety of the definition of a domain of holomorphy is that it
does not necessarily talk about functions extending to a larger set, since we must
take into account single-valuedness. For instance, let 𝑓 be the principal branch of
the logarithm defined on the slit plane𝑈 = ℂ \ {𝑧 ∈ ℂ : Im 𝑧 = 0,Re 𝑧 ≤ 0}. We can
locally define an extension from one side through the boundary of the domain, but
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we cannot define an extension on a open set that contains𝑈 . This one-dimensional
example should be motivation for why we let 𝑉 be a proper subset of 𝑈 ∩𝑊 , and
why𝑊 need not contain all of𝑈 . This one dimensional intuition can be extended to
an actual example in ℂ𝑛 , see  Exercise 2.1.15 .

In dimension two or higher, not every domain is a domain of holomorphy. We
have the following theorem. The domain 𝐻 in the theorem is called the Hartogs figure.

Theorem 2.1.4. Let (𝑧, 𝑤) = (𝑧1, . . . , 𝑧𝑚 , 𝑤1, . . . , 𝑤𝑘) ∈ ℂ𝑚 × ℂ𝑘 be the coordinates. For
two numbers 0 < 𝑎, 𝑏 < 1, define the set 𝐻 ⊂ 𝔻𝑚+𝑘 by

𝐻 =
{
(𝑧, 𝑤) ∈ 𝔻𝑚+𝑘 : |𝑧ℓ | > 𝑎 for ℓ = 1, . . . , 𝑚

}
∪

{
(𝑧, 𝑤) ∈ 𝔻𝑚+𝑘 : |𝑤ℓ | < 𝑏 for ℓ = 1, . . . , 𝑘

}
.

If 𝑓 ∈ O(𝐻), then 𝑓 extends holomorphically to 𝔻𝑚+𝑘 .

In ℂ2 if 𝑚 = 1 and 𝑘 = 1, see  Figure 2.2 (the 𝑐 will come up in the proof).

𝑏

|𝑧 |

In diagrams, the Hartogs figure
is often drawn as:

1𝑐

|𝑤 |
1

𝑎

𝐻

Figure 2.2: Hartogs figure.

Proof. Pick a 𝑐 ∈ (𝑎, 1). Let

Γ =
{
𝑧 ∈ 𝔻𝑚 : |𝑧ℓ | = 𝑐 for ℓ = 1, . . . , 𝑚

}
.

The set Γ is the distinguished boundary of 𝑐𝔻𝑚 , a polydisc centered at 0 of radius 𝑐
in ℂ𝑚 . Define

𝐹(𝑧, 𝑤) = 1
(2𝜋𝑖)𝑚

∫
Γ

𝑓 (𝜉, 𝑤)
𝜉 − 𝑧 𝑑𝜉.

Clearly, 𝐹 is well-defined on
𝑐𝔻𝑚 ×𝔻𝑘

as 𝜉 only ranges through Γ and so as long as 𝑤 ∈ 𝔻𝑘 then (𝜉, 𝑤) ∈ 𝐻.
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The function 𝐹 is holomorphic in 𝑤 as we can differentiate underneath the integral
and 𝑓 is holomorphic in 𝑤 on 𝐻. Furthermore, 𝐹 is holomorphic in 𝑧 as the kernel

1
𝜉−𝑧 is holomorphic in 𝑧 as long as 𝑧 ∈ 𝑐𝔻𝑚 .

For any fixed 𝑤 with |𝑤ℓ | < 𝑏 for all ℓ , the Cauchy integral formula says 𝐹(𝑧, 𝑤) =
𝑓 (𝑧, 𝑤) for all 𝑧 ∈ 𝑐𝔻𝑚 . Hence, 𝐹 = 𝑓 on the open set 𝑐𝔻𝑚 × 𝑏𝔻𝑘 , and so they are
equal on (𝑐𝔻𝑚 ×𝔻𝑘) ∩ 𝐻. Combining 𝐹 and 𝑓 , we obtain a holomorphic function on
𝔻𝑚+𝑘 that extends 𝑓 . □

The theorem is used in many situations to extend holomorphic functions. We usu-
ally need to translate, scale, rotate (apply a unitary matrix), and even take more general
biholomorphic mappings of 𝐻, to place it wherever we need it. The corresponding
polydisc—or the image of the polydisc under the appropriate biholomorphic mapping
if one was used—to which all holomorphic functions on 𝐻 extend is denoted by 𝐻
and is called the hull of 𝐻.

Let us state a simple but useful case of the so-called Hartogs phenomenon. You have
already proved a version of this result in  Exercise 1.1.8 , but let us prove it with the
Hartogs figure.

Corollary 2.1.5. Let𝑈 ⊂ ℂ𝑛 , 𝑛 ≥ 2, be an open set and 𝑝 ∈ 𝑈 . Then every 𝑓 ∈ O
(
𝑈 \ {𝑝}

)
extends holomorphically to𝑈 .

Proof. Without loss of generality, by translating and scaling (those operations are
after all holomorphic), we assume that 𝑝 =

(
0, . . . , 0, 3

4
)

and the unit polydisc 𝔻𝑛 is
contained in𝑈 . We fit a Hartogs figure 𝐻 in𝑈 by letting 𝑚 = 𝑛 − 1 and 𝑘 = 1, writing
ℂ𝑛 = ℂ𝑛−1 ×ℂ1, and taking 𝑎 = 𝑏 = 1

2 . Then 𝐻 ⊂ 𝑈 , and 𝑝 ∈ 𝔻𝑛 \ 𝐻.  Theorem 2.1.4 

says that 𝑓 extends to be holomorphic through 𝑝. □

This result provides (yet) another reason why holomorphic functions in several
variables have no isolated zeros (or poles). If a zero of 𝑓 was isolated, then consider
1/𝑓 to obtain a contradiction. But the extension works in an even more surprising
fashion. We could take out a very large set, for example, any geometrically convex
compact subset:

Exercise 2.1.8: Suppose 𝑈 ⊂ ℂ𝑛 , 𝑛 ≥ 2, be an open set and 𝐾 ⊂⊂ 𝑈 is a compact
geometrically convex subset. If 𝑓 ∈ O(𝑈 \𝐾), then 𝑓 extends to be holomorphic in𝑈 . Hint:
Find a nice point on 𝜕𝐾 and try extending a little bit. Then make sure your extension is
single-valued.

Convexity of 𝐾 is not needed; we only need that𝑈 \ 𝐾 is connected, but the proof
is harder and we will get to it in  section 4.3 . The single-valuedness of the extension is
the key point that makes the general proof harder.

Notice the surprising consequence of the exercise: Every holomorphic function
on the shell

𝔹𝑛 \ 𝐵1−𝜖(0) =
{
𝑧 ∈ ℂ𝑛 : 1 − 𝜖 < ∥𝑧∥ < 1

}
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for any 𝜖 > 0 automatically extends to a holomorphic function of 𝔹𝑛 . In fact, we
will show later that one can take this to the limit: A function only defined on a
sphere that satisfies the Cauchy–Riemann equations on the sphere will also extend
holomorphically to the interior. We need 𝑛 > 1. The extension result decisively does
not work in one dimension; consider 1/𝑧. You have already shown in an exercise that
when 𝑛 ≥ 2, the zero sets of holomorphic functions is never compact, here is another
reason why. If 𝑛 ≥ 2 and 𝑓 ∈ O(𝔹𝑛) has a nonempty zero set, then the zero set must
contain points arbitrarily close to the boundary. If the set of zeros were compact in
𝔹𝑛 , then we could try to extend the function 1/𝑓 .

Exercise 2.1.9 (Hartogs triangle): Let

𝑇 =
{
(𝑧1, 𝑧2) ∈ 𝔻2 : |𝑧2 | < |𝑧1 |

}
.

Show that 𝑇 is a domain of holomorphy. Then show that if

𝑇 = 𝑇 ∪ 𝐵𝜖(0)

for an arbitrarily small 𝜖 > 0, then 𝑇 is not a domain of holomorphy. In fact, every function
holomorphic on 𝑇 extends to a holomorphic function of 𝔻2.

Exercise 2.1.10: Take the natural embedding of ℝ2 ⊂ ℂ2. Suppose 𝑓 ∈ O(ℂ2 \ℝ2). Show
that 𝑓 extends holomorphically to all of ℂ2. Hint: Change coordinates before using Hartogs.

Exercise 2.1.11: Suppose

𝑈 =
{
(𝑧, 𝑤) ∈ 𝔻2 : 1/2 < |𝑧 |

}
.

Draw𝑈 . Let 𝛾 =
{
𝑧 ∈ ℂ : |𝑧 | = 3/4

}
oriented positively. If 𝑓 ∈ O(𝑈), then show that the

function

𝐹(𝑧, 𝑤) = 1
2𝜋𝑖

∫
𝛾

𝑓 (𝜉, 𝑤)
𝜉 − 𝑧 𝑑𝜉

is well-defined in
(
(3/4)𝔻

)
× 𝔻, holomorphic where defined, yet it is not necessarily true

that 𝐹 = 𝑓 on the intersections of their domains.

Exercise 2.1.12: Suppose𝑈 ⊂ ℂ𝑛 is an open set such that for every 𝑧 ∈ ℂ𝑛 \ {0}, there is
a 𝜆 ∈ ℂ such that 𝜆𝑧 ∈ 𝑈 . Let 𝑓 : 𝑈 → ℂ be holomorphic with 𝑓 (𝜆𝑧) = 𝑓 (𝑧) whenever
𝑧 ∈ 𝑈 , 𝜆 ∈ ℂ and 𝜆𝑧 ∈ 𝑈 .

a) (easy) Prove that 𝑓 is constant.
b) (hard) Relax the requirement on 𝑓 to being meromorphic: 𝑓 = 𝑔/ℎ for holomorphic 𝑔

and ℎ. Find a nonconstant example, and prove that such an 𝑓 must be rational (that
is, 𝑔 and ℎ must be polynomials).

Exercise 2.1.13: Suppose

𝑈 =
{
𝑧 ∈ 𝔻3 : 1/2 < |𝑧1 | or 1/2 < |𝑧2 |

}
.

Prove that every function 𝑓 ∈ O(𝑈) extends to 𝔻3. Compare to  Exercise 2.1.11 .
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Exercise 2.1.14: Suppose 𝑈 = ℂ𝑛 \ {𝑧 ∈ ℂ𝑛 : 𝑧1 = 𝑧2 = 0}, 𝑛 ≥ 2. Show that every
𝑓 ∈ O(𝑈) extends holomorphically to ℂ𝑛 .

Exercise 2.1.15: Construct an example domain𝑈 ⊂ ℂ2 that is not a domain of holomorphy,
but such that there is no domain𝑊 ⊂ ℂ2 with𝑈 ⊂ 𝑊 such that every 𝑓 ∈ O(𝑈) extends
to𝑊 . Hint: Extending the example from  Remark 2.1.3 will almost give you a𝑈 , but it will
be a domain of holomorphy, you need to modify it a little bit.

Example 2.1.6: By  Exercise 2.1.10 ,𝑈1 = ℂ2 \ℝ2 is not a domain of holomorphy. On
the other hand,𝑈2 = ℂ2 \ {𝑧 ∈ ℂ2 : 𝑧2 = 0} is a domain of holomorphy; the function
𝑓 (𝑧) = 1

𝑧2
cannot extend. Therefore,𝑈1 and𝑈2 are rather different as far as complex

variables are concerned, yet they are the same set if we ignore the complex structure.
They are both a 4-dimensional real vector space minus a 2-dimensional real vector
subspace. That is,𝑈1 is the set where either Im 𝑧1 ≠ 0 or Im 𝑧2 ≠ 0, while𝑈2 is the set
where either Re 𝑧2 ≠ 0 or Im 𝑧2 ≠ 0.

The condition of being a domain of holomorphy, requires something more than
just some real geometric condition on the set. Namely, we have shown that the image
of a domain of holomorphy via an orthonormal real-linear mapping (so preserving
distances, angles, straight lines, etc.) need not be a domain of holomorphy. In
particular, when we want to “rotate” in complex analysis we use a complex linear
mapping, a unitary matrix.

In fact, one does not need a whole Hartogs figure to extend a holomorphic
function, a sequence of discs suffices. We will see another version of this theorem
later,  Theorem 2.5.2 .
Theorem 2.1.7 (Kontinuitätssatz—Continuity principle, first version 

*
 ). Suppose𝑈 ⊂

ℂ𝑛 is open and there exists a sequence of closed analytic discs 𝜑𝑘 : 𝔻 → ℂ𝑛 converging
(pointwise) to a closed analytic disc 𝜑, such that 𝜑𝑘(𝔻) ⊂ 𝑈 and 𝜑(𝜕𝔻) ⊂ 𝑈 . Then there
exists an 𝑠 such that for every 𝑓 ∈ O(𝑈) and for every 𝑝 ∈ 𝜑(𝔻), there is an 𝐹 ∈ O

(
Δ𝑠(𝑝)

)
where 𝐹 = 𝑓 on some open subset of𝑈 ∩ Δ𝑠(𝑝).

In particular, a𝑈 that possesses such discs where 𝜑(𝔻) does not lie entirely in𝑈
is not a domain of holomorphy. The continuity principle is illustrated in  Figure 2.3 ,
where analytic discs are drawn as lines and the boundaries as black dots. Note that
the conclusion is that 𝐹 continues analytically past any point in 𝜑(𝔻). However, we do
not necessarily get single-valued extension to a whole neighborhood of 𝜑(𝔻) without
a further hypothesis, see exercises below. 

†
 

Proof. Via Montel and considering slightly smaller discs (restrictions to discs of radii
1 − 𝜖), we may assume that 𝜑𝑘 converge uniformly to 𝜑 on 𝔻. Fix some 𝑓 ∈ O(𝑈).

*Sometimes this (or similar) theorem is called Behnke–Sommer, although the first version of it
(where the discs are complex lines) were proved by Hartogs.

†A counterexample can be found in S. Ivashkovich, Discrete and Continuous Versions of the Continuity
Principle, The Journal of Gemetric Analysis, 32 (2022), Paper No. 226.
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𝑈

Δ𝑠(𝑝)

Figure 2.3: Continuity principle for extension of functions.

As 𝜑(𝜕𝔻) is compact, there exists an 𝑟 > 0 such that for each 𝑧 ∈ 𝜑(𝜕𝔻), Δ𝑟(𝑧) ⊂ 𝑈 ,
meaning that the power series of 𝑓 converges in Δ𝑟(𝑧). Pick a positive 𝑠 < 𝑟. As 𝜑𝑘
converge uniformly, for sufficiently high 𝑘,⋃

𝑞∈𝜑𝑘(𝜕𝔻)
Δ𝑠(𝑞)

is a compact subset of 𝑈 and hence 𝑓 is bounded by some 𝑀 on this set. Cauchy
estimates give that ����𝜕𝛼 𝑓𝜕𝑧𝛼

(𝑞)
���� ≤ 𝑀𝛼!

𝑠𝛼
(2.1)

for all 𝑞 ∈ 𝜑𝑘(𝜕𝔻). By the maximum principle, ( 2.1 ) holds for all 𝑞 ∈ 𝜑𝑘(𝔻), and
hence the power series for 𝑓 at all 𝑞 ∈ 𝜑𝑘(𝔻) converges in Δ𝑠(𝑞). Thus we get an 𝐹
defined by this power series on Δ𝑠(𝑞) which agrees with 𝑓 in a neighborhood of 𝑞.
By considering a large enough 𝑘, and a slightly smaller 𝑠′, then for every 𝑝 ∈ 𝜑(𝔻)
we can fit a Δ𝑠′(𝑝) ⊂ Δ𝑠(𝑞) for some 𝑞 ∈ 𝜑𝑘(𝔻) and where 𝑞 ∈ Δ𝑠′(𝑝). Since 𝑝 must
be in the closure of 𝑈 by necessity, then Δ𝑠′(𝑝) intersects 𝑈 , and as it contains 𝑞, 𝐹
agrees with 𝑓 on some open subset of Δ𝑠′(𝑝).

The 𝑠 (and 𝑠′) only depends on the distance between the boundary of 𝑈 and
𝜑(𝜕𝔻), so it does not depend on 𝑓 and moreover, the assumption to restrict to smaller
discs in the beginning of the proof is valid. □

Exercise 2.1.16: Prove that given an analytic disc 𝜑 : 𝔻 → ℂ𝑛 and a point 𝑝 ∈ 𝜑(𝔻),
then for small enough 𝜖 > 0, the set Δ𝜖(𝑝) ∩ 𝜑(𝔻) is connected. Hint: Pull back the
coordinate functions from ℂ𝑛 to 𝔻.

Exercise 2.1.17: Prove that if furthermore 𝜑 is injective in the proof, then there exists an
entire neighborhood 𝑊 of 𝜑(𝔻) and for every 𝑓 ∈ O(𝑈), there is an 𝐹 ∈ O(𝑊) such that
𝑓 = 𝐹 on some open neighborhood of 𝜑(𝜕𝔻).

Exercise 2.1.18: Suppose that given an open𝑈 ⊂ ℂ𝑛 and there exists a collection of closed
analytic discs Δ𝛼 ⊂ 𝑈 such that

⋃
𝛼 𝜕Δ𝛼 ⊂⊂ 𝑈 . Show that for every 𝑝 in the closure

of
⋃

𝛼 Δ𝛼 (closure in ℂ𝑛) there exists an analytic disc through 𝑝 and a sequence of discs
converging to it that satisfy the hypotheses of the theorem.
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2.2 \ Tangent vectors, the Hessian, and convexity
An exercise in the previous section showed that every convex domain is a domain of
holomorphy. However, classical convexity is too strong. By  Exercise 2.1.4 , for any
domains 𝑈 ⊂ ℂ and 𝑉 ⊂ ℂ, the set 𝑈 × 𝑉 is a domain of holomorphy in ℂ2. The
domains𝑈 and 𝑉 , and hence𝑈 ×𝑉 , can be spectacularly nonconvex. But we should
not discard convexity completely. There is a notion of pseudoconvexity, which vaguely
means “convexity in the complex directions” and is the correct notion to distinguish
domains of holomorphy. Let us figure out what classical convexity means locally for
a smooth boundary.

Definition 2.2.1. A set𝑀 ⊂ ℝ𝑛 is a𝐶𝑘-smooth hypersurface if at each point 𝑝 ∈ 𝑀, there
exists a 𝑘-times continuously differentiable function 𝑟 : 𝑉 → ℝ with nonvanishing
derivative, defined in a neighborhood 𝑉 of 𝑝 such that 𝑀 ∩𝑉 =

{
𝑥 ∈ 𝑉 : 𝑟(𝑥) = 0

}
.

The function 𝑟 is called the defining function of 𝑀 (at 𝑝).
An open set (or domain)𝑈 ⊂ ℝ𝑛 with 𝐶𝑘-smooth boundary is a set where 𝜕𝑈 is a

𝐶𝑘-smooth hypersurface, and at every 𝑝 ∈ 𝜕𝑈 there is a defining function 𝑟 such that
𝑟 < 0 for points in𝑈 and 𝑟 > 0 for points not in𝑈 . See  Figure 2.4 .

By simply smooth, we mean 𝐶∞-smooth, that is, the 𝑟 is infinitely differentiable.

𝑝
𝑉

𝑟 < 0

𝑟 > 0

𝑟 = 0
𝑈

Figure 2.4: Local defining function for a domain.

What we really defined is an embedded hypersurface. In particular, in this book the
topology on the set 𝑀 will be the subset topology. Furthermore, in this book we
generally deal with smooth (that is, 𝐶∞) functions and hypersurfaces. Dealing with
𝐶𝑘-smooth functions for finite 𝑘 introduces technicalities that make certain theorems
and arguments unnecessarily difficult.

As the derivative of 𝑟 is nonvanishing, a hypersurface 𝑀 is locally the graph of
one variable over the rest using the implicit function theorem. That is, 𝑀 is a smooth
hypersurface if it is locally a set defined by 𝑥𝑘 = 𝜑(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛) for some
𝑘 and some smooth function 𝜑.

The definition of an open set with smooth boundary is not simply that the
boundary is a smooth hypersurface, that is not enough. It says that one side of that
hypersurface is in𝑈 and one side is not in𝑈 : As the derivative of 𝑟 never vanishes, 𝑟
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has different signs on different sides of
{
𝑥 ∈ 𝑉 : 𝑟(𝑥) = 0

}
. The verification of this

fact is left to the reader. (Hint: Look at where the gradient points.) We can, in fact,
find a single global defining function for every open set with smooth boundary, but
we have no need of this.

Same definition works for ℂ𝑛 , where we treat ℂ𝑛 as ℝ2𝑛 . For example, the ball 𝔹𝑛
is a domain with smooth boundary with defining function 𝑟(𝑧, �̄�) = ∥𝑧∥2 − 1. In ℂ𝑛 a
hypersurface defined as above is a real hypersurface, to distinguish it from a complex
hypersurface that would be the zero set of a holomorphic function, although we may
leave out the word “real” if it is clear from context.

Definition 2.2.2. For a point 𝑝 ∈ ℝ𝑛 , the set of tangent vectors 𝑇𝑝ℝ𝑛 is given by

𝑇𝑝ℝ
𝑛 = spanℝ

{
𝜕

𝜕𝑥1

���
𝑝
, . . . ,

𝜕

𝜕𝑥𝑛

���
𝑝

}
.

That is, a vector 𝑋𝑝 ∈ 𝑇𝑝ℝ𝑛 is an object of the form

𝑋𝑝 =

𝑛∑
𝑘=1

𝑎𝑘
𝜕

𝜕𝑥𝑘

���
𝑝
,

for real numbers 𝑎𝑘 . For computations, 𝑋𝑝 could be represented by an 𝑛-vector
𝑎 = (𝑎1, . . . , 𝑎𝑛). However, if 𝑝 ≠ 𝑞, then 𝑇𝑝ℝ𝑛 and 𝑇𝑞ℝ𝑛 are distinct spaces. An object
𝜕

𝜕𝑥𝑘

��
𝑝

is a real linear functional 

*
 on the space of smooth functions: When applied to

a smooth function 𝑔, it gives 𝜕𝑔
𝜕𝑥𝑘

��
𝑝
. Therefore, 𝑋𝑝 is also such a functional. It is the

directional derivative from calculus; it is computed as 𝑋𝑝 𝑓 = ∇ 𝑓 |𝑝 · (𝑎1, . . . , 𝑎𝑛).

Exercise 2.2.1: Suppose that 𝑋 is a real linear functional on the set of real polynomials in 𝑛
variables such that 𝑋( 𝑓 𝑔) = (𝑋 𝑓 )𝑔 + 𝑓 (𝑋𝑔). Show that we can compute 𝑋 by identifying
it with an element of 𝑋 ∈ 𝑇0ℝ

𝑛 .

Definition 2.2.3. Let 𝑀 ⊂ ℝ𝑛 be a smooth hypersurface, 𝑝 ∈ 𝑀, and 𝑟 is a defining
function at 𝑝, then a vector 𝑋𝑝 ∈ 𝑇𝑝ℝ𝑛 is tangent to 𝑀 at 𝑝 if

𝑋𝑝𝑟 = 0, or in other words
𝑛∑
𝑘=1

𝑎𝑘
𝜕𝑟

𝜕𝑥𝑘

���
𝑝
= 0.

The space of tangent vectors to 𝑀 is denoted by 𝑇𝑝𝑀, and is called the tangent space
to 𝑀 at 𝑝.

The space 𝑇𝑝𝑀 is an (𝑛 − 1)-dimensional real vector space—it is a subspace of
an 𝑛-dimensional 𝑇𝑝ℝ𝑛 given by a single linear equation. Recall from calculus that
the gradient ∇𝑟 |𝑝 is “normal” to 𝑀 at 𝑝, and the tangent space is given by all the
𝑛-vectors 𝑎 that are orthogonal to the normal, that is, ∇𝑟 |𝑝 · 𝑎 = 0.

*Linear real-valued function.
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We cheated in the terminology, and assumed without justification that 𝑇𝑝𝑀
depends only on 𝑀, not on 𝑟. Fortunately, the definition of 𝑇𝑝𝑀 is independent of
the choice of 𝑟 by the next two exercises.

Exercise 2.2.2: Suppose 𝑀 ⊂ ℝ𝑛 is a smooth hypersurface and 𝑟 is a smooth defining
function for 𝑀 at 𝑝.

a) Suppose 𝜑 is another smooth defining function of𝑀 on a neighborhood of 𝑝. Show that
there exists a smooth nonvanishing function 𝑔 such that 𝜑 = 𝑔𝑟 (in a neighborhood
of 𝑝).

b) Now suppose 𝜑 is an arbitrary smooth function that vanishes on 𝑀 (not necessarily
a defining function). Again show that 𝜑 = 𝑔𝑟, but now 𝑔 may possibly vanish.

Hint: First suppose 𝑟 = 𝑥𝑛 and find a 𝑔 such that 𝜑 = 𝑥𝑛𝑔. Then find a local change of
variables to make 𝑀 into the set given by 𝑥𝑛 = 0. A useful calculus fact: If 𝑓 (0) = 0 and 𝑓
is smooth, then 𝑠

∫ 1
0 𝑓 ′(𝑡𝑠) 𝑑𝑡 = 𝑓 (𝑠), and

∫ 1
0 𝑓 ′(𝑡𝑠) 𝑑𝑡 is a smooth function of 𝑠.

Exercise 2.2.3: Show that 𝑇𝑝𝑀 is independent of the defining function: Prove that if 𝑟 and
𝑟 are defining functions for 𝑀 at 𝑝, then

∑
𝑘 𝑎𝑘

𝜕𝑟
𝜕𝑥𝑘

��
𝑝
= 0 if and only if

∑
𝑘 𝑎𝑘

𝜕𝑟
𝜕𝑥𝑘

��
𝑝
= 0.

The tangent space 𝑇𝑝𝑀 is the set of derivatives along 𝑀 at 𝑝. If 𝑟 is a defining
function of 𝑀, and 𝑓 and ℎ are two smooth functions such that 𝑓 = ℎ on 𝑀, then

 Exercise 2.2.2 says that

𝑓 − ℎ = 𝑔𝑟, or 𝑓 = ℎ + 𝑔𝑟,

for some smooth 𝑔. Applying 𝑋𝑝 we find

𝑋𝑝 𝑓 = 𝑋𝑝ℎ + 𝑋𝑝(𝑔𝑟) = 𝑋𝑝ℎ + (𝑋𝑝𝑔)𝑟 + 𝑔(𝑋𝑝𝑟) = 𝑋𝑝ℎ + (𝑋𝑝𝑔)𝑟.

So 𝑋𝑝 𝑓 = 𝑋𝑝ℎ on 𝑀 (where 𝑟 = 0). In other words, 𝑋𝑝 𝑓 only depends on the values
of 𝑓 on 𝑀.

This brings up a natural question about what is a smooth function on 𝑀. By
definition, a function 𝑓 defined on 𝑀 (or any other subset of ℝ𝑛 that is not open) is
smooth if it is locally the restriction to𝑀 of a smooth function in an open neighborhood.
This extension of 𝑓 is not unique, so the above calculation shows that differentiating
𝑓 via 𝑇𝑝𝑀 is indepdendent on how 𝑓 is extended to a neighborhood.

Example 2.2.4: If 𝑀 ⊂ ℝ𝑛 is given by 𝑥𝑛 = 0, then 𝑇𝑝𝑀 is given by derivatives of the
form

𝑋𝑝 =

𝑛−1∑
𝑘=1

𝑎𝑘
𝜕

𝜕𝑥𝑘

���
𝑝
.

That is, derivatives along the first 𝑛 − 1 variables only.
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Definition 2.2.5. The disjoint union

𝑇ℝ𝑛 =
⋃
𝑝∈ℝ𝑛

𝑇𝑝ℝ
𝑛

is called the tangent bundle. There is a natural identification ℝ𝑛 ×ℝ𝑛 � 𝑇ℝ𝑛 :

(𝑝, 𝑎) ∈ ℝ𝑛 ×ℝ𝑛 ↦→
𝑛∑
𝑘=1

𝑎𝑘
𝜕

𝜕𝑥𝑘

���
𝑝
∈ 𝑇ℝ𝑛 .

The topology and smooth structure on 𝑇ℝ𝑛 comes from this identification. The
wording “bundle” (a bundle of fibers) comes from the natural projection 𝜋 : 𝑇ℝ𝑛 →
ℝ𝑛 , where fibers are 𝜋−1(𝑝) = 𝑇𝑝ℝ𝑛 .

A smooth vector field in 𝑇ℝ𝑛 is an object of the form

𝑋 =

𝑛∑
𝑘=1

𝑎𝑘
𝜕

𝜕𝑥𝑘
,

where 𝑎𝑘 are smooth functions. That is, 𝑋 is a smooth function 𝑋 : 𝑉 ⊂ ℝ𝑛 → 𝑇ℝ𝑛

such that 𝑋(𝑝) ∈ 𝑇𝑝ℝ𝑛 . Usually, we write 𝑋𝑝 rather than 𝑋(𝑝). To be more fancy, say
𝑋 is a section of 𝑇ℝ𝑛 .

Similarly, the tangent bundle of 𝑀 is

𝑇𝑀 =
⋃
𝑝∈𝑀

𝑇𝑝𝑀.

A vector field 𝑋 in 𝑇𝑀 is a vector field such that 𝑋𝑝 ∈ 𝑇𝑝𝑀 for all 𝑝 ∈ 𝑀.

Before we move on, we note how smooth maps transform tangent spaces. Given
a smooth 𝑓 : 𝑈 ⊂ ℝ𝑛 → ℝ𝑚 , the derivative at 𝑝 is a linear mapping of the tangent
spaces: 𝐷 𝑓 (𝑝) : 𝑇𝑝ℝ𝑛 → 𝑇𝑓 (𝑝)ℝ

𝑚 . If 𝑋𝑝 ∈ 𝑇𝑝ℝ𝑛 , then 𝐷 𝑓 (𝑝)𝑋𝑝 should be in 𝑇𝑓 (𝑝)ℝ𝑚 .
The vector𝐷 𝑓 (𝑝)𝑋𝑝 is defined by how it acts on smooth functions 𝜑 of a neighborhood
of 𝑓 (𝑝) in ℝ𝑚 : (

𝐷 𝑓 (𝑝)𝑋𝑝
)
𝜑 = 𝑋𝑝(𝜑 ◦ 𝑓 ).

It is the only reasonable way to put those three objects together. When the spaces are
ℂ𝑛 and ℂ𝑚 , we denote this derivative as 𝐷ℝ 𝑓 to distinguish it from the holomorphic
derivative. As far as calculus computations are concerned, the linear mapping 𝐷 𝑓 (𝑝)
is the Jacobian matrix acting on vectors in the standard basis of the tangent space as
given above. This is why we use the same notation for the Jacobian matrix and the
derivative acting on tangent spaces. To verify this claim, it is enough to see where the
basis element 𝜕

𝜕𝑥𝑘

��
𝑝

goes, and the form of 𝐷 𝑓 (𝑝) as a matrix follows by the chain rule.
For instance, the derivative of the mapping 𝑓 (𝑥1, 𝑥2) = (𝑥1 +2𝑥2 + 𝑥2

1 , 3𝑥1 +4𝑥2 + 𝑥1𝑥2)
at the origin is given by the matrix

[ 1 2
3 4

]
, and so the vector 𝑋𝑝 = 𝑎 𝜕

𝜕𝑥1

��
0 + 𝑏

𝜕
𝜕𝑥2

��
0 gets

taken to 𝐷 𝑓 (0)𝑋0 = (𝑎 + 2𝑏) 𝜕
𝜕𝑦1

��
0 + (3𝑎 + 4𝑏) 𝜕

𝜕𝑦2

��
0, where (𝑦1, 𝑦2) are the coordinates
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on the target. You should check on some test function, such as 𝜑(𝑦1, 𝑦2) = 𝛼𝑦1 + 𝛽𝑦2,
that the definition above is satisfied.

Suppose that for a smooth map 𝑓 and a smooth hypersurfaces 𝑀 and 𝑀′ you
have 𝑓 (𝑀) ⊂ 𝑀′. Then you get the same containment for the tangent spaces. Indeed,
suppose that 𝑟 is a defining function for 𝑀 near 𝑝 and 𝑟′ is a defining function for 𝑀′

near 𝑓 (𝑝), and suppose that 𝑋𝑝 ∈ 𝑇𝑝𝑀. Then 𝑟′ ◦ 𝑓 is zero on 𝑀, and hence(
𝐷 𝑓 (𝑝)𝑋𝑝

)
𝑟′ = 𝑋𝑝(𝑟′ ◦ 𝑓 ) = 𝑋𝑝(0) = 0.

If the map is a diffeomorphism (has an inverse), then 𝑓 (𝑀) is a smooth hypersurface
with defining function 𝑓 −1 ◦ 𝑟, the derivative is an invertible linear map, and we get
that 𝐷 𝑓 (𝑝) restricts to an isomorphism of 𝑇𝑝𝑀 and 𝑇𝑓 (𝑝) 𝑓 (𝑀). That is, we proved the
following proposition.

Proposition 2.2.6. Suppose𝑈 ⊂ ℝ𝑛 is open,𝑀 ⊂ 𝑈 is a smooth hypersurface, 𝑓 : 𝑈 → ℝ𝑚

is a smooth function, 𝑀′ ⊂ ℝ𝑚 is a smooth hypersurface such that 𝑓 (𝑀) ⊂ 𝑀′, and 𝑝 ∈ 𝑀.
Then

𝐷 𝑓 (𝑝)(𝑇𝑝𝑀) ⊂ 𝑇𝑓 (𝑝)𝑀′.

Moreover, if 𝑚 = 𝑛 and 𝑓 is a diffeomorphism (bĳective onto some open set𝑈′ such that 𝑓 −1

is smooth), then 𝑓 (𝑀) is a smooth hypersurface and 𝐷 𝑓 (𝑝)(𝑇𝑝𝑀) = 𝑇𝑓 (𝑝) 𝑓 (𝑀).
Now that we know what tangent vectors are and how they transform, let us define

convexity for domains with smooth boundary.

Definition 2.2.7. Suppose𝑈 ⊂ ℝ𝑛 is an open set with smooth boundary, and 𝑟 is a
defining function for 𝜕𝑈 at 𝑝 ∈ 𝜕𝑈 such that 𝑟 < 0 on𝑈 . If

𝑛∑
𝑘=1,ℓ=1

𝑎𝑘𝑎ℓ
𝜕2𝑟

𝜕𝑥𝑘𝜕𝑥ℓ

���
𝑝
≥ 0, for all 𝑋𝑝 =

𝑛∑
𝑘=1

𝑎𝑘
𝜕

𝜕𝑥𝑘

���
𝑝

∈ 𝑇𝑝𝜕𝑈,

then 𝑈 is said to be convex at 𝑝. If the inequality above is strict for all nonzero
𝑋𝑝 ∈ 𝑇𝑝𝜕𝑈 , then𝑈 is said to be strongly convex at 𝑝.

A domain𝑈 is convex if it is convex at all 𝑝 ∈ 𝜕𝑈 . If𝑈 is bounded  

*
 , we say𝑈 is

strongly convex if it is strongly convex at all 𝑝 ∈ 𝜕𝑈 .

The matrix [
𝜕2𝑟

𝜕𝑥𝑘𝜕𝑥ℓ

���
𝑝

]
𝑘ℓ

is the Hessian of 𝑟 at 𝑝. So,𝑈 is convex at 𝑝 ∈ 𝜕𝑈 if the Hessian of 𝑟 at 𝑝 as a bilinear
form is positive semidefinite when restricted to 𝑇𝑝𝜕𝑈 . More concretely, let 𝐻 be
the Hessian of 𝑟 at 𝑝, and treat 𝑎 ∈ ℝ𝑛 as a column vector. Then 𝜕𝑈 is convex at 𝑝
whenever

𝑎𝑡𝐻𝑎 ≥ 0, for all 𝑎 ∈ ℝ𝑛 such that ∇𝑟 |𝑝 · 𝑎 = 0.
*Matters are a little more complicated with the “strong” terminology if 𝑈 is unbounded, so

sometimes strictly convex is used instead.
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This bilinear form given by the Hessian is the second fundamental form from
Riemannian geometry in mild disguise (or perhaps it is the other way around).

We cheated a little bit, since we have not proved that the notion of convexity is
well-defined. In particular, there are many possible defining functions.

Exercise 2.2.4: Show that the definition of convexity is independent of the defining function.
Hint: If 𝑟 is another defining function near 𝑝, then there is a smooth function 𝑔 > 0 such
that 𝑟 = 𝑔𝑟.

Example 2.2.8: The unit disc in ℝ2 is strongly convex. Proof: Let (𝑥, 𝑦) be the
coordinates and let 𝑟(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 1 be the defining function. The tangent space
of the circle is one-dimensional, so we simply need to find a single nonzero tangent
vector at each point. Consider the gradient ∇𝑟 = (2𝑥, 2𝑦) to check that

𝑋 = 𝑦
𝜕

𝜕𝑥
− 𝑥 𝜕

𝜕𝑦

is tangent to the circle, that is, 𝑋𝑟 = 𝑋(𝑥2 + 𝑦2 − 1) = (2𝑥, 2𝑦) · (𝑦,−𝑥) = 0 on the
circle—by chance, 𝑋𝑟 = 0 everywhere. The vector field 𝑋 is nonzero on the circle, so
at each point it gives a basis of the tangent space. See  Figure 2.5 .

∇𝑟

𝑋 = 𝑦 𝜕
𝜕𝑥 − 𝑥

𝜕
𝜕𝑦

𝑟 > 0
𝑟 < 0

Figure 2.5: Tangent vector to a circle.

The Hessian matrix of 𝑟 is [
𝜕2𝑟
𝜕𝑥2

𝜕2𝑟
𝜕𝑥𝜕𝑦

𝜕2𝑟
𝜕𝑦𝜕𝑥

𝜕2𝑟
𝜕𝑦2

]
=

[
2 0
0 2

]
.

Applying the vector (𝑦,−𝑥) gets us[
𝑦 −𝑥

] [
2 0
0 2

] [
𝑦

−𝑥

]
= 2𝑦2 + 2𝑥2 = 2 > 0.

So the domain given by 𝑟 < 0 is strongly convex at all points.

In general, to construct a tangent vector field for a curve inℝ2, consider 𝑟𝑦 𝜕
𝜕𝑥 − 𝑟𝑥

𝜕
𝜕𝑦 .

In higher dimensions, running through enough pairs of variables gets a basis of 𝑇𝑀.
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Exercise 2.2.5: Show that if an open set with smooth boundary is strongly convex at a
point 𝑝, then it is strongly convex for all points in some neighborhood of 𝑝. Then find an
example of an open set with smooth boundary that is convex at one point 𝑝, but not convex
at points arbitrarily near 𝑝.

Exercise 2.2.6: Show that the domain in ℝ2 defined by 𝑥4 + 𝑦4 < 1 is convex, but not
strongly convex. Find all the points where the domain is not strongly convex.

Exercise 2.2.7: Show that the domain in ℝ3 defined by (𝑥2
1 + 𝑥

2
2)

2
< 𝑥3 is strongly convex

at all points except the origin, where it is just convex (but not strongly).

The right sort of changes of coordinates that preserve convexity are invertible real
affine linear mappings. It is rather clear for geometric convexity, as these are precisely
the maps that take lines to lines, but it takes a little bit of computation for convexity
at a point of a smooth boundary (exercise below). A useful analogy to keep in mind
(but not to go overboard with) is that holomorphic functions are sort of like affine
functions. And so it will be with convexity being replaced with pseudoconvexity in
just a little bit, and affine linear maps with holomorphic maps.

Exercise 2.2.8: Prove that translations and invertible linear maps (matrices) preserve
convexity and strong convexity at a point for a domain with smooth boundary.

In the following, we use the big-oh notation, although we use a perhaps less
standard shorthand 

*
 . A smooth function is 𝑂(ℓ ) at a point 𝑝 (usually the origin), if

all its derivatives of order 0, 1, . . . , ℓ − 1 vanish at 𝑝. For example, if 𝑓 is 𝑂(3) at the
origin, then 𝑓 (0) = 0, and its first and second derivatives vanish at the origin.

For computations it is often useful to use a more convenient defining function,
that is, it is convenient to write 𝑀 as a graph.

Proposition 2.2.9. Suppose 𝑀 ⊂ ℝ𝑛 is a smooth hypersurface, and 𝑝 ∈ 𝑀. Then after a
rotation (orthogonal matrix) and translation, 𝑝 is the origin, and near the origin, 𝑀 is given
by

𝑦 = 𝜑(𝑥),

where (𝑥, 𝑦) ∈ ℝ𝑛−1 ×ℝ are our coordinates and 𝜑 is a smooth function that is 𝑂(2) at the
origin, namely, 𝜑(0) = 0 and 𝑑𝜑(0) = 0. Consequently,

𝑇0𝑀 = spanℝ

{
𝜕

𝜕𝑥1

���
𝑝
, . . . ,

𝜕

𝜕𝑥𝑛−1

���
𝑝

}
.

If 𝑀 is the boundary of an open set 𝑈 with smooth boundary and 𝑟 < 0 on 𝑈 , then the
rotation can be chosen such that 𝑦 > 𝜑(𝑥) for points in𝑈 . See  Figure 2.6 .
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𝑈
𝑦 > 𝜑(𝑥)

𝑥

𝑦

𝑦 = 𝜑(𝑥)

Figure 2.6: Defining a domain as a graph.

Proof. Let 𝑟 be a defining function at 𝑝. Take 𝑣 = ∇𝑟 |𝑝 . By translating 𝑝 to the origin,
and applying a rotation (an orthogonal matrix), we assume 𝑣 = (0, 0, . . . , 0, 𝑣𝑛), where
𝑣𝑛 < 0. Denote our coordinates by (𝑥, 𝑦) ∈ ℝ𝑛−1 × ℝ. As ∇𝑟 |0 = 𝑣, then 𝜕𝑟

𝜕𝑦 (0) ≠ 0.
The implicit function theorem gives a smooth function 𝜑 such that 𝑟

(
𝑥, 𝜑(𝑥)

)
= 0 for

all 𝑥 in a neighborhood of the origin, and
{
(𝑥, 𝑦) : 𝑦 = 𝜑(𝑥)

}
are all the solutions to

𝑟 = 0 near the origin.
We need to show that the derivative of 𝜑 at 0 vanishes. As 𝑟

(
𝑥, 𝜑(𝑥)

)
= 0 for all 𝑥

in a neighborhood of the origin, we differentiate. For every 𝑘 = 1, . . . , 𝑛 − 1,

0 =
𝜕

𝜕𝑥𝑘

[
𝑟
(
𝑥, 𝜑(𝑥)

) ]
=

(
𝑛−1∑
ℓ=1

𝜕𝑟

𝜕𝑥ℓ

𝜕𝑥ℓ
𝜕𝑥𝑘

)
+ 𝜕𝑟

𝜕𝑦

𝜕𝜑

𝜕𝑥𝑘
=

𝜕𝑟

𝜕𝑥𝑘
+ 𝜕𝑟

𝜕𝑦

𝜕𝜑

𝜕𝑥𝑘
.

At the origin, 𝜕𝑟
𝜕𝑥𝑘

(0, 0) = 0 and 𝜕𝑟
𝜕𝑦 (0, 0) = 𝑣𝑛 ≠ 0, and therefore 𝜕𝜑

𝜕𝑥𝑘
(0) = 0. That 𝑇0𝑀

is the span of the 𝑥𝑘 derivatives follows at once from the fact that ∇𝑟 |0 = (0, . . . , 0, 𝑣𝑛).
To prove the final statement, note that 𝑟 < 0 on𝑈 . It is enough to check that 𝑟 is

negative for (0, 𝑦) if 𝑦 > 0 is small, which follows as 𝜕𝑟
𝜕𝑦 (0, 0) = 𝑣𝑛 < 0. □

The advantage of this representation is that the tangent space at 𝑝 can be identified
with the 𝑥 coordinates for the purposes of computation. Considering 𝑥 as a column
vector, the Taylor expansion of a smooth function 𝜑 at the origin is

𝜑(𝑥) = 𝜑(0) + ∇𝜑 |0 · 𝑥 +
1
2 𝑥

𝑡𝐻𝑥 + 𝐸(𝑥),

where 𝐻 =

[
𝜕2𝜑

𝜕𝑥𝑘𝜕𝑥ℓ

��
0

]
𝑘ℓ

is the Hessian matrix of 𝜑 at the origin, and 𝐸 is 𝑂(3), namely,
𝐸(0) = 0, and all first and second order derivatives of 𝐸 vanish at 0. In the context of
the lemma above, the 𝜑 is 𝑂(2) at the origin, i.e. 𝜑(0) = 0 and ∇𝜑 |0 = 0. So we write
the hypersurface 𝑀 as

𝑦 =
1
2 𝑥

𝑡𝐻𝑥 + 𝐸(𝑥).

*The standard notation for 𝑂(ℓ ) is 𝑂(∥𝑥∥ℓ ) and it means that
��� 𝑓 (𝑥)∥𝑥∥ℓ

��� is bounded as 𝑥 → 𝑝.
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If 𝑀 is the boundary 𝜕𝑈 of an open set 𝑈 , then we pick the rotation so that
𝑦 > 1

2 𝑥
𝑡𝐻𝑥 + 𝐸(𝑥) on 𝑈 . It is an easy exercise to show that 𝑈 is convex at 𝑝 if 𝐻

positive semidefinite, and𝑈 is strongly convex at 𝑝 if 𝐻 is positive definite.

Exercise 2.2.9: Prove the statement above about 𝐻 and convexity at 𝑝.

Exercise 2.2.10: Let 𝑟 be a defining function at 𝑝 for a smooth hypersurface 𝑀 ⊂ ℝ𝑛 . We
say 𝑀 is convex from both sides at 𝑝 if both the set given by 𝑟 > 0 and the set given by
𝑟 < 0 are convex at 𝑝. Prove that if a hypersurface 𝑀 ⊂ ℝ𝑛 is convex from both sides at all
points, then it is locally just a hyperplane (the zero set of a real affine function).

Exercise 2.2.11: Suppose𝑈 is a domain with smooth boundary that is strongly convex at
𝑝 ∈ 𝜕𝑈 . Then there exists a real affine change of variables (translation and an invertible
linear map), such that after the change of variables, 𝑝 = 0 and near 0, 𝜕𝑈 is given by
𝑦 = 𝑥𝑡𝑥 + 𝐸(𝑥) where 𝐸(𝑥) is 𝑂(3) and 𝑦 > 𝑥𝑡𝑥 + 𝐸(𝑥) on𝑈 .

Recall that 𝑈 is geometrically convex if for every 𝑝, 𝑞 ∈ 𝑈 the line between 𝑝 and
𝑞 is in 𝑈 , that is, 𝑡𝑝 + (1 − 𝑡)𝑞 ∈ 𝑈 for all 𝑡 ∈ [0, 1]. Geometric convexity is a global
condition; it considers the entire𝑈 . The notion of convexity for a smooth boundary
is local in that you only need to know 𝜕𝑈 in a small neighborhood. For domains with
smooth boundaries the two notions are equivalent. Proving one direction is easy.

Exercise 2.2.12: Suppose a domain𝑈 ⊂ ℝ𝑛 with smooth boundary is geometrically convex.
Show that𝑈 is convex.

The other direction is considerably more complicated, and we will not worry about
it here. Proving a global condition from a local one is often trickier, but also often
more interesting. Similar difficulties will be present once we move back to several
complex variables and try to relate pseudoconvexity with domains of holomorphy.

2.3 \ Holomorphic vectors, Levi form, pseudoconvexity

As ℂ𝑛 is identified with ℝ2𝑛 using 𝑧 = 𝑥 + 𝑖𝑦, we have 𝑇𝑝ℂ𝑛 = 𝑇𝑝ℝ
2𝑛 . If we take the

complex span instead of the real span, we get the complexified tangent space 

*
 

ℂ𝑇𝑝ℂ
𝑛 = spanℂ

{
𝜕

𝜕𝑥1

���
𝑝
,

𝜕

𝜕𝑦1

���
𝑝
, . . . ,

𝜕

𝜕𝑥𝑛

���
𝑝
,

𝜕

𝜕𝑦𝑛

���
𝑝

}
.

We simply replace all the real coefficients with complex ones. The space ℂ𝑇𝑝ℂ
𝑛 is a

2𝑛-dimensional complex vector space. Both 𝜕
𝜕𝑧𝑘

��
𝑝

and 𝜕
𝜕�̄�𝑘

��
𝑝

are in ℂ𝑇𝑝ℂ
𝑛 , and

ℂ𝑇𝑝ℂ
𝑛 = spanℂ

{
𝜕

𝜕𝑧1

���
𝑝
,

𝜕

𝜕�̄�1

���
𝑝
, . . . ,

𝜕

𝜕𝑧𝑛

���
𝑝
,

𝜕

𝜕�̄�𝑛

���
𝑝

}
.

*Abstractly, a real vector space 𝑋 can be complexified as 𝑋 ⊗ℝ ℂ.



2.3. HOLOMORPHIC VECTORS, LEVI FORM, PSEUDOCONVEXITY 63

Define

𝑇
(1,0)
𝑝 ℂ𝑛 def

= spanℂ

{
𝜕

𝜕𝑧1

���
𝑝
, . . . ,

𝜕

𝜕𝑧𝑛

���
𝑝

}
and 𝑇

(0,1)
𝑝 ℂ𝑛 def

= spanℂ

{
𝜕

𝜕�̄�1

���
𝑝
, . . . ,

𝜕

𝜕�̄�𝑛

���
𝑝

}
.

The vectors in 𝑇
(1,0)
𝑝 ℂ𝑛 are the holomorphic vectors and vectors in 𝑇

(0,1)
𝑝 ℂ𝑛 are the

antiholomorphic vectors. We decompose the full tangent space as the direct sum

ℂ𝑇𝑝ℂ
𝑛 = 𝑇

(1,0)
𝑝 ℂ𝑛 ⊕ 𝑇(0,1)

𝑝 ℂ𝑛 .

A holomorphic function is one that vanishes on 𝑇(0,1)
𝑝 ℂ𝑛 .

Let us see what holomorphic mappings do to these spaces when we treat holomor-
phic mappings as smooth mappings. Given a smooth mapping 𝑓 from (an open subset
of)ℂ𝑛 toℂ𝑚 , its derivative at 𝑝 ∈ ℂ𝑛 is a real-linear mapping𝐷ℝ 𝑓 (𝑝) : 𝑇𝑝ℂ𝑛 → 𝑇𝑓 (𝑝)ℂ

𝑚 .
Given the basis above, this mapping is represented by the standard real Jacobian
matrix, that is, a real 2𝑚 × 2𝑛 matrix that we wrote before as 𝐷ℝ 𝑓 (𝑝). As a basis for
𝑇𝑝ℂ

𝑛 is a basis for ℂ𝑇𝑝ℂ𝑛 , the mapping 𝐷ℝ 𝑓 (𝑝) : 𝑇𝑝ℂ𝑛 → 𝑇𝑓 (𝑝)ℂ
𝑚 naturally uniquely

extends to
𝐷ℂ 𝑓 (𝑝) : ℂ𝑇𝑝ℂ𝑛 → ℂ𝑇𝑓 (𝑝)ℂ

𝑚 .

Proposition 2.3.1. Let 𝑓 : 𝑈 ⊂ ℂ𝑛 → ℂ𝑚 be a holomorphic mapping with 𝑝 ∈ 𝑈 . Then

𝐷ℂ 𝑓 (𝑝)
(
𝑇
(1,0)
𝑝 ℂ𝑛

)
⊂ 𝑇(1,0)

𝑓 (𝑝) ℂ
𝑚 and 𝐷ℂ 𝑓 (𝑝)

(
𝑇
(0,1)
𝑝 ℂ𝑛

)
⊂ 𝑇(0,1)

𝑓 (𝑝) ℂ
𝑚 .

If 𝑓 is a biholomorphism, then 𝐷ℂ 𝑓 (𝑝) restricted to 𝑇(1,0)
𝑝 ℂ𝑛 is a vector space isomorphism.

Similarly for 𝑇(0,1)
𝑝 ℂ𝑛 .

Exercise 2.3.1: Prove the proposition. Hint: Start with 𝐷ℝ 𝑓 (𝑝) as a real 2𝑚 × 2𝑛 matrix
to show it extends (it is the same matrix if you think of it as a matrix and use the same basis
vectors). Think of ℂ𝑛 and ℂ𝑚 in terms of the 𝑧s and the �̄�s and think of 𝑓 as a mapping

(𝑧, �̄�) ↦→
(
𝑓 (𝑧), 𝑓 (�̄�)

)
.

Write the derivative as a matrix in terms of the 𝑧s and the �̄�s and 𝑓 s and 𝑓 s and the result
will follow. That is just changing the basis.

Exercise 2.3.2: Prove a converse to the proposition. If 𝑓 : 𝑈 ⊂ ℂ𝑛 → ℂ𝑚 is a smooth
mapping such that 𝐷ℂ 𝑓 (𝑝)

(
𝑇
(1,0)
𝑝 ℂ𝑛

)
⊂ 𝑇(1,0)

𝑓 (𝑝) ℂ
𝑚 at every 𝑝 ∈ 𝑈 , then 𝑓 is holomorphic.

For holomorphic mappings and holomorphic vectors, when we say “derivative of
𝑓 ,” we mean the holomorphic part of the derivative, which we write as

𝐷 𝑓 (𝑝) : 𝑇(1,0)
𝑝 ℂ𝑛 → 𝑇

(1,0)
𝑓 (𝑝) ℂ

𝑚 , 𝐷 𝑓 (𝑝) = 𝐷ℂ 𝑓 (𝑝)
��
𝑇
(1,0)
𝑝 ℂ𝑛

.
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That is, we restrict 𝐷ℂ 𝑓 (𝑝) to 𝑇(1,0)
𝑝 ℂ𝑛 . Let 𝑧 be the coordinates on ℂ𝑛 and 𝑤 the

coordinates on ℂ𝑚 . In the bases
{

𝜕
𝜕𝑧1

��
𝑝
, . . . , 𝜕

𝜕𝑧𝑛

��
𝑝

}
and

{
𝜕

𝜕𝑤1

��
𝑓 (𝑝), . . . ,

𝜕
𝜕𝑤𝑚

��
𝑓 (𝑝)

}
, the

holomorphic derivative 𝐷 𝑓 (𝑝) is represented by the 𝑚 × 𝑛 Jacobian matrix[
𝜕 𝑓𝑘
𝜕𝑧ℓ

���
𝑝

]
𝑘ℓ

,

which we have seen in  section 1.3 and for which we also used the notation 𝐷 𝑓 (𝑝).
As before, define the tangent bundles

ℂ𝑇ℂ𝑛 , 𝑇(1,0)ℂ𝑛 , and 𝑇(0,1)ℂ𝑛 ,

by taking the disjoint unions. One can also define vector fields in these bundles.
Let us describe ℂ𝑇𝑝𝑀 for a smooth real hypersurface 𝑀 ⊂ ℂ𝑛 . Let 𝑟 be a real-

valued defining function of 𝑀 at 𝑝. A vector 𝑋𝑝 ∈ ℂ𝑇𝑝ℂ
𝑛 is in ℂ𝑇𝑝𝑀 whenever

𝑋𝑝𝑟 = 0. That is,

𝑋𝑝 =

𝑛∑
𝑘=1

(
𝑎𝑘

𝜕

𝜕𝑧𝑘

���
𝑝
+ 𝑏𝑘

𝜕

𝜕�̄�𝑘

���
𝑝

)
∈ ℂ𝑇𝑝𝑀 whenever

𝑛∑
𝑘=1

(
𝑎𝑘

𝜕𝑟

𝜕𝑧𝑘

���
𝑝
+ 𝑏𝑘

𝜕𝑟

𝜕�̄�𝑘

���
𝑝

)
= 0.

Therefore, ℂ𝑇𝑝𝑀 is a (2𝑛 − 1)-dimensional complex vector space. We decompose
ℂ𝑇𝑝𝑀 as

ℂ𝑇𝑝𝑀 = 𝑇
(1,0)
𝑝 𝑀 ⊕ 𝑇(0,1)

𝑝 𝑀 ⊕ 𝐵𝑝 ,
where

𝑇
(1,0)
𝑝 𝑀

def
=

(
ℂ𝑇𝑝𝑀

)
∩

(
𝑇
(1,0)
𝑝 ℂ𝑛

)
, and 𝑇

(0,1)
𝑝 𝑀

def
=

(
ℂ𝑇𝑝𝑀

)
∩

(
𝑇
(0,1)
𝑝 ℂ𝑛

)
.

The 𝐵𝑝 is the “leftover” and must be included for the dimensions to work out. 

*
 

Exercise 2.3.3: Prove that there is another way of getting at these spaces. Consider
a smooth hypersurface 𝑀 and 𝑝 ∈ 𝑀. Let 𝐽 be the linear map of 𝑇𝑝ℂ𝑛 to itself that
corresponds to multiplication by 𝑖 (the derivative of the actual multiplication by 𝑖). Write
𝑇𝑐𝑝𝑀 = 𝐽(𝑇𝑝𝑀) ∩ 𝑇𝑝𝑀 (the subspace fixed by 𝐽, sometimes called the complex tangent
space despite being a real vector space). The map 𝐽 restricts to an endomorphism of 𝑇𝑐𝑝𝑀
and thus it naturally induces an endomorphism of ℂ𝑇𝑐𝑝𝑀. Then 𝑇(1,0)

𝑝 𝑀 and 𝑇(0,1)
𝑝 𝑀 are

the eigenspaces of 𝐽, which has eigenvalues ±𝑖.

Make sure to notice what sort of vector spaces these are. The space 𝑇𝑝𝑀 is a
real vector space; ℂ𝑇𝑝𝑀, 𝑇(1,0)

𝑝 𝑀, 𝑇(0,1)
𝑝 𝑀, and 𝐵𝑝 are complex vector spaces. To see

that these give vector bundles, we must first show that their dimensions do not vary
*The 𝐵𝑝 is sometimes colloquially called the “bad direction.”
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from point to point. The easiest way to see this fact is to write down convenient
local coordinates. First, let us note that a biholomorphic map preserves the tangent
holomorphic and antiholomorphic vectors. That is, we get the following analogue of

 Proposition 2.2.6 . Note that a biholomorphic map is a diffeomorphism.
Proposition 2.3.2. Suppose 𝑀 ⊂ ℂ𝑛 is a smooth real hypersurface, 𝑝 ∈ 𝑀, and 𝑈 ⊂ ℂ𝑛

is open with 𝑀 ⊂ 𝑈 , and supose 𝑀′ ⊂ ℂ𝑚 a smooth real hypersurface. Let 𝑓 : 𝑈 → ℂ𝑚

be holomorphic such 𝑓 (𝑀) ⊂ 𝑀′. Let 𝐷ℂ 𝑓 (𝑝) be the complexified real derivative as before.
Then

𝐷ℂ 𝑓 (𝑝)
(
𝑇
(1,0)
𝑝 𝑀

)
⊂ 𝑇(1,0)

𝑓 (𝑝) 𝑀
′, 𝐷ℂ 𝑓 (𝑝)

(
𝑇
(0,1)
𝑝 𝑀

)
⊂ 𝑇(0,1)

𝑓 (𝑝) 𝑀
′.

Moreover, if 𝑚 = 𝑛 and 𝑓 is a biholomorphism, then 𝑓 (𝑀) is a smooth real hypersurface,
𝐷ℂ 𝑓 (𝑝) is invertible,𝐷ℂ 𝑓 (𝑝)

(
𝑇
(1,0)
𝑝 𝑀

)
= 𝑇

(1,0)
𝑓 (𝑝) 𝑓 (𝑀) and𝐷ℂ 𝑓 (𝑝)

(
𝑇
(0,1)
𝑝 𝑀

)
= 𝑇

(0,1)
𝑓 (𝑝) 𝑓 (𝑀).

That is, the spaces are isomorphic as complex vector spaces.
The proposition is local, if𝑈 is only a neighborhood of 𝑝, replace 𝑀 with 𝑀 ∩𝑈 .

Proof. Apply  Proposition 2.3.1 and  Proposition 2.2.6 . That is,

𝐷ℂ 𝑓 (𝑝)
(
𝑇
(1,0)
𝑝 ℂ𝑛

)
⊂ 𝑇(1,0)

𝑓 (𝑝) ℂ
𝑚 , 𝐷ℂ 𝑓 (𝑝)

(
𝑇
(0,1)
𝑝 ℂ𝑛

)
⊂ 𝑇(0,1)

𝑓 (𝑝) ℂ
𝑚 , and

𝐷ℂ 𝑓 (𝑝)
(
ℂ𝑇𝑝𝑀

)
⊂ ℂ𝑇𝑓 (𝑝)𝑀

′.

Then 𝐷ℂ 𝑓 (𝑝) must take 𝑇(1,0)
𝑝 𝑀 to 𝑇(1,0)

𝑓 (𝑝) 𝑀
′ and 𝑇(0,1)

𝑝 𝑀 to 𝑇(0,1)
𝑓 (𝑝) 𝑀

′. The “Moreover”
follows from the “Moreover” of  Proposition 2.2.6 . □

We again wish to write a hypersurface as a graph. In this context, the right sort of
transformations are biholomorphic transformations. Translations are biholomorphic,
and the rotation we will want to use is applying a unitary matrix to ℂ𝑛 .
Proposition 2.3.3. Let 𝑀 ⊂ ℂ𝑛 be a smooth real hypersurface, 𝑝 ∈ 𝑀. After a translation
and a rotation by a unitary matrix, 𝑝 is the origin, and near the origin, 𝑀 is written in
variables (𝑧, 𝑤) ∈ ℂ𝑛−1 ×ℂ as

Im𝑤 = 𝜑(𝑧, �̄�,Re𝑤),
with the 𝜑(0) and 𝑑𝜑(0) = 0. Consequently,

𝑇
(1,0)
0 𝑀 = spanℂ

{
𝜕

𝜕𝑧1

���
0
, . . . ,

𝜕

𝜕𝑧𝑛−1

���
0

}
, 𝑇

(0,1)
0 𝑀 = spanℂ

{
𝜕

𝜕�̄�1

���
0
, . . . ,

𝜕

𝜕�̄�𝑛−1

���
0

}
,

𝐵0 = spanℂ

{
𝜕

𝜕(Re𝑤)

���
0

}
.

In particular, dimℂ 𝑇
(1,0)
𝑝 𝑀 = dimℂ 𝑇

(0,1)
𝑝 𝑀 = 𝑛 − 1 and dimℂ 𝐵𝑝 = 1.

If 𝑀 is the boundary of a open set 𝑈 with smooth boundary, the rotation can be chosen
so that Im𝑤 > 𝜑(𝑧, �̄�,Re𝑤) on𝑈 .

Remark the notation 𝜑(𝑧, �̄�,Re𝑤), where we are using the 𝑧, �̄� notation for the 𝑧
directions, but since 𝜑 does not depend on Im𝑤, we cannot do the same with the 𝑤.
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Proof. Apply a translation to put 𝑝 = 0 and in the same manner as in  Proposition 2.2.9 

apply a unitary matrix to make sure that ∇𝑟 is in the direction − 𝜕
𝜕(Im𝑤)

��
0. That

𝜑(0) = 0 and 𝑑𝜑(0) = 0 follows as before. A translation and a unitary matrix are
holomorphic and, in fact, biholomorphic, so via  Proposition 2.3.2 the tangent spaces
are all transformed correctly. The rest of the proposition follows at once as 𝜕

𝜕(Im𝑤)
��
0 is

the normal vector to 𝑀 at the origin. □

Remark 2.3.4. When 𝑀 is of dimension less than 2𝑛 − 1 (not a hypersurface anymore),
the conclusion of the proposition on the dimensions does not hold. That is, we still
have dimℂ 𝑇

(1,0)
𝑝 𝑀 = dimℂ 𝑇

(0,1)
𝑝 𝑀, but this number need not be constant from point

to point. Fortunately, the boundaries of domains with smooth boundaries are by
definition hypersurfaces and this complication does not arise.

Definition 2.3.5. Suppose𝑈 ⊂ ℂ𝑛 is an open set with smooth boundary, and 𝑟 is a
defining function for 𝜕𝑈 at 𝑝 ∈ 𝜕𝑈 such that 𝑟 < 0 on𝑈 . If

𝑛∑
𝑘=1,ℓ=1

�̄�𝑘𝑎ℓ
𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ

���
𝑝
≥ 0 for all 𝑋𝑝 =

𝑛∑
𝑘=1

𝑎𝑘
𝜕

𝜕𝑧𝑘

���
𝑝

∈ 𝑇
(1,0)
𝑝 𝜕𝑈,

then𝑈 is pseudoconvex at 𝑝 (or Levi pseudoconvex). If the inequality above is strict for
all nonzero 𝑋𝑝 ∈ 𝑇(1,0)

𝑝 𝜕𝑈 , then𝑈 is strongly pseudoconvex at 𝑝. If𝑈 is pseudoconvex,
but not strongly pseudoconvex, at 𝑝, then𝑈 is weakly pseudoconvex.

A domain𝑈 is pseudoconvex if it is pseudoconvex at all 𝑝 ∈ 𝜕𝑈 . For a bounded 

*
 𝑈 ,

we say𝑈 is strongly pseudoconvex if it is strongly pseudoconvex at all 𝑝 ∈ 𝜕𝑈 .
For 𝑋𝑝 ∈ 𝑇(1,0)

𝑝 𝜕𝑈 , the Hermitian quadratic form

L(𝑋𝑝 , 𝑋𝑝) =
𝑛∑

𝑘=1,ℓ=1
�̄�𝑘𝑎ℓ

𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ

���
𝑝

is called the Levi form at 𝑝. So𝑈 is pseudoconvex (resp. strongly pseudoconvex) at
𝑝 ∈ 𝜕𝑈 if the Levi form is positive semidefinite (resp. positive definite) at 𝑝. The Levi
form can be defined for any real hypersurface 𝑀, although one has to decide which
side of 𝑀 is “the inside.”

The matrix [
𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ

���
𝑝

]
𝑘ℓ

is called the complex Hessian of 𝑟 at 𝑝. 

†
 So,𝑈 is pseudoconvex at 𝑝 ∈ 𝜕𝑈 if the complex

Hessian of 𝑟 at 𝑝 as a Hermitian form is positive (semi)definite when restricted to
*The definition for unbounded domains is not consistent in the literature. Sometimes strictly

pseudoconvex is used.
†People sometimes call the complex Hessian the “Levi form of 𝑟,” which is incorrect. The Levi

form is something defined for a boundary or a hypersurface acting only on its tangent vectors.
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tangent vectors in 𝑇(1,0)
𝑝 𝜕𝑈 . For example, the unit ball 𝔹𝑛 is strongly pseudoconvex

as can be seen by computing the Levi form directly from 𝑟(𝑧, �̄�) = ∥𝑧∥2 − 1, that is,
the complex Hessian of 𝑟 is the identity matrix.

We remark that the complex Hessian is not the full (real) Hessian. Let us write
down the full Hessian, using the basis of 𝜕

𝜕𝑧 s and 𝜕
𝜕�̄� s. It is the Hermitian matrix

𝜕2𝑟
𝜕�̄�1𝜕𝑧1

· · · 𝜕2𝑟
𝜕�̄�1𝜕𝑧𝑛

𝜕2𝑟
𝜕�̄�1𝜕�̄�1

· · · 𝜕2𝑟
𝜕�̄�1𝜕�̄�𝑛

...
. . .

...
...

. . .
...

𝜕2𝑟
𝜕�̄�𝑛𝜕𝑧1

· · · 𝜕2𝑟
𝜕�̄�𝑛𝜕𝑧𝑛

𝜕2𝑟
𝜕�̄�𝑛𝜕�̄�1

· · · 𝜕2𝑟
𝜕�̄�𝑛𝜕�̄�𝑛

𝜕2𝑟
𝜕𝑧1𝜕𝑧1

· · · 𝜕2𝑟
𝜕𝑧1𝜕𝑧𝑛

𝜕2𝑟
𝜕𝑧1𝜕�̄�1

· · · 𝜕2𝑟
𝜕𝑧1𝜕�̄�𝑛

...
. . .

...
...

. . .
...

𝜕2𝑟
𝜕𝑧𝑛𝜕𝑧1

· · · 𝜕2𝑟
𝜕𝑧𝑛𝜕𝑧𝑛

𝜕2𝑟
𝜕𝑧𝑛𝜕�̄�1

· · · 𝜕2𝑟
𝜕𝑧𝑛𝜕�̄�𝑛


.

To make it a Hermitian form, note that when multiplying on the left by 𝑋𝑝 we are
also taking the conjugate so the rows for the 𝑧s and the �̄�s are flipped. 

*
 Note that it is

Hermitian only for a real-valued 𝑟 (see an exercise below). The complex Hessian is
the upper left, or the transpose of the lower right, block—if you write the full Hessian
as

[
𝐿 𝑍
𝑍 𝐿𝑡

]
, then 𝐿 is the complex Hessian. Note that 𝐿 is a smaller matrix and we apply

it only to a subspace of the complexified tangent space.
We illustrate the change of basis in one dimension, and leave higher dimensions

to the student. Let 𝑧 = 𝑥 + 𝑖𝑦 be in ℂ, and denote by 𝑇 the change of basis matrix:

𝑇 =

[
1/2 1/2
−𝑖/2 𝑖/2

]
, 𝑇∗

[
𝜕2𝑟
𝜕𝑥𝜕𝑥

𝜕2𝑟
𝜕𝑥𝜕𝑦

𝜕2𝑟
𝜕𝑦𝜕𝑥

𝜕2𝑟
𝜕𝑦𝜕𝑦

]
𝑇 =

[
𝜕2𝑟
𝜕�̄�𝜕𝑧

𝜕2𝑟
𝜕�̄�𝜕�̄�

𝜕2𝑟
𝜕𝑧𝜕𝑧

𝜕2𝑟
𝜕𝑧𝜕�̄�

]
,

where 𝑇∗ = 𝑇
𝑡

is the conjugate transpose. By Sylvester’s law of inertia from linear
algebra, star-congruence preserves the inertia (the number of positive, negative, and
zero eigenvalues). So the inertia of the full Hessian in terms of 𝑥s and 𝑦s is the same
as for the full Hessian in terms of 𝑧s and �̄�s. The relationship between the eigenvalues
of the full Hessian and the complex Hessian is not as straightforward as may at first
seem, but there is a relationship there nonetheless.

Exercise 2.3.4 (Easy): If 𝑟 is real-valued, then both the complex Hessian of 𝑟 and the full
Hessian in terms of 𝑧s and �̄� are Hermitian matrices.

Exercise 2.3.5: Consider one dimension, 𝑧 = 𝑥 + 𝑖𝑦, and the real Hessian in terms of 𝑥
and 𝑦:

𝐻 =

[
𝜕2𝑟
𝜕𝑥𝜕𝑥

𝜕2𝑟
𝜕𝑥𝜕𝑦

𝜕2𝑟
𝜕𝑦𝜕𝑥

𝜕2𝑟
𝜕𝑦𝜕𝑦

]
.

*It is common to also write it not flipped, in which case it will be a symmetric martrix.
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Prove that the complex Hessian 𝐿 (a number now) is 1/4 of the trace of 𝐻. Thus, if 𝐻 is
positive definite, then 𝐿 > 0, and if 𝐻 is negative definite, then 𝐿 < 0. Then show by
example that if 𝐻 has mixed eigenvalues (positive and negative), then 𝐿 can be positive,
negative, or zero.

Exercise 2.3.6: For every dimension, find the change of variables 𝑇∗𝐻𝑇 to go from the real
Hessian in terms of 𝑥 and 𝑦 to the Hessian in terms of 𝑧 and �̄�. Hint: If you figure it out
for 𝑛 = 2, it will be easy to do in general.

Exercise 2.3.7: Prove in every dimension that if the real Hessian (in terms of 𝑥 and 𝑦)
is positive (semi)definite, then the complex Hessian is positive (semi)definite. Hint: A
Hermitian matrix 𝐿 is positive definite if 𝑣∗𝐿𝑣 > 0 for all nonzero vectors 𝑣 and semidefinite
if 𝑣∗𝐿𝑣 ≥ 0 for all 𝑣.

Let us also see how a complex linear change of variables acts on the Hessian. A
complex linear mapping 𝐴 as an 𝑛 × 𝑛 complex matrix transforms the tangent space
in the basis of 𝜕

𝜕𝑧 s and 𝜕
𝜕�̄� s via the derivative 𝐷ℂ𝐴 written as a 2𝑛 × 2𝑛 matrix. A

direct computation shows 𝐷ℂ𝐴 = 𝐴 ⊕ 𝐴 =

[
𝐴 0
0 𝐴

]
. Write the full Hessian as

[
𝐿 𝑍
𝑍 𝐿𝑡

]
,

where 𝐿 is the complex Hessian. The complex linear change of variables 𝐴 transforms
the full Hessian as [

𝐴 0
0 𝐴

] ∗ [
𝐿 𝑍

𝑍 𝐿𝑡

] [
𝐴 0
0 𝐴

]
=

[
𝐴∗𝐿𝐴 𝐴𝑡𝑍𝐴

𝐴𝑡𝑍𝐴 (𝐴∗𝐿𝐴)𝑡
]
,

Again by Sylvester’s law of inertia, 𝐿 and 𝐴∗𝐿𝐴 have the same inertia, that is, the
number of positive, negative, and zero eigenvalues.

The Levi form itself does depend on the defining function, but the signs of the
eigenvalues do not. It is common to say “the Levi form” without mentioning a
specific defining function even though that is not completely correct. The proof of
the following proposition is left as an exercise.
Proposition 2.3.6. If 𝑈 ⊂ ℂ𝑛 is an open set with smooth boundary and 𝑝 ∈ 𝜕𝑈 , then
the inertia of the Levi form at 𝑝 does not depend on the defining function. Consequently,
the notion of pseudoconvexity and strong pseudoconvexity is independent of the defining
function.

Exercise 2.3.8: Prove  Proposition 2.3.6 .

Exercise 2.3.9: Show that a convex domain with smooth boundary is pseudoconvex,
and show that (a bounded) strongly convex domain with smooth boundary is strongly
pseudoconvex.

Exercise 2.3.10: Show that if an open set with smooth boundary is strongly pseudoconvex
at a point, it is strongly pseudoconvex at all nearby points.
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We are generally interested what happens under a holomorphic change of co-
ordinates, that is, a biholomorphic mapping. And as far as pseudoconvexity is
concerned we are interested in local changes of coordinates as pseudoconvexity is a
local property. Before proving that pseudoconvexity is a biholomorphic invariant, let
us note where the Levi form appears in the graph coordinates from  Proposition 2.3.3 ,
that is, when our boundary (the hypersurface) is given near the origin by

Im𝑤 = 𝜑(𝑧, �̄�,Re𝑤),

where 𝜑 is 𝑂(2). Let 𝑟(𝑧, �̄�, 𝑤, �̄�) = 𝜑(𝑧, �̄�,Re𝑤) − Im𝑤 be our defining function.
The complex Hessian of 𝑟 (an 𝑛 × 𝑛 matrix) has the form[

𝐿 ∗
∗ ∗

]
where 𝐿 =

[
𝜕2𝜑

𝜕�̄�𝑘𝜕𝑧ℓ

���
0

]
𝑘ℓ

.

Note that 𝐿 is an (𝑛 − 1) × (𝑛 − 1) matrix. The vectors in 𝑇(1,0)
0 𝜕𝑈 are the span of{

𝜕
𝜕𝑧1

��
0, . . . ,

𝜕
𝜕𝑧𝑛−1

��
0

}
. That is, as an 𝑛-vector, a vector in 𝑇

(1,0)
0 𝜕𝑈 is represented by

(𝑎, 0) ∈ ℂ𝑛 for some 𝑎 ∈ ℂ𝑛−1. The Levi form at the origin is then 𝑎∗𝐿𝑎, in other words,
it is given by the (𝑛 − 1) × (𝑛 − 1) matrix 𝐿. If this matrix 𝐿 is positive semidefinite,
then 𝜕𝑈 is pseudoconvex at 0.

Example 2.3.7: Let us change variables to write the ball 𝔹𝑛 in different local holo-
morphic coordinates where the Levi form is displayed nicely. The sphere 𝜕𝔹𝑛 is
defined in the variables 𝑍 = (𝑍1, . . . , 𝑍𝑛) ∈ ℂ𝑛 by ∥𝑍∥ = 1. We change variables to
(𝑧1, . . . , 𝑧𝑛−1, 𝑤) where

𝑧𝑘 =
𝑍𝑘

1 − 𝑍𝑛
for all 𝑘 = 1, . . . , 𝑛 − 1, 𝑤 = 𝑖

1 + 𝑍𝑛
1 − 𝑍𝑛

.

This change of variables is a biholomorphic map from the set where 𝑍𝑛 ≠ 1 to the set
where𝑤 ≠ −𝑖 (exercise). For us, it suffices that the map is invertible near (0, . . . , 0,−1),
which follows by computing the derivative. Notice that the last component is the
inverse of the Cayley transform (which takes the disc to the upper half-plane).

We claim that the mapping takes the unit sphere given by ∥𝑍∥ = 1 (without the
point (0, . . . , 0, 1)), to the set defined by

Im𝑤 = |𝑧1 |2 + · · · + |𝑧𝑛−1 |2,

and that it takes (0, . . . , 0,−1) to the origin (this part is trivial). Let us check:

|𝑧1 |2 + · · · + |𝑧𝑛−1 |2 − Im𝑤 =

���� 𝑍1
1 − 𝑍𝑛

����2 + · · · +
���� 𝑍𝑛−1
1 − 𝑍𝑛

����2 − 𝑖 1+𝑍𝑛
1−𝑍𝑛 − 𝑖

1+𝑍𝑛
1−𝑍𝑛

2𝑖

=
|𝑍1 |2

|1 − 𝑍𝑛 |2
+ · · · + |𝑍𝑛−1 |2

|1 − 𝑍𝑛 |2
− 1 + 𝑍𝑛

2(1 − 𝑍𝑛)
− 1 + �̄�𝑛

2(1 − �̄�𝑛)

=
|𝑍1 |2 + · · · + |𝑍𝑛−1 |2 + |𝑍𝑛 |2 − 1

|1 − 𝑍𝑛 |2
.
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Therefore, |𝑍1 |2 + · · · + |𝑍𝑛 |2 = 1 if and only if Im𝑤 = |𝑧1 |2 + · · · + |𝑧𝑛−1 |2. As the map
takes the point (0, . . . , 0,−1) to the origin, we can think of the set given by

Im𝑤 = |𝑧1 |2 + · · · + |𝑧𝑛−1 |2

as the sphere in local holomorphic coordinates at (0, . . . , 0,−1) (by symmetry of the
sphere we could have done this at any point by rotation). In the coordinates (𝑧, 𝑤),
the ball (the inside of the sphere) is the set given by

Im𝑤 > |𝑧1 |2 + · · · + |𝑧𝑛−1 |2.

In these coordinates, the Levi form is just the identity matrix at the origin, and so the
domain is strongly pseudoconvex at the origin. We will prove that (strong) pseudo-
convexity is a biholomorphic invariant, and so the ball is strongly pseudoconvex.

Not the entire sphere gets transformed, the points where 𝑍𝑛 = 1 get “sent to
infinity.” The hypersurface Im𝑤 = |𝑧1 |2 + · · · + |𝑧𝑛−1 |2 is sometimes called the Lewy
hypersurface, and in the literature some even say it is the sphere 

*
 . Pretending 𝑧

is just one real direction, see  Figure 2.7 . As an aside, the hypersurface Im𝑤 =

|𝑧1 |2 + · · · + |𝑧𝑛−1 |2 is also called the Heisenberg group. The group in this case
is defined on the parameters (𝑧,Re𝑤) of this hypersurface with the group law
(𝑧,Re𝑤)(𝑧′,Re𝑤′) = (𝑧 + 𝑧′,Re𝑤 + Re𝑤′ + 2 Im 𝑧 · 𝑧′).

Re𝑤
𝑧

Im𝑤

Figure 2.7: Lewy hypersurface.

Exercise 2.3.11: Prove the assertion in the example about the mapping being biholomorphic
on the sets described above.

Let us see how the Hessian of 𝑟 changes under a biholomorphic change of
coordinates. Let 𝑓 : 𝑉 → 𝑉′ be a biholomorphic map between two domains in
ℂ𝑛 , and let 𝑟 : 𝑉′ → ℝ be a smooth function with nonvanishing derivative. Let
us compute the Hessian of 𝑟 ◦ 𝑓 : 𝑉 → ℝ. We first compute what happens to the

*That is not, in fact, completely incorrect. If we think of the sphere in the complex projective space,
we are simply looking at the sphere in a different coordinate patch.
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nonmixed derivatives. As we have to apply chain rule twice, to keep better track of
things, we write where the derivatives are being evaluated inside the computation,
as they are, after all, functions. For clarity, let 𝑧 be the coordinates in 𝑉 and 𝜁 the
coordinates in 𝑉′. That is, 𝑟 is a function of 𝜁 and �̄�, 𝑓 is a function of 𝑧, and 𝑓 is a
function of �̄�. So 𝑟 ◦ 𝑓 is a function of 𝑧 and �̄�.

𝜕2(𝑟 ◦ 𝑓 )
𝜕𝑧𝑘𝜕𝑧ℓ

=
𝜕

𝜕𝑧𝑘

𝑛∑
𝑚=1

(
𝜕𝑟

𝜕𝜁𝑚

����
( 𝑓 (𝑧), 𝑓 (�̄�))

𝜕 𝑓𝑚
𝜕𝑧ℓ

����
𝑧

+ 𝜕𝑟

𝜕�̄�𝑚

����
( 𝑓 (𝑧), 𝑓 (�̄�))�

�
�
��

0
𝜕 𝑓𝑚
𝜕𝑧ℓ

����
�̄�

)
=

𝑛∑
𝑚,𝜈=1

(
𝜕2𝑟

𝜕𝜁𝜈𝜕𝜁𝑚

����
( 𝑓 (𝑧), 𝑓 (�̄�))

𝜕 𝑓𝜈
𝜕𝑧𝑘

����
𝑧

𝜕 𝑓𝑚
𝜕𝑧ℓ

����
𝑧

+ 𝜕2𝑟

𝜕�̄�𝜈𝜕𝜁𝑚

����
( 𝑓 (𝑧), 𝑓 (�̄�))�

�
�
��

0
𝜕 𝑓𝜈
𝜕𝑧𝑘

����
�̄�

𝜕 𝑓𝑚
𝜕𝑧ℓ

����
𝑧

)
+

𝑛∑
𝑚=1

𝜕𝑟

𝜕𝜁𝑚

����
( 𝑓 (𝑧), 𝑓 (�̄�))

𝜕2 𝑓𝑚

𝜕𝑧𝑘𝜕𝑧ℓ

����
𝑧

=

𝑛∑
𝑚,𝜈=1

𝜕2𝑟

𝜕𝜁𝜈𝜕𝜁𝑚

𝜕 𝑓𝜈
𝜕𝑧𝑘

𝜕 𝑓𝑚
𝜕𝑧ℓ

+
𝑛∑

𝑚=1

𝜕𝑟

𝜕𝜁𝑚

𝜕2 𝑓𝑚

𝜕𝑧𝑘𝜕𝑧ℓ
.

The matrix
[
𝜕2(𝑟◦ 𝑓 )
𝜕𝑧𝑘𝜕𝑧ℓ

]
can have different eigenvalues than the matrix

[
𝜕2𝑟

𝜕𝜁𝑘𝜕𝜁ℓ

]
. If 𝑟

has nonvanishing gradient, then using the second term, we can (locally) choose 𝑓

in such a way as to make the matrix
[
𝜕2(𝑟◦ 𝑓 )
𝜕𝑧𝑘𝜕𝑧ℓ

]
be the zero matrix (or anything else)

at a certain point as we can choose the second derivatives of 𝑓 arbitrarily at that
point. See the exercise below. Nothing about the matrix

[
𝜕2𝑟

𝜕𝜁𝑘𝜕𝜁ℓ

]
is preserved under a

biholomorphic map. And that is precisely why it does not appear in the definition of
pseudoconvexity. The story for

[
𝜕2(𝑟◦ 𝑓 )
𝜕�̄�𝑘𝜕�̄�ℓ

]
and

[
𝜕2𝑟

𝜕�̄�𝑘𝜕�̄�ℓ

]
is exactly the same.

Exercise 2.3.12: Given a real function 𝑟 with nonvanishing gradient at 𝑝 ∈ ℂ𝑛 . Find
a local change of coordinates 𝑓 at 𝑝 (so 𝑓 ought to be a holomorphic mapping with an
invertible derivative at 𝑝) such that

[
𝜕2(𝑟◦ 𝑓 )
𝜕𝑧𝑘𝜕𝑧ℓ

���
𝑝

]
and

[
𝜕2(𝑟◦ 𝑓 )
𝜕�̄�𝑘𝜕�̄�ℓ

���
𝑝

]
are just the zero matrices.

Let us look at the mixed derivatives:

𝜕2(𝑟 ◦ 𝑓 )
𝜕�̄�𝑘𝜕𝑧ℓ

=
𝜕

𝜕�̄�𝑘

𝑛∑
𝑚=1

(
𝜕𝑟

𝜕𝜁𝑚

����
( 𝑓 (𝑧), 𝑓 (�̄�))

𝜕 𝑓𝑚
𝜕𝑧ℓ

����
𝑧

)
=

𝑛∑
𝑚,𝜈=1

𝜕2𝑟

𝜕�̄�𝜈𝜕𝜁𝑚

����
( 𝑓 (𝑧), 𝑓 (�̄�))

𝜕 𝑓𝜈
𝜕�̄�𝑘

����
�̄�

𝜕 𝑓𝑚
𝜕𝑧ℓ

����
𝑧

+
𝑛∑

𝑚=1

𝜕𝑟

𝜕𝜁𝑚

����
( 𝑓 (𝑧), 𝑓 (�̄�))�

�
�

�
�>

0
𝜕2 𝑓𝑚

𝜕�̄�𝑘𝜕𝑧ℓ

����
𝑧

=

𝑛∑
𝑚,𝜈=1

𝜕2𝑟

𝜕�̄�𝜈𝜕𝜁𝑚

𝜕 𝑓𝜈
𝜕�̄�𝑘

𝜕 𝑓𝑚
𝜕𝑧ℓ

.
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The complex Hessian of 𝑟 ◦ 𝑓 is the complex Hessian 𝐿 of 𝑟 conjugated as 𝐷∗𝐿𝐷,
where 𝐷 is the holomorphic derivative matrix of 𝑓 at 𝑧 and 𝐷∗ is its conjugate
transpose. Sylvester’s law of inertia says that the number of positive, negative, and
zero eigenvalues of 𝐷∗𝐿𝐷 is the same as that for 𝐿. The eigenvalues may change, but
their signs do not. We are only considering 𝐿 and 𝐷∗𝐿𝐷 on a subspace. In linear
algebra language, consider an invertible 𝐷, a subspace 𝑇, and its image 𝐷𝑇. Then the
inertia of 𝐿 restricted to 𝐷𝑇 is the same as the inertia of 𝐷∗𝐿𝐷 restricted to 𝑇.

Let 𝑀 be a smooth real hypersurface given by 𝑟 = 0, then 𝑓 −1(𝑀) is a smooth
real hypersurface given by 𝑟 ◦ 𝑓 = 0. The holomorphic derivative 𝐷 = 𝐷 𝑓 (𝑝) takes
𝑇
(1,0)
𝑝 𝑓 −1(𝑀) isomorphically to 𝑇(1,0)

𝑓 (𝑝) 𝑀. So 𝐿 is positive (semi)definite on 𝑇(1,0)
𝑓 (𝑝) 𝑀 if

and only if 𝐷∗𝐿𝐷 is positive (semi)definite on 𝑇(1,0)
𝑝 𝑓 −1(𝑀). We have almost proved

the following theorem. In short, pseudoconvexity is a biholomorphic invariant.

Theorem 2.3.8. Suppose𝑈,𝑈′ ⊂ ℂ𝑛 are open sets with smooth boundary, 𝑝 ∈ 𝜕𝑈 ,𝑉 ⊂ ℂ𝑛

a neighborhood of 𝑝, 𝑞 ∈ 𝜕𝑈′,𝑉′ ⊂ ℂ𝑛 a neighborhood of 𝑞, and 𝑓 : 𝑉 → 𝑉′ a biholomorphic
map with 𝑓 (𝑝) = 𝑞, such that 𝑓 (𝑈 ∩𝑉) = 𝑈′ ∩𝑉′. See  Figure 2.8 .

Then the inertia of the Levi form of𝑈 at 𝑝 is the same as the inertia of the Levi form of𝑈′

at 𝑞. In particular,𝑈 is pseudoconvex at 𝑝 if and only if𝑈′ is pseudoconvex at 𝑞. Similarly,
𝑈 is strongly pseudoconvex at 𝑝 if and only if𝑈′ is strongly pseudoconvex at 𝑞.

𝑉′
𝑞𝑝

𝑉

𝑓
𝑈 𝑈′

Figure 2.8: Local boundary biholomorphism.

To finish proving the theorem, the only thing left is to observe that if 𝑓 (𝑈 ∩𝑉) =
𝑈′ ∩𝑉′, then 𝑓 (𝜕𝑈 ∩𝑉) = 𝜕𝑈′ ∩𝑉′, and to note that if 𝑟 is a defining function for𝑈′

at 𝑞, then 𝑟 ◦ 𝑓 is a defining function for𝑈 at 𝑝.

Exercise 2.3.13: Find an example of a bounded domain in ℂ𝑛 , 𝑛 ≥ 2, with smooth
boundary that is not convex, but that is pseudoconvex.

So while the Levi form is not invariant under holomorphic changes of coordinates,
its inertia is. Putting this together with the other observations we made, we find
the normal form for the quadratic part of the defining equation for a smooth real
hypersurface under biholomorphic transformations. It is possible to do better than
the following lemma, but it is not always possible to get rid of the dependence on
Re𝑤 in the higher order terms.
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Lemma 2.3.9. Let 𝑀 ⊂ ℂ𝑛 be a smooth real hypersurface and 𝑝 ∈ 𝑀. Then there exists a
local biholomorphic change of coordinates taking 𝑝 to 0 and 𝑀 to the hypersurface given by

Im𝑤 =

𝛼∑
𝑘=1

|𝑧𝑘 |2 −
𝛼+𝛽∑
𝑘=𝛼+1

|𝑧𝑘 |2 + 𝐸(𝑧, �̄�,Re𝑤),

where 𝐸 is 𝑂(3) at the origin. If 𝑀 is a boundary, then the coordinates are chosen so that
the domain is given by replacing = with > as usual and where 𝛼 is the number of positive
eigenvalues of the Levi form at 𝑝, 𝛽 is the number of negative eigenvalues, and 𝛼+ 𝛽 ≤ 𝑛 − 1.

Recall that 𝑂(ℓ ) at the origin means a function that together with its derivatives
up to and including order ℓ − 1 vanish at the origin.

Proof. Change coordinates so that 𝑀 is given by Im𝑤 = 𝜑(𝑧, �̄�,Re𝑤), where 𝜑 is
𝑂(2). Apply Taylor’s theorem to 𝜑 up to the second order:

𝜑(𝑧, �̄�,Re𝑤) = 𝑞(𝑧, �̄�) + (Re𝑤)(𝐿𝑧 + 𝐿𝑧) + 𝑎(Re𝑤)2 + 𝑂(3),

where 𝑞 is quadratic, 𝐿 : ℂ𝑛−1 → ℂ is linear, and 𝑎 ∈ ℝ. If 𝐿 ≠ 0, do a linear change of
coordinates in the 𝑧 only to make 𝐿𝑧 = 𝑧1. So assume 𝐿𝑧 = 𝜖𝑧1 where 𝜖 = 0 or 𝜖 = 1.

Change coordinates by leaving 𝑧 unchanged and letting 𝑤 = 𝑤′ + 𝑏𝑤′2 + 𝑐𝑤′𝑧1.
Ignore 𝑞(𝑧, �̄�) for a moment, as this change of coordinates does not affect it. Also,
only work up to second order.

− Im𝑤+𝜖(Re𝑤)(𝑧1 + �̄�1) + 𝑎(Re𝑤)2

= −𝑤 − �̄�
2𝑖 + 𝜖

𝑤 + �̄�
2 (𝑧1 + �̄�1) + 𝑎

(𝑤 + �̄�
2

)2

= −𝑤
′ + 𝑏𝑤′2 + 𝑐𝑤′𝑧1 − �̄�′ − 𝑏�̄�′2 − 𝑐�̄�′�̄�1

2𝑖

+ 𝜖
𝑤′ + 𝑏𝑤′2 + 𝑐𝑤′𝑧1 + �̄�′ + 𝑏�̄�′2 + 𝑐�̄�′�̄�1

2 (𝑧1 + �̄�1)

+ 𝑎 (𝑤
′ + 𝑏𝑤′2 + 𝑐𝑤′𝑧1 + �̄�′ + 𝑏�̄�′2 + 𝑐�̄�′�̄�1)

2

4

= −𝑤
′ − �̄�′

2𝑖 +
(
(𝜖𝑖 − 𝑐)𝑤′ + 𝜖𝑖�̄�′)𝑧1 +

(
(𝜖𝑖 + 𝑐)�̄�′ + 𝜖𝑖𝑤′) �̄�1

2𝑖

+ (𝑖𝑎 − 2𝑏)𝑤′2 + (𝑖𝑎 + 2𝑏)�̄�′2 + 2𝑖𝑎𝑤′�̄�′

4𝑖 + 𝑂(3).

We cannot quite get rid of all the quadratic terms in 𝜑, but we choose 𝑏 and 𝑐 to
make the second order terms not depend on Re𝑤′. Set 𝑏 = 𝑖𝑎 and 𝑐 = 2𝑖𝜖, and add
𝑞(𝑧, �̄�) + 𝑂(3) into the mix to get

− Im𝑤 + 𝜑(𝑧, �̄�,Re𝑤) = − Im𝑤 + 𝑞(𝑧, �̄�) + 𝜖(Re𝑤)(𝑧1 + �̄�1) + 𝑎(Re𝑤)2 + 𝑂(3)

= −𝑤
′ − �̄�′

2𝑖 + 𝑞(𝑧, �̄�) − 𝜖𝑖
𝑤′ − �̄�′

2𝑖 (𝑧1 − �̄�1) + 𝑎
(
𝑤′ − �̄�′

2𝑖

)2
+ 𝑂(3)

= − Im𝑤′ + 𝑞(𝑧, �̄�) − 𝜖𝑖(Im𝑤′)(𝑧1 − �̄�1) + 𝑎(Im𝑤′)2 + 𝑂(3).
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The right-hand side is the defining function in the (𝑧, 𝑤′) coordinates. As 𝑀 is no
longer written as a graph of Im𝑤′ over the rest, apply the implicit function theorem
to solve for Im𝑤′ and write the hypersurface as a graph again. The expression for
Im𝑤′ is 𝑂(2), and so −𝑖𝜖(Im𝑤′)(𝑧1 − �̄�1)+ 𝑎(Im𝑤′)2 is 𝑂(3). If we write 𝑀 as a graph,

Im𝑤′ = 𝑞(𝑧, �̄�) + 𝐸(𝑧, �̄�,Re𝑤′),

then 𝐸 is 𝑂(3).
Write the quadratic polynomial 𝑞 as

𝑞(𝑧, �̄�) =
𝑛−1∑
𝑘,ℓ=1

𝑎𝑘ℓ 𝑧𝑘𝑧ℓ + 𝑏𝑘ℓ �̄�𝑘 �̄�ℓ + 𝑐𝑘ℓ �̄�𝑘𝑧ℓ . (2.2)

The 𝑎𝑘ℓ and 𝑏𝑘ℓ are not uniquely determined, but we can pick the matrices [𝑎𝑘ℓ ] and
[𝑏𝑘ℓ ] to be symmetric to make them uniquely determined. As 𝑞 is real-valued, it is
left as an exercise to show that 𝑎𝑘ℓ = 𝑏𝑘ℓ and 𝑐𝑘ℓ = 𝑐ℓ 𝑘 . That is, the matrix [𝑏𝑘ℓ ] is the
complex conjugate of [𝑎𝑘ℓ ] and [𝑐𝑘ℓ ] is Hermitian.

We make another change of coordinates. Fix the 𝑧s again, and set

𝑤′ = 𝑤′′ + 𝑖
𝑛−1∑
𝑘,ℓ=1

𝑎𝑘ℓ 𝑧𝑘𝑧ℓ . (2.3)

In particular,

Im𝑤′ = Im𝑤′′ + Im
(
𝑖

𝑛−1∑
𝑘,ℓ=1

𝑎𝑘ℓ 𝑧𝑘𝑧ℓ

)
= Im𝑤′′ +

𝑛−1∑
𝑘,ℓ=1

(
𝑎𝑘ℓ 𝑧𝑘𝑧ℓ + 𝑏𝑘ℓ �̄�𝑘 �̄�ℓ

)
,

as 𝑎𝑘ℓ = 𝑏𝑘ℓ . Plugging ( 2.3 ) into Im𝑤′ = 𝑞(𝑧, �̄�) + 𝐸(𝑧, �̄�,Re𝑤′) and solving for Im𝑤′′

cancels the holomorphic and antiholomorphic terms in 𝑞, and leaves 𝐸 as 𝑂(3). After
this change of coordinates we may assume that 𝑞 is a Hermitian form,

𝑞(𝑧, �̄�) =
𝑛−1∑
𝑘,ℓ=1

𝑐𝑘ℓ 𝑧𝑘 �̄�ℓ .

As 𝑞 is real-valued, the matrix 𝐶 = [𝑐𝑘ℓ ] is Hermitian. In linear algebra notation,
𝑞(𝑧, �̄�) = 𝑧∗𝐶𝑧, where we think of 𝑧 as a column vector. If 𝑇 is a linear transformation
on the 𝑧 variables, say 𝑧′ = 𝑇𝑧, we obtain 𝑧′∗𝐶𝑧′ = (𝑇𝑧)∗𝐶𝑇𝑧 = 𝑧∗(𝑇∗𝐶𝑇)𝑧. Thus, we
normalize 𝐶 up to ∗-congruence. A Hermitian matrix is ∗-congruent to a diagonal
matrix with only 1s, −1s, and 0s on the diagonal, again by Sylvester’s law of inertia.
Writing out what that means is precisely the conclusion of the proposition. If 𝑀 is a
boundary, we make sure the interior of the domain is given by Im𝑤 > 𝜑(𝑧, �̄�,Re𝑤)
by possibly replacing 𝑤 with −𝑤, which reverses the signs of the eigenvalues. □
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Exercise 2.3.14: Prove the assertions in the proof. First, that if 𝑞 is a quadratic as in
( 2.2 ), then the matrices [𝑎𝑘ℓ ] and [𝑏𝑘ℓ ] can be chosen to be symmetric, in which case all the
coefficients are uniquely determined. Second, that if 𝑞 is real valued, then 𝑎𝑘ℓ = 𝑏𝑘ℓ and
𝑐𝑘ℓ = 𝑐ℓ 𝑘 for all 𝑘 and ℓ .

Lemma 2.3.10 (Narasimhan’s lemma 

*
 ). Let𝑈 ⊂ ℂ𝑛 be an open set with smooth boundary

that is strongly pseudoconvex at 𝑝 ∈ 𝜕𝑈 . Then there exists a local biholomorphic change of
coordinates fixing 𝑝 such that in these new coordinates,𝑈 is strongly convex at 𝑝 and hence
strongly convex at all points near 𝑝.

Exercise 2.3.15: Prove Narasimhan’s lemma. Hint: See the proof of  Lemma 2.3.9 .

Exercise 2.3.16: Prove that an open𝑈 ⊂ ℂ𝑛 with smooth boundary is pseudoconvex at 𝑝
if and only if there exist local holomorphic coordinates at 𝑝 such that𝑈 is convex at 𝑝.

To make use of convexity, the domain needs to be convex at all points (all points
near 𝑝), so Narasimhan’s lemma only works at points of strong pseudoconvexity.
For weakly pseudoconvex points the situation is far more complicated. While it is
possible to use weak pseudoconvexity at 𝑝 to make the domain convex at 𝑝, the same
change of variables does not necessarily make the domain convex at nearby points.
In particular, it is not always possible for a domain that is weakly pseudoconvex at all
points to be made convex in a neighborhood. What makes the lemma work is that if
𝑈 is strongly (pseudo)convex at 𝑝, it will also be so at nearby points.

Let us prove the easy direction of the famous Levi problem. The Levi problem
was a long-standing problem  

†
 in several complex variables to classify domains of

holomorphy in ℂ𝑛 . The answer is that a domain is a domain of holomorphy if and
only if it is pseudoconvex. Just as the problem of trying to show that the classical
geometric convexity is the same as convexity as we have defined it, the Levi problem
has an easier direction and a harder direction. The easier direction is to show that a
domain of holomorphy is pseudoconvex, and the harder direction is to show that a
pseudoconvex domain is a domain of holomorphy. See Hörmander’s book [ H ] for
the proof of the hard direction.

Theorem 2.3.11 (Tomato can principle). Suppose 𝑈 ⊂ ℂ𝑛 is an open set with smooth
boundary and the Levi form has a negative eigenvalue at 𝑝 ∈ 𝜕𝑈 . Then every holomorphic
function on𝑈 extends to a neighborhood of 𝑝. In particular,𝑈 is not a domain of holomorphy.

Pseudoconvex at 𝑝 means that all eigenvalues of the Levi form are nonnegative.
The theorem says that a domain of holomorphy must be pseudoconvex. The theorem’s

*A statement essentially of Narasimhan’s lemma was already used by Helmut Knesser in 1936.
†E. E. Levi stated the problem in 1911, but it was not fully solved until the 1950s, by Oka and others.
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name comes from the proof, and sometimes other theorems using a similar proof of a
“tomato can” of analytic discs are called tomato can principles. The general statement
of proof of the principle is that “an analytic function holomorphic in a neighborhood
of the sides and the bottom of a tomato can extends to the inside.” And the theorem
we gave as the principle states that “if the Levi form at 𝑝 has a negative eigenvalue,
we can fit a tomato can from inside the domain over 𝑝.”

Proof. We change variables so that 𝑝 = 0, and near 𝑝,𝑈 is given by

Im𝑤 > −|𝑧1 |2 +
𝑛−1∑
𝑘=2

𝜖𝑘 |𝑧𝑘 |2 + 𝐸(𝑧1, 𝑧
′, �̄�1, �̄�

′,Re𝑤),

where 𝑧′ = (𝑧2, . . . , 𝑧𝑛−1), 𝜖𝑘 = −1, 0, 1, and 𝐸 is 𝑂(3). We embed an analytic disc via
the map 𝜉 ∈ 𝔻

𝜑
↦→ (𝜆𝜉, 0, 0, . . . , 0) for some small 𝜆 > 0. Clearly 𝜑(0) = 0 ∈ 𝜕𝑈 . For

𝜉 ≠ 0 near the origin

−𝜆2 |𝜉|2 +
𝑛−1∑
𝑘=2

𝜖𝑘 |0|2 + 𝐸(𝜆𝜉, 0,𝜆�̄�, 0, 0) = −𝜆2 |𝜉|2 + 𝐸(𝜆𝜉, 0,𝜆�̄�, 0, 0) < 0,

because the function above has a strict maximum at 𝜉 = 0 by the second derivative
test. Therefore, for 𝜉 ≠ 0 near the origin, 𝜑(𝜉) ∈ 𝑈 . By picking 𝜆 small enough,
𝜑(𝔻 \ {0}) ⊂ 𝑈 .

We can “wiggle the disc a little” and find discs entirely in𝑈 . In particular, for all
small enough 𝑠 > 0, the closed disc given by

𝜉 ∈ 𝔻
𝜑𝑠↦→ (𝜆𝜉, 0, 0, . . . , 0, 𝑖𝑠)

(that is, for slightly positive Im𝑤) is entirely inside𝑈 . Fix such a small 𝑠 > 0. Suppose
𝜖 > 0 is small and 𝜖 < 𝑠. Define the Hartogs figure

𝐻 =
{
(𝑧, 𝑤) : 𝜆 − 𝜖 < |𝑧1 | < 𝜆 + 𝜖, |𝑧𝑘 | < 𝜖 for 𝑘 = 2, . . . , 𝑛 − 1, and |𝑤 − 𝑖𝑠 | < 𝑠 + 𝜖

}
∪

{
(𝑧, 𝑤) : |𝑧1 | < 𝜆 + 𝜖, |𝑧𝑘 | < 𝜖 for 𝑘 = 2, . . . , 𝑛 − 1, and |𝑤 − 𝑖𝑠 | < 𝜖

}
.

The set where |𝑧1 | = 𝜆, 𝑧′ = 0, and |𝑤 − 𝑖𝑠 | ≤ 𝑠 is inside 𝑈 , so an 𝜖-neighborhood
of that is in 𝑈 . For 𝑤 = 𝑖𝑠 the whole disc where |𝑧1 | ≤ 𝜆 and 𝑧′ = 0 is in 𝑈 , so
an 𝜖-neighborhood of that is in 𝑈 . Thus, for small enough 𝜖 > 0, 𝐻 ⊂ 𝑈 . We are
really just taking a Hartogs figure in the 𝑧1, 𝑤 variables, and then “fattening it up” to
the 𝑧′ variables. In  Figure 2.9  , we picture the Hartogs figure in the |𝑧1 | and |𝑤 − 𝑖𝑠 |
variables. The boundary 𝜕𝑈 and 𝑈 are only pictured diagrammatically. Also, we
make a “picture” the analytic discs giving the “tomato can.” In the picture, the𝑈 is
below its boundary 𝜕𝑈 , unlike usually.

The origin is in the hull of 𝐻, and so every function holomorphic in𝑈 , and so in
𝐻, extends through the origin. Hence𝑈 is not a domain of holomorphy. □
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𝜖

𝑠 + 𝜖

𝑠

(𝑧, 𝑤) = (0, 0)
𝜑

𝜑𝑠

Tomato can of
analytic discs

𝜕𝑈 𝜕𝑈

𝑈𝑈

|𝑤 − 𝑖𝑠 |

|𝑧1 |

𝜖𝜖

𝐻

𝜆

Figure 2.9: Tomato can principle.

Another, perhaps a little less concrete, way to finish the proof that does not use a
Hartogs figure is to apply the first version of Kontinuitätssatz ( Theorem 2.1.7  ) with
the sequence of discs {𝜑1/𝑘}.

Exercise 2.3.17: For the following domains in𝑈 ⊂ ℂ2, find all the points in 𝜕𝑈 where𝑈
is weakly pseudoconvex, all the points where it is strongly pseudoconvex, and all the points
where it is not pseudoconvex. Is𝑈 pseudoconvex?

a) Im𝑤 > |𝑧 |4
b) Im𝑤 > |𝑧 |2(Re𝑤)
c) Im𝑤 > (Re 𝑧)(Re𝑤)

Exercise 2.3.18: Let 𝑈 ⊂ ℂ𝑛 be an open set with smooth boundary that is strongly
pseudoconvex at 𝑝 ∈ 𝜕𝑈 . Show that 𝑝 is a so-called peak point: There exists a
neighborhood𝑊 of 𝑝 and a holomorphic 𝑓 : 𝑊 → ℂ such that 𝑓 (𝑝) = 1 and | 𝑓 (𝑧)| < 1 for
all 𝑧 ∈𝑊 ∩𝑈 \ {𝑝}.

Exercise 2.3.19: Suppose 𝑈 ⊂ ℂ𝑛 is an open set with smooth boundary. Suppose for
𝑝 ∈ 𝜕𝑈 , there is a neighborhood𝑊 of 𝑝 and a holomorphic 𝑓 : 𝑊 → ℂ such that 𝑑𝑓 (𝑝) ≠ 0,
𝑓 (𝑝) = 0, but 𝑓 is never zero on 𝑊 ∩𝑈 . Show that 𝑈 is pseudoconvex at 𝑝. Hint: You
may need the holomorphic implicit function theorem ( Theorem 1.3.8  ). Note: The result
does not require the 𝑑𝑓 to not vanish, but it is harder to prove without that hypothesis.

A hyperplane is the “degenerate” case of normal convexity, that is, a hyperplane
is convex from both sides. There is also a flat case of pseudoconvexity. A smooth real
hypersurface 𝑀 ⊂ ℂ𝑛 is Levi-flat if the Levi form vanishes at every point of 𝑀. The
zero matrix is positive semidefinite and negative semidefinite, so both sides of 𝑀 are
pseudoconvex. Conversely, the only hypersurface pseudoconvex from both sides is a
Levi-flat one.
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Exercise 2.3.20: Suppose𝑈 = 𝑉 ×ℂ𝑛−1 ⊂ ℂ𝑛 , where 𝑉 ⊂ ℂ is an open set with smooth
boundary. Show that𝑈 is has a smooth Levi-flat boundary.

Exercise 2.3.21: Prove that a real hyperplane is Levi-flat.

Exercise 2.3.22: Let𝑈 ⊂ ℂ𝑛 be open, 𝑓 ∈ O(𝑈), and 𝑀 =
{
𝑧 ∈ 𝑈 : Im 𝑓 (𝑧) = 0

}
. Show

that if 𝑑𝑓 (𝑝) ≠ 0 for some 𝑝 ∈ 𝑀, then near 𝑝, 𝑀 is a Levi-flat hypersurface.

Exercise 2.3.23: Suppose 𝑀 ⊂ ℂ𝑛 is a smooth Levi-flat hypersurface, 𝑝 ∈ 𝑀, and a
complex line 𝐿 is tangent to 𝑀 at 𝑝. Prove that 𝑝 is not an isolated point of 𝐿 ∩𝑀.

Exercise 2.3.24: Suppose𝑈 ⊂ ℂ𝑛 is an open set with smooth boundary and 𝜕𝑈 is Levi-flat.
Show that𝑈 is unbounded. Hint: If𝑈 were bounded, consider the point on 𝜕𝑈 farthest
from the origin.

2.4 \ From harmonic to plurisubharmonic functions
We start with a quick review of harmonic and subharmonic functions in ℂ. For a
more detailed treatment, see a one-variable book such as [ L ].

Definition 2.4.1. Let𝑈 ⊂ ℝ𝑛 be open. A 𝐶2-smooth 𝑓 : 𝑈 → ℝ is harmonic if 

*
 

∇2 𝑓 =
𝜕2 𝑓

𝜕𝑥2
1
+ · · · +

𝜕2 𝑓

𝜕𝑥2
𝑛

= 0 on𝑈 .

A function 𝑓 : 𝑈 → ℝ ∪ {−∞} is subharmonic if it is upper-semicontinuous 

†
 and

for every ball 𝐵𝑟(𝑎) with 𝐵𝑟(𝑎) ⊂ 𝑈 , and every function 𝑔 continuous on 𝐵𝑟(𝑎) and
harmonic on 𝐵𝑟(𝑎) such that 𝑓 (𝑥) ≤ 𝑔(𝑥) for 𝑥 ∈ 𝜕𝐵𝑟(𝑎), we have

𝑓 (𝑥) ≤ 𝑔(𝑥), for all 𝑥 ∈ 𝐵𝑟(𝑎).

In other words, a subharmonic function is a function that is less than every
harmonic function on every ball. We remark that when 𝑛 = 1 in the definition of a
subharmonic function, it is the same as the standard definition of a convex function of
one real variable, where affine linear functions play the role of harmonic functions: A
function of one real variable is convex if for every interval it is less than the affine linear
function with the same end points. A function of one real variable is harmonic if the
second derivative vanishes, and it is therefore affine linear. In one real dimension it is
also easier to picture. The function 𝑓 is convex if on every interval [𝛼, 𝛽], 𝑓 ≤ 𝑔 for
every affine linear 𝑔 bigger than 𝑓 at the endpoints 𝛼 and 𝛽. In particular, we can take
the 𝑔 that is equal to 𝑓 at the endpoints. See  Figure 2.10 . The picture is analogous for
subharmonic functions for 𝑛 > 1, but it is harder to draw.

*The operator ∇2, sometimes also written Δ, is the Laplacian. It is the trace of the Hessian matrix.
†Recall 𝑓 is upper-semicontinuous if lim sup𝑡→𝑥 𝑓 (𝑡) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝑈 .
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𝑦 = 𝑓 (𝑥)

𝑦 = 𝑔(𝑥)

𝑥 = 𝛽𝑥 = 𝛼

Figure 2.10: Convex function.

We will consider harmonic and subharmonic functions in ℂ � ℝ2. Let us go
through some basic results on harmonic and subharmonic functions in ℂ that you
have probably seen in detail in your one-variable class. Consequently, we leave some
of these results as exercises. In this section (and not just here) we often write 𝑓 (𝑧) for
a function even if it is not holomorphic.

Exercise 2.4.1: An upper-semicontinuous function achieves a maximum on compact sets.
You may assume the function to be extended-real-valued.

Exercise 2.4.2: Let𝑈 ⊂ ℂ be open. Show that for a 𝐶2 function 𝑓 : 𝑈 → ℝ,

𝜕2

𝜕�̄�𝜕𝑧
𝑓 =

1
4∇

2 𝑓 .

Use this to show that 𝑓 is harmonic if and only if it is (locally) the real or imaginary part of a
holomorphic function. Hint: The key is to find an antiderivative of a holomorphic function.

Exercise 2.4.3: Prove the identity theorem. Let 𝑈 ⊂ ℂ be a domain and 𝑓 : 𝑈 → ℝ

harmonic such that 𝑓 = 0 on a nonempty open subset of𝑈 . Then 𝑓 ≡ 0.

Via  Exercise 2.4.2  , harmonic functions are locally real parts of holomorphic
functions, and hence they are infinitely differentiable. In fact, on a simply connected
domain in ℂ, any harmonic function is the real part of a holomorphic function.

It is useful to find a harmonic function given boundary values. This problem is
called the Dirichlet problem, and it is solvable for many (though not all) domains. The
proof of the following special case is contained in the exercises following the theorem.
The Poisson kernel for the unit disc 𝔻 ⊂ ℂ is

𝑃𝑟(𝜃) =
1

2𝜋
1 − 𝑟2

1 + 𝑟2 − 2𝑟 cos𝜃
=

1
2𝜋 Re

(
1 + 𝑟𝑒 𝑖𝜃
1 − 𝑟𝑒 𝑖𝜃

)
, for 0 ≤ 𝑟 < 1.

Theorem 2.4.2. Let 𝑢 : 𝜕𝔻 → ℝ be a continuous function. Define 𝑃𝑢 : 𝔻 → ℝ by

𝑃𝑢(𝑟𝑒 𝑖𝜃) =
∫ 𝜋

−𝜋
𝑢(𝑒 𝑖𝑡)𝑃𝑟(𝜃 − 𝑡) 𝑑𝑡 if 𝑟 < 1 and 𝑃𝑢(𝑒 𝑖𝜃) = 𝑢(𝑒 𝑖𝜃).

Then 𝑃𝑢 is harmonic in 𝔻 and continuous on 𝔻.
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In the proof, it is useful to consider how the graph of 𝑃𝑟 as a function of 𝜃 looks
for a fixed 𝑟. That is, 𝑃𝑟 acts like an approximate identity; integrating against 𝑃𝑟(𝜃− 𝑡)
gives a weighted average of 𝑢 with the values near 𝑒 𝑖𝜃 getting weighted more and
more as 𝑟 → 1. See  Figure 2.11 .
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Figure 2.11: Graph of 𝑃𝑟 for 𝑟 = 0.5, 𝑟 = 0.7, and 𝑟 = 0.85 on [−𝜋,𝜋].

Exercise 2.4.4:
a) Prove 𝑃𝑟(𝜃) > 0 for all 0 ≤ 𝑟 < 1 and all 𝜃.
b) Prove

∫ 𝜋

−𝜋 𝑃𝑟(𝜃) 𝑑𝜃 = 1.
c) Prove for any given 𝛿 > 0, sup{𝑃𝑟(𝜃) : 𝛿 ≤ |𝜃 | ≤ 𝜋} → 0 as 𝑟 → 1.

Exercise 2.4.5: Prove  Theorem 2.4.2 using the following guideline:
a) Poisson kernel is harmonic as a function of 𝑧 = 𝑟𝑒 𝑖𝜃 ∈ 𝔻, and hence 𝑃𝑢 is harmonic.
b) 𝑃 acts like an approximate identity: Prove that 𝑃𝑢(𝑟𝑒 𝑖𝜃) → 𝑢(𝑒 𝑖𝜃) uniformly as
𝑟 → 1. Hint: Split the integral to [−𝛿, 𝛿] and the rest and use the previous exercise.

c) Prove that 𝑃𝑢(𝑧) tends to 𝑢(𝑧0) as 𝑧 ∈ 𝔻 → 𝑧0 ∈ 𝜕𝔻.

Exercise 2.4.6: State and prove a version of  Theorem 2.4.2 for an arbitrary disc Δ𝑟(𝑎).

Exercise 2.4.7: Prove that the Dirichlet problem is not solvable in the punctured disc
𝔻 \ {0}. Hint: Let 𝑢 = 0 on 𝜕𝔻 and 𝑢(0) = 1. The solution would be less than −𝜖 log|𝑧 |
for every 𝜖 > 0.

The Poisson kernel is a reproducing kernel for holomorphic (and antiholomorphic)
functions, as (the real and imaginary parts of) holomorphic functions are harmonic.
Poisson kernel exists for higher dimensions as well. Solving the Dirichlet problem
using the Poisson kernel leads to the following result.
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Proposition 2.4.3 (Mean-value property and sub-mean-value property). Let𝑈 ⊂ ℂ

be an open set.

(i) A continuous function 𝑓 : 𝑈 → ℝ is harmonic if and only if

𝑓 (𝑎) = 1
2𝜋

∫ 2𝜋

0
𝑓 (𝑎 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 whenever Δ𝑟(𝑎) ⊂ 𝑈.

(ii) An upper-semicontinuous function 𝑓 : 𝑈 → ℝ ∪ {−∞} is subharmonic if and only if

𝑓 (𝑎) ≤ 1
2𝜋

∫ 2𝜋

0
𝑓 (𝑎 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 whenever Δ𝑟(𝑎) ⊂ 𝑈.

For the sub-mean-value property you may have to use the Lebesgue integral to
integrate an upper-semicontinuous function, and to use the version of the Poisson
integral above, you need to approximate by continuous functions on the boundary in
the right way. On first reading, feel free to think of continuous subharmonic functions
and not too much will be lost.

Exercise 2.4.8: Fill in the details of the proof of  Proposition 2.4.3 . Hint 1:  (i) follows from
 (ii) if you can solve the Dirichlet problem in a disc. Hint 2: Prove the reverse direction of
 (ii) by contrapositive.

Exercise 2.4.9: Suppose𝑈 ⊂ ℂ is open and 𝑓 : 𝑈 → ℝ ∪ {−∞} is subharmonic. Prove

lim sup
𝑤→𝑧

𝑓 (𝑤) = 𝑓 (𝑧) for all 𝑧 ∈ 𝑈 .

Exercise 2.4.10: Suppose 𝑈 ⊂ ℂ is open and 𝑔 : 𝑈 → ℝ is harmonic. Then 𝑓 : 𝑈 →
ℝ ∪ {−∞} is subharmonic if and only if 𝑓 − 𝑔 is subharmonic.

Proposition 2.4.4 (Maximum principle). Suppose 𝑈 ⊂ ℂ is a domain and 𝑓 : 𝑈 →
ℝ ∪ {−∞} is subharmonic. If 𝑓 attains a maximum in𝑈 , then 𝑓 is constant.

Proof. Suppose 𝑓 attains a maximum at 𝑎 ∈ 𝑈 . If Δ𝑟(𝑎) ⊂ 𝑈 , then

𝑓 (𝑎) ≤ 1
2𝜋

∫ 2𝜋

0
𝑓 (𝑎 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 ≤ 𝑓 (𝑎).

Hence, 𝑓 = 𝑓 (𝑎) almost everywhere on 𝜕Δ𝑟(𝑎). By upper-semicontinuity, 𝑓 = 𝑓 (𝑎)
everywhere on 𝜕Δ𝑟(𝑎). This was true for all 𝑟 with Δ𝑟(𝑎) ⊂ 𝑈 , so 𝑓 = 𝑓 (𝑎) on Δ𝑟(𝑎),
and so the set where 𝑓 = 𝑓 (𝑎) is open. The set where an upper-semicontinuous
function attains a maximum is closed. So 𝑓 = 𝑓 (𝑎) on𝑈 as𝑈 is connected. □
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A very useful fact we will use over and over without mentioning much is that
subharmonicity (like harmonicity) is a local property, even if it does not seems so
from the definition. The proof is left as an exercise.

Proposition 2.4.5. Given an open 𝑈 ⊂ ℂ, an upper-semicontinuous 𝑓 : 𝑈 → ℝ ∪ {−∞}
is subharmonic if for every 𝑝 ∈ 𝑈 there is an 𝑅𝑝 > 0 where Δ𝑅𝑝 (𝑝) ⊂ 𝑈 and such that the
estimate in  Proposition 2.4.3 part  (ii) holds for all 𝑟 with 0 < 𝑟 < 𝑅𝑝 .

In particular, a function 𝑓 : 𝑈 → ℝ ∪ {−∞} is subharmonic if and only if for every
𝑝 ∈ 𝑈 there exists a neighborhood𝑊 of 𝑝,𝑊 ⊂ 𝑈 , such that 𝑓 |𝑊 is subharmonic.

Exercise 2.4.11: Prove  Proposition 2.4.5 . Hint: Analyze your proof of  Proposition 2.4.3 .

Exercise 2.4.12: Suppose 𝑈 ⊂ ℂ is a bounded open set, 𝑓 : 𝑈 → ℝ ∪ {−∞} is upper-
semicontinuous such that 𝑓 |𝑈 is subharmonic, 𝑔 : 𝑈 → ℝ is continuous such that 𝑔 |𝑈 is
harmonic and 𝑓 (𝑧) ≤ 𝑔(𝑧) for all 𝑧 ∈ 𝜕𝑈 . Prove that 𝑓 (𝑧) ≤ 𝑔(𝑧) for all 𝑧 ∈ 𝑈 .

Exercise 2.4.13: Let 𝑔 be a function harmonic on a disc Δ ⊂ ℂ and continuous on Δ.
Prove that for every 𝜖 > 0 there exists a function 𝑔𝜖, harmonic in a neighborhood of Δ, such
that 𝑔(𝑧) ≤ 𝑔𝜖(𝑧) ≤ 𝑔(𝑧) + 𝜖 for all 𝑧 ∈ Δ. In particular, to test subharmonicity, we only
need to consider those 𝑔 that are harmonic a bit past the boundary of the disc.

Proposition 2.4.6. Suppose 𝑈 ⊂ ℂ is an open set and 𝑓 : 𝑈 → ℝ is a 𝐶2 function. The
function 𝑓 is subharmonic if and only if ∇2 𝑓 ≥ 0.

In analogy to convex functions, a 𝐶2-smooth function 𝑓 of one real variable is
convex if and only if 𝑓 ′′(𝑥) ≥ 0 for all 𝑥.

Proof. Suppose 𝑓 is a 𝐶2-smooth function on a subset of ℂ � ℝ2 with ∇2 𝑓 ≥ 0. We
wish to show that 𝑓 is subharmonic. Take a disc Δ such that Δ ⊂ 𝑈 . Consider a
function 𝑔 continuous on Δ, harmonic on Δ, and such that 𝑓 ≤ 𝑔 on the boundary
𝜕Δ. Because ∇2( 𝑓 − 𝑔) = ∇2 𝑓 ≥ 0, we assume 𝑔 = 0 and 𝑓 ≤ 0 on the boundary 𝜕Δ.
We need to show that 𝑓 ≤ 0 on Δ.

Suppose ∇2 𝑓 > 0 at all points on Δ. The Laplacian ∇2 𝑓 is the trace of the Hessian
matrix, that is, the sum of the eigenvalues. Thus 𝑓 has no maximum in Δ, since at a
maximum both eigenvalues of the Hessian matrix would be nonpositive. Therefore,
𝑓 ≤ 0 on all of Δ.

Next suppose only that ∇2 𝑓 ≥ 0. Let 𝑀 be the maximum of 𝑥2 + 𝑦2 on Δ. Take
𝑓𝑛(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) + 1

𝑛 (𝑥2 + 𝑦2) − 1
𝑛𝑀. Clearly ∇2 𝑓𝑛 > 0 everywhere on Δ and 𝑓𝑛 ≤ 0

on the boundary, so 𝑓𝑛 ≤ 0 on all of Δ. As 𝑓𝑛 → 𝑓 , we obtain that 𝑓 ≤ 0 on all of Δ.
The other direction is left as an exercise. □

Exercise 2.4.14: Finish the proof of the proposition above.
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Proposition 2.4.7. Suppose 𝑈 ⊂ ℂ is an open set and 𝑓𝛼 : 𝑈 → ℝ ∪ {−∞} is a family of
subharmonic functions. Let

𝜑(𝑧) = sup
𝛼

𝑓𝛼(𝑧).

If the family is finite, then 𝜑 is subharmonic. If the family is infinite, 𝜑(𝑧) ≠ ∞ for all 𝑧, and
𝜑 is upper-semicontinuous, then 𝜑 is subharmonic.

Proof. Suppose Δ𝑟(𝑎) ⊂ 𝑈 . For all 𝛼,

1
2𝜋

∫ 2𝜋

0
𝜑(𝑎 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 ≥ 1

2𝜋

∫ 2𝜋

0
𝑓𝛼(𝑎 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 ≥ 𝑓𝛼(𝑎).

Taking the supremum on the right over 𝛼 obtains the results. □

Exercise 2.4.15: Prove that if 𝜑 : ℝ → ℝ is a monotonically increasing convex function,
𝑈 ⊂ ℂ is an open set, and 𝑓 : 𝑈 → ℝ is subharmonic, then 𝜑 ◦ 𝑓 is subharmonic.

Exercise 2.4.16: Let𝑈 ⊂ ℂ be open, { 𝑓𝑛} a sequence of subharmonic functions uniformly
bounded above on compact subsets, and {𝑐𝑛} a sequence of positive real numbers such that∑∞
𝑛=1 𝑐𝑛 < ∞. Prove that 𝑓 =

∑∞
𝑛=1 𝑐𝑛 𝑓𝑛 is subharmonic. Make sure to prove the function

is upper-semicontinuous.

Exercise 2.4.17: Suppose𝑈 ⊂ ℂ is a bounded open set, and {𝑝𝑛} a sequence of points in
𝑈 . For 𝑧 ∈ 𝑈 , define 𝑓 (𝑧) = ∑∞

𝑛=1 2−𝑛 log|𝑧 − 𝑝𝑛 |, possibly taking on the value −∞.
a) Show that 𝑓 is a subharmonic function in𝑈 .
b) If𝑈 = 𝔻 and 𝑝𝑛 = 1/𝑛, show that 𝑓 is discontinuous at 0 (the natural topology on

ℝ ∪ {−∞}).
c) If {𝑝𝑛} is dense in𝑈 , show that 𝑓 is discontinuous on a dense set. Hint: Prove that

𝑓 −1(−∞) is a small (but dense) set. Another hint: Integrate the partial sums, and
use polar coordinates.

There are too many harmonic functions in ℂ𝑛 � ℝ2𝑛 . The real and imaginary
parts of holomorphic functions in ℂ𝑛 form a smaller set when 𝑛 > 1. Notice that
when a holomorphic function is restricted to a complex line, we obtain a holomorphic
function of one variable. So the real and imaginary parts of a holomorphic function
had better be harmonic on every complex line. It turns out, this is precisely the right
class of functions.

Definition 2.4.8. Let𝑈 ⊂ ℂ𝑛 be open. A 𝐶2-smooth 𝑓 : 𝑈 → ℝ is pluriharmonic if for
every 𝑎, 𝑏 ∈ ℂ𝑛 , the function of one variable

𝜉 ↦→ 𝑓 (𝑎 + 𝑏𝜉)

is harmonic where defined (on {𝜉 ∈ ℂ : 𝑎 + 𝑏𝜉 ∈ 𝑈}). That is, 𝑓 is harmonic on every
complex line.
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A function 𝑓 : 𝑈 → ℝ∪{−∞} is plurisubharmonic, sometimes plush or psh for short,
if it is upper-semicontinuous and for every 𝑎, 𝑏 ∈ ℂ𝑛 , the function of one variable

𝜉 ↦→ 𝑓 (𝑎 + 𝑏𝜉)

is subharmonic where defined.

A harmonic function of one complex variable is in some sense a generalization
of an affine linear function of one real variable. Similarly, as far as several complex
variables are concerned, a pluriharmonic function is the right generalization to ℂ𝑛 of
an affine linear function on ℝ𝑛 . In the same way, plurisubharmonic functions are the
correct complex variable generalizations of convex functions. A convex function of
one real variable is like a subharmonic function, and a convex function of several real
variables is a function that is convex when restricted to any real line.

Many properties of harmonic and subharmonic functions in ℂ have immediate
generalizations to pluriharmonic and plurisubharmonic functions in ℂ𝑛 . We empha-
size three such immediate generalizations, the maximum principle, the fact that the
property of plurisubharmonicity is local, and the fact that functions are pluriharmonic
if and only if they are (locally) the real and imaginary parts of holomorphic functions.
We will leave these as exercises.

Exercise 2.4.18: Let𝑈 ⊂ ℂ𝑛 be open. Prove that a𝐶2-smooth 𝑓 : 𝑈 → ℝ is pluriharmonic
if and only if

𝜕2 𝑓

𝜕�̄�𝑘𝜕𝑧ℓ
= 0 on𝑈 for all 𝑘, ℓ = 1, . . . , 𝑛.

Exercise 2.4.19: Show that a pluriharmonic function is harmonic. On the other hand, find
an example of a harmonic function that is not pluriharmonic.

Exercise 2.4.20: Let 𝑈 ⊂ ℂ𝑛 be open. Show that 𝑓 : 𝑈 → ℝ is pluriharmonic if and
only if it is locally the real or imaginary part of a holomorphic function. Hint: Using a
previous exercise 𝜕 𝑓

𝜕𝑧ℓ
is holomorphic for all ℓ . Assume that𝑈 is simply connected, 𝑝 ∈ 𝑈 ,

and 𝑓 (𝑝) = 0. Consider the line integral from 𝑝 to a nearby 𝑞 ∈ 𝑈 :

𝐹(𝑞) =
∫ 𝑞

𝑝

𝑛∑
ℓ=1

𝜕 𝑓

𝜕𝑧ℓ
(𝜁) 𝑑𝜁ℓ .

Prove that it is path independent, compute derivatives of 𝐹, and find out what is 𝐹 + �̄� − 𝑓 .

Exercise 2.4.21: Prove the maximum principle: If 𝑈 ⊂ ℂ𝑛 is a domain and 𝑓 : 𝑈 →
ℝ ∪ {−∞} is plurisubharmonic and achieves a maximum at 𝑝 ∈ 𝑈 , then 𝑓 is constant.

Exercise 2.4.22: Show that plurisubharmonicity is a local property, that is, 𝑓 is plurisub-
harmonic if and only if 𝑓 is plurisubharmonic in some neighborhood of each point.
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Proposition 2.4.9. Let 𝑈 ⊂ ℂ𝑛 be open. A 𝐶2-smooth 𝑓 : 𝑈 → ℝ is plurisubharmonic if
and only if the complex Hessian matrix [

𝜕2 𝑓

𝜕�̄�𝑘𝜕𝑧ℓ

]
𝑘ℓ

is positive semidefinite at every point.

Proof. First suppose the complex Hessian has a negative eigenvalue at some 𝑝 ∈ 𝑈 .
After a translation assume 𝑝 = 0. As 𝑓 is real-valued, the complex Hessian

[
𝜕2 𝑓

𝜕�̄�𝑘𝜕𝑧ℓ

���
0

]
𝑘ℓ

is Hermitian. A complex linear change of coordinates acts on the complex Hessian
by ∗-congruence, and therefore we can diagonalize, using Sylvester’s Law of Inertia
again. So assume that

[
𝜕2 𝑓

𝜕�̄�𝑘𝜕𝑧ℓ

���
0

]
𝑘ℓ

is diagonal. If the complex Hessian has a negative
eigenvalue, then one of the diagonal entries is negative. Without loss of generality
suppose 𝜕2 𝑓

𝜕�̄�1𝜕𝑧1

���
0
< 0. The function 𝑧1 ↦→ 𝑓 (𝑧1, 0, . . . , 0) has a negative Laplacian and

therefore is not subharmonic, and thus 𝑓 itself is not plurisubharmonic.
For the other direction, suppose the complex Hessian is positive semidefinite at all

points. After an affine change of coordinates assume that an arbitrary complex line
𝜉 ↦→ 𝑎+ 𝑏𝜉 is setting all but the first variable to zero, that is, 𝑎 = 0 and 𝑏 = (1, 0, . . . , 0).
As the complex Hessian is positive semidefinite, 𝜕2 𝑓

𝜕�̄�1𝜕𝑧1
≥ 0 for all points (𝑧1, 0, . . . , 0).

We proved above that ∇2𝑔 ≥ 0 implies 𝑔 is subharmonic, and we are done. □

Exercise 2.4.23: Suppose𝑈 ⊂ ℂ𝑛 is open and 𝑓 : 𝑈 → ℂ is holomorphic.
a) Show log| 𝑓 (𝑧)| is pluriharmonic on𝑈 \ 𝑓 −1(0) and plurisubharmonic on𝑈 .
b) Show | 𝑓 (𝑧)|𝜂 is plurisubharmonic for all 𝜂 > 0.

Exercise 2.4.24: Show that the set of plurisubharmonic functions on an open set𝑈 ⊂ ℂ𝑛

is a cone in the sense that if 𝑎, 𝑏 > 0 are constants and 𝑓 , 𝑔 : 𝑈 → ℝ ∪ {−∞} are
plurisubharmonic, then 𝑎 𝑓 + 𝑏𝑔 is plurisubharmonic.

Theorem 2.4.10. Suppose 𝑈 ⊂ ℂ𝑛 is an open set and 𝑓 : 𝑈 → ℝ ∪ {−∞} is plurisubhar-
monic. Let 𝑈𝜖 ⊂ 𝑈 be the set of points further than 𝜖 > 0 away from 𝜕𝑈 . For every 𝜖 > 0,
there exists a smooth plurisubharmonic function 𝑓𝜖 : 𝑈𝜖 → ℝ such that 𝑓𝜖(𝑧) ≥ 𝑓 (𝑧), and

𝑓 (𝑧) = lim
𝜖→0

𝑓𝜖(𝑧) for all 𝑧 ∈ 𝑈.

That is, 𝑓 is a (pointwise) limit of smooth plurisubharmonic functions. The idea
of the proof is important and useful in many other contexts.

Proof. We smooth 𝑓 out by convolving with so-called mollifiers, or approximate delta
functions. Many different mollifiers work, but we use a specific one for concreteness.
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For 𝜖 > 0, define

𝑔(𝑧) =
{
𝐶𝑒−1/(1−∥𝑧∥2) if ∥𝑧∥ < 1,
0 if ∥𝑧∥ ≥ 1,

and 𝑔𝜖(𝑧) =
1
𝜖2𝑛 𝑔(𝑧/𝜖).

It is left as an exercise that 𝑔, and so 𝑔𝜖, is smooth. The function 𝑔 has compact
support as it is only nonzero inside the unit ball. The support of 𝑔𝜖 is the 𝜖-ball. Both
are nonnegative. Choose 𝐶 so that∫

ℂ𝑛

𝑔 𝑑𝑉 = 1, and therefore
∫
ℂ𝑛

𝑔𝜖 𝑑𝑉 = 1.

Here 𝑑𝑉 is the volume measure. The function 𝑔 only depends on ∥𝑧∥. To get an idea
of how these functions work, see  Figure 2.12 .
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Figure 2.12: Graphs of 𝑒−1/(1−𝑥2), 1
0.5 𝑒

−1/(1−(𝑥/0.5)2), and 1
0.25 𝑒

−1/(1−(𝑥/0.25)2).

Compare the graphs to the graphs of the Poisson kernel as a function of 𝜃, which
is also a type of mollifier. The idea of integrating against the right approximate delta
function with the desired properties is similar to the solution of the Dirichlet problem
using the Poisson kernel.

The function 𝑓 is bounded above on compact sets as it is upper semicontinuous. If
𝑓 is not bounded below, replace 𝑓 with max

{
𝑓 , −1

𝜖

}
, which is still plurisubharmonic.

Thus, without loss of generality, assume that 𝑓 is locally bounded. For 𝑧 ∈ 𝑈𝜖, define
𝑓𝜖 as the convolution with 𝑔𝜖:

𝑓𝜖(𝑧) = ( 𝑓 ∗ 𝑔𝜖)(𝑧) =
∫
ℂ𝑛

𝑓 (𝑤)𝑔𝜖(𝑧 − 𝑤) 𝑑𝑉(𝑤) =
∫
ℂ𝑛

𝑓 (𝑧 − 𝑤)𝑔𝜖(𝑤) 𝑑𝑉(𝑤).

The two forms of the integral follow easily via change of variables. We are perhaps
abusing notation a bit as 𝑓 is only defined on 𝑈 , but it is not a problem as long as
𝑧 ∈ 𝑈𝜖, because 𝑔𝜖 is then zero when 𝑓 is undefined. By differentiating the first form
under the integral, we find that 𝑓𝜖 is smooth.
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Let us show that 𝑓𝜖 is plurisubharmonic. Restrict to a line 𝜉 ↦→ 𝑎 + 𝑏𝜉. We wish to
prove the sub-mean-value property using a circle of radius 𝑟 around 𝜉 = 0:

1
2𝜋

∫ 2𝜋

0
𝑓𝜖(𝑎 + 𝑏𝑟𝑒 𝑖𝜃) 𝑑𝜃 =

1
2𝜋

∫ 2𝜋

0

∫
ℂ𝑛

𝑓
(
𝑎 + 𝑏𝑟𝑒 𝑖𝜃 − 𝑤

)
𝑔𝜖(𝑤) 𝑑𝑉(𝑤) 𝑑𝜃

=

∫
ℂ𝑛

(
1

2𝜋

∫ 2𝜋

0
𝑓
(
𝑎 − 𝑤 + 𝑏𝑟𝑒 𝑖𝜃

)
𝑑𝜃

)
𝑔𝜖(𝑤) 𝑑𝑉(𝑤)

≥
∫
ℂ𝑛

𝑓 (𝑎 − 𝑤)𝑔𝜖(𝑤) 𝑑𝑉(𝑤) = 𝑓𝜖(𝑎).

For the inequality, we used 𝑔𝜖 ≥ 0. So 𝑓𝜖 is plurisubharmonic.
Let us show that 𝑓𝜖(𝑧) ≥ 𝑓 (𝑧) for all 𝑧 ∈ 𝑈𝜖. The function 𝑔𝜖(𝑤) only depends on

|𝑤1 |, . . . , |𝑤𝑛 |, in fact, 𝑔𝜖(𝑤1, . . . , 𝑤𝑛) = 𝑔𝜖(|𝑤1 |, . . . , |𝑤𝑛 |). Without loss of generality,
we consider 𝑧 = 0 and we use polar coordinates for the integral.

𝑓𝜖(0) =
∫
ℂ𝑛
𝑓 (−𝑤)𝑔𝜖(|𝑤1 |, . . . , |𝑤𝑛 |) 𝑑𝑉(𝑤)

=

∫ 𝜖

0
· · ·

∫ 𝜖

0

(∫ 2𝜋

0
· · ·

∫ 2𝜋

0
𝑓 (−𝑟1𝑒 𝑖𝜃1 , . . . ,−𝑟𝑛𝑒 𝑖𝜃𝑛 ) 𝑑𝜃1 · · · 𝑑𝜃𝑛

)
𝑔𝜖(𝑟1, . . . , 𝑟𝑛) 𝑟1 · · · 𝑟𝑛 𝑑𝑟1 · · · 𝑑𝑟𝑛

≥
∫ 𝜖

0
· · ·

∫ 𝜖

0

(∫ 2𝜋

0
· · ·

∫ 2𝜋

0
(2𝜋) 𝑓 (0,−𝑟2𝑒 𝑖𝜃2 , . . . ,−𝑟𝑛𝑒 𝑖𝜃𝑛 ) 𝑑𝜃2 · · · 𝑑𝜃𝑛

)
𝑔𝜖(𝑟1, . . . , 𝑟𝑛) 𝑟1 · · · 𝑟𝑛 𝑑𝑟1 · · · 𝑑𝑟𝑛

≥ 𝑓 (0)
∫ 𝜖

0
· · ·

∫ 𝜖

0
(2𝜋)𝑛𝑔𝜖(𝑟1, . . . , 𝑟𝑛) 𝑟1 · · · 𝑟𝑛 𝑑𝑟1 · · · 𝑑𝑟𝑛

= 𝑓 (0)
∫
ℂ𝑛

𝑔𝜖(𝑤) 𝑑𝑉(𝑤) = 𝑓 (0).

The second equality above follows as 𝑔𝜖 is zero outside the polydisc of radius 𝜖. For
the inequalities, we again needed that 𝑔𝜖 ≥ 0. The penultimate equality follows from
the fact that 2𝜋 =

∫ 2𝜋
0 𝑑𝜃.

Finally, for a fixed 𝑧, we show lim𝜖→0 𝑓𝜖(𝑧) = 𝑓 (𝑧). For subharmonic, and so for
plurisubharmonic, functions, lim sup𝜁→𝑧 𝑓 (𝜁) = 𝑓 (𝑧), see  Exercise 2.4.9 . So given
𝛿 > 0, find an 𝜖 > 0 such that 𝑓 (𝜁) − 𝑓 (𝑧) ≤ 𝛿 for all 𝜁 ∈ 𝐵𝜖(𝑧).

𝑓𝜖(𝑧) − 𝑓 (𝑧) =
∫
𝐵𝜖(0)

𝑓 (𝑧 − 𝑤)𝑔𝜖(𝑤) 𝑑𝑉(𝑤) − 𝑓 (𝑧)
∫
𝐵𝜖(0)

𝑔𝜖(𝑤) 𝑑𝑉(𝑤)

=

∫
𝐵𝜖(0)

(
𝑓 (𝑧 − 𝑤) − 𝑓 (𝑧)

)
𝑔𝜖(𝑤) 𝑑𝑉(𝑤)

≤ 𝛿

∫
𝐵𝜖(0)

𝑔𝜖(𝑤) 𝑑𝑉(𝑤) = 𝛿.

Again we used that 𝑔𝜖 ≥ 0. We find 0 ≤ 𝑓𝜖(𝑧) − 𝑓 (𝑧) ≤ 𝛿, and so 𝑓𝜖(𝑧) → 𝑓 (𝑧). □
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Exercise 2.4.25: Show that 𝑔 in the proof above is smooth on all of ℂ𝑛 .

Exercise 2.4.26:
a) Show that for a subharmonic function 𝑓 ,

∫ 2𝜋
0 𝑓 (𝑎 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 is a monotone function

of 𝑟. Hint: Try a 𝐶2 function first and use Green’s theorem.
b) Use this fact to show that the 𝑓𝜖(𝑧) from  Theorem 2.4.10 is monotone decreasing in 𝜖.

As smooth plurisubharmonic functions have a local characterization in terms of
derivatives, we obtain the following useful corollary, whose proof is an exercise.

Corollary 2.4.11. Let𝑈 ⊂ ℂ𝑛 and𝑉 ⊂ ℂ𝑚 be open. Prove that if 𝑔 : 𝑈 → 𝑉 is holomorphic
and 𝑓 : 𝑉 → ℝ ∪ {−∞} is plurisubharmonic, then 𝑓 ◦ 𝑔 is plurisubharmonic.

Exercise 2.4.27: Prove  Corollary 2.4.11  . Hint: Prove it first for 𝐶2 functions, then use the
approximation. Monotone convergence is useful.

Exercise 2.4.28: Using the computation from  Theorem 2.4.10 show that if 𝑓 is plurihar-
monic, then 𝑓𝜖 = 𝑓 (where it makes sense), obtaining another proof that a pluriharmonic 𝑓
is 𝐶∞.

Exercise 2.4.29: Let the 𝑓 in  Theorem 2.4.10 be continuous and suppose 𝐾 ⊂⊂ 𝑈 . For
small enough 𝜖 > 0, 𝐾 ⊂ 𝑈𝜖. Show that 𝑓𝜖 converges uniformly to 𝑓 on 𝐾.

Exercise 2.4.30: Let the 𝑓 in  Theorem 2.4.10 be 𝐶𝑘-smooth for some 𝑘 ≥ 0. Show that all
derivatives of 𝑓𝜖 up to order 𝑘 converge uniformly on compact sets to the corresponding
derivatives of 𝑓 . See also previous exercise.

Let us prove the theorem of Radó, which is a complementary result to the Riemann
extension theorem. Here on the one hand the function is continuous and vanishes on
the set you wish to extend across, but on the other hand you know nothing about
this set. It is sometimes covered in a one-variable course, and in several variables it
follows directly from the one-variable result.

Theorem 2.4.12 (Radó). Let 𝑈 ⊂ ℂ𝑛 be open and 𝑓 : 𝑈 → ℂ a continuous function that
is holomorphic on the set

𝑈′ =
{
𝑧 ∈ 𝑈 : 𝑓 (𝑧) ≠ 0

}
.

Then 𝑓 ∈ O(𝑈).

Proof. First assume 𝑛 = 1. The conclusion is local, so it is enough to prove it for a
small disc Δ such that 𝑓 is continuous on the closure Δ. Let Δ′ ⊂ Δ be the set where 𝑓
is nonzero. If Δ′ is empty, we are done as 𝑓 is identically zero and hence holomorphic.

Let 𝑢 be the real part of 𝑓 . On Δ′, 𝑢 is a harmonic function. Let 𝑃𝑢 be the Poisson
integral of 𝑢 on Δ. Hence 𝑃𝑢 equals 𝑢 on 𝜕Δ, and 𝑃𝑢 is harmonic in all of Δ. Consider
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the function 𝑃𝑢(𝑧) − 𝑢(𝑧) on Δ. The function is zero on 𝜕Δ and it is harmonic on
Δ′. By rescaling 𝑓 , we assume | 𝑓 (𝑧)| < 1 for all 𝑧 ∈ Δ. The function 𝑧 ↦→ log| 𝑓 (𝑧)| is
harmonic on Δ′, it is −∞ when 𝑓 (𝑧) = 0, and hence it is upper-semicontinuous on
Δ. Applying the sub-mean-value property near points where 𝑓 vanishes and the
fact that subharmonicity is local, we find that log| 𝑓 (𝑧)| is subharmonic on Δ. As
| 𝑓 (𝑧)| < 1, we find that log| 𝑓 (𝑧)| is negative on Δ. So for every 𝑡 > 0, the function
𝑧 ↦→ 𝑡 log | 𝑓 (𝑧)| is subharmonic and negative and the function 𝑧 ↦→ −𝑡 log | 𝑓 (𝑧)| is
superharmonic (minus a subharmonic function) and positive. See  Figure 2.13 . It is
immediate that for all 𝑡 > 0 and 𝑧 ∈ 𝜕Δ, we have

𝑡 log | 𝑓 (𝑧)| ≤ 𝑃𝑢(𝑧) − 𝑢(𝑧) ≤ −𝑡 log | 𝑓 (𝑧)| . (2.4)

The functions 𝑧 ↦→ 𝑡 log | 𝑓 (𝑧)| −
(
𝑃𝑢(𝑧) − 𝑢(𝑧)

)
and 𝑧 ↦→ 𝑡 log | 𝑓 (𝑧)| −

(
𝑢(𝑧) − 𝑃𝑢(𝑧)

)
are harmonic on Δ′ and −∞ whenever 𝑓 (𝑧) = 0. Thus both are upper-semicontinuous
on Δ and subharmonic on Δ. The maximum principle shows that ( 2.4 ) holds for all
𝑧 ∈ Δ and all 𝑡 > 0.

𝑓 ≠ 0
Δ′

𝑡 log| 𝑓 | < 0

𝑃𝑢 − 𝑢 = 0

𝑡 log| 𝑓 | = −∞
𝑓 = 0

𝑊 = Δ \ Δ′

Figure 2.13: Proof of Radó’s theorem.

Taking the limit 𝑡 → 0 shows that 𝑃𝑢 = 𝑢 on Δ′. Let 𝑊 = Δ \ Δ′. On 𝑊 , 𝑢 = 0
and so 𝑃𝑢 − 𝑢 is harmonic on 𝑊 and continuous on 𝑊 . Furthermore, 𝑃𝑢 − 𝑢 = 0
on Δ′ ∪ 𝜕Δ, and so 𝑃𝑢 − 𝑢 = 0 on 𝜕𝑊 . By the maximum principle, 𝑃𝑢 = 𝑢 on 𝑊
and therefore on all of Δ. Similarly, if 𝑣 is the imaginary part of 𝑓 , then 𝑃𝑣 = 𝑣 on Δ.
In other words, 𝑢 and 𝑣 are harmonic on Δ. As Δ is simply connected, let �̃� be the
harmonic conjugate of 𝑢 that equals 𝑣 at some point of Δ′. As 𝑓 is holomorphic on Δ′,
the harmonic functions �̃� and 𝑣 are equal on the nonempty open subset Δ′ of Δ and
so they are equal everywhere. Consequently, 𝑓 = 𝑢 + 𝑖𝑣 is holomorphic on Δ.

The extension of the proof to several variables is left as an exercise. □

Exercise 2.4.31: Use the one-variable result to extend the theorem to several variables.
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2.5 \ Hartogs pseudoconvexity
By  Corollary 2.4.11 , plurisubharmonicity is preserved under holomorphic mappings.
In particular, if 𝜑 : 𝔻 → ℂ𝑛 is an analytic disc and 𝑓 is plurisubharmonic in a
neighborhood of 𝜑(𝔻), then 𝑓 ◦ 𝜑 is subharmonic on 𝔻. As subharmonic functions
satisfy the maximum principle, we find that 𝑓 (𝑧) ≤ sup𝑤∈𝜑(𝜕𝔻) 𝑓 (𝑤) for all 𝑧 ∈ 𝜑(𝔻).
Let us give a general definition for this type of situation.

Definition 2.5.1. Let Fbe a class of (extended 

*
 )-real-valued functions defined on an

open𝑈 ⊂ ℝ𝑛 . If 𝐾 ⊂ 𝑈 , define 𝐾, the hull of 𝐾 with respect to F, as the set

𝐾
def
=

{
𝑥 ∈ 𝑈 : 𝑓 (𝑥) ≤ sup

𝑦∈𝐾
𝑓 (𝑦) for all 𝑓 ∈ F

}
.

An open set𝑈 is convex with respect to F if for every 𝐾 ⊂⊂ 𝑈 , the hull 𝐾 ⊂⊂ 𝑈 . 

†
 

Clearly 𝐾 ⊂ 𝐾. The key is to show that 𝐾 is not “too large” for𝑈 . Keep in mind
that the functions in Fare defined on𝑈 , so 𝐾 depends on𝑈 not just on 𝐾. An easy
mistake is to consider functions defined on a larger set, obtaining a smaller Fand
hence a larger 𝐾. Sometimes it is useful to write 𝐾F to denote the dependence on F,
especially when talking about several different hulls.

For example, if 𝑈 = ℝ and F is the set of real-valued smooth 𝑓 : ℝ → ℝ with
𝑓 ′′(𝑥) ≥ 0, then �{𝑎, 𝑏} = [𝑎, 𝑏] for any 𝑎, 𝑏 ∈ ℝ. In general, if F is the set of convex
functions, then a domain𝑈 ⊂ ℝ𝑛 is geometrically convex if and only if it is convex
with respect to convex functions  

‡
 , although let us not define what that means except

for smooth functions in exercises below.

Exercise 2.5.1: Suppose𝑈 ⊂ ℝ𝑛 is a domain.
a) Show that 𝑈 is geometrically convex if and only if it is convex with respect to the

affine linear functions.
b) Suppose𝑈 has smooth boundary. Show that𝑈 is convex if and only if it is convex

with respect to the smooth convex functions on 𝑈 , that is, with respect to smooth
functions with positive semidefinite Hessian.

Exercise 2.5.2: Show that every open set𝑈 ⊂ ℝ𝑛 is convex with respect to real polynomials.

Theorem 2.5.2 (Kontinuitätssatz—Continuity principle, second version). Suppose
an open set 𝑈 ⊂ ℂ𝑛 is convex with respect to plurisubharmonic functions, then given any
collection of closed analytic discs Δ𝛼 ⊂ 𝑈 such that

⋃
𝛼 𝜕Δ𝛼 ⊂⊂ 𝑈 , we have

⋃
𝛼 Δ𝛼 ⊂⊂ 𝑈 .

*By extended reals we mean ℝ ∪ {−∞,∞}.
†Recall that ⊂⊂ means relatively compact: the closure in the relative (subspace) topology is compact.
‡The technicality is, of course, that we must define convex functions on not-necessarily-convex sets,

and that is not completely straightforward.
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Various similar theorems are named the continuity principle, we have now seen
two. What they have in common is a family of analytic discs whose boundaries stay
inside a domain, and where the conclusion has to do with extension of holomorphic
functions, with domains of holomorphy, or with some sort of convexity as above.

Proof. Let 𝑓 be a plurisubharmonic function on𝑈 . If 𝜑𝛼 : 𝔻 → 𝑈 is the holomorphic
(in 𝔻) mapping giving the closed analytic disc, then 𝑓 ◦ 𝜑𝛼 is subharmonic. By the
maximum principle, 𝑓 on Δ𝛼 must be less than or equal to the supremum of 𝑓 on
𝜕Δ𝛼, so Δ𝛼 is in the hull of 𝜕Δ𝛼. In other words,

⋃
𝛼 Δ𝛼 is in the hull of

⋃
𝛼 𝜕Δ𝛼 and

therefore
⋃

𝛼 Δ𝛼 ⊂⊂ 𝑈 by convexity. □

Let us illustrate the failure of the continuity principle. If you have discs (denoted
by straight line segments) that approach the boundary as in  Figure 2.14  , then the
domain is not convex with respect to plurisubharmonic functions. In the diagram,
the boundaries of the discs are denoted by the dark dots at the end of the segments.
In fact, for standard geometric convexity, we can prove a continuity principle where
we do replace discs with line segments, see the exercises below.

Figure 2.14: Failure of the continuity principle.

Exercise 2.5.3: Suppose𝑈 ⊂ ℂ𝑛 is a domain and 𝐾 ⊂⊂ 𝑈 is a nonempty compact subset.
Prove that𝑈 \ 𝐾 is not convex with respect to plurisubharmonic functions.

Exercise 2.5.4: Suppose𝑈 ⊂ ℂ𝑛 is a domain with smooth boundary, 𝑝 ∈ 𝜕𝑈 , and Δ is an
affine linear analytic disc with 𝑝 ∈ Δ, but Δ \ {𝑝} ⊂ 𝑈 . Prove that𝑈 is not convex with
respect to the plurisubharmonic functions.

Exercise 2.5.5: Prove the corresponding Kontinuitätssatz, and its converse, for geometric
convexity: Prove that a domain 𝑈 ⊂ ℝ𝑛 is geometrically convex if and only if whenever
[𝑥𝛼 , 𝑦𝛼] ⊂ 𝑈 is a collection of straight line segments such that

⋃
𝛼{𝑥𝛼 , 𝑦𝛼} ⊂⊂ 𝑈 implies⋃

𝛼[𝑥𝛼 , 𝑦𝛼] ⊂⊂ 𝑈 .

We can now define another version of pseudoconvexity, this time only in terms of
the interior of the domain.
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Definition 2.5.3. Let𝑈 ⊂ ℂ𝑛 be open. An 𝑓 : 𝑈 → ℝ is an exhaustion function for𝑈 if{
𝑧 ∈ 𝑈 : 𝑓 (𝑧) < 𝑟

}
⊂⊂ 𝑈 for every 𝑟 ∈ ℝ.

A domain 𝑈 ⊂ ℂ𝑛 is Hartogs pseudoconvex if there exists a continuous plurisubhar-
monic exhaustion function. The set {𝑧 ∈ 𝑈 : 𝑓 (𝑧) < 𝑟} is called the sublevel set of 𝑓 , or
the 𝑟-sublevel set.

Example 2.5.4: The unit ball 𝔹𝑛 is Hartogs pseudoconvex. The continuous function

𝑧 ↦→ − log
(
1 − ∥𝑧∥2)

is an exhaustion function, and it is easy to check directly that it is plurisubharmonic.

Example 2.5.5: The entire ℂ𝑛 is Hartogs pseudoconvex as ∥𝑧∥2 is a continuous
plurisubharmonic exhaustion function. Also, because ∥𝑧∥2 is plurisubharmonic, then
given any 𝐾 ⊂⊂ ℂ𝑛 , the hull 𝐾 with respect to plurisubharmonic functions must be
bounded. In other words, ℂ𝑛 is convex with respect to plurisubharmonic functions.

Theorem 2.5.6. Suppose𝑈 ⊊ ℂ𝑛 is a domain. The following are equivalent:

(i) − log 𝜌(𝑧) is plurisubharmonic, where 𝜌(𝑧) is the distance from 𝑧 to 𝜕𝑈 .

(ii) 𝑈 is Hartogs pseudoconvex.

(iii) 𝑈 is convex with respect to plurisubharmonic functions defined on𝑈 .

(iv) The conclusion of  Kontinuitätssatz (second version) holds: for any collection of closed
analytic discs Δ𝛼 ⊂ 𝑈 such that

⋃
𝛼 𝜕Δ𝛼 ⊂⊂ 𝑈 , we have

⋃
𝛼 Δ𝛼 ⊂⊂ 𝑈 .

Proof.  (i) ⇒  (ii) : If 𝑈 is bounded, the function − log 𝜌(𝑧) is clearly a continuous
exhaustion function. If𝑈 is unbounded, take 𝑧 ↦→ max{− log 𝜌(𝑧), ∥𝑧∥2}.

 (ii) ⇒  (iii) : Suppose 𝑓 is a continuous plurisubharmonic exhaustion function.
If 𝐾 ⊂⊂ 𝑈 , then for some 𝑟 we have 𝐾 ⊂ {𝑧 ∈ 𝑈 : 𝑓 (𝑧) < 𝑟} ⊂⊂ 𝑈 . But then by
definition of the hull 𝐾 we have 𝐾 ⊂ {𝑧 ∈ 𝑈 : 𝑓 (𝑧) < 𝑟} ⊂⊂ 𝑈 .

 (iii) ⇒  (iv) : That is simply the statement of  Kontinuitätssatz (second version) .
 (iv) ⇒  (i) : As long as𝑈 ≠ ℂ𝑛 , the function− log 𝜌(𝑧) is real-valued and continuous.

For 𝑐 ∈ ℂ𝑛 with ∥𝑐∥ = 1, let 𝜌𝑐(𝑧) be the supremum of the radii of the affine discs
centered at 𝑧 in the direction 𝑐 that lie in𝑈 . That is,

𝜌𝑐(𝑧) = sup
{
𝜆 > 0 : 𝑧 + 𝜁𝑐 ∈ 𝑈 for all 𝜁 ∈ 𝜆𝔻

}
.

As 𝜌(𝑧) = inf𝑐 𝜌𝑐(𝑧),
− log 𝜌(𝑧) = sup

∥𝑐∥=1

(
− log 𝜌𝑐(𝑧)

)
.

If we prove that for all 𝑎, 𝑏 ∈ ℂ𝑛 and 𝑐 ∈ ℂ𝑛 with ∥𝑐∥ = 1, the function 𝜉 ↦→
− log 𝜌𝑐(𝑎 + 𝑏𝜉) is subharmonic, then 𝜉 ↦→ − log 𝜌(𝑎 + 𝑏𝜉) is subharmonic, and we
are done. See  Figure 2.15 for the setup.
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𝜌𝑐(𝑧)

𝜌(𝑧)

𝑧𝑧

𝑈𝑈

𝑐

Figure 2.15: Largest disc in the direction of 𝑐. The disc is drawn as a line.

Suppose Δ ⊂ ℂ is a disc such that 𝑎 + 𝑏𝜉 ∈ 𝑈 for all 𝜉 ∈ Δ. If 𝑢 is a harmonic
function on Δ continuous on Δ such that − log 𝜌𝑐(𝑎+ 𝑏𝜉) ≤ 𝑢(𝜉) on 𝜕Δ, we must show
that the inequality holds on Δ. By  Exercise 2.4.13  , we may assume 𝑢 is harmonic on a
neighborhood of Δ and so let 𝑢 = Re 𝑓 for a holomorphic function 𝑓 . Suppose 𝜉 ∈ 𝜕Δ
for a moment. We have − log 𝜌𝑐(𝑎 + 𝑏𝜉) ≤ Re 𝑓 (𝜉), or in other words

𝜌𝑐(𝑎 + 𝑏𝜉) ≥ 𝑒−Re 𝑓 (𝜉) =
��𝑒− 𝑓 (𝜉)��.

Using 𝜁 = 𝑡𝑒− 𝑓 (𝜉) in the definition of 𝜌𝑐(𝑎 + 𝑏𝜉), the statement above is equivalent to
to saying that

(𝑎 + 𝑏𝜉) + 𝑡𝑒− 𝑓 (𝜉)𝑐 ∈ 𝑈 for all 𝑡 ∈ 𝔻.

This statement holds whenever 𝜉 ∈ 𝜕Δ. We must prove that it also holds for all 𝜉 ∈ Δ.
The function 𝜑𝑡(𝜉) = (𝑎 + 𝑏𝜉) + 𝑡𝑒− 𝑓 (𝜉)𝑐 gives a closed analytic disc with boundary

inside𝑈 . We have a family of analytic discs, parametrized by 𝑡, whose boundaries are
in𝑈 for all 𝑡 with |𝑡 | < 1. For 𝑡 = 0 the entire disc is inside𝑈 . As 𝜑𝑡(𝜉) is continuous
in both 𝑡 and 𝜉 and Δ is compact, 𝜑𝑡(Δ) ⊂ 𝑈 for 𝑡 in some neighborhood of 0. Take
0 < 𝑡0 < 1 such that 𝜑𝑡(Δ) ⊂ 𝑈 for all 𝑡 with |𝑡 | < 𝑡0. Then⋃

|𝑡 |<𝑡0

𝜑𝑡(𝜕Δ) ⊂
⋃
|𝑡 |≤𝑡0

𝜑𝑡(𝜕Δ) ⊂⊂ 𝑈,

because continuous functions take compact sets to compact sets. The hypothesis  (iv) 

implies ⋃
|𝑡 |<𝑡0

𝜑𝑡(Δ) ⊂⊂ 𝑈.

By continuity again,
⋃

|𝑡 |≤𝑡0 𝜑𝑡(Δ) ⊂⊂ 𝑈 , and so
⋃

|𝑡 |<𝑡0+𝜖 𝜑𝑡(Δ) ⊂⊂ 𝑈 for some 𝜖 > 0.
Consequently 𝜑𝑡(Δ) ⊂ 𝑈 for all 𝑡 with |𝑡 | < 1. Thus (𝑎 + 𝑏𝜉) + 𝑡𝑒− 𝑓 (𝜉)𝑐 ∈ 𝑈 for all
𝜉 ∈ Δ and all |𝑡 | < 1. This implies 𝜌𝑐(𝑎 + 𝑏𝜉) ≥ 𝑒−Re 𝑓 (𝜉) for all 𝜉 ∈ Δ, which in turn
implies − log 𝜌𝑐(𝑎 + 𝑏𝜉) ≤ Re 𝑓 (𝜉) = 𝑢(𝜉) for all 𝜉 ∈ Δ. Therefore, − log 𝜌𝑐(𝑎 + 𝑏𝜉) is
subharmonic. □
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Exercise 2.5.6: Show that if𝑈1 ⊂ ℂ𝑛 and𝑈2 ⊂ ℂ𝑛 are Hartogs pseudoconvex domains,
then so are all the topological components of𝑈1 ∩𝑈2.

Exercise 2.5.7: Show that if 𝑈 ⊂ ℂ𝑛 and 𝑉 ⊂ ℂ𝑚 are Hartogs pseudoconvex domains,
then so is𝑈 ×𝑉 .

Exercise 2.5.8: Show that every domain𝑈 ⊂ ℂ is Hartogs pseudoconvex.

Exercise 2.5.9: Consider the union𝑈 =
⋃
𝑘𝑈𝑘 of a nested sequence of Hartogs pseudo-

convex domains,𝑈𝑘−1 ⊂ 𝑈𝑘 ⊂ ℂ𝑛 . Show that𝑈 is Hartogs pseudoconvex.

Exercise 2.5.10: Let ℝ2 ⊂ ℂ2 be naturally embedded (that is, it is the set where 𝑧1 and 𝑧2
are real). Show that the set ℂ2 \ℝ2 is not Hartogs pseudoconvex.

Exercise 2.5.11: Let 𝑈 ⊂ ℂ𝑛 be a domain and 𝑓 ∈ O(𝑈). Prove that 𝑈′ =
{
𝑧 ∈ 𝑈 :

𝑓 (𝑧) ≠ 0
}

is a Hartogs pseudoconvex domain. Hint: See also  Exercise 1.6.5 .

Exercise 2.5.12: Suppose𝑈,𝑉 ⊂ ℂ𝑛 are biholomorphic domains. Prove that𝑈 is Hartogs
pseudoconvex if and only if 𝑉 is Hartogs pseudoconvex.

Exercise 2.5.13: Let𝑈 =
{
𝑧 ∈ ℂ2 : |𝑧1 | > |𝑧2 |

}
.

a) Prove that𝑈 is a Hartogs pseudoconvex domain.
b) Find a closed analytic disc Δ in ℂ2 such that 0 ∈ Δ (0 ∉ 𝑈) and Δ \ {0} ⊂ 𝑈 (in

particular 𝜕Δ ⊂ 𝑈).
c) What do you think would happen if you tried to move Δ a little bit to avoid the

intersection with the complement? Think about the  continuity principle (second
version). Compare with  Exercise 2.5.4 .

Exercise 2.5.14: Let 𝑈 ⊂ ℂ𝑛 be a domain, and 𝑓 : 𝑈 → ℝ be a continuous function,
plurisubharmonic and negative on 𝑈 , and 𝑓 = 0 on 𝜕𝑈 . Prove that 𝑈 is Hartogs
pseudoconvex.

The statement corresponding to  Exercise 2.5.9 on nested unions for domains of
holomorphy is the Behnke–Stein theorem, which follows using this exercise and the
solution of the Levi problem. Behnke–Stein is easier to prove without the solution to
the Levi problem, see  Exercise 2.6.13 , and is, in fact, generally used in the solution of
the Levi problem.

 Exercise 2.5.12 says that (Hartogs) pseudoconvexity is a biholomorphic invariant.
That is a good indication that we are looking at a correct notion. It also allows us
to change variables to more convenient ones when proving a specific domain is
(Hartogs) pseudoconvex.

It is not immediately clear from the definition, but Hartogs pseudoconvexity is
also a local property of the boundary.
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Lemma 2.5.7. A domain 𝑈 ⊂ ℂ𝑛 is Hartogs pseudoconvex if and only if for every point
𝑝 ∈ 𝜕𝑈 there exists a neighborhood𝑊 of 𝑝 such that𝑊 ∩𝑈 is Hartogs pseudoconvex.

Proof. One direction is trivial, so consider the other. Suppose 𝑝 ∈ 𝜕𝑈 , and let𝑊 be
such that 𝑈 ∩𝑊 is Hartogs pseudoconvex. Intersection of Hartogs pseudoconvex
domains is Hartogs pseudoconvex, see  Exercise 2.5.6 , so assume 𝑊 = 𝐵𝑟(𝑝). Let
𝐵 = 𝐵𝑟/2(𝑝). If 𝑞 ∈ 𝐵 ∩𝑈 , the distance from 𝑞 to the boundary of𝑊 ∩𝑈 is the same
as the distance to 𝜕𝑈 . The setup is illustrated in  Figure 2.16 .

𝑊
𝑈

𝑞

𝐵

𝑟/2
𝑝

Figure 2.16: Local Hartogs pseudoconvexity.

The part of the boundary 𝜕𝑈 in𝑊 is marked by a thick black line, the part of the
boundary of 𝜕(𝑊 ∩𝑈) that is the boundary of𝑊 is marked by a thick gray line. A
point 𝑞 ∈ 𝐵 is marked and a ball of radius 𝑟/2 around 𝑞 is dotted. No point of distance
𝑟/2 from 𝑞 is in 𝜕𝑊 , and the distance of 𝑞 to 𝜕𝑈 is at most 𝑟/2 as 𝑝 ∈ 𝜕𝑈 and 𝑝 is the
center of 𝐵. Let dist(𝑥, 𝑦) denote the euclidean distance function 

*
 . Then for 𝑧 ∈ 𝐵∩𝑈

− log dist(𝑧, 𝜕𝑈) = − log dist
(
𝑧, 𝜕(𝑈 ∩𝑊)

)
.

The right-hand side is plurisubharmonic as𝑈 ∩𝑊 is Hartogs pseudoconvex. Such
a ball 𝐵 exists around every 𝑝 ∈ 𝜕𝑈 , so near the boundary, − log dist(𝑧, 𝜕𝑈) is
plurisubharmonic.

If 𝑈 is bounded, then 𝜕𝑈 is compact. So there is some 𝜖 > 0 such that
− log dist(𝑧, 𝜕𝑈) is plurisubharmonic if dist(𝑧, 𝜕𝑈) < 2𝜖. The function

𝜑(𝑧) = max
{
− log dist(𝑧, 𝜕𝑈),− log 𝜖

}
is a continuous plurisubharmonic exhaustion function. The proof for unbounded𝑈
is left as an exercise. □

Exercise 2.5.15: Finish the proof of the lemma for unbounded domains. See  Exercise 2.5.9 .

*If 𝑥 and/or 𝑦 are sets of points, we take the infimum of the euclidean distance over all the points.
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It may seem that we defined a totally different concept, but it turns out that
Levi and Hartogs pseudoconvexity are one and the same on domains where both
concepts make sense. As a consequence of the following theorem we say simply
“pseudoconvex” and there is no ambiguity.
Theorem 2.5.8. Let 𝑈 ⊂ ℂ𝑛 be a domain with smooth boundary. Then 𝑈 is Hartogs
pseudoconvex if and only if𝑈 is Levi pseudoconvex.

Proof. Suppose𝑈 ⊂ ℂ𝑛 is a domain with smooth boundary that is not Levi pseudo-
convex at 𝑝 ∈ 𝜕𝑈 . As in  Theorem 2.3.11 , change coordinates so that 𝑝 = 0 and𝑈 is
defined by

Im 𝑧𝑛 > −|𝑧1 |2 +
𝑛−1∑
𝑘=2

𝜖𝑘 |𝑧𝑘 |2 + 𝑂(3).

For a small fixed 𝜆 > 0, the closed analytic discs defined by 𝜉 ∈ 𝔻 ↦→ (𝜆𝜉, 0, · · · , 0, 𝑖𝑠)
are in 𝑈 for all small enough 𝑠 > 0. The origin is a limit point of the insides of the
discs, but not a limit point of their boundaries.  Kontinuitätssatz (second version) is
not satisfied, and 𝑈 is not convex with respect to the plurisubharmonic functions.
Therefore,𝑈 is not Hartogs pseudoconvex.

Next suppose𝑈 is Levi pseudoconvex. Take any 𝑝 ∈ 𝜕𝑈 . After translation and
rotation by a unitary, assume 𝑝 = 0 and write a defining function 𝑟 as

𝑟(𝑧) = 𝜑(𝑧′, �̄�′,Re 𝑧𝑛) − Im 𝑧𝑛 ,

where 𝑧′ = (𝑧1, . . . , 𝑧𝑛−1) and 𝜑 ∈ 𝑂(2). Levi pseudoconvexity says
𝑛∑

𝑘=1,ℓ=1
�̄�𝑘𝑎ℓ

𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ

���
𝑞
≥ 0 whenever

𝑛∑
𝑘=1

𝑎𝑘
𝜕𝑟

𝜕𝑧𝑘

���
𝑞
= 0, (2.5)

for all 𝑞 ∈ 𝜕𝑈 near 0. Let 𝑠 be a small real constant, and let �̃� = (𝑞1, . . . , 𝑞𝑛−1, 𝑞𝑛 + 𝑖𝑠).
None of the derivatives of 𝑟 depend on Im 𝑧𝑛 , and therefore 𝜕𝑟

𝜕𝑧ℓ

��̃
𝑞
= 𝜕𝑟

𝜕𝑧ℓ

��
𝑞

and
𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ

��̃
𝑞
= 𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ

��
𝑞

for all 𝑘 and ℓ . So condition ( 2.5 ) holds for all 𝑞 ∈ 𝑈 near 0. We
will use 𝑟 to manufacture a plurisubharmonic exhaustion function, that is one with a
positive semidefinite Hessian. Starting with 𝑟, we already have what we need in all
but one direction.

Let∇𝑧𝑟 |𝑞 =
( 𝜕𝑟
𝜕𝑧1

��
𝑞
, . . . , 𝜕𝑟

𝜕𝑧𝑛

��
𝑞

)
denote the gradient of 𝑟 in the holomorphic directions

only. Given 𝑞 ∈ 𝑈 near 0, decompose an arbitrary 𝑐 ∈ ℂ𝑛 as 𝑐 = 𝑎 + 𝑏, where 𝑎 and 𝑏
are orthogonal and 𝑏 is a scalar multiple of ∇𝑧𝑟 |𝑞 . That is, 𝑎 = (𝑎1, . . . , 𝑎𝑛) satisfies

𝑛∑
𝑘=1

𝑎𝑘
𝜕𝑟

𝜕𝑧𝑘

���
𝑞
=

〈
𝑎,∇𝑧𝑟 |𝑞

〉
= 0.

By the equality part of Cauchy–Schwarz,����� 𝑛∑
𝑘=1

𝑐𝑘
𝜕𝑟

𝜕𝑧𝑘

���
𝑞

����� =
����� 𝑛∑
𝑘=1

𝑏𝑘
𝜕𝑟

𝜕𝑧𝑘

���
𝑞

����� = ���〈𝑏,∇𝑧𝑟 |𝑞〉��� = ∥𝑏∥
∇𝑧𝑟 |𝑞.
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As ∇𝑧𝑟 |0 = (0, . . . , 0,−1/2𝑖), then for 𝑞 sufficiently near 0, we have
∇𝑧𝑟 |𝑞 ≥ 1/3, and

∥𝑏∥ = 1∇𝑧𝑟 |𝑞
����� 𝑛∑
𝑘=1

𝑐𝑘
𝜕𝑟

𝜕𝑧𝑘

���
𝑞

����� ≤ 3

����� 𝑛∑
𝑘=1

𝑐𝑘
𝜕𝑟

𝜕𝑧𝑘

���
𝑞

�����. (2.6)

As 𝑐 = 𝑎 + 𝑏 is the orthogonal decomposition, ∥𝑐∥ ≥ ∥𝑏∥. The complex Hessian
matrix of 𝑟 is continuous, and so let𝑀 ≥ 0 be an upper bound on its operator norm for 𝑞
near the origin. Note that 𝑐𝑘𝑐ℓ = (�̄�𝑘+𝑏𝑘)(𝑎ℓ+𝑏ℓ ) = �̄�𝑘𝑎ℓ+𝑏𝑘(𝑎ℓ+𝑏ℓ )+(�̄�𝑘+𝑏𝑘)𝑏ℓ−𝑏𝑘𝑏ℓ =
�̄�𝑘𝑎ℓ + 𝑏𝑘𝑐ℓ + 𝑐𝑘𝑏ℓ − 𝑏𝑘𝑏ℓ . Using Cauchy–Schwarz,

𝑛∑
𝑘=1,ℓ=1

𝑐𝑘𝑐ℓ
𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ

���
𝑞
=

𝑛∑
𝑘=1,ℓ=1

�̄�𝑘𝑎ℓ
𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ

���
𝑞
+

𝑛∑
𝑘=1,ℓ=1

𝑏𝑘𝑐ℓ
𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ

���
𝑞

+
𝑛∑

𝑘=1,ℓ=1
𝑐𝑘𝑏ℓ

𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ

���
𝑞
−

𝑛∑
𝑘=1,ℓ=1

𝑏𝑘𝑏ℓ
𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ

���
𝑞

≥
𝑛∑

𝑘=1,ℓ=1
�̄�𝑘𝑎ℓ

𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ

���
𝑞
−𝑀∥𝑏∥∥𝑐∥ −𝑀∥𝑐∥∥𝑏∥ −𝑀∥𝑏∥2

≥ −3𝑀∥𝑐∥∥𝑏∥.

(2.7)

Putting ( 2.7 ) and ( 2.6 ) together, for 𝑞 ∈ 𝑈 near the origin,
𝑛∑

𝑘=1,ℓ=1
𝑐𝑘𝑐ℓ

𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ

���
𝑞
≥ −3𝑀∥𝑐∥∥𝑏∥ ≥ −32𝑀∥𝑐∥

����� 𝑛∑
𝑘=1

𝑐𝑘
𝜕𝑟

𝜕𝑧𝑘

���
𝑞

�����.
For 𝑧 ∈ 𝑈 sufficiently close to 0, define

𝑓 (𝑧) = − log
(
−𝑟(𝑧)

)
+ 𝐴∥𝑧∥2,

where 𝐴 > 0 is some constant we will choose later. The log is there to make 𝑓 blow
up as we approach the boundary. The 𝐴∥𝑧∥2 is there to add a constant diagonal
matrix to the complex Hessian of 𝑓 , which we hope is enough to make it positive
semidefinite at all 𝑧 near 0. Compute:

𝜕2 𝑓

𝜕�̄�𝑘𝜕𝑧ℓ
=

1
𝑟2

𝜕𝑟

𝜕�̄�𝑘

𝜕𝑟

𝜕𝑧ℓ
− 1
𝑟

𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ
+ 𝐴𝛿ℓ

𝑘
,

where 𝛿ℓ
𝑘

is the Kronecker delta 

*
 . Apply the complex Hessian of 𝑓 to 𝑐 at 𝑞 ∈ 𝑈 near

the origin (recall that 𝑟 is negative on𝑈 and so for 𝑞 ∈ 𝑈 , −𝑟 = |𝑟 |):
𝑛∑

𝑘=1,ℓ=1
𝑐𝑘𝑐ℓ

𝜕2 𝑓

𝜕�̄�𝑘𝜕𝑧ℓ

���
𝑞
=

1
𝑟2

����� 𝑛∑
ℓ=1

𝑐ℓ
𝜕𝑟

𝜕𝑧ℓ

���
𝑞

�����2 + 1
|𝑟 |

𝑛∑
𝑘=1,ℓ=1

𝑐𝑘𝑐ℓ
𝜕2𝑟

𝜕�̄�𝑘𝜕𝑧ℓ

���
𝑞
+ 𝐴∥𝑐∥2

≥ 1
𝑟2

����� 𝑛∑
ℓ=1

𝑐ℓ
𝜕𝑟

𝜕𝑧ℓ

���
𝑞

�����2 − 32𝑀

|𝑟 | ∥𝑐∥
����� 𝑛∑
𝑘=1

𝑐𝑘
𝜕𝑟

𝜕𝑧𝑘

���
𝑞

����� + 𝐴∥𝑐∥2.

*Recall 𝛿ℓ
𝑘
= 0 if 𝑘 ≠ ℓ and 𝛿ℓ

𝑘
= 1 if 𝑘 = ℓ .
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Now comes a somewhat funky trick. As a quadratic polynomial in ∥𝑐∥, the right-hand
side of the inequality is always nonnegative if𝐴 > 0 and if the discriminant is negative
or zero. Let us see if we can make the discriminant zero:

0 =

(
32𝑀

|𝑟 |

����� 𝑛∑
𝑘=1

𝑐𝑘
𝜕𝑟

𝜕𝑧𝑘

���
𝑞

�����
)2

− 4𝐴 1
𝑟2

����� 𝑛∑
ℓ=1

𝑐ℓ
𝜕𝑟

𝜕𝑧ℓ

���
𝑞

�����2.
All the nonconstant terms go away and 𝐴 = 34𝑀2

4 makes the discriminant zero. Thus
for that 𝐴,

𝑛∑
𝑘=1,ℓ=1

𝑐𝑘𝑐ℓ
𝜕2 𝑓

𝜕�̄�𝑘𝜕𝑧ℓ

���
𝑞
≥ 0.

In other words, the complex Hessian of 𝑓 is positive semidefinite at all points 𝑞 ∈ 𝑈
near 0. The function 𝑓 (𝑧) goes to infinity as 𝑧 approaches 𝜕𝑈 . So for every 𝑡 ∈ ℝ, the
𝑡-sublevel set (the set where 𝑓 (𝑧) < 𝑡) is a positive distance away from 𝜕𝑈 near 0.

We have constructed a local continuous plurisubharmonic exhaustion function for
𝑈 near 𝑝. If we intersect with a small ball 𝐵 centered at 𝑝, then we get that𝑈 ∩ 𝐵 is
Hartogs pseudoconvex. This is true at all 𝑝 ∈ 𝜕𝑈 , so𝑈 is Hartogs pseudoconvex. □

2.6 \ Holomorphic convexity
Definition 2.6.1. Let𝑈 ⊂ ℂ𝑛 be a domain. For 𝐾 ⊂ 𝑈 , define the holomorphic hull

𝐾𝑈
def
=

{
𝑧 ∈ 𝑈 : | 𝑓 (𝑧)| ≤ sup

𝑤∈𝐾
| 𝑓 (𝑤)| for all 𝑓 ∈ O(𝑈)

}
.

A domain 𝑈 is holomorphically convex if whenever 𝐾 ⊂⊂ 𝑈 , then 𝐾𝑈 ⊂⊂ 𝑈 . In
other words, 𝑈 is holomorphically convex if it is convex with respect to moduli of
holomorphic functions on𝑈 . 

*
 

It is a simple exercise (see below) to show that a holomorphically convex domain
is Hartogs pseudoconvex. We will prove that holomorphic convexity is equivalent
to being a domain of holomorphy. That a Hartogs pseudoconvex domain is holo-
morphically convex is the Levi problem for Hartogs pseudoconvex domains and is
considerably more difficult. The thing is, there are lots of plurisubharmonic functions,
and they are easy to construct; we can even construct them locally, and then piece
them together by taking maxima. There are far fewer holomorphic functions, and we
cannot just construct them locally and expect the pieces to somehow fit together. As
it is so fundamental, let us state it as a theorem.

Theorem 2.6.2 (Solution of the Levi problem). A domain 𝑈 ⊂ ℂ𝑛 is holomorphically
convex if and only it is Hartogs pseudoconvex.

*Sometimes simply 𝐾 is used, but we use 𝐾𝑈 to emphasize the dependence on𝑈 .
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Proof. The forward direction follows from an exercise below, which is sometimes
called Oka’s lemma. We skip the proof of the backward direction in order to save
some hundred pages or so. See Hörmander’s book [ H ] for the proof. □

Exercise 2.6.1 (Oka’s lemma): Prove that if a domain𝑈 ⊂ ℂ𝑛 is holomorphically convex,
then it is Hartogs pseudoconvex. See  Exercise 2.4.23 .

Exercise 2.6.2: Prove that every domain 𝑈 ⊂ ℂ is holomorphically convex by giving a
topological description of 𝐾𝑈 for every compact 𝐾 ⊂⊂ 𝑈 . Hint: Runge may be useful.

Exercise 2.6.3: Suppose 𝑓 : ℂ𝑛 → ℂ is holomorphic and𝑈 is a topological component of{
𝑧 ∈ ℂ𝑛 : | 𝑓 (𝑧)| < 1

}
. Prove that𝑈 is a holomorphically convex domain.

Exercise 2.6.4: Compute the hull𝐾𝔻𝑛 of the set𝐾 =
{
𝑧 ∈ 𝔻𝑛 : |𝑧ℓ | = 𝜆ℓ for ℓ = 1, . . . , 𝑛

}
,

where 0 ≤ 𝜆ℓ < 1. Prove that the unit polydisc is holomorphically convex.

Exercise 2.6.5: Prove that a geometrically convex domain 𝑈 ⊂ ℂ𝑛 is holomorphically
convex.

Exercise 2.6.6: Prove the Hartogs figure (see  Theorem 2.1.4 ) is not holomorphically convex.

Exercise 2.6.7: Let𝑈 ⊂ ℂ𝑛 be a domain, 𝑓 ∈ O(𝑈), and 𝑓 is not identically zero. Show
that if 𝑈 is holomorphically convex, then 𝑈 =

{
𝑧 ∈ 𝑈 : 𝑓 (𝑧) ≠ 0

}
is holomorphically

convex. Hint: First see  Exercise 1.6.5 .

Exercise 2.6.8: Suppose 𝑈,𝑉 ⊂ ℂ𝑛 are biholomorphic domains. Prove that 𝑈 is
holomorphically convex if and only if 𝑉 is holomorphically convex.

Exercise 2.6.9: In the definition of holomorphic hull of 𝐾, replace 𝑈 with ℂ𝑛 and O(𝑈)
with holomorphic polynomials on ℂ𝑛 , to get the polynomial hull of 𝐾. Prove that the
polynomial hull of 𝐾 ⊂⊂ ℂ𝑛 is the same as the holomorphic hull 𝐾ℂ𝑛 .

Exercise 2.6.10:
a) Prove the Hartogs triangle 𝑇 (see  Exercise 2.1.9 ) is holomorphically convex.
b) Prove 𝑇 ∪ 𝐵𝜖(0) (for a small enough 𝜖 > 0) is not holomorphically convex.

Exercise 2.6.11: Show that if domains𝑈1 ⊂ ℂ𝑛 and𝑈2 ⊂ ℂ𝑛 are holomorphically convex,
then so are all the topological components of𝑈1 ∩𝑈2.

Exercise 2.6.12: Let 𝑛 ≥ 2.
a) Let𝑈 ⊂ ℂ𝑛 be a domain and 𝐾 ⊂⊂ 𝑈 a nonempty compact subset. Show that𝑈 \𝐾

is not holomorphically convex.
b) Let 𝑈 ⊂ ℂ𝑛 be a bounded holomorphically convex domain. Prove that ℂ𝑛 \𝑈 is

connected.
c) Find an unbounded holomorphically convex domain 𝑈 ⊂ ℂ𝑛 where ℂ𝑛 \ 𝑈 is

disconnected.
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The set ℂ𝑛 is both holomorphically convex and a domain of holomorphy. These
two notions are equivalent also for all other domains in ℂ𝑛 .

Theorem 2.6.3 (Cartan–Thullen). Let𝑈 ⊊ ℂ𝑛 be a domain. The following are equivalent:

(i) 𝑈 is a domain of holomorphy.

(ii) For all 𝐾 ⊂⊂ 𝑈 , dist(𝐾, 𝜕𝑈) = dist(𝐾𝑈 , 𝜕𝑈).

(iii) 𝑈 is holomorphically convex.

Proof. We start with  (i) ⇒  (ii) . Suppose there is a 𝐾 ⊂⊂ 𝑈 with dist(𝐾, 𝜕𝑈) >

dist(𝐾𝑈 , 𝜕𝑈). After possibly a rotation by a unitary, there exists a point 𝑝 ∈ 𝐾𝑈 and a
polydisc Δ = Δ𝑟(0) with polyradius 𝑟 = (𝑟1, . . . , 𝑟𝑛) such that 𝑝 + Δ = Δ𝑟(𝑝) contains
a point of 𝜕𝑈 , but

𝐾 + Δ =
⋃
𝑞∈𝐾

Δ𝑟(𝑞) ⊂⊂ 𝑈.

See  Figure 2.17 .

𝐾 + Δ

𝜕𝑈

Δ𝑟(𝑝)𝐾

𝑝

Figure 2.17: Point in the hull closer to the boundary than closest point of 𝐾.

If 𝑓 ∈ O(𝑈), then there is an 𝑀 > 0 such that | 𝑓 | ≤ 𝑀 on 𝐾+Δ as that is a relatively
compact set. By the Cauchy estimates for each 𝑞 ∈ 𝐾, we get����𝜕𝛼 𝑓𝜕𝑧𝛼

(𝑞)
���� ≤ 𝑀𝛼!

𝑟𝛼
.

This inequality therefore holds on 𝐾𝑈 and hence at 𝑝. The series∑
𝛼

1
𝛼!

𝜕𝛼 𝑓

𝜕𝑧𝛼
(𝑝)(𝑧 − 𝑝)𝛼
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converges in Δ𝑟(𝑝). The function 𝑓 extends to all of Δ𝑟(𝑝) and Δ𝑟(𝑝) contains points
outside of𝑈 . In other words,𝑈 is not a domain of holomorphy.

The implication  (ii) ⇒  (iii) is immediate.
Finally, we prove  (iii) ⇒  (i) . Suppose 𝑈 is holomorphically convex. Let 𝑝 ∈ 𝜕𝑈 .

By convexity, choose nested compact sets 𝐾ℓ−1 ⊊ 𝐾ℓ ⊂⊂ 𝑈 such that
⋃
ℓ 𝐾ℓ = 𝑈 , and

(̂𝐾ℓ )𝑈 = 𝐾ℓ . As the sets exhaust𝑈 , we can perhaps pass to a subsequence to ensure
that there exists a sequence of points 𝑝ℓ ∈ 𝐾ℓ \ 𝐾ℓ−1 such that limℓ→∞ 𝑝ℓ = 𝑝.

Choose 𝑓1 ∈ O(𝑈) so that 𝑓1(𝑝1) ≥ 1. Proceed inductively. As 𝑝ℓ is not in the hull
of 𝐾ℓ−1, there is a function 𝑓ℓ ∈ O(𝑈) such that | 𝑓ℓ | ≤ 2−ℓ on 𝐾ℓ−1, but

| 𝑓ℓ (𝑝ℓ )| ≥ ℓ +
�����ℓ−1∑
𝑘=1

𝑓𝑘(𝑝ℓ )
����� .

Finding such a function is left as an exercise below. For every ℓ , the series
∑∞
𝑘=1 𝑓𝑘(𝑧)

converges uniformly on 𝐾ℓ as for all 𝑘 > ℓ , | 𝑓𝑘 | ≤ 2−𝑘 on 𝐾ℓ . As the 𝐾ℓ exhaust𝑈 , the
series converges uniformly on compact subsets of𝑈 . Consequently,

𝑓 (𝑧) =
∞∑
𝑘=1

𝑓𝑘(𝑧)

is a holomorphic function on𝑈 . We bound

| 𝑓 (𝑝ℓ )| ≥ | 𝑓ℓ (𝑝ℓ )| −
�����ℓ−1∑
𝑘=1

𝑓𝑘(𝑝ℓ )
����� −

����� ∞∑
𝑘=ℓ+1

𝑓𝑘(𝑝ℓ )
����� ≥ ℓ − ∞∑

𝑘=ℓ+1
2−𝑘 ≥ ℓ − 1.

So limℓ→∞ 𝑓 (𝑝ℓ ) = ∞. Clearly there cannot be any open 𝑊 ⊂ ℂ𝑛 containing 𝑝 to
which 𝑓 extends (see  definition of domain of holomorphy ). As every connected open
𝑊 such that𝑊 \𝑈 ≠ ∅ and𝑊 \𝑈 𝑐 ≠ ∅ must contain a point of 𝜕𝑈 , we are done. □

By  Exercise 2.6.8 , holomorphic convexity is a biholomorphic invariant. Thus,
being a domain of holomorphy is also a biholomorphic invariant. This fact is not easy
to prove from the definition of a domain of holomorphy, as the biholomorphism is
defined only on the interior of our domains.

Holomorphic convexity is an intrinsic notion; it does not require knowing anything
about points outside of 𝑈 . It is a much better way to think about domains of
holomorphy. Holomorphic convexity generalizes easily to more complicated complex
manifolds 

*
 , while the notion of a domain of holomorphy only makes sense for

domains in ℂ𝑛 .

*Manifolds with complex structure, that is, “manifolds with multiplication by 𝑖 on the tangent
space.”
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Exercise 2.6.13 (Behnke–Stein again): Show that the union
⋃
ℓ 𝑈ℓ of a nested sequence

of holomorphically convex domains𝑈ℓ−1 ⊂ 𝑈ℓ ⊂ ℂ𝑛 is holomorphically convex.

Exercise 2.6.14: Prove the existence of the function 𝑓ℓ ∈ O(𝑈) as indicated in the proof of
Cartan–Thullen above.

Exercise 2.6.15: Show that if𝑈 ⊂ ℂ𝑛 is holomorphically convex, then there exists a single
function 𝑓 ∈ O(𝑈) that does not extend through any point 𝑝 ∈ 𝜕𝑈 .

Exercise 2.6.16: We know𝑈 = ℂ2 \ {𝑧 ∈ ℂ2 : 𝑧1 = 0} is a domain of holomorphy. Use
part  (ii) of the theorem to show that if 𝑊 ⊂ ℂ2 is a domain of holomorphy and 𝑈 ⊂ 𝑊 ,
then either𝑊 = 𝑈 or𝑊 = ℂ2. Hint: Suppose 𝐿 ⊂ 𝑊 is a complex line and 𝐾 is a circle
in 𝐿. What is 𝐾𝑊?

In the following series of exercises, which you should most definitely do in order,
you will solve the Levi problem (and more) for complete Reinhardt domains. Recall
that a domain𝑈 is a complete Reinhardt domain if whenever (𝑧1, . . . , 𝑧𝑛) is in𝑈 and
𝑟𝑘 = |𝑧𝑘 |, then the entire closed polydisc Δ𝑟(0) ⊂ 𝑈 . We say a complete Reinhardt
domain𝑈 is logarithmically convex if there exists a (geometrically) convex 𝐶 ⊂ ℝ𝑛 such
that 𝑧 ∈ 𝑈 if and only if

(
log|𝑧1 |, . . . , log|𝑧𝑛 |

)
∈ 𝐶.

Exercise 2.6.17: Prove that a logarithmically convex complete Reinhardt domain is the
intersection of sets of the form{

𝑧 ∈ ℂ𝑛 : 𝛼1 log|𝑧1 | + · · · + 𝛼𝑛 log|𝑧𝑛 | < 𝛽
}
=

{
𝑧 ∈ ℂ𝑛 : |𝑧1 |𝛼1 · · · |𝑧𝑛 |𝛼𝑛 < 𝑒𝛽

}
for some nonnegative 𝛼1, . . . , 𝛼𝑛 , and 𝛽 ∈ ℝ.

Exercise 2.6.18: Prove that a complete Reinhardt domain that is Hartogs pseudoconvex is
logarithmically convex.

Exercise 2.6.19: Let 𝛼1, . . . , 𝛼𝑛 ≥ 0 and 𝛽 ∈ ℝ. For each 𝑘 ∈ ℕ0, let ℓ 𝑘𝑚 ∈ ℕ0 be the
smallest nonnegative integer such that ℓ 𝑘𝑚 ≥ 𝑘𝛼𝑚 . Prove that the domain of convergence of
the power series

∞∑
𝑘=0

𝑒−𝑘𝛽𝑧
ℓ 𝑘1
1 · · · 𝑧ℓ

𝑘
𝑛
𝑛

is precisely
{
𝑧 ∈ ℂ𝑛 : |𝑧1 |𝛼1 · · · |𝑧𝑛 |𝛼𝑛 < 𝑒𝛽

}
. Hint: That it diverges outside is easy, what

is hard is that it converges inside. Perhaps useful is to notice ℓ 𝑘𝑚
𝑘
− 𝛼𝑚 ≤ 1

𝑘
, and that if 𝑧 is

in the set, there is some 𝜖 > 0 such that (1 + 𝜖)|𝑧1 |𝛼1 · · · |𝑧𝑛 |𝛼𝑛 = 𝑒𝛽.

Exercise 2.6.20: Prove that a logarithmically convex Reinhardt domain is holomorphically
convex and therefore it is a domain of holomorphy.
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Exercise 2.6.21: Prove that a complete Reinhardt domain is a domain of holomorphy if and
only if it is the domain of convergence of some power series at the origin. Hint: There is a
function that does not extend past any boundary point of a holomorphically convex domain.

We (you) have proved the following proposition.

Proposition 2.6.4. Let 𝑈 ⊂ ℂ𝑛 be a complete Reinhardt domain. Then the following are
equivalent:

(i) 𝑈 is logarithmically convex.

(ii) 𝑈 is a domain of holomorphy.

(iii) 𝑈 is a domain of convergence of some power series at the origin.

(iv) 𝑈 is Hartogs pseudoconvex.



3 \\ CR Functions

3.1 \ Real-analytic functions and complexification
Definition 3.1.1. Let𝑈 ⊂ ℝ𝑛 be open. A function 𝑓 : 𝑈 → ℂ is real-analytic (or simply
analytic if clear from context) if at each point 𝑝 ∈ 𝑈 , the function 𝑓 has a convergent
power series that converges (absolutely) to 𝑓 in some neighborhood of 𝑝. A common
notation for real-analytic is 𝐶𝜔.

Before we discuss the connection between real-analytic and holomorphic functions,
we prove a simple lemma.

Lemma 3.1.2. Let ℝ𝑛 ⊂ ℂ𝑛 be the natural inclusion and 𝑉 ⊂ ℂ𝑛 a domain such that
𝑉 ∩ℝ𝑛 ≠ ∅. Suppose 𝑓 , 𝑔 : 𝑉 → ℂ are holomorphic functions such that 𝑓 = 𝑔 on 𝑉 ∩ℝ𝑛 .
Then 𝑓 = 𝑔 on 𝑉 .

Proof. Considering 𝑓 − 𝑔 we may assume that 𝑔 = 0. Let 𝑧 = 𝑥 + 𝑖𝑦 as usual so that
ℝ𝑛 is given by 𝑦 = 0. Our assumption is that 𝑓 = 0 when 𝑦 = 0, so the derivative of 𝑓
with respect to 𝑥𝑘 is zero. When 𝑦 = 0, the Cauchy–Riemann equations say

0 =
𝜕 𝑓

𝜕𝑥𝑘
= −𝑖

𝜕 𝑓

𝜕𝑦𝑘
.

Therefore, on 𝑦 = 0,
𝜕 𝑓

𝜕𝑧𝑘
= 0.

The derivative 𝜕 𝑓
𝜕𝑧𝑘

is holomorphic and 𝜕 𝑓
𝜕𝑧𝑘

= 0 on 𝑦 = 0. By induction all holomorphic
derivatives of 𝑓 at 𝑝 ∈ ℝ𝑛 ∩ 𝑉 vanish, and 𝑓 has a zero power series. Hence 𝑓 is
identically zero in a neighborhood of 𝑝 in ℂ𝑛 . By the identity theorem, 𝑓 is zero on
all of 𝑉 . □

We return to ℝ𝑛 for a moment. We write a power series in ℝ𝑛 in multi-index
notation as usual. Suppose that for some 𝑎 ∈ ℝ𝑛 and some polyradius 𝑟 = (𝑟1, . . . , 𝑟𝑛),
the series ∑

𝛼

𝑐𝛼(𝑥 − 𝑎)𝛼
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converges whenever |𝑥𝑘 − 𝑎𝑘 | < 𝑟𝑘 for all 𝑘. Here convergence is absolute convergence.
That is, ∑

𝛼

|𝑐𝛼 | |𝑥 − 𝑎 |𝛼

converges. If we replace 𝑥𝑘 ∈ ℝ with 𝑧𝑘 ∈ ℂ such that |𝑧𝑘 − 𝑎𝑘 | ≤ |𝑥𝑘 − 𝑎𝑘 |, then the
series still converges. Hence the series∑

𝛼

𝑐𝛼(𝑧 − 𝑎)𝛼

converges absolutely in Δ𝑟(𝑎) ⊂ ℂ𝑛 .

Proposition 3.1.3 (Complexification part I). Suppose𝑈 ⊂ ℝ𝑛 is a domain and 𝑓 : 𝑈 → ℂ

is real-analytic. Let ℝ𝑛 ⊂ ℂ𝑛 be the natural inclusion. Then there exists a domain 𝑉 ⊂ ℂ𝑛

such that𝑈 ⊂ 𝑉 and a unique holomorphic function 𝐹 : 𝑉 → ℂ such that 𝐹 |𝑈 = 𝑓 .

Among many other things that follow from this proposition, we can now conclude
that a real-analytic function is 𝐶∞ smooth. Be careful and notice that𝑈 is a domain
in ℝ𝑛 , but it is not an open set when considered as a subset of ℂ𝑛 . Furthermore, 𝑉
may be a very “thin” neighborhood around𝑈 . There is no way of finding𝑉 just from
knowing𝑈 . You need to also know 𝑓 . As an example, consider 𝑓 (𝑥) = 1

𝜖2+𝑥2 for 𝜖 > 0,
which is real-analytic on ℝ, but the complexification is not holomorphic at ±𝜖𝑖.

Proof. We proved the local version already. But we must prove that if we extend our
𝑓 near every point, we always get the same function. That follows from  Lemma 3.1.2  ;
any two such functions are equal on ℝ𝑛 , and hence equal. There is a subtle topological
technical point in this, so let us elaborate. A key topological fact is that we define 𝑉
as a union of the polydiscs where the series converges. If a point 𝑝 is in two different
such polydiscs, we need to show that the two definitions of 𝐹 are the same at 𝑝. The
intersection of two polydiscs is connected, and in this case it also contains a piece of
ℝ𝑛 , and we may apply the lemma. □

Exercise 3.1.1: Prove the identity theorem for real-analytic functions. That is, if𝑈 ⊂ ℝ𝑛

is a domain, 𝑓 : 𝑈 → ℝ a real-analytic function and 𝑓 is zero on a nonempty open subset
of𝑈 , then 𝑓 is identically zero.

Exercise 3.1.2: Suppose 𝑈 ⊂ ℝ𝑛 is a domain and 𝑓 : 𝑈 → ℝ a real-analytic function.
Suppose that 𝑊 ⊂ 𝑈 is a nonempty open subset and 𝑓 |𝑊 is harmonic. Prove that 𝑓 is
harmonic.

Exercise 3.1.3: Let (0, 1) ⊂ ℝ. Construct a real-analytic function on (0, 1) that does
not complexify to the rectangle (0, 1) + 𝑖(−𝜖, 𝜖) ⊂ ℂ for every 𝜖 > 0. Why does this not
contradict the proposition?
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A polynomial 𝑃(𝑥) in 𝑛 real variables (𝑥1, . . . , 𝑥𝑛) is homogeneous of degree 𝑑 if
𝑃(𝑠𝑥) = 𝑠𝑑𝑃(𝑥) for all 𝑠 ∈ ℝ and 𝑥 ∈ ℝ𝑛 . A homogeneous polynomial of degree 𝑑 is
a polynomial whose every monomial is of total degree 𝑑. If 𝑓 is real-analytic near
𝑎 ∈ ℝ𝑛 , then write the power series of 𝑓 at 𝑎 as

∞∑
𝑚=0

𝑓𝑚(𝑥 − 𝑎),

where 𝑓𝑚 is a homogeneous polynomial of degree 𝑚. The 𝑓𝑚 is called the degree 𝑚
homogeneous part of 𝑓 at 𝑎.

There is usually a better way to complexify real-analytic functions in ℂ𝑛 . Suppose
𝑈 ⊂ ℂ𝑛 � ℝ2𝑛 , and 𝑓 : 𝑈 → ℂ is real-analytic. Assume 𝑎 = 0 ∈ 𝑈 for simplicity.
Writing 𝑧 = 𝑥 + 𝑖𝑦, near 0,

𝑓 (𝑥, 𝑦) =
∞∑
𝑚=0

𝑓𝑚(𝑥, 𝑦) =
∞∑
𝑚=0

𝑓𝑚

( 𝑧 + �̄�
2 ,

𝑧 − �̄�
2𝑖

)
.

The polynomial 𝑓𝑚 becomes a homogeneous polynomial of degree 𝑚 in the variables
𝑧 and �̄�. The series becomes a power series in 𝑧 and �̄�. We simply write the function
as 𝑓 (𝑧, �̄�), and we consider the power series representation in 𝑧 and �̄� rather than in 𝑥
and 𝑦. In multi-index notation, we write a power series at 𝑎 ∈ ℂ𝑛 as∑

𝛼,𝛽

𝑐𝛼,𝛽(𝑧 − 𝑎)𝛼(�̄� − �̄�)𝛽 .

A holomorphic function is real-analytic, but not vice versa. A holomorphic
function is a real-analytic function that does not depend on �̄�.

Before we discuss complexification in terms of 𝑧 and �̄�, we need a lemma.
Lemma 3.1.4. Let 𝑉 ⊂ ℂ𝑛 ×ℂ𝑛 be a domain, let the coordinates be (𝑧, 𝜁) ∈ ℂ𝑛 ×ℂ𝑛 , let

𝐷 =
{
(𝑧, 𝜁) ∈ ℂ𝑛 ×ℂ𝑛 : 𝜁 = �̄�

}
,

and suppose 𝐷 ∩𝑉 ≠ ∅. Suppose 𝑓 , 𝑔 : 𝑉 → ℂ are holomorphic functions such that 𝑓 = 𝑔

on 𝐷 ∩𝑉 . Then 𝑓 = 𝑔 on all of 𝑉 .
The set 𝐷 is sometimes called the diagonal.

Proof. Without loss of generality, assume that 𝑔 = 0. For (𝑧, �̄�) ∈ 𝑉 , we have 𝑓 (𝑧, �̄�) = 0,
which is really 𝑓 composed with the map taking 𝑧 to (𝑧, �̄�). This composition is
identically zero, so applying Wirtinger operators yields zero. Using the chain rule,

0 =
𝜕

𝜕�̄�𝑘

[
𝑓 (𝑧, �̄�)

]
=

𝜕 𝑓

𝜕𝜁𝑘
(𝑧, �̄�).

Let us do this again with the 𝑧𝑘 ,

0 =
𝜕

𝜕𝑧𝑘

[
𝑓 (𝑧, �̄�)

]
=

𝜕 𝑓

𝜕𝑧𝑘
(𝑧, �̄�).
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Either way, we get another holomorphic function in 𝑧 and 𝜁 that is zero on 𝐷. By
induction, for all 𝛼 and 𝛽 we get

0 =
𝜕|𝛼 |+|𝛽 |

𝜕𝑧𝛼𝜕�̄�𝛽

[
𝑓 (𝑧, �̄�)

]
=

𝜕|𝛼 |+|𝛽 | 𝑓

𝜕𝑧𝛼𝜕𝜁𝛽
(𝑧, �̄�).

All holomorphic derivatives in 𝑧 and 𝜁 of 𝑓 are zero on every point (𝑧, �̄�), so the power
series is zero at every point (𝑧, �̄�), and so 𝑓 is identically zero in a neighborhood of
every point (𝑧, �̄�). The lemma follows by the identity theorem. □

Let 𝑓 be a real-analytic function. Suppose the series (in multi-index notation)

𝑓 (𝑧, �̄�) =
∑
𝛼,𝛽

𝑐𝛼,𝛽(𝑧 − 𝑎)𝛼(�̄� − �̄�)𝛽

converges in a polydisc Δ𝑟(𝑎) ⊂ ℂ𝑛 . By convergence we mean absolute convergence,∑
𝛼,𝛽

|𝑐𝛼,𝛽 | |𝑧 − 𝑎 |𝛼 | �̄� − �̄� |𝛽

converges. The series still converges if we replace �̄�𝑘 with 𝜁𝑘 where |𝜁𝑘 − �̄� | ≤ | �̄�𝑘 − �̄� |.
So the series

𝐹(𝑧, 𝜁) =
∑
𝛼,𝛽

𝑐𝛼,𝛽(𝑧 − 𝑎)𝛼(𝜁 − �̄�)𝛽

converges (absolutely) for all (𝑧, 𝜁) ∈ Δ𝑟(𝑎) × Δ𝑟(�̄�).
Putting together the discussion above with the lemma we obtain:

Proposition 3.1.5 (Complexification part II). Suppose𝑈 ⊂ ℂ𝑛 is a domain and 𝑓 : 𝑈 → ℂ

is real-analytic. Then there exists a domain 𝑉 ⊂ ℂ𝑛 ×ℂ𝑛 such that{
(𝑧, 𝜁) : 𝜁 = �̄� and 𝑧 ∈ 𝑈

}
⊂ 𝑉,

and a unique holomorphic function 𝐹 : 𝑉 → ℂ such that 𝐹(𝑧, �̄�) = 𝑓 (𝑧, �̄�) for all 𝑧 ∈ 𝑈 .

The function 𝑓 can be thought of as the restriction of 𝐹 to the set where 𝜁 = �̄�. We
will abuse notation and write simply 𝑓 (𝑧, 𝜁) both for 𝑓 and its extension. The reason
for this abuse is evident from the computations above. What we are calling 𝑓 is a
function of (𝑧, �̄�) if thinking of it as a function on the diagonal where 𝜁 = �̄�, or it is
a function of 𝑧 if thinking of it as just the function 𝑧 ↦→ 𝑓 (𝑧, �̄�), or it is the function
(𝑧, 𝜁) ↦→ 𝑓 (𝑧, 𝜁). We have the following commutative diagram:

𝑈 ⊂ ℂ𝑛 𝑉 ⊂ ℂ𝑛 ×ℂ𝑛

ℂ

𝑧 ↦→ (𝑧,�̄�)

𝑓 𝑓 (=𝐹)

All three ways of going from one place to another in the diagram we are calling 𝑓 .
The arrow from 𝑉 was called 𝐹 in the proposition. The notation plays well with
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differentiation and the Wirtinger operators. Differentiating 𝑓 (really the 𝐹 in the
proposition) in 𝜁𝑘 and evaluating at (𝑧, �̄�) is the same thing as evaluating at (𝑧, �̄�) and
then differentiating in �̄�𝑘 using the Wirtinger operator:

𝜕𝐹

𝜕𝜁𝑘
(𝑧, �̄�) = 𝜕 𝑓

𝜕𝜁𝑘
(𝑧, �̄�) = 𝜕

𝜕�̄�𝑘

[
𝑓 (𝑧, �̄�)

]
=

𝜕 𝑓

𝜕�̄�𝑘
(𝑧, �̄�).

If we squint our mind’s eye, we can’t quite see the difference between �̄� and 𝜁. We
have already used this idea for smooth functions, but for real-analytic functions we
can treat 𝑧 and �̄� as truly independent variables. The abuse of notation is entirely
justified, at least once it is understood well.

Remark 3.1.6. The domain 𝑉 in the proposition is not simply𝑈 times the conjugate of
𝑈 . In general, it is much smaller. For example, a real-analytic 𝑓 : ℂ𝑛 → ℂ does not
necessarily complexify to all of ℂ𝑛 ×ℂ𝑛 . That is because the domain of convergence
for a real-analytic function on ℂ𝑛 is not necessarily all of ℂ𝑛 . In one dimension,

𝑓 (𝑧, �̄�) = 1
1 + |𝑧 |2

is real-analytic on ℂ, but it is not a restriction to the diagonal of a holomorphic
function defined on all of ℂ2. The problem is that the complexified function

𝑓 (𝑧, 𝜁) = 1
1 + 𝑧𝜁

is undefined on the set where 𝑧𝜁 = −1, which by a fluke never happens when 𝜁 = �̄�.

Remark 3.1.7. This form of complexification is sometimes called polarization due to its
relation to the polarization identities 

*
 : We can recover a Hermitian matrix 𝐴, and

therefore the sesquilinear form ⟨𝐴𝑧, 𝑤⟩ for 𝑧, 𝑤 ∈ ℂ𝑛 , by simply knowing the value of

⟨𝐴𝑧, 𝑧⟩ = 𝑧∗𝐴𝑧 =
𝑛∑

𝑘,ℓ=1
𝑎𝑘ℓ �̄�𝑘𝑧ℓ

for all 𝑧 ∈ ℂ𝑛 . In fact, under the hood,  Proposition 3.1.5 is polarization in an
infinite-dimensional Hilbert space, but we digress.

Treating �̄� as a separate variable is a very powerful idea, and as we have just seen
it is completely natural for real-analytic functions. This is one of the reasons why
real-analytic functions play a special role in complex analysis.

Exercise 3.1.4: Let 𝑈 ⊂ ℂ𝑛 be an open set and 𝜑 : 𝑈 → ℝ a pluriharmonic function.
Prove that 𝜑 is real-analytic.
*Such as 4⟨𝑧, 𝑤⟩ = ∥𝑧 + 𝑤∥2 − ∥𝑧 − 𝑤∥2 + 𝑖

(
∥𝑧 + 𝑖𝑤∥2 − ∥𝑧 − 𝑖𝑤∥2) .
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Exercise 3.1.5: Let𝑈 ⊂ ℂ𝑛 be an open set, 𝑧0 ∈ 𝑈 . Suppose𝜑 : 𝑈 → ℝ is a pluriharmonic
function. You know that 𝜑 is real-analytic. Using complexification, write down a formula
for a holomorphic function near 𝑧0 whose real part is 𝜑.

Exercise 3.1.6: Let𝑈 ⊂ ℂ𝑛 be a domain, and suppose 𝑓 , 𝑔 ∈ O(𝑈). Suppose that 𝑓 = �̄�

on𝑈 . Use complexification (complexify 𝑓 − �̄�) to show that both 𝑓 and 𝑔 are constant.

Example 3.1.8: Not every 𝐶∞ smooth function is real-analytic. For 𝑥 ∈ ℝ, define

𝑓 (𝑥) =
{
𝑒−1/𝑥 if 𝑥 > 0,
0 if 𝑥 ≤ 0.

The function 𝑓 : ℝ → ℝ is 𝐶∞ and 𝑓 (𝑘)(0) = 0 for all 𝑘. The Taylor series of 𝑓 at the
origin does not converge to 𝑓 in any neighborhood of the origin; it converges to the
zero function but not to 𝑓 . Because of this, there is no neighborhood 𝑉 of the origin
in ℂ such that 𝑓 is the restriction to 𝑉 ∩ℝ of a holomorphic function in 𝑉 .

Exercise 3.1.7: Prove the statements of the example above.

Definition 3.1.9. A real hypersurface 𝑀 ⊂ ℝ𝑛 is said to be real-analytic if locally
at every point it is the graph of a real-analytic function. That is, near every point
(locally), after perhaps relabeling coordinates, 𝑀 can be written as a graph

𝑦 = 𝜑(𝑥),

where 𝜑 is real-analytic, (𝑥, 𝑦) ∈ ℝ𝑛−1 ×ℝ = ℝ𝑛 .

Compare this definition to  Definition 2.2.1  . We could define a real-analytic
hypersurface as in  Definition 2.2.1 and then prove an analogue of  Proposition 2.2.9 to
show that this new definition would be identical to the definition above. However,
the definition we gave is sufficient, and so we avoid the complication, leaving it to the
interested reader.

Exercise 3.1.8: Show that the definition above is equivalent to an analogue of
 Definition 2.2.1 . That is, state the alternative definition of real-analytic hypersurface
and then prove the analogue of  Proposition 2.2.9 .

A mapping to ℝ𝑚 is real-analytic if all the components are real-analytic functions.
Via complexification we give a simple proof of the following result.

Proposition 3.1.10. Let𝑈 ⊂ ℝ𝑛 , 𝑉 ⊂ ℝ𝑘 be open and let 𝑓 : 𝑈 → 𝑉 and 𝑔 : 𝑉 → ℝ𝑚 be
real-analytic. Then 𝑔 ◦ 𝑓 is real-analytic.
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Proof. Let 𝑥 ∈ ℝ𝑛 be our coordinates in 𝑈 and 𝑦 ∈ ℝ𝑘 be our coordinates in
𝑉 . Complexify 𝑓 (𝑥) and 𝑔(𝑦) by allowing 𝑥 to be a complex vector in a small
neighborhood of𝑈 in ℂ𝑛 and 𝑦 to be a complex vector in a small neighborhood of 𝑉
in ℂ𝑘 . So treat 𝑓 and 𝑔 as holomorphic functions. On a certain neighborhood of𝑈
in ℂ𝑛 , the composition 𝑓 ◦ 𝑔 makes sense and it is holomorphic, as composition of
holomorphic mappings is holomorphic. Restricting the complexified 𝑓 ◦ 𝑔 back to
ℝ𝑛 we obtain a real-analytic function. □

The proof demonstrates a simple application of complexification. Many properties
of holomorphic functions are easy to prove because holomorphic functions are
solutions to certain PDE (the Cauchy–Riemann equations). There is no PDE that
defines real-analytic functions, so complexification provides a useful tool to transfer
certain properties of holomorphic functions to real-analytic functions. We must be
careful, however. Hypotheses on real-analytic functions only give us hypotheses on
certain points of the complexified holomorphic functions.

Exercise 3.1.9: Demonstrate the point about complexification we made just above. Find a
nonconstant bounded real-analytic 𝑓 : ℝ𝑛 → ℝ that happens to complexify to ℂ𝑛 .

Exercise 3.1.10: Let 𝑈 ⊂ ℝ𝑛 be open. Let 𝜑 : (0, 1) → 𝑈 be a real-analytic function
(curve), and let 𝑓 : 𝑈 → ℝ be real-analytic. Suppose that ( 𝑓 ◦ 𝜑)(𝑡) = 0 for all 𝑡 ∈ (0, 𝜖)
for some 𝜖 > 0. Prove that 𝑓 is zero on the image 𝜑

(
(0, 1)

)
.

3.2 \ CR functions
We first need to know what it means for a function 𝑓 : 𝑋 → ℂ to be smooth if 𝑋 is not
an open set, for example, if 𝑋 is a hypersurface.

Definition 3.2.1. Let 𝑋 ⊂ ℝ𝑛 be a set. The function 𝑓 : 𝑋 → ℂ is smooth (resp.
real-analytic) if for each point 𝑝 ∈ 𝑋 there is a neighborhood 𝑈 ⊂ ℝ𝑛 of 𝑝 and a
smooth (resp. real-analytic) 𝐹 : 𝑈 → ℂ such that 𝐹(𝑞) = 𝑓 (𝑞) for 𝑞 ∈ 𝑋 ∩𝑈 .

For an arbitrary set 𝑋, issues surrounding this definition can be rather subtle. The
definition is easy to work with, however, if 𝑋 is nice, such as a hypersurface, or if 𝑋 is
a closure of a domain with smooth boundary.

Proposition 3.2.2. Suppose 𝑀 ⊂ ℝ𝑛 is a smooth (resp. real-analytic) real hypersurface. A
function 𝑓 : 𝑀 → ℂ is smooth (resp. real-analytic) if and only if whenever near any point
we write 𝑀 in coordinates (𝑥, 𝑦) ∈ ℝ𝑛−1 ×ℝ as

𝑦 = 𝜑(𝑥),

for a smooth (resp. real-analytic) function 𝜑, then 𝑓
(
𝑥, 𝜑(𝑥)

)
is a smooth (resp. real-analytic)

function of 𝑥.
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Exercise 3.2.1: Prove the proposition.

Exercise 3.2.2: Prove that if 𝑀 is a smooth or real-analytic hypersurface, and 𝑓 : 𝑀 → ℂ

is smooth or real-analytic, then the function 𝐹 from the definition is never unique, even for
a fixed neighborhood𝑈 .

Exercise 3.2.3: Suppose 𝑀 ⊂ ℝ𝑛 is a smooth hypersurface, 𝑓 : 𝑀 → ℂ is a smooth
function, 𝑝 ∈ 𝑀, and 𝑋𝑝 ∈ 𝑇𝑝𝑀. Prove that 𝑋𝑝 𝑓 is well-defined. That is, suppose𝑈 is a
neighborhood of 𝑝, 𝐹 : 𝑈 → ℂ and 𝐺 : 𝑈 → ℂ are smooth functions that both equal 𝑓 on
𝑈 ∩𝑀. Prove that 𝑋𝑝𝐹 = 𝑋𝑝𝐺.

Due to the last exercise, we can apply vectors of 𝑇𝑝𝑀 to a smooth function on a
hypersurface by simply applying them to any smooth extension. We can similarly
apply vectors of ℂ𝑇𝑝𝑀 to smooth functions on 𝑀, as ℂ𝑇𝑝𝑀 is simply the complex
span of vectors in 𝑇𝑝𝑀.

Definition 3.2.3. Let 𝑀 ⊂ ℂ𝑛 be a smooth real hypersurface. A smooth 𝑓 : 𝑀 → ℂ is
a smooth CR function if

𝑋𝑝 𝑓 = 0

for all 𝑝 ∈ 𝑀 and all vectors 𝑋𝑝 ∈ 𝑇(0,1)
𝑝 𝑀.

Remark 3.2.4. One only needs one derivative (rather than 𝐶∞) in the definition above.
One can even define a continuous CR function if the derivative is taken in the
distribution sense, but we digress.

Remark 3.2.5. When 𝑛 = 1, a real hypersurface 𝑀 ⊂ ℂ is a curve and 𝑇(0,1)
𝑝 𝑀 is trivial.

Therefore, all functions 𝑓 : 𝑀 → ℂ are CR functions.

Proposition 3.2.6. Let 𝑀 ⊂ 𝑈 be a smooth (resp. real-analytic) real hypersurface in an
open 𝑈 ⊂ ℂ𝑛 . Suppose 𝐹 : 𝑈 → ℂ is a holomorphic function, then the restriction 𝑓 = 𝐹 |𝑀
is a smooth (resp. real-analytic) CR function.

Proof. First let us prove that 𝑓 is smooth. The function 𝐹 is smooth and defined on a
neighborhood of every point of 𝑀, and so it can be used in the definition. Similarly
for real-analytic.

Let us show 𝑓 is CR at some 𝑝 ∈ 𝑀. Differentiating 𝑓 with vectors in ℂ𝑇𝑝𝑀 is the
same as differentiating 𝐹. As 𝑇(0,1)

𝑝 𝑀 ⊂ 𝑇(0,1)
𝑝 ℂ𝑛 , we have

𝑋𝑝 𝑓 = 𝑋𝑝𝐹 = 0 for all 𝑋𝑝 ∈ 𝑇(0,1)
𝑝 𝑀. □

On the other hand, not every smooth CR function is a restriction of a holomorphic
function.
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Example 3.2.7: Take the smooth function 𝑓 : ℝ → ℝ we defined before that is not
real-analytic at the origin. Take 𝑀 ⊂ ℂ2 be the set defined by Im 𝑧2 = 0. 𝑀 is a
real-analytic real hypersurface. Clearly 𝑇(0,1)

𝑝 𝑀 is one-complex-dimensional, and at
each 𝑝 ∈ 𝑀, 𝜕

𝜕�̄�1

��
𝑝

is tangent and spans 𝑇(0,1)
𝑝 𝑀. Define 𝑔 : 𝑀 → ℂ by

𝑔(𝑧1, 𝑧2, �̄�1, �̄�2) = 𝑓 (Re 𝑧2).

Then 𝑔 is CR as it is independent of �̄�1. If 𝐺 : 𝑈 ⊂ ℂ2 → ℂ is a holomorphic function
where 𝑈 is some open set containing the origin, then 𝐺 restricted to 𝑀 must be
real-analytic (a power series in Re 𝑧1, Im 𝑧1, and Re 𝑧2) and therefore 𝐺 cannot equal
to 𝑔 on 𝑀.

Exercise 3.2.4: Suppose 𝑀 ⊂ ℂ𝑛 is a smooth real hypersurface and 𝑓 : 𝑀 → ℂ is a
CR function that is a restriction of a holomorphic function 𝐹 : 𝑈 → ℂ defined in some
neighborhood 𝑈 ⊂ ℂ𝑛 of 𝑀. Show that 𝐹 is unique, that is, if 𝐺 : 𝑈 → ℂ is another
holomorphic function such that 𝐺 |𝑀 = 𝑓 = 𝐹 |𝑀 , then 𝐺 = 𝐹.

Exercise 3.2.5: Show that there is no maximum principle of CR functions. In fact, find a
smooth real hypersurface 𝑀 ⊂ ℂ𝑛 , 𝑛 ≥ 2, and a smooth CR function 𝑓 on 𝑀 such that | 𝑓 |
attains a strict maximum at a point.

Exercise 3.2.6: Suppose 𝑀 ⊂ ℂ𝑛 , 𝑛 ≥ 2, is the hypersurface given by Im 𝑧𝑛 = 0. Show
that every smooth CR function on 𝑀 is holomorphic in the variables 𝑧1, . . . , 𝑧𝑛−1. Use
this to show that for no smooth CR function 𝑓 on 𝑀 can | 𝑓 | attain a strict maximum on
𝑀. But show that there do exist nonconstant functions such that | 𝑓 | attains a (nonstrict)
maximum 𝑀.

Real-analytic CR functions on a real-analytic hypersurface 𝑀 always extend to
holomorphic functions of a neighborhood of 𝑀. To prove this fact, we complexify
everything, that is, we treat the 𝑧s and �̄�s as separate variables. The standard way of
writing a hypersurface as a graph is not as convenient for this setting, so we prove that
a real-analytic hypersurface is a graph of a holomorphic function in the complexified
variables restricted to the diagonal. That is, using variables (𝑧, 𝑤), we write 𝑀 as a
graph of �̄� over 𝑧, �̄�, and 𝑤. We can then eliminate �̄� in any real-analytic expression.

Proposition 3.2.8. Suppose 𝑀 ⊂ ℂ𝑛 is a real-analytic hypersurface and 𝑝 ∈ 𝑀. Then after
a translation and rotation by a unitary matrix, 𝑝 = 0, and near the origin in coordinates
(𝑧, 𝑤) ∈ ℂ𝑛−1 ×ℂ, the hypersurface 𝑀 is given by

�̄� = Φ(𝑧, �̄�, 𝑤),

where Φ(𝑧, 𝜁, 𝑤) is a holomorphic function defined on a neighborhood of the origin in ℂ𝑛−1×
ℂ𝑛−1 × ℂ, such that Φ, 𝜕Φ

𝜕𝑧𝑘
, 𝜕Φ
𝜕𝜁𝑘

vanish at the origin for all 𝑘, and 𝑤 = Φ̄
(
𝜁, 𝑧,Φ(𝑧, 𝜁, 𝑤)

)
for all 𝑧, 𝜁, and 𝑤.
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A local basis for 𝑇(0,1)𝑀 vector fields is given by

𝜕

𝜕�̄�𝑘
+ 𝜕Φ

𝜕�̄�𝑘

𝜕

𝜕�̄�

(
=

𝜕

𝜕�̄�𝑘
+ 𝜕Φ

𝜕𝜁𝑘

𝜕

𝜕�̄�

)
, 𝑘 = 1, . . . , 𝑛 − 1.

Finally, let M be the set in (𝑧, 𝜁, 𝑤, 𝜔) ∈ ℂ𝑛−1 × ℂ𝑛−1 × ℂ × ℂ coordinates given near
the origin by 𝜔 = Φ(𝑧, 𝜁, 𝑤). Then M is the unique complexification of 𝑀 near the origin
in the sense that if 𝑓 (𝑧, �̄�, 𝑤, �̄�) is a real-analytic function vanishing on 𝑀 near the origin,
then 𝑓 (𝑧, 𝜁, 𝑤, 𝜔) vanishes on Mnear the origin.

Again as a slight abuse of notation, Φ refers to both the function Φ(𝑧, 𝜁, 𝑤) and
Φ(𝑧, �̄�, 𝑤).

Proof. Translate and rotate so that 𝑀 is given by

Im𝑤 = 𝜑(𝑧, �̄�,Re𝑤),

where 𝜑 is 𝑂(2). Write the defining function as 𝑟(𝑧, �̄�, 𝑤, �̄�) = −𝑤−�̄�
2𝑖 + 𝜑

(
𝑧, �̄�, 𝑤+�̄�2

)
.

Complexifying, consider 𝑟(𝑧, 𝜁, 𝑤, 𝜔) as a holomorphic function of 2𝑛 variables, and
let M be the set defined by 𝑟(𝑧, 𝜁, 𝑤, 𝜔) = 0. The derivative of 𝑟 in 𝜔 (that is �̄�)
does not vanish near the origin. Use the implicit function theorem for holomorphic
functions to write Mnear the origin as

𝜔 = Φ(𝑧, 𝜁, 𝑤).

Restrict to the diagonal, �̄� = 𝜔 and �̄� = 𝜁, to get �̄� = Φ(𝑧, �̄�, 𝑤). This is order 2 in the
𝑧 and the �̄� since 𝜑 is 𝑂(2).

Because 𝑟 is real-valued, then 𝑟(𝑧, �̄�, 𝑤, �̄�) = 𝑟(𝑧, �̄�, 𝑤, �̄�) = 𝑟(�̄� , 𝑧, �̄�, 𝑤). Com-
plexify to obtain 𝑟(𝑧, 𝜁, 𝑤, 𝜔) = 𝑟(𝜁, 𝑧, 𝜔, 𝑤) for all (𝑧, 𝜁, 𝑤, 𝜔) near the origin. If
𝑟(𝑧, 𝜁, 𝑤, 𝜔) = 0, then

0 = 𝑟(𝑧, 𝜁, 𝑤, 𝜔) = 𝑟(𝜁, 𝑧, 𝜔, 𝑤) = 𝑟(�̄�, �̄� , �̄�, �̄�) = 0.

So, (𝑧, 𝜁, 𝑤, 𝜔) ∈ M if and only if (�̄�, �̄� , �̄�, �̄�) ∈ M. Near the origin, (𝑧, 𝜁, 𝑤, 𝜔) ∈ M if
and only if 𝜔 = Φ(𝑧, 𝜁, 𝑤), and hence if and only if �̄� = Φ(�̄�, �̄� , �̄�). Conjugating, we
get that M is also given by

𝑤 = Φ̄(𝜁, 𝑧, 𝜔).

As
(
𝑧, 𝜁, 𝑤,Φ(𝑧, 𝜁, 𝑤)

)
∈ M, then for all 𝑧, 𝜁, and 𝑤,

𝑤 = Φ̄
(
𝜁, 𝑧,Φ(𝑧, 𝜁, 𝑤)

)
.

The vector field 𝑋𝑘 = 𝜕
𝜕�̄�𝑘

+ 𝜕Φ
𝜕�̄�𝑘

𝜕
𝜕𝜔 annihilates the function Φ(𝑧, �̄�, 𝑤) − �̄�, but that

is not enough. The vector field must annihilate a real defining function such as the
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real part of Φ(𝑧, �̄�, 𝑤) − �̄�. So 𝑋𝑘 must also annihilate the conjugate Φ̄(�̄� , 𝑧, �̄�) −𝑤, at
least on 𝑀. Compute, for (𝑧, 𝑤) ∈ 𝑀,

𝑋𝑘
[
Φ̄(�̄� , 𝑧, �̄�) − 𝑤

]
=

𝜕Φ̄

𝜕�̄�𝑘
(�̄� , 𝑧, �̄�) + 𝜕Φ

𝜕�̄�𝑘
(𝑧, �̄�, 𝑤)𝜕Φ̄

𝜕�̄�
(�̄� , 𝑧, �̄�)

=
𝜕Φ̄

𝜕�̄�𝑘

(
�̄� , 𝑧,Φ(𝑧, �̄�, �̄�)

)
+ 𝜕Φ

𝜕�̄�𝑘
(𝑧, �̄�, 𝑤)𝜕Φ̄

𝜕�̄�

(
�̄� , 𝑧,Φ(𝑧, �̄�, �̄�)

)
=

𝜕

𝜕�̄�𝑘

[
Φ̄

(
�̄� , 𝑧,Φ(𝑧, �̄�, 𝑤)

) ]
=

𝜕

𝜕�̄�𝑘

[
𝑤
]
= 0.

The last claim of the proposition is left as an exercise. □

Why do we say the last claim in the proposition proves the “uniqueness” of the
complexification? Suppose we defined a complexification M′ by another holomorphic
equation 𝑓 = 0. By the claim, M ⊂ M′, at least near the origin. If the derivative 𝑑𝑓 is
nonzero at the origin, then 𝑓

(
𝑧, 𝜁, 𝑤,Φ(𝑧, 𝜁, 𝑤)

)
= 0 implies that 𝜕 𝑓

𝜕𝜔 is nonzero at the
origin. Using the holomorphic implicit function theorem we can uniquely solve 𝑓 = 0
for 𝜔 near the origin, that unique solution is Φ, and hence M′ = Mnear the origin.

As an example, recall that the sphere (minus a point) in ℂ2 is biholomorphic
to the hypersurface given by Im𝑤 = |𝑧 |2. That is, 𝑤−�̄�

2𝑖 = 𝑧�̄�. Solving for �̄� and
using 𝜁 and 𝜔 obtains the equation for the complexification 𝜔 = −2𝑖𝑧𝜁 + 𝑤. Then
Φ(𝑧, 𝜁, 𝑤) = −2𝑖𝑧𝜁 + 𝑤, and Φ̄(𝜁, 𝑧, 𝜔) = 2𝑖𝜁𝑧 + 𝜔. Let us check that Φ is the right
sort of function: Φ̄

(
𝑧, 𝜁,Φ(𝑧, 𝜁, 𝑤)

)
= 2𝑖𝜁𝑧 + (−2𝑖𝑧𝜁 + 𝑤) = 𝑤. The CR vector field is

given by 𝜕
𝜕�̄� + 2𝑖𝑧 𝜕

𝜕�̄� .

Exercise 3.2.7: Finish the proof of the proposition: Let 𝑀 ⊂ ℂ𝑛 be a real-analytic hyper-
surface given by �̄� = Φ(𝑧, �̄�, 𝑤) near the origin, as in the proposition. Let 𝑓 (𝑧, �̄�, 𝑤, �̄�) be
a real-analytic function such that 𝑓 = 0 on 𝑀. Prove that the complexified 𝑓 (𝑧, 𝜁, 𝑤, 𝜔)
vanishes on M.

Exercise 3.2.8: In the proposition we only rotated and translated. Sometimes the following
change of coordinates is also done. Prove that one can change coordinates (no longer linear)
so that the Φ in the proposition is such that Φ(𝑧, 0, 𝑤) = Φ(0, 𝜁, 𝑤) = 𝑤 for all 𝑧, 𝜁, and
𝑤. These coordinates are called normal coordinates.

Exercise 3.2.9: Suppose Φ is a holomorphic function defined on a neighborhood of the
origin in ℂ𝑛−1 ×ℂ𝑛−1 ×ℂ.

a) Show that �̄� = Φ(𝑧, �̄�, 𝑤) defines a real-analytic hypersurface near the origin if and
only 𝑤 = Φ̄

(
𝜁, 𝑧,Φ(𝑧, 𝜁, 𝑤)

)
for all 𝑧, 𝜁, and 𝑤. Hint: One direction was proved

already.
b) As an example, show that �̄� = 𝑧�̄� does not satisfy the condition above, nor does it

define a real hypersurface.
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Let us prove that real-analytic CR functions on real-analytic hypersurfaces are
restrictions of holomorphic functions. To motivate the proof, consider a real-analytic
function 𝑓 on the circle |𝑧 |2 = 𝑧�̄� = 1 ( 𝑓 is vacuously CR). This 𝑓 is a restriction of
a real-analytic function on a neighborhood of the circle, that we write 𝑓 (𝑧, �̄�). On
the circle �̄� = 1/𝑧. Thus, 𝐹(𝑧) = 𝑓

(
𝑧, 1/𝑧

)
is a holomorphic function defined on a

neighborhood of the circle and equal to 𝑓 on the circle. Our strategy then is to solve
for one of the barred variables via  Proposition 3.2.8 and hope the CR conditions take
care of the rest of the barred variables in more than one dimension.

Theorem 3.2.9 (Severi). Suppose 𝑀 ⊂ ℂ𝑛 is a real-analytic hypersurface and 𝑝 ∈ 𝑀. For
every real-analytic CR function 𝑓 : 𝑀 → ℂ, there exists a holomorphic function 𝐹 ∈ O(𝑈)
for a neighborhood𝑈 of 𝑝 such that 𝐹(𝑞) = 𝑓 (𝑞) for all 𝑞 ∈ 𝑀 ∩𝑈 .

Proof. Write𝑀 near 𝑝 as �̄� = Φ(𝑧, �̄�, 𝑤). LetMbe the set in the 2𝑛 variables (𝑧, 𝑤, 𝜁, 𝜔)
given by 𝜔 = Φ(𝑧, 𝜁, 𝑤). Take 𝑓 and consider any real-analytic extension of 𝑓 to a
neighborhood of 𝑝 and write it 𝑓 (𝑧, 𝑤, �̄�, �̄�). Complexify  

*
 as before to 𝑓 (𝑧, 𝑤, 𝜁, 𝜔).

On Mwe have 𝑓 (𝑧, 𝑤, 𝜁, 𝜔) = 𝑓
(
𝑧, 𝑤, 𝜁,Φ(𝑧, 𝜁, 𝑤)

)
. Let

𝐹(𝑧, 𝑤, 𝜁) = 𝑓
(
𝑧, 𝑤, 𝜁,Φ(𝑧, 𝜁, 𝑤)

)
.

Clearly 𝐹(𝑧, 𝑤, �̄�) equals 𝑓 on 𝑀. As 𝑓 is a CR function, it is annihilated by 𝜕
𝜕�̄�𝑘

+ 𝜕Φ
𝜕�̄�𝑘

𝜕
𝜕�̄�

on 𝑀. So
𝜕𝐹

𝜕𝜁𝑘
+ 𝜕Φ

𝜕𝜁𝑘

𝜕𝐹

𝜕𝜔
=

𝜕𝐹

𝜕𝜁𝑘
= 0

on 𝑀 ⊂ M. We have a real analytic function 𝜕𝐹
𝜕𝜁𝑘

(𝑧, 𝑤, �̄�) that is zero on 𝑀, so
𝜕𝐹
𝜕𝜁𝑘

(𝑧, 𝑤, 𝜁) = 0 on M ( Proposition 3.2.8 again). As 𝜕𝐹
𝜕𝜁𝑘

is a function only of 𝑧, 𝑤, and 𝜁

(and not of 𝜔), 𝜕𝐹
𝜕𝜁𝑘

= 0 for all (𝑧, 𝑤, 𝜁) in a neighborhood of the origin. Consequently,
𝐹 does not depend on 𝜁, and 𝐹 is actually a holomorphic function of 𝑧 and 𝑤 only
and 𝐹 = 𝑓 on 𝑀. □

The most important place where we find CR functions that aren’t necessarily
real-analytic is as boundary values of holomorphic functions.

Proposition 3.2.10. Suppose 𝑈 ⊂ ℂ𝑛 is an open set with smooth boundary. Suppose
𝑓 : 𝑈 → ℂ is a smooth function, holomorphic on𝑈 . Then 𝑓 |𝜕𝑈 is a smooth CR function.

Proof. The function 𝑓 |𝜕𝑈 is clearly smooth.
Suppose 𝑝 ∈ 𝜕𝑈 . If 𝑋𝑝 ∈ 𝑇(0,1)

𝑝 𝜕𝑈 is such that

𝑋𝑝 =

𝑛∑
𝑘=1

𝑎𝑘
𝜕

𝜕�̄�𝑘

���
𝑝
,

*At this point 𝑓 stands for three distinct objects: the function on 𝑀, its real-analytic extension to a
neighborhood in ℂ𝑛 , and its complexification to a neighborhood of (𝑝, �̄�) in ℂ𝑛 ×ℂ𝑛 .
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then take a sequence {𝑞ℓ } in𝑈 that approaches 𝑝. Consider

𝑋𝑞ℓ =

𝑛∑
𝑘=1

𝑎𝑘
𝜕

𝜕�̄�𝑘

���
𝑞ℓ
.

Then 𝑋𝑞ℓ 𝑓 = 0 for all ℓ and by continuity 𝑋𝑝 𝑓 = 0. □

The boundary values of a holomorphic function define the function uniquely.
That is, if two holomorphic functions continuous up to the (smooth) boundary are
equal on an open set of the boundary, then they are equal in the domain:

Proposition 3.2.11. Suppose𝑈 ⊂ ℂ𝑛 is a domain with smooth boundary and 𝑓 : 𝑈 → ℂ is
a continuous function, holomorphic on 𝑈 . If 𝑓 = 0 on a nonempty open subset of 𝜕𝑈 , then
𝑓 = 0 on all of𝑈 .

Proof. Take 𝑝 ∈ 𝜕𝑈 such that 𝑓 = 0 on a neighborhood of 𝑝 in 𝜕𝑈 . Consider a small
neighborhood Δ of 𝑝 such that 𝑓 is zero on 𝜕𝑈 ∩ Δ. Define 𝑔 : Δ → ℂ by setting
𝑔(𝑧) = 𝑓 (𝑧) if 𝑧 ∈ 𝑈 and 𝑔(𝑧) = 0 otherwise. See  Figure 3.1 . It is not hard to see that
𝑔 is continuous, and it is clearly holomorphic where it is not zero. Radó’s theorem
( Theorem 2.4.12 ) says that 𝑔 is holomorphic, and as it is zero on a nonempty open
subset of Δ, it is identically zero on Δ, meaning 𝑓 is zero on a nonempty open subset
of𝑈 , and we are done by identity.

𝑈

𝑓 = 0
𝑔 = 0

𝑔 = 𝑓

𝑝 Δ

Figure 3.1: Extending a function zero on the boundary.

□

Exercise 3.2.10: Find a domain 𝑈 ⊂ ℂ𝑛 , 𝑛 ≥ 2, with smooth boundary and a smooth
CR function 𝑓 : 𝜕𝑈 → ℂ such that there is no holomorphic function on 𝑈 or ℂ𝑛 \ 𝑈
continuous up to the boundary and whose boundary values are 𝑓 .

Exercise 3.2.11:
a) Suppose 𝑈 ⊂ ℂ𝑛 is a bounded open set with smooth boundary, 𝑓 : 𝑈 → ℂ is a

continuous function, holomorphic in 𝑈 , and 𝑓 |𝜕𝑈 is real-valued. Show that 𝑓 is
constant.

b) Find a counterexample to the statement if you allow𝑈 to be unbounded.
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Exercise 3.2.12: Find a smooth CR function on the sphere 𝑆2𝑛−1 ⊂ ℂ𝑛 that is not a
restriction of a holomorphic function of a neighborhood of 𝑆2𝑛−1.

Exercise 3.2.13: Show a global version of Severi. Given a real-analytic hypersurface
𝑀 ⊂ ℂ𝑛 and a real-analytic CR function 𝑓 : 𝑀 → ℂ, show that there exists a neighborhood
𝑈 of 𝑀, and an 𝐹 ∈ O(𝑈) such that 𝐹 |𝑈 = 𝑓 .

A problem we tackle next is to try to extend a smooth CR function from the
boundary of a domain to a holomorphic function inside. This is a PDE problem
where the PDE are the Cauchy–Riemann equations, and the function on the boundary
is the boundary condition. Cauchy–Riemann equations are overdetermined, that is,
there are too many equations. Not every data on the boundary gives a solution.

 Proposition 3.2.10 says that the data being CR is a necessary condition for a solution
(it is not sufficient in general).  Proposition 3.2.11 says the solution is unique if it exists.

3.3 \ Approximation of CR functions
The following theorem (proved circa 1980) holds in much more generality, but we
state its simplest version. One of the simplifications we make is that we consider
only smooth CR functions here, although the theorem holds even for continuous CR
functions where the CR conditions are interpreted in the sense of distributions.

Theorem 3.3.1 (Baouendi–Trèves). Suppose𝑀 ⊂ ℂ𝑛 is a smooth real hypersurface, 𝑝 ∈ 𝑀
is a point, and 𝑧 = (𝑧1, . . . , 𝑧𝑛) are the holomorphic coordinates of ℂ𝑛 . Then there exists a
compact neighborhood 𝐾 ⊂ 𝑀 of 𝑝, such that for every smooth CR function 𝑓 : 𝑀 → ℂ,
there exists a sequence {𝑝ℓ } of polynomials in 𝑧 such that

𝑝ℓ (𝑧) → 𝑓 (𝑧) uniformly in 𝐾.

A key point is that 𝐾 cannot be chosen arbitrarily, it depends on 𝑝 and 𝑀. On the
other hand, 𝐾 does not depend on 𝑓 . Given 𝑀 and 𝑝 ∈ 𝑀 there is a 𝐾 such that every
CR function on 𝑀 is approximated uniformly on 𝐾 by holomorphic polynomials. The
theorem applies in one dimension, although in that case the theorem of Mergelyan
(see  Theorem B.31 ) is much more general.

Example 3.3.2: Let us show that 𝐾 cannot possibly be arbitrary. For simplicity 𝑛 = 1.
Let 𝑆1 ⊂ ℂ be the unit circle (boundary of the disc), then every smooth function on 𝑆1

is a smooth CR function. Let 𝑓 be a nonconstant real function such as Re 𝑧. Suppose
for contradiction that we could take 𝐾 = 𝑆1 in the theorem. Then 𝑓 (𝑧) = Re 𝑧 could
be uniformly approximated on 𝑆1 by holomorphic polynomials. By the maximum
principle, the polynomials would converge on 𝔻 to a holomorphic function on 𝔻

continuous on 𝔻. This function would have nonconstant real boundary values, which
is impossible. Clearly 𝐾 cannot be the entire circle.
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The example is easily extended to ℂ𝑛 by considering 𝑀 = 𝑆1 ×ℂ𝑛−1, then Re 𝑧1 is
a smooth CR function on 𝑀 that cannot be approximated uniformly on 𝑆1 × {0} by
holomorphic polynomials.

The technique of the example above will be used later in a more general situation,
to extend CR functions using Baouendi–Trèves.
Remark 3.3.3. It is important to note the difference between Baouendi–Trèves (and
similar theorems in complex analysis) and the Weierstrass approximation theorem.
In Baouendi–Trèves we obtain an approximation by holomorphic polynomials, while
Weierstrass gives us polynomials in the real variables, or in 𝑧 and �̄�. For example,
via Weierstrass, every continuous function is uniformly approximable on 𝑆1 via
polynomials in Re 𝑧 and Im 𝑧, and therefore by polynomials in 𝑧 and �̄�. These
polynomials do not in general converge anywhere but on 𝑆1.

Exercise 3.3.1: Let 𝑧 = 𝑥 + 𝑖𝑦 as usual in ℂ. Find a sequence of polynomials in 𝑥 and 𝑦
that converge uniformly to 𝑒𝑥−𝑦 on 𝑆1, but diverge everywhere else.

The proof is an ingenious use of the standard technique used to prove the
Weierstrass approximation theorem. Also, as we have seen mollifiers before, the
technique will not be completely foreign even to the reader who does not know
the Weierstrass approximation theorem. Basically what we do is use the standard
convolution argument, this time against a holomorphic function. Letting 𝑧 = 𝑥 + 𝑖𝑦
we only do the convolution in the 𝑥 variables keeping 𝑦 = 0. Then we use the fact
that the function is CR to show that we get an approximation even for other 𝑦.

In the formulas below, given a vector 𝑣 = (𝑣1, . . . , 𝑣𝑛), it will be useful to write

[𝑣]2 def
= 𝑣2

1 + · · · + 𝑣2
𝑛 .

The following lemma is a neat application of ideas from several complex variables
to solve a problem that does not at first seems to involve holomorphic functions.

Lemma 3.3.4. Let𝑊 be the set of 𝑛 × 𝑛 complex matrices 𝐴 such that

∥(Im𝐴)𝑥∥ < ∥(Re𝐴)𝑥∥

for all nonzero 𝑥 ∈ ℝ𝑛 and Re𝐴 is positive definite. Then for all 𝐴 ∈𝑊 ,∫
ℝ𝑛

𝑒−[𝐴𝑥]
2
det𝐴 𝑑𝑥 = 𝜋𝑛/2.

Proof. Suppose 𝐴 has real entries and 𝐴 is positive definite (so 𝐴 is also invertible).
By a change of coordinates∫

ℝ𝑛

𝑒−[𝐴𝑥]
2
det𝐴 𝑑𝑥 =

∫
ℝ𝑛

𝑒−[𝑥]
2
𝑑𝑥 =

(∫
ℝ

𝑒−𝑥
2
1 𝑑𝑥1

)
· · ·

(∫
ℝ

𝑒−𝑥
2
𝑛 𝑑𝑥𝑛

)
= (

√
𝜋)𝑛 .
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Next suppose 𝐴 is any matrix in 𝑊 . There is some 𝜖 > 0 such that ∥(Im𝐴)𝑥∥2 ≤
(1 − 𝜖2)∥(Re𝐴)𝑥∥2 for all 𝑥 ∈ ℝ𝑛 . That is because we only need to check this for 𝑥 in
the unit sphere, which is compact (exercise). By reality of Re𝐴, Im𝐴, and 𝑥 we get
[(Re𝐴)𝑥]2 = ∥(Re𝐴)𝑥∥2 and [(Im𝐴)𝑥]2 = ∥(Im𝐴)𝑥∥2. So���𝑒−[𝐴𝑥]2 ��� = 𝑒−Re [𝐴𝑥]2 ≤ 𝑒−[(Re𝐴)𝑥]2+[(Im𝐴)𝑥]2 ≤ 𝑒−𝜖

2[(Re𝐴)𝑥]2 .

Therefore, the integral exists for all 𝐴 in𝑊 by a similar computation as above.
The expression ∫

ℝ𝑛

𝑒−[𝐴𝑥]
2
det𝐴 𝑑𝑥

is a well-defined holomorphic function in the entries of 𝐴, thinking of𝑊 as a domain
(see exercises below) in ℂ𝑛2 . We have a holomorphic function that is constantly equal
to 𝜋𝑛/2 on𝑊 ∩ℝ𝑛2 and hence it is equal to 𝜋𝑛/2 everywhere on𝑊 . □

Exercise 3.3.2: Prove the existence of 𝜖 > 0 in the proof above.

Exercise 3.3.3: Show that𝑊 ⊂ ℂ𝑛2 in the proof above is a domain (open and connected).

Exercise 3.3.4: Prove that we can really differentiate under the integral to show that the
integral is holomorphic in the entries of 𝐴.

Exercise 3.3.5: Show that some hypotheses are needed for the lemma. In particular, take
𝑛 = 1 and find the exact set of 𝐴 (now a complex number) for which the conclusion of the
lemma is true.

Given an 𝑛 × 𝑛 matrix 𝐴, let ∥𝐴∥ denote the operator norm,

∥𝐴∥ = sup
∥𝑣∥=1

∥𝐴𝑣∥ = sup
𝑣∈ℂ𝑛 ,𝑣≠0

∥𝐴𝑣∥
∥𝑣∥ .

Exercise 3.3.6: Let 𝑊 be as in  Lemma 3.3.4 . Let 𝐵 be an 𝑛 × 𝑛 real matrix such that
∥𝐵∥ < 1. Show that 𝐼 + 𝑖𝐵 ∈𝑊 .

We will be using differential forms, and the following lemma says that as far
as the exterior derivative is concerned, all CR functions behave as restrictions of
holomorphic functions.

Lemma 3.3.5. Let 𝑀 ⊂ ℂ𝑛 be a smooth real hypersurface, 𝑓 : 𝑀 → ℂ be a smooth CR
function, and (𝑧1, . . . , 𝑧𝑛) be the holomorphic coordinates of ℂ𝑛 . Then at each point 𝑝 ∈ 𝑀,
the exterior derivative 𝑑𝑓 is a linear combination of 𝑑𝑧1, . . . , 𝑑𝑧𝑛 , thinking of 𝑧1, . . . , 𝑧𝑛 as
functions on 𝑀. Namely,

𝑑( 𝑓 𝑑𝑧) = 𝑑𝑓 ∧ 𝑑𝑧 = 0.
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Recall the notation 𝑑𝑧 = 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ · · · ∧ 𝑑𝑧𝑛 .

Proof. After a complex affine change of coordinates, we simply need to prove the
result at the origin. Let 𝜉1, . . . , 𝜉𝑛 be the new holomorphic coordinates and suppose
the 𝑇(1,0)

0 𝑀 tangent space is spanned by 𝜕
𝜕𝜉1

��
0, . . . ,

𝜕
𝜕𝜉𝑛−1

��
0, and such that 𝜕

𝜕Re 𝜉𝑛

��
0 is

tangent and 𝜕
𝜕 Im 𝜉𝑛

��
0 is normal. At the origin, the CR conditions are 𝜕 𝑓

𝜕�̄�𝑘
(0) = 0 for all

𝑘, so

𝑑𝑓 (0) =
𝜕 𝑓

𝜕𝜉1
(0) 𝑑𝜉1(0) + · · · +

𝜕 𝑓

𝜕𝜉𝑛−1
(0) 𝑑𝜉𝑛−1(0) +

𝜕 𝑓

𝜕Re 𝜉𝑛
(0) 𝑑(Re 𝜉𝑛)(0).

Also, at the origin 𝑑𝜉𝑛(0) = 𝑑(Re 𝜉𝑛)(0) + 𝑖𝑑(Im 𝜉𝑛)(0) = 𝑑(Re 𝜉𝑛)(0). So 𝑑𝑓 (0) is a
linear combination of 𝑑𝜉1(0), . . . , 𝑑𝜉𝑛(0). As 𝜉 is a complex affine function of 𝑧, then
each 𝑑𝜉𝑘 is a linear combination of 𝑑𝑧1 through 𝑑𝑧𝑛 , and the claim follows. So if 𝑓 is
a CR function, then 𝑑( 𝑓 𝑑𝑧) = 𝑑𝑓 ∧ 𝑑𝑧 = 0 since 𝑑𝑧𝑘 ∧ 𝑑𝑧𝑘 = 0. □

Proof of the theorem of Baouendi–Trèves. Suppose 𝑀 ⊂ ℂ𝑛 is a smooth real hypersur-
face, and without loss of generality suppose 𝑝 = 0 ∈ 𝑀. Let 𝑧 = (𝑧1, . . . , 𝑧𝑛) be the
holomorphic coordinates, write 𝑧 = 𝑥 + 𝑖𝑦, 𝑦 = (𝑦′, 𝑦𝑛), and suppose 𝑀 is given by

𝑦𝑛 = 𝜓(𝑥, 𝑦′),

where 𝜓 is 𝑂(2). The variables (𝑥, 𝑦′) parametrize 𝑀 near 0:

𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘 , for 𝑘 = 1, . . . , 𝑛 − 1, and 𝑧𝑛 = 𝑥𝑛 + 𝑖𝜓(𝑥, 𝑦′).

Define
𝜑(𝑥, 𝑦′) =

(
𝑦1, . . . , 𝑦𝑛−1,𝜓(𝑥, 𝑦′)

)
.

Write (𝑥, 𝑦′) ↦→ 𝑧 = 𝑥 + 𝑖𝜑(𝑥, 𝑦′) as the parametrization. That is, think of 𝑧 as a
function of (𝑥, 𝑦′).

Let 𝑟 > 0 and 𝑑 > 0 be small numbers to be determined later. Assume they are
small enough so that 𝑓 and 𝜑 are defined and smooth on some neighborhood of the
set where ∥𝑥∥ ≤ 𝑟 and ∥𝑦′∥ ≤ 𝑑. There exists a smooth 𝑔 : ℝ𝑛 → [0, 1] such that 𝑔 ≡ 1
on 𝐵𝑟/2(0) and 𝑔 ≡ 0 outside of 𝐵𝑟(0). See  Figure 3.2 . Explicit formula can be given.
Alternatively we obtain such a 𝑔 by use of mollifiers on a function that is identically
one on 𝐵3𝑟/4(0) and zero elsewhere. Such a 𝑔 is commonly called a cutoff function.

Exercise 3.3.7: Find an explicit formula for 𝑔 without using mollifiers.

Let
𝐾′ =

{
(𝑥, 𝑦′) : ∥𝑥∥ ≤ 𝑟/4, ∥𝑦′∥ ≤ 𝑑

}
.

Let 𝐾 = 𝑧(𝐾′), that is the image of 𝐾′ under the mapping 𝑧(𝑥, 𝑦′).
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0 ≤ 𝑔 ≤ 1

𝑟
𝑔 ≡ 0

𝑟/2

𝑔 ≡ 1

Figure 3.2: Cutoff function.

Consider the CR function 𝑓 a function of (𝑥, 𝑦′) and write 𝑓 (𝑥, 𝑦′). For ℓ ∈ ℕ, let
𝛼ℓ be a differential 𝑛-form defined (thinking of 𝑤 ∈ ℂ𝑛 as a constant parameter) by

𝛼ℓ (𝑥, 𝑦′) =
(
ℓ

𝜋

)𝑛/2
𝑒−ℓ [𝑤−𝑧]

2
𝑔(𝑥) 𝑓 (𝑥, 𝑦′) 𝑑𝑧

=

(
ℓ

𝜋

)𝑛/2
𝑒−ℓ [𝑤−𝑥−𝑖𝜑(𝑥,𝑦

′)]2 𝑔(𝑥) 𝑓 (𝑥, 𝑦′)

(𝑑𝑥1 + 𝑖𝑑𝑦1) ∧ · · · ∧ (𝑑𝑥𝑛−1 + 𝑖𝑑𝑦𝑛−1) ∧
(
𝑑𝑥𝑛 + 𝑖𝑑𝜓(𝑥, 𝑦′)

)
.

The key is the exponential, which looks like the bump function mollifier, except
that now we have 𝑤 and 𝑧 possibly complex. The exponential is also holomorphic in
𝑤, and that will give us entire holomorphic approximating functions.

Fix 𝑦′ with 0 < ∥𝑦′∥ < 𝑑 and let 𝐷 be defined by

𝐷 =
{
(𝑥, 𝑠) ∈ ℝ𝑛 ×ℝ𝑛−1 : ∥𝑥∥ < 𝑟 and 𝑠 = 𝑡𝑦′ for 𝑡 ∈ (0, 1)

}
.

𝐷 is an (𝑛 + 1)-dimensional “cylinder.” We take a ball in the 𝑥 directions, then take a
single fixed point 𝑦′ in the 𝑠 variables and make a cylinder. See  Figure 3.3 .

𝑟 𝑥

𝑦′
𝑠

𝑡𝑦′ 𝐷

Figure 3.3: Cylinder 𝐷.

Orient 𝐷 in the standard way as if it sat in the (𝑥, 𝑡) variables in ℝ𝑛 ×ℝ. Stokes’
theorem says ∫

𝐷

𝑑𝛼ℓ (𝑥, 𝑠) =
∫
𝜕𝐷

𝛼ℓ (𝑥, 𝑠).
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Since 𝑔(𝑥) = 0 if ∥𝑥∥ ≥ 𝑟, 𝛼ℓ is zero on the sides of the cylinder 𝐷, so the integral over
𝜕𝐷 only needs to consider the top and bottom of the cylinder. And because of 𝑔, the
integral over the top and bottom can be taken over ℝ𝑛 . As is usual in these sorts of
arguments, we do the slight abuse of notation ignoring that 𝑓 and 𝜑 are undefined
where 𝑔 is identically zero:∫

𝜕𝐷
𝛼ℓ (𝑥, 𝑠)

=

(
ℓ

𝜋

)𝑛/2 ∫
𝑥∈ℝ𝑛

𝑒−ℓ [𝑤−𝑥−𝑖𝜑(𝑥,𝑦
′)]2 𝑔(𝑥) 𝑓 (𝑥, 𝑦′) 𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑛−1 ∧

(
𝑑𝑥𝑛 + 𝑖𝑑𝑥𝜓(𝑥, 𝑦′)

)
−

(
ℓ

𝜋

)𝑛/2 ∫
𝑥∈ℝ𝑛

𝑒−ℓ [𝑤−𝑥−𝑖𝜑(𝑥,0)]
2
𝑔(𝑥) 𝑓 (𝑥, 0) 𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑛−1 ∧

(
𝑑𝑥𝑛 + 𝑖𝑑𝑥𝜓(𝑥, 0)

)
,

(3.1)

where 𝑑𝑥 means the derivative in the 𝑥 directions only. I.e., 𝑑𝑥𝜓 =
𝜕𝜓
𝜕𝑥1
𝑑𝑥1+· · ·+ 𝜕𝜓

𝜕𝑥𝑛
𝑑𝑥𝑛 .

We will show that as ℓ → ∞, the left-hand side of ( 3.1 ) goes to zero uniformly for
𝑤 ∈ 𝐾 and the first term on the right-hand side goes to 𝑓 (�̃� , 𝑦′) if 𝑤 = 𝑧(�̃� , 𝑦′) is in 𝑀.
Hence, we define entire functions that we will show approximate 𝑓 :

𝑓ℓ (𝑤) =
(
ℓ

𝜋

)𝑛/2 ∫
𝑥∈ℝ𝑛

𝑒−ℓ [𝑤−𝑥−𝑖𝜑(𝑥,0)]
2
𝑔(𝑥) 𝑓 (𝑥, 0) 𝑑𝑥1 ∧ · · ·∧ 𝑑𝑥𝑛−1 ∧

(
𝑑𝑥𝑛 + 𝑖𝑑𝑥𝜓(𝑥, 0)

)
.

Clearly each 𝑓ℓ is holomorphic and defined for all 𝑤 ∈ ℂ𝑛 .
In the next claim it is important that 𝑓 is a CR function.

Claim 3.3.6. We have

𝑑𝛼ℓ (𝑥, 𝑠) =
(
ℓ

𝜋

)𝑛/2
𝑒−ℓ [𝑤−𝑧(𝑥,𝑠)]

2
𝑓 (𝑥, 𝑠) 𝑑𝑔(𝑥) ∧ 𝑑𝑧(𝑥, 𝑠),

and for sufficiently small 𝑟 > 0 and 𝑑 > 0,

lim
ℓ→∞

(
ℓ

𝜋

)𝑛/2 ∫
(𝑥,𝑠)∈𝐷

𝑒−ℓ [𝑤−𝑧(𝑥,𝑠)]
2
𝑓 (𝑥, 𝑠) 𝑑𝑔(𝑥) ∧ 𝑑𝑧(𝑥, 𝑠) = 0

uniformly as a function of 𝑤 ∈ 𝐾 and 𝑦′ ∈ 𝐵𝑑(0) (recall that 𝐷 depends on 𝑦′).

Proof. The function (𝑥, 𝑠) ↦→ 𝑒−ℓ [𝑤−𝑧(𝑥,𝑠)]
2 is CR (as a function on 𝑀), and so is 𝑓 (𝑥, 𝑠).

Therefore, using  Lemma 3.3.5 ,

𝑑𝛼ℓ (𝑥, 𝑠) =
(
ℓ

𝜋

)𝑛/2
𝑒−ℓ [𝑤−𝑧(𝑥,𝑠)]

2
𝑓 (𝑥, 𝑠) 𝑑𝑔(𝑥) ∧ 𝑑𝑧(𝑥, 𝑠).

Since 𝑑𝑔 is zero for ∥𝑥∥ ≤ 𝑟/2, the integral∫
𝐷

𝑑𝛼ℓ (𝑥, 𝑠) =
(
ℓ

𝜋

)𝑛/2 ∫
𝐷

𝑒−ℓ [𝑤−𝑧(𝑥,𝑠)]
2
𝑓 (𝑥, 𝑠) 𝑑𝑔(𝑥) ∧ 𝑑𝑧(𝑥, 𝑠)
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is only evaluated for the subset of 𝐷 where ∥𝑥∥ > 𝑟/2.
Suppose𝑤 ∈ 𝐾 and (𝑥, 𝑠) ∈ 𝐷 with ∥𝑥∥ > 𝑟/2. Let𝑤 = 𝑧(�̃� , 𝑠). We need to estimate��𝑒−ℓ [𝑤−𝑧(𝑥,𝑠)]2 �� = 𝑒−ℓ Re [𝑤−𝑧(𝑥,𝑠)]2 .

Then
−Re [𝑤 − 𝑧]2 = −∥ �̃� − 𝑥∥2 + ∥𝜑(�̃� , 𝑠) − 𝜑(𝑥, 𝑠)∥2.

By the mean value theorem

∥𝜑(�̃� , 𝑠) − 𝜑(𝑥, 𝑠)∥ ≤ ∥𝜑(�̃� , 𝑠) − 𝜑(𝑥, 𝑠)∥ + ∥𝜑(𝑥, 𝑠) − 𝜑(𝑥, 𝑠)∥ ≤ 𝑎∥ �̃� − 𝑥∥ +𝐴∥𝑠 − 𝑠∥ ,

where 𝑎 and 𝐴 are

𝑎 = sup
∥ �̂�∥≤𝑟,∥ �̂�′∥≤𝑑

 [
𝜕𝜑

𝜕𝑥
(�̂� , �̂�′)

]  , 𝐴 = sup
∥ �̂�∥≤𝑟,∥ �̂�′∥≤𝑑

 [
𝜕𝜑

𝜕𝑦′
(�̂� , �̂�′))

]  .
Here

[ 𝜕𝜑
𝜕𝑥

]
and

[ 𝜕𝜑
𝜕𝑦′

]
are the derivatives (matrices) of 𝜑 with respect to 𝑥 and 𝑦′

respectively, and the norm we are taking is the operator norm. Because
[ 𝜕𝜑
𝜕𝑥

]
is zero at

the origin, we pick 𝑟 and 𝑑 small enough (and hence 𝐾 small enough) so that 𝑎 ≤ 1/4.
We furthermore pick 𝑑 possibly even smaller to ensure that 𝑑 ≤ 𝑟

32𝐴 . We have that
𝑟/2 ≤ ∥𝑥∥ ≤ 𝑟, but ∥ �̃�∥ ≤ 𝑟/4 (recall 𝑤 ∈ 𝐾), so

𝑟

4 ≤ ∥ �̃� − 𝑥∥ ≤ 5𝑟
4 .

Also, ∥𝑠 − 𝑠∥ ≤ 2𝑑 by triangle inequality.
Therefore,

−Re [𝑤 − 𝑧(𝑥, 𝑠)]2 ≤ −∥ �̃� − 𝑥∥2 + 𝑎2∥ �̃� − 𝑥∥2 + 𝐴2∥𝑠 − 𝑠∥2 + 2𝑎𝐴∥ �̃� − 𝑥∥∥𝑠 − 𝑠∥

≤ −15
16 ∥ �̃� − 𝑥∥2 + 𝐴2∥𝑠 − 𝑠∥2 + 𝐴

2 ∥ �̃� − 𝑥∥∥𝑠 − 𝑠∥

≤ −𝑟2

64 .

In other words, ��𝑒−ℓ [𝑤−𝑧(𝑥,𝑠)]2 �� ≤ 𝑒−ℓ 𝑟
2/64,

or �����( ℓ𝜋 )𝑛/2 ∫
(𝑥,𝑠)∈𝐷

𝑒−ℓ [𝑤−𝑧(𝑥,𝑠)]
2
𝑓 (𝑥, 𝑠) 𝑑𝑔(𝑥) ∧ 𝑑𝑧(𝑥, 𝑠)

����� ≤ 𝐶ℓ 𝑛/2𝑒−ℓ 𝑟
2/64,

for some constant 𝐶. Note that 𝐷 depends on 𝑦′. The set of all 𝑦′ with ∥𝑦′∥ ≤ 𝑑, is a
compact set, so we can make 𝐶 large enough to not depend on the 𝑦′ that was chosen.
The claim follows. □
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Claim 3.3.7. For the given 𝑟 > 0 and 𝑑 > 0,

lim
ℓ→∞

(
ℓ

𝜋

)𝑛/2 ∫
𝑥∈ℝ𝑛

𝑒−ℓ [�̃�+𝑖𝜑(�̃� ,𝑦
′)−𝑥−𝑖𝜑(𝑥,𝑦′)]2

𝑔(𝑥) 𝑓 (𝑥, 𝑦′)𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑛−1 ∧
(
𝑑𝑥𝑛 + 𝑖𝑑𝑥𝜓(𝑥, 𝑦′)

)
= 𝑓 (�̃� , 𝑦′)

uniformly in (�̃� , 𝑦′) ∈ 𝐾′.

That is, we look at ( 3.1 ) and we plug in 𝑤 = 𝑧(�̃� , 𝑦′) ∈ 𝐾. The 𝑔 (as usual) makes
sure we never evaluate 𝑓 , 𝜓, or 𝜑 at points where they are not defined.

Proof. The change of variables formula implies

𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑛−1 ∧
(
𝑑𝑥𝑛 + 𝑖𝑑𝑥𝜓(𝑥, 𝑦′)

)
= 𝑑𝑥𝑧(𝑥, 𝑦′) = det

[
𝜕𝑧

𝜕𝑥
(𝑥, 𝑦′)

]
𝑑𝑥,

where
[
𝜕𝑧
𝜕𝑥 (𝑥, 𝑦

′)
]

is the matrix corresponding to the derivative of the mapping 𝑧 with
respect to the 𝑥 variables evaluated at (𝑥, 𝑦′).

Let us change variables of integration via 𝜉 =
√
ℓ (𝑥 − �̃�):(

ℓ

𝜋

)𝑛/2 ∫
𝑥∈ℝ𝑛

𝑒−ℓ [�̃�+𝑖𝜑(�̃� ,𝑦
′)−𝑥−𝑖𝜑(𝑥,𝑦′)]2 𝑔(𝑥) 𝑓 (𝑥, 𝑦′)det

[
𝜕𝑧

𝜕𝑥
(𝑥, 𝑦′)

]
𝑑𝑥 =(

1
𝜋

)𝑛/2 ∫
𝜉∈ℝ𝑛

𝑒
−
[
𝜉+𝑖

√
ℓ
(
𝜑
(
�̃�+ 𝜉√

ℓ
,𝑦′

)
−𝜑(�̃� ,𝑦′)

)]2

𝑔

(
�̃� + 𝜉√

ℓ

)
𝑓

(
�̃� + 𝜉√

ℓ
, 𝑦′

)
det

[
𝜕𝑧

𝜕𝑥

(
�̃� + 𝜉√

ℓ
, 𝑦′

)]
𝑑𝜉.

We now wish to take a limit as ℓ → ∞ and for this we apply the dominated convergence
theorem. So we need to dominate the integrand. The second half of the integrand is
uniformly bounded independent of ℓ as

𝑥 ↦→ 𝑔(𝑥) 𝑓 (𝑥, 𝑦′)det
[
𝜕𝑧

𝜕𝑥
(𝑥, 𝑦′)

]
is a continuous function with compact support (because of 𝑔). Hence it is enough to
worry about the exponential term. We also only consider those 𝜉 where the integrand
is not zero. Recall that 𝑟 and 𝑑 are small enough that

sup
∥ �̂�∥≤𝑟,∥ �̂�′∥≤𝑑

 [
𝜕𝜑

𝜕𝑥
(�̂� , �̂�′)

]  ≤ 1
4 ,

and as ∥ �̃�∥ ≤ 𝑟/4 (as (�̃� , 𝑦′) ∈ 𝐾) and
�̃� + 𝜉√

ℓ

 ≤ 𝑟 (because 𝑔 is zero otherwise), then𝜑 (
�̃� + 𝜉√

ℓ
, 𝑦′

)
− 𝜑(�̃� , 𝑦′)

 ≤ 1
4

�̃� + 𝜉√
ℓ
− �̃�

 =
∥𝜉∥
4
√
ℓ
.
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So under the same conditions,����𝑒−[
𝜉+𝑖

√
ℓ
(
𝜑
(
�̃�+ 𝜉√

ℓ
,𝑦′

)
−𝜑(�̃� ,𝑦′)

)]2 ���� = 𝑒
−Re

[
𝜉+𝑖

√
ℓ
(
𝜑
(
�̃�+ 𝜉√

ℓ
,𝑦′

)
−𝜑(�̃� ,𝑦′)

)]2

= 𝑒
−∥𝜉∥2+ℓ

𝜑 (
�̃�+ 𝜉√

ℓ
,𝑦′

)
−𝜑(�̃� ,𝑦′)

2

≤ 𝑒−(15/16)∥𝜉∥2
.

And that is integrable. Thus, take the pointwise limit under the integral to obtain(
1
𝜋

)𝑛/2 ∫
𝜉∈ℝ𝑛

𝑒
−
[
𝜉+𝑖

[
𝜕𝜑
𝜕𝑥 (�̃� ,𝑦

′)
]
𝜉
]2

𝑔(�̃�) 𝑓 (�̃� , 𝑦′)det
[
𝜕𝑧

𝜕𝑥
(�̃� , 𝑦′)

]
𝑑𝜉.

In the exponent, we have an expression for the derivative in the 𝜉 direction with 𝑦′
fixed. If (�̃� , 𝑦′) ∈ 𝐾′, then 𝑔(�̃�) = 1, and so we can ignore 𝑔.

Let 𝐴 = 𝐼 + 𝑖
[ 𝜕𝜑
𝜕𝑥 (�̃� , 𝑦

′)
]
.  Lemma 3.3.4 says(

1
𝜋

)𝑛/2 ∫
𝜉∈ℝ𝑛

𝑒
−
[
𝜉+𝑖

[
𝜕𝜑
𝜕𝑥 (�̃� ,𝑦

′)
]
𝜉
]2

𝑓 (�̃� , 𝑦′)det
[
𝜕𝑧

𝜕𝑥
(�̃� , 𝑦′)

]
𝑑𝜉 = 𝑓 (�̃� , 𝑦′).

That the convergence is uniform in (�̃� , 𝑦′) ∈ 𝐾′ is left as an exercise. □

Exercise 3.3.8: In the claim above, finish the proof that the convergence is uniform in
(�̃� , 𝑦′) ∈ 𝐾′. Hint: It may be easier to use the form of the integral before the change of
variables and prove that the sequence is uniformly Cauchy.

We are essentially done with the proof of the theorem. The two claims together
with ( 3.1 ) show that 𝑓ℓ are entire holomorphic functions that approximate 𝑓 uniformly
on 𝐾. Entire holomorphic functions can be approximated by polynomials uniformly
on compact subsets; simply take the partial sums of Taylor series at the origin. □

Exercise 3.3.9: Explain why being approximable on 𝐾 by (holomorphic) polynomials does
not necessarily mean that 𝑓 is real-analytic.

Exercise 3.3.10: Suppose 𝑀 ⊂ ℂ𝑛 is given by Im 𝑧𝑛 = 0. Use the standard Weierstrass
approximation theorem to show that given a 𝐾 ⊂⊂ 𝑀, and a smooth CR function
𝑓 : 𝑀 → ℂ, then 𝑓 can be uniformly approximated by holomorphic polynomials on 𝐾.



126 CHAPTER 3. CR FUNCTIONS

3.4 \ Extension of CR functions
We will apply the so-called “technique of analytic discs” together with Baouendi–
Trèves to prove the Lewy extension theorem. Lewy’s original proof was different and
predates Baouendi–Trèves. A local extension theorem of this type was first proved
by Helmut Knesser in 1936.
Theorem 3.4.1 (Lewy). Suppose 𝑀 ⊂ ℂ𝑛 is a smooth real hypersurface and 𝑝 ∈ 𝑀. There
exists a neighborhood 𝑈 of 𝑝 with the following property. Suppose 𝑟 : 𝑈 → ℝ is a smooth
defining function for 𝑀 ∩𝑈 , denote by𝑈− ⊂ 𝑈 the set where 𝑟 is negative and𝑈+ ⊂ 𝑈 the
set where 𝑟 is positive. Let 𝑓 : 𝑀 → ℝ be a smooth CR function. Then:

(i) If the Levi form with respect to 𝑟 has a positive eigenvalue at 𝑝, then 𝑓 extends to a
holomorphic function on𝑈− continuous up to 𝑀 (continuous on {𝑧 ∈ 𝑈 : 𝑟(𝑧) ≤ 0}).

(ii) If the Levi form with respect to 𝑟 has a negative eigenvalue at 𝑝, then 𝑓 extends to a
holomorphic function on𝑈+ continuous up to 𝑀 (continuous on {𝑧 ∈ 𝑈 : 𝑟(𝑧) ≥ 0}).

(iii) If the Levi form with respect to 𝑟 has eigenvalues of both signs at 𝑝, then 𝑓 extends to
a function holomorphic on𝑈 .

So if the Levi form has eigenvalues of both signs, then near 𝑝 all CR functions are
restrictions of holomorphic functions. The function 𝑟 can be any defining function
for 𝑀. Either we can extend it to all of 𝑈 or we could take a smaller 𝑈 such that 𝑟
is defined on𝑈 . As we noticed before, once we pick sides (where 𝑟 is positive and
where it is negative), then the number of positive eigenvalues and the number of
negative eigenvalues of the Levi form is fixed. A different 𝑟 may flip𝑈− and𝑈+, but
the conclusion of the theorem is exactly the same.

Proof. We prove the first item, and the second item follows by considering−𝑟. Suppose
𝑝 = 0 and 𝑀 is given in some neighborhood Ω of the origin as

Im𝑤 = |𝑧1 |2 +
𝑛−1∑
𝑘=2

𝜖𝑘 |𝑧𝑘 |2 + 𝐸(𝑧1, 𝑧
′, �̄�1, �̄�

′,Re𝑤),

where 𝑧′ = (𝑧2, . . . , 𝑧𝑛−1), 𝜖𝑘 = −1, 0, 1, and 𝐸 is 𝑂(3). Let Ω− be given by

0 > 𝑟 = |𝑧1 |2 +
𝑛−1∑
𝑘=2

𝜖𝑘 |𝑧𝑘 |2 + 𝐸(𝑧1, 𝑧
′, �̄�1, �̄�

′,Re𝑤) − Im𝑤.

The (real) Hessian of the function

𝑧1 ↦→ |𝑧1 |2 + 𝐸(𝑧1, 0, �̄�1, 0, 0)

is positive definite in a neighborhood of the origin and the function has a strict
minimum at 0. There is some small disc 𝐷 ⊂ ℂ such that this function is strictly
positive on 𝜕𝐷.
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Therefore, for (𝑧′, 𝑤) ∈ 𝑊 in some small neighborhood 𝑊 ⊂ ℂ𝑛−1 of the origin,
the function

𝑧1 ↦→ |𝑧1 |2 +
𝑛∑
𝑘=2

𝜖𝑘 |𝑧𝑘 |2 + 𝐸(𝑧1, 𝑧
′, �̄�1, �̄�

′,Re𝑤) − Im𝑤

is still strictly positive on 𝜕𝐷.
We wish to apply Baouendi–Trèves and so let 𝐾 be the compact neighborhood of

the origin from the theorem. Take𝐷 and𝑊 small enough such that (𝐷×𝑊)∩𝑀 ⊂ 𝐾.
Find the polynomials 𝑝ℓ that approximate 𝑓 uniformly on 𝐾. Consider 𝑧1 ∈ 𝐷 and
(𝑧′, 𝑤) ∈ 𝑊 such that (𝑧1, 𝑧

′, 𝑤) ∈ Ω−. Let Δ =
(
𝐷 × {(𝑧′, 𝑤)}

)
∩Ω−. Denote by 𝜕Δ

the boundary of Δ in the subspace topology of ℂ × {(𝑧′, 𝑤)}.
The set Ω+ where 𝑟 > 0 is open and it contains (𝜕𝐷) × {(𝑧′, 𝑤)}. Therefore, 𝜕Δ

contains no points of (𝜕𝐷) × {(𝑧′, 𝑤)}. Consequently, 𝜕Δ contains only points where
𝑟 = 0, that is 𝜕Δ ⊂ 𝑀, and also 𝜕Δ ⊂ 𝐷 ×𝑊 . As (𝐷 ×𝑊) ∩𝑀 ⊂ 𝐾, we have 𝜕Δ ⊂ 𝐾.
See  Figure 3.4 .

𝑧1

(𝑧′, 𝑤)

𝑟 < 0
𝑟 > 0

𝜕Δ

𝐾

𝑀

𝐷 ×𝑊
Δ

Figure 3.4: Proof of Lewy extension.

As 𝑝ℓ → 𝑓 uniformly on 𝐾, then 𝑝ℓ → 𝑓 uniformly on 𝜕Δ. As 𝑝ℓ are holomorphic,
then by the maximum principle, 𝑝ℓ converge uniformly on all ofΔ. In fact, as (𝑧1, 𝑧

′, 𝑤)
was an arbitrary point in (𝐷 ×𝑊) ∩Ω−, the polynomials 𝑝ℓ converge uniformly on
(𝐷 ×𝑊) ∩Ω−. Let𝑈 = 𝐷 ×𝑊 , then𝑈− = (𝐷 ×𝑊) ∩Ω−. Notice𝑈 depends on 𝐾, but
not on 𝑓 . So 𝑝ℓ converge to a continuous function 𝐹 on𝑈− ∩𝑈 and 𝐹 is holomorphic
on𝑈−. Clearly 𝐹 equals 𝑓 on 𝑀 ∩𝑈 .

To prove the last item, pick a side, and then use one of the first two items to extend
the function to that side. Via the tomato can principle ( Theorem 2.3.11 ) the function
also extends across 𝑀 and therefore to a whole neighborhood of 𝑝. □

If you were wondering what happened to the analytic discs we promised, the Δ in
the above is an analytic disc (simply connected) for a small enough𝑈 , but it was not
necessary to prove that fact.
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We state the next corollary for a strongly convex domain, even though it holds
with far more generality. It is a simpler version of the Hartogs–Bochner 

*
 . Later, in

 Exercise 4.3.4 , you will prove it for strongly pseudoconvex domains. However, the
theorem is true for every bounded domain with connected smooth boundary with
no assumptions on the Levi form, but a different approach would have to be taken.
Corollary 3.4.2. Suppose𝑈 ⊂ ℂ𝑛 , 𝑛 ≥ 2, is a bounded domain with smooth boundary that
is strongly convex and 𝑓 : 𝜕𝑈 → ℂ is a smooth CR function, then there exists a continuous
function 𝐹 : 𝑈 → ℂ holomorphic in𝑈 such that 𝐹 |𝜕𝑈 = 𝑓 .

Proof. A strongly convex domain is strongly pseudoconvex, so 𝑓 must extend to the
inside locally near every point. The extension is locally unique as any two extensions
have the same boundary values. Therefore, there exists a set 𝐾 ⊂⊂ 𝑈 such that 𝑓
extends to𝑈 \ 𝐾. Via an exercise below we can assume that 𝐾 is strongly convex and
therefore we can apply the special case of Hartogs phenomenon that you proved in

 Exercise 2.1.8 to find an extension holomorphic in𝑈 . □

Exercise 3.4.1: Prove the existence of the strongly convex 𝐾 in the proof of  Corollary 3.4.2  

above.

Exercise 3.4.2: Show by example that the corollary is not true when 𝑛 = 1. Explain where
in the proof have we used that 𝑛 ≥ 2.

Exercise 3.4.3: Suppose 𝑓 : 𝜕𝔹2 → ℂ is a smooth CR function. Write down an explicit
formula for the extension 𝐹.

Exercise 3.4.4: A smooth real hypersurface 𝑀 ⊂ ℂ3 is defined by Im𝑤 = |𝑧1 |2 − |𝑧2 |2 +
𝑂(3) and 𝑓 is a real-valued smooth CR function on 𝑀. Show that | 𝑓 | does not attain a
maximum at the origin.

Exercise 3.4.5: A real-analytic hypersurface 𝑀 ⊂ ℂ𝑛 , 𝑛 ≥ 3, is such that the Levi form at
𝑝 ∈ 𝑀 has eigenvalues of both signs. Show that every smooth CR function 𝑓 on 𝑀 is, in
fact, real-analytic in a neighborhood of 𝑝.

Exercise 3.4.6: Let 𝑀 ⊂ ℂ3 be defined by Im𝑤 = |𝑧1 |2 − |𝑧2 |2.
a) Show that for this 𝑀, the conclusion of Baouendi–Trèves holds with an arbitrary

compact subset 𝐾 ⊂⊂ 𝑀.
b) Use this to show that every smooth CR function 𝑓 : 𝑀 → ℂ is a restriction of an

entire holomorphic function 𝐹 : ℂ3 → ℂ.

Exercise 3.4.7: Find an 𝑀 ⊂ ℂ𝑛 , 𝑛 ≥ 2, such that near some 𝑝 ∈ 𝑀, for every
neighborhood 𝑊 of 𝑝 in 𝑀, there is a CR function 𝑓 : 𝑊 → ℂ that does not extend
holomorphically to either side of 𝑀 at 𝑝.
*What is called Hartogs–Bochner is the 𝐶1 version of this theorem where the domain is only

assumed to be bounded and the boundary connected, and it was proved by neither Hartogs nor
Bochner, but by Martinelli in 1961.
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Exercise 3.4.8: Suppose 𝑓 : 𝜕𝔹𝑛 → ℂ is a smooth function and 𝑛 ≥ 2. Prove that 𝑓 is a
CR function if and only if∫ 2𝜋

0
𝑓 (𝑒 𝑖𝜃𝑣) 𝑒 𝑖𝑘𝜃𝑑𝜃 = 0 for all 𝑣 ∈ 𝜕𝔹𝑛 and all 𝑘 ∈ ℕ.

Exercise 3.4.9: Prove the third item in the Lewy extension theorem without the use of the
tomato can principle. That is, prove in a more elementary way that if 𝑀 ⊂ 𝑈 ⊂ ℂ𝑛 is a
smooth real hypersurface in an open set𝑈 and 𝑓 : 𝑈 → ℂ is continuous and holomorphic
in𝑈 \𝑀, then 𝑓 is holomorphic.

Remark 3.4.3. Studying solutions to nonhomogeneous CR equations of the form
𝑋 𝑓 = 𝜓 for a CR vector field 𝑋, and the fact that such conditions can guarantee
that a function must be real-analytic, led Lewy to a famous, very surprising, and
rather simple example of a linear partial differential equation with smooth coefficients
that has no solution on any open set 

*
 . The example is surprising because when a

linear PDE has real-analytic coefficients, a solution always exists by the theorem of
Cauchy–Kowalevski. Furthermore, if 𝑋 is a real vector field (𝑋 is in 𝑇𝑀 not in ℂ𝑇𝑀),
then a solution to 𝑋 𝑓 = 𝜓 exists by the method of characteristics, even if 𝑋 and 𝜓 are
only smooth.

*Lewy, Hans, An example of a smooth linear partial differential equation without solution, Annals of
Mathematics, 66 (1957), 155–158.



4 \\ The �̄�-problem

4.1 \ The generalized Cauchy integral formula

Before we get into the �̄�-problem, let us prove a more general version of Cauchy’s
formula using Stokes’ theorem (really Green’s theorem). This version is called the
Cauchy–Pompeiu integral formula. We only need the theorem for smooth functions, but
as it is often applied in less regular contexts and it is just an application of Stokes’
theorem, let us state it more generally. In applications, the boundary is often only
piecewise smooth, and again that is all we need for Stokes.
Theorem 4.1.1 (Cauchy–Pompeiu). Let𝑈 ⊂ ℂ be a bounded open set with piecewise-𝐶1

boundary 𝜕𝑈 oriented positively (see  appendix B ), and let 𝑓 : 𝑈 → ℂ be continuous with
bounded continuous partial derivatives in𝑈 . Then for 𝑧 ∈ 𝑈:

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝜕𝑈

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 + 1

2𝜋𝑖

∫
𝑈

𝜕 𝑓

𝜕�̄�
(𝜁)

𝜁 − 𝑧 𝑑𝜁 ∧ 𝑑�̄�.

If 𝑓 is holomorphic, then the second term is zero, and we obtain the standard
Cauchy formula. If 𝜁 = 𝑥 + 𝑖𝑦, then the standard orientation on ℂ is the one
corresponding to the area form 𝑑𝐴 = 𝑑𝑥 ∧ 𝑑𝑦. The form 𝑑𝜁 ∧ 𝑑�̄� is the area form up
to a scalar. That is,

𝑑𝜁 ∧ 𝑑�̄� = (𝑑𝑥 + 𝑖 𝑑𝑦) ∧ (𝑑𝑥 − 𝑖 𝑑𝑦) = (−2𝑖)𝑑𝑥 ∧ 𝑑𝑦 = (−2𝑖)𝑑𝐴.
As we want to use Stokes, we need to write the standard exterior derivative in

terms of 𝑧 and �̄�. For 𝑧 = 𝑥 + 𝑖𝑦, we compute:

𝑑𝜓 =
𝜕𝜓

𝜕𝑥
𝑑𝑥 + 𝜕𝜓

𝜕𝑦
𝑑𝑦 =

𝜕𝜓

𝜕𝑧
𝑑𝑧 + 𝜕𝜓

𝜕�̄�
𝑑�̄�.

Exercise 4.1.1: Observe the singularity in the second term of the Cauchy–Pompeiu formula,
and prove that the integral still makes sense (the function is integrable). Hint: polar
coordinates.

Exercise 4.1.2: Why can we not differentiate in �̄� under the integral in the second term of
the Cauchy–Pompeiu formula? Notice that it would lead to an impossible result.
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Proof. Fix 𝑧 ∈ 𝑈 . We wish to apply Stokes’ theorem 

*
 , but the integrand is not smooth

at 𝑧. Let Δ𝑟(𝑧) be a small disc such that Δ𝑟(𝑧) ⊂⊂ 𝑈 . See  Figure 4.1 . Stokes now
applies on𝑈 \ Δ𝑟(𝑧).

𝑈
Δ𝑟(𝑧)𝑧

Figure 4.1: Proof of Cauchy–Pompeiu.

Via Stokes, where the exterior derivative inside is with respect to 𝜁 and �̄� of course,∫
𝜕𝑈

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 −

∫
𝜕Δ𝑟(𝑧)

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 =

∫
𝑈\Δ𝑟(𝑧)

𝑑

(
𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁

)
=

∫
𝑈\Δ𝑟(𝑧)

𝜕 𝑓

𝜕�̄�
(𝜁)

𝜁 − 𝑧 𝑑�̄� ∧ 𝑑𝜁.

The second equality follows because the holomorphic derivative in 𝜁 has a 𝑑𝜁 and
when we wedge it with 𝑑𝜁 we get zero. We now wish to let the radius 𝑟 go to zero.

Via the exercise above,
𝜕 𝑓

𝜕�̄�
(𝜁)

𝜁−𝑧 𝑑�̄� ∧ 𝑑𝜁 is integrable over all of𝑈 . Therefore,

lim
𝑟→0

∫
𝑈\Δ𝑟(𝑧)

𝜕 𝑓

𝜕�̄�
(𝜁)

𝜁 − 𝑧 𝑑�̄� ∧ 𝑑𝜁 =

∫
𝑈

𝜕 𝑓

𝜕�̄�
(𝜁)

𝜁 − 𝑧 𝑑�̄� ∧ 𝑑𝜁 = −
∫
𝑈

𝜕 𝑓

𝜕�̄�
(𝜁)

𝜁 − 𝑧 𝑑𝜁 ∧ 𝑑�̄�.

The second equality is simply swapping the order of 𝑑𝜁 and 𝑑�̄�. By continuity of 𝑓 ,

lim
𝑟→0

1
2𝜋𝑖

∫
𝜕Δ𝑟(𝑧)

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 = lim

𝑟→0

1
2𝜋

∫ 2𝜋

0
𝑓 (𝑧 + 𝑟𝑒 𝑖𝜃) 𝑑𝜃 = 𝑓 (𝑧).

The theorem follows. □

Exercise 4.1.3:
a) Let𝑈 ⊂ ℂ be a bounded open set with piecewise-𝐶1 boundary and suppose 𝑓 : 𝑈 → ℂ

is a 𝐶1 function such that
∫
𝑈

𝜕 𝑓
𝜕�̄� (𝜁)
𝜁−𝑧 𝑑𝐴(𝜁) = 0 for every 𝑧 ∈ 𝜕𝑈 . Prove that 𝑓 |𝜕𝑈 are

the boundary values of a function continuous on𝑈 and holomorphic in𝑈 .
b) Given arbitrary 𝜖 > 0, find a 𝐶1 function 𝑓 on the closed unit disc 𝔻, such that

𝜕 𝑓
𝜕�̄� is identically zero outside an 𝜖-neighborhood of the origin, yet 𝑓 |𝜕𝔻 are not the
boundary values of a holomorphic function.

*We are really using Green’s theorem, which is the generalized Stokes’ theorem in 2 dimensions,
see  Theorem B.2 .



132 CHAPTER 4. THE �̄�-PROBLEM

Exercise 4.1.4: Let𝑈 ⊂ ℂ and 𝑓 be as in the theorem, but let 𝑧 ∉ 𝑈 . Show that

1
2𝜋𝑖

∫
𝜕𝑈

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 + 1

2𝜋𝑖

∫
𝑈

𝜕 𝑓

𝜕�̄�
(𝜁)

𝜁 − 𝑧 𝑑𝜁 ∧ 𝑑�̄� = 0.

4.2 \ Compactly supported �̄�-problem
For a smooth function 𝜓, consider the exterior derivative in terms of 𝑧 and �̄�,

𝑑𝜓 =
𝜕𝜓

𝜕𝑧1
𝑑𝑧1 + · · · + 𝜕𝜓

𝜕𝑧𝑛
𝑑𝑧𝑛 +

𝜕𝜓

𝜕�̄�1
𝑑�̄�1 + · · · + 𝜕𝜓

𝜕�̄�𝑛
𝑑�̄�𝑛 .

Let us give a name to the two parts of the derivative:

𝜕𝜓
def
=

𝜕𝜓

𝜕𝑧1
𝑑𝑧1 + · · · +

𝜕𝜓

𝜕𝑧𝑛
𝑑𝑧𝑛 , �̄�𝜓

def
=

𝜕𝜓

𝜕�̄�1
𝑑�̄�1 + · · · +

𝜕𝜓

𝜕�̄�𝑛
𝑑�̄�𝑛 .

Then 𝑑𝜓 = 𝜕𝜓 + �̄�𝜓. Notice 𝜓 is holomorphic if and only if �̄�𝜓 = 0.
The so-called inhomogeneous �̄�-problem (�̄� is pronounced “dee bar”) is to solve the

equation
�̄�𝜓 = 𝑔,

for 𝜓, given a one-form
𝑔 = 𝑔1𝑑�̄�1 + · · · + 𝑔𝑛𝑑�̄�𝑛 .

Such a 𝑔 is called a (0, 1)-form. The fact that the partial derivatives of 𝜓 commute,
forces certain compatibility conditions on 𝑔 for us to have any hope of getting a
solution (see below).

Exercise 4.2.1: Find an explicit example of a 𝑔 in ℂ2 such that no corresponding 𝜓 exists.

On any open set where 𝑔 = 0, 𝜓 is holomorphic. So for a general 𝑔, what we are
doing is finding a function that is not holomorphic in a specific way.
Theorem 4.2.1. Suppose 𝑔 is a (0, 1)-form on ℂ𝑛 , 𝑛 ≥ 2, given by

𝑔 = 𝑔1𝑑�̄�1 + · · · + 𝑔𝑛𝑑�̄�𝑛 ,

where 𝑔𝑗 : ℂ𝑛 → ℂ are compactly supported smooth functions satisfying the compatibility
conditions

𝜕𝑔𝑘
𝜕�̄�ℓ

=
𝜕𝑔ℓ
𝜕�̄�𝑘

for all 𝑘, ℓ = 1, 2, . . . , 𝑛. (4.1)

Then there exists a unique compactly supported smooth function 𝜓 : ℂ𝑛 → ℂ such that

�̄�𝜓 = 𝑔.
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The compatibility conditions on 𝑔 are necessary, but the compactness is not.
Without compactness, the domain where the equation lives would come into play.
Let us not worry about this, and prove that this simple compactly supported version
always has a solution. The compactly supported solution is unique: If 𝜓1 and 𝜓2
are solutions, then �̄�(𝜓1 − 𝜓2) = 𝑔 − 𝑔 = 0, and so 𝜓1 − 𝜓2 is holomorphic. The only
holomorphic compactly supported function is 0, and hence the compactly supported
solution 𝜓 is unique.

Proof. Really there are 𝑛 smooth functions, 𝑔1, . . . , 𝑔𝑛 , so the equation �̄�𝜓 = 𝑔 consists
of the 𝑛 equations

𝜕𝜓

𝜕�̄�𝑘
= 𝑔𝑘 ,

where the functions 𝑔𝑘 satisfy the compatibility conditions ( 4.1 ).
We claim that the following is an explicit solution:

𝜓(𝑧) = 1
2𝜋𝑖

∫
ℂ

𝑔1(𝜁, 𝑧2, . . . , 𝑧𝑛)
𝜁 − 𝑧1

𝑑𝜁 ∧ 𝑑�̄�

=
1

2𝜋𝑖

∫
ℂ

𝑔1(𝜁 + 𝑧1, 𝑧2, . . . , 𝑧𝑛)
𝜁

𝑑𝜁 ∧ 𝑑�̄�.

To show that the singularity does not matter for integrability is the same idea as for
the generalized Cauchy formula.

Let us check that 𝜓 is the solution. We use the generalized Cauchy formula on the
𝑧1 variable. Take 𝑅 large enough so that 𝑔𝑘(𝜁, 𝑧2, . . . , 𝑧𝑛) is zero when |𝜁 | ≥ 𝑅 for all
𝑘. For every 𝑘,

𝑔𝑘(𝑧) =
1

2𝜋𝑖

∫
|𝜁 |=𝑅

𝑔𝑘(𝜁, 𝑧2, . . . , 𝑧𝑛)
𝜁 − 𝑧1

𝑑𝜁 + 1
2𝜋𝑖

∫
|𝜁 |≤𝑅

𝜕𝑔𝑘
𝜕�̄�1

(𝜁, 𝑧2, . . . , 𝑧𝑛)
𝜁 − 𝑧1

𝑑𝜁 ∧ 𝑑�̄�

=
1

2𝜋𝑖

∫
ℂ

𝜕𝑔𝑘
𝜕�̄�1

(𝜁, 𝑧2, . . . , 𝑧𝑛)
𝜁 − 𝑧1

𝑑𝜁 ∧ 𝑑�̄�.

Using the second form of the definition of 𝜓, the compatibility conditions ( 4.1 ),
and the computation above we get

𝜕𝜓

𝜕�̄�𝑘
(𝑧) = 1

2𝜋𝑖

∫
ℂ

𝜕𝑔1
𝜕�̄�𝑘

(𝜁 + 𝑧1, 𝑧2, . . . , 𝑧𝑛)
𝜁

𝑑𝜁 ∧ 𝑑�̄�

=
1

2𝜋𝑖

∫
ℂ

𝜕𝑔𝑘
𝜕�̄�1

(𝜁 + 𝑧1, 𝑧2, . . . , 𝑧𝑛)
𝜁

𝑑𝜁 ∧ 𝑑�̄�

=
1

2𝜋𝑖

∫
ℂ

𝜕𝑔𝑘
𝜕�̄�1

(𝜁, 𝑧2, . . . , 𝑧𝑛)
𝜁 − 𝑧1

𝑑𝜁 ∧ 𝑑�̄� = 𝑔𝑘(𝑧).
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Exercise 4.2.2: Show that we were allowed to differentiate 𝜓 under the integral in the
computation above, but only in the second form of the integral.

That 𝜓 has compact support follows because 𝑔1 has compact support together
with the identity theorem. In particular, 𝜓 is holomorphic for large 𝑧 since �̄�𝜓 = 𝑔 = 0
when 𝑧 is large. When at least one of 𝑧2, . . . , 𝑧𝑛 is large, then 𝜓 is identically zero
simply from its definition. See  Figure 4.2 .

𝑧2, . . . , 𝑧𝑛

𝑧2, . . . , 𝑧𝑛 large so 𝜓 = 0

𝑧2, . . . , 𝑧𝑛 large so 𝜓 = 0

�̄�𝜓 = 0

�̄�𝜓 = 0

�̄�𝜓 = 0

𝑔 ≠ 0

𝑧1

Figure 4.2: Far enough, �̄�𝜓 = 0.

As �̄�𝜓 = 0 on the light gray and white areas in the diagram, 𝜓 is holomorphic
there. As 𝜓 is zero on the light gray region, it is zero also on the white region by the
identity theorem. That is, 𝜓 is zero on the unbounded component of the set where
𝑔 = 0, and so 𝜓 has compact support. □

The first part of the proof still works when 𝑛 = 1; we get a solution 𝜓. However,
the last bit of the proof does not work in one dimension, so 𝜓 does not have compact
support.

Exercise 4.2.3:
a) Show that if 𝑔 is supported in 𝐾 ⊂⊂ ℂ𝑛 , 𝑛 ≥ 2, then 𝜓 is supported in the

complement of the unbounded component of ℂ𝑛 \ 𝐾. In particular, show that if 𝐾 is
the support of 𝑔 and ℂ𝑛 \ 𝐾 is connected, then the support of 𝜓 is 𝐾.

b) Find an explicit example where the support of 𝜓 is strictly larger than the support
of 𝑔.

Exercise 4.2.4: Find an example of a smooth function 𝑔 : ℂ → ℂ with compact support,
such that no solution 𝜓 : ℂ → ℂ to 𝜕𝜓

𝜕�̄� = 𝑔 (at least one of which always exists) is of
compact support.
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4.3 \ The general Hartogs phenomenon

We can now prove the general Hartogs phenomenon as an application of the solution
of the compactly supported inhomogeneous �̄�-problem. We proved special versions
of this phenomenon using Hartogs figures before. The proof of the theorem has a
complicated history as Hartogs’ original proof from 1906 contained gaps. A fully
working proof was finally supplied by Fueter in 1939 for 𝑛 = 2 and independently
by Bochner and Martinelli for higher 𝑛 in the early 40s. The proof we give is the
standard one given nowadays due to Leon Ehrenpreis from 1961.

Theorem 4.3.1 (Hartogs phenomenon). Let𝑈 ⊂ ℂ𝑛 be a domain, 𝑛 ≥ 2, and let 𝐾 ⊂⊂ 𝑈
be a compact set such that 𝑈 \ 𝐾 is connected. Every holomorphic 𝑓 : 𝑈 \ 𝐾 → ℂ extends
uniquely to a holomorphic function on𝑈 . See  Figure 4.3 .

𝑈𝐾

Figure 4.3: Hartogs phenomenon.

The idea of the proof is extending in any way whatsoever and then using the
solution to the �̄�-problem to correct the result to make it holomorphic.

Proof. First find a smooth function 𝜑 that is 1 in a neighborhood of 𝐾 and is compactly
supported in 𝑈 (exercise below). Let 𝑓0 = (1 − 𝜑) 𝑓 on 𝑈 \ 𝐾 and 𝑓0 = 0 on 𝐾. The
function 𝑓0 is smooth on𝑈 and it is holomorphic and equal to 𝑓 near the boundary
of 𝑈 , where 𝜑 is 0. We let 𝑔 = �̄� 𝑓0 on 𝑈 , that is 𝑔𝑘 =

𝜕 𝑓0
𝜕�̄�𝑘

, and we let 𝑔 = 0 outside
𝑈 . As 𝑔𝑘 are identically zero near 𝜕𝑈 , we find that each 𝑔𝑘 is smooth on ℂ𝑛 . The
compatibility conditions ( 4.1 ) are satisfied because partial derivatives commute. Let
us see why 𝑔 is compactly supported. The only place to check is on𝑈 \𝐾 as elsewhere
we have 𝑔 = 0 automatically. Note that 𝑓 is holomorphic on𝑈 \ 𝐾 and compute

𝜕 𝑓0
𝜕�̄�𝑘

=
𝜕

𝜕�̄�𝑘

(
(1 − 𝜑) 𝑓

)
=

𝜕 𝑓

𝜕�̄�𝑘
− 𝜑

𝜕 𝑓

𝜕�̄�𝑘
− 𝜕𝜑

𝜕�̄�𝑘
𝑓 = − 𝜕𝜑

𝜕�̄�𝑘
𝑓 .

The function 𝜕𝜑
𝜕�̄�𝑘

is compactly supported in𝑈 \𝐾 by construction. Apply the solution
of the compactly supported �̄�-problem to find a compactly supported function 𝜓
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such that �̄�𝜓 = 𝑔. Set 𝐹 = 𝑓0 − 𝜓. We check that 𝐹 is the desired extension. First, it is
holomorphic:

𝜕𝐹

𝜕�̄�𝑘
=

𝜕 𝑓0
𝜕�̄�𝑘

− 𝜕𝜓

𝜕�̄�𝑘
= 𝑔𝑘 − 𝑔𝑘 = 0.

Next,  Exercise 4.2.3  and the fact that 𝑈 \ 𝐾 is connected reveals that 𝜓 must be
compactly supported in𝑈 . This means that 𝐹 agrees with 𝑓 near the boundary (in
particular on an open set) and thus everywhere in𝑈 \ 𝐾 since𝑈 \ 𝐾 is connected. □

The hypotheses on dimension and on connectedness of 𝑈 \ 𝐾 are necessary.
No such theorem is true in one dimension. If 𝑈 \ 𝐾 is disconnected, a simple
counterexample can be constructed. See the exercise below.

Exercise 4.3.1: Show that 𝜑 exists. Hint: Use mollifiers.

Exercise 4.3.2: Suppose𝑈 ⊂ ℂ𝑛 is a domain and 𝐾 ⊂ 𝑈 is a compact set (perhaps𝑈 \ 𝐾
is disconnected). Prove that given 𝑓 ∈ O(𝑈 \ 𝐾) there exists an 𝐹 ∈ O(𝑈) that equals to 𝑓
on the intersection of𝑈 and the unbounded component of ℂ𝑛 \ 𝐾.

Exercise 4.3.3: Suppose𝑈 ⊂ ℂ𝑛 is a domain and 𝐾 ⊂ 𝑈 is a compact set such that𝑈 \ 𝐾
is disconnected. Find a counterexample to the conclusion to Hartogs.

One of many consequences of the Hartogs phenomenon is that the zero set of a
holomorphic function 𝑓 is never compact in dimension 2 or higher, although there
exist easier proofs of that fact, see  Exercise 1.6.6  . If it were compact, 1

𝑓
would provide

a contradiction, see also  Exercise 1.6.5 .

Corollary 4.3.2. Suppose 𝑈 ⊂ ℂ𝑛 , 𝑛 ≥ 2, is a domain and 𝑓 : 𝑈 → ℂ is holomorphic. If
the zero set 𝑓 −1(0) is not empty, then it is not compact.

Replacing 𝑈 \ 𝐾 with a hypersurface is usually called the Hartogs–Bochner
theorem (when the hypersurface is 𝐶1 or smooth). The real-analytic case was stated
first by Severi in 1931.

Corollary 4.3.3 (Severi). Suppose𝑈 ⊂ ℂ𝑛 , 𝑛 ≥ 2, is a bounded domain with connected real-
analytic boundary and 𝑓 : 𝜕𝑈 → ℂ is a real-analytic CR function. Then there exists some
neighborhood𝑈′ ⊂ ℂ𝑛 of𝑈 and a holomorphic function 𝐹 : 𝑈′ → ℂ for which 𝐹 |𝜕𝑈 = 𝑓 .

Proof. By Severi’s result ( Theorem 3.2.9  ), for every 𝑝 ∈ 𝜕𝑈 , there is a small ball 𝐵𝑝
centered at 𝑝, such that 𝑓 extends to 𝐵𝑝 . Cover 𝜕𝑈 by finitely many such balls so that
if 𝐵𝑝 intersects 𝐵𝑞 , then the (connected) intersection 𝐵𝑝 ∩ 𝐵𝑞 contains points of 𝜕𝑈 .
The extension in 𝐵𝑝 and in 𝐵𝑞 then agree on a piece of a hypersurface 𝜕𝑈 , and hence
agree. Taking a union of the 𝐵𝑝 , we find a unique extension in single neighborhood
of 𝜕𝑈 . We write this neighborhood as𝑈′ \ 𝐾 for some compact 𝐾 and a connected
𝑈′ such that 𝑈 ⊂ 𝑈′. Consider the topological components of ℂ𝑛 \ 𝐾. As 𝜕𝑈 is
connected and𝑈 is bounded, the unbounded component of ℂ𝑛 \ 𝐾 must contain all
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of 𝜕𝑈 . By boundedness of𝑈 , all the other components are relatively compact in𝑈 .
If we add them to 𝐾, then 𝐾 is still compact and𝑈′ \ 𝐾 is connected. We apply the
Hartogs phenomenon. □

Exercise 4.3.4 (Hartogs–Bochner again): Let 𝑈 ⊂ ℂ𝑛 , 𝑛 ≥ 2, be a bounded domain
with connected strongly pseudoconvex smooth boundary and let 𝑓 : 𝜕𝑈 → ℂ be a smooth
CR function. Prove that there exists a continuous function 𝐹 : 𝑈 → ℂ holomorphic in𝑈
such that 𝐹 |𝜕𝑈 = 𝑓 . Note: Strong pseudoconvexity is not needed (“bounded with smooth
boundary” will do), but that is much more difficult to prove.

Exercise 4.3.5: Suppose𝑈 ⊂ ℂ𝑛 , 𝑛 ≥ 2, is a bounded domain of holomorphy. Show that
ℂ𝑛 \𝑈 is connected using the Hartogs phenomenon.

Exercise 4.3.6: Suppose 𝑊 ⊂ 𝑈 ⊂ ℂ𝑛 , 𝑛 ≥ 3, are domains such that for each fixed
𝑧0

3 , 𝑧
0
4 , . . . , 𝑧

0
𝑛 ,{

(𝑧1, 𝑧2) ∈ ℂ2 : (𝑧1, 𝑧2, 𝑧
0
3 , . . . , 𝑧

0
𝑛) ∈ 𝑈 \𝑊

}
⊂⊂

{
(𝑧1, 𝑧2) ∈ ℂ2 : (𝑧1, 𝑧2, 𝑧

0
3 , . . . , 𝑧

0
𝑛) ∈ 𝑈

}
.

Prove that every 𝑓 ∈ O(𝑊) extends to a holomorphic function on𝑈 . Note: The fact that𝑊
is connected is important.

Exercise 4.3.7:
a) Prove that if 𝑛 ≥ 2, no domain of the form 𝑈 = ℂ𝑛 \ 𝐾 for a compact 𝐾 is

biholomorphic to a bounded domain.
b) Prove that every domain of the form 𝑈 = ℂ \ 𝐾 for a compact 𝐾 with nonempty

interior is biholomorphic to a bounded domain.

Exercise 4.3.8: Suppose𝑈 ⊂ ℂ𝑛 , 𝑛 ≥ 2, is a domain such that for some affine𝐴 : ℂ2 → ℂ𝑛

the set 𝐴−1 (ℂ𝑛 \𝑈
)

has a bounded topological component. Prove that𝑈 is not a domain
of holomorphy.

4.4 \ Solvability of the �̄�-problem in the polydisc

Let us tackle the solvability of the �̄�-problem for differential forms. In general,
the problem is equivalent to holomorphic convexity, although it is rather involved,
and thus we content ourselves with polydiscs and other simple examples. To work
with differential forms, we, as before, split the derivatives into the holomorphic
and antiholomorphic parts. For higher order forms we work with multi-indices for
simplicity, although the way that multi-indices are applied is slightly different.
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Definition 4.4.1. Let 𝑝 and 𝑞 be integers between 0 and 𝑛. Let 𝛼 and 𝛽 be ordered 𝑝-
and 𝑞-tuples of distinct integers between 1 and 𝑛: 1 ≤ 𝛼1 < 𝛼2 < · · · < 𝛼𝑝 ≤ 𝑛 and
1 ≤ 𝛽1 < 𝛽2 < · · · < 𝛽𝑞 ≤ 𝑛. Write

𝑑𝑧𝛼 = 𝑑𝑧𝛼1 ∧ · · · ∧ 𝑑𝑧𝛼𝑝 and 𝑑�̄�𝛽 = 𝑑�̄�𝛽1 ∧ · · · ∧ 𝑑�̄�𝛽𝑞 .
Then a differential form

𝜂 =
∑
𝛼,𝛽

𝜂𝛼𝛽 𝑑𝑧𝛼 ∧ 𝑑�̄�𝛽 ,

where the 𝛼 and 𝛽 run over all 𝑝- and 𝑞-tuples as above, is called a (𝑝, 𝑞)-form or
a differential form of bidegree (𝑝, 𝑞). A general 𝑘-form can be written as a sum of
(𝑝, 𝑞)-forms for different 𝑝 and 𝑞 where 𝑝 + 𝑞 = 𝑘. Define

𝜕𝜂
def
=

∑
𝛼,𝛽

𝑛∑
𝑘=1

𝜕𝜂𝛼𝛽

𝜕𝑧𝑘
𝑑𝑧𝑘 ∧ 𝑑𝑧𝛼 ∧ 𝑑�̄�𝛽 , and �̄�𝜂

def
=

∑
𝛼,𝛽

𝑛∑
𝑘=1

𝜕𝜂𝛼𝛽

𝜕�̄�𝑘
𝑑�̄�𝑘 ∧ 𝑑𝑧𝛼 ∧ 𝑑�̄�𝛽 .

If 𝜂 is of bidegree (𝑝, 𝑞), then 𝜕𝜂 if of bidegree (𝑝 + 1, 𝑞) and �̄�𝜂 is of bidegree
(𝑝, 𝑞 + 1). We get the total exterior derivative 𝑑𝜂 = 𝜕𝜂 + �̄�𝜂 as before.

Exercise 4.4.1: Prove 𝑑𝜂 = 𝜕𝜂+ �̄�𝜂 and prove the Leibniz rule: If 𝜂 is a (𝑝, 𝑞)-form, then

𝜕(𝜂 ∧ 𝜔) = 𝜕𝜂 ∧ 𝜔 + (−1)𝑝+𝑞𝜂 ∧ 𝜕𝜔 and �̄�(𝜂 ∧ 𝜔) = �̄�𝜂 ∧ 𝜔 + (−1)𝑝+𝑞𝜂 ∧ �̄�𝜔.

Exercise 4.4.2: Show that �̄�2 = 0, that is, prove that �̄�2𝜂 = �̄��̄�𝜂 = 0 for every form 𝜂.
Similarly, show 𝜕2 = 0.

Exercise 4.4.3: Given a hypersurface 𝑀 ⊂ ℂ𝑛 with a defining function 𝑟, compute 𝜕�̄�𝑟
and show that it gives the Levi form. That is, for a 𝑇(1,0)𝑀 vector field 𝑍, the Levi form
is given by ⟨𝜕�̄�𝑟, 𝑍 ∧ �̄�⟩. Hint: See  appendix C  on how to evaluate differential forms as
multilinear forms.

A form 𝜂 is a �̄�-exact form if there exists a form 𝜔 such that �̄�𝜔 = 𝜂. A form 𝜂 is a
�̄�-closed form if �̄�𝜂 = 0. For an open set 𝑈 ⊂ ℂ𝑛 , we define the Dolbeault cohomology
groups (quotient of complex vector spaces)

𝐻(𝑝,𝑞)(𝑈) =
{
�̄�-closed forms of bidegree (𝑝, 𝑞) on𝑈

}{
�̄�-exact forms of bidegree (𝑝, 𝑞) on𝑈

} .
By convention, the only (0, 0)-form that is exact is the identically zero form.

Exercise 4.4.4: Show that the �̄�-closed forms of degree (𝑝, 𝑞) are a subspace of the vector
space of all (𝑝, 𝑞)-forms and similarly that the �̄�-exact forms of degree (𝑝, 𝑞) are a subspace.

Exercise 4.4.5: Prove that if two domains𝑈,𝑉 ⊂ ℂ𝑛 are biholomorphic, then for all (𝑝, 𝑞),
then 𝐻(𝑝,𝑞)(𝑈) and 𝐻(𝑝,𝑞)(𝑉) are isomorphic as vector spaces.
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The �̄�-problem for (𝑝, 𝑞)-forms is then the solvability of the equation �̄�𝜔 = 𝜂 for
every (𝑝, 𝑞)-form 𝜂 given the necessary compatibility conditions �̄�𝜂 = 0, and this
problem can then be stated as the cohomology condition𝐻(𝑝,𝑞)(𝑈) = 0, where by 0, we
mean the trivial vector space. The Dolbeault cohomology is in a sense a refinement of
the so-called de Rahm cohomology, which is the usual smooth cohomology measuring
the normal topology of𝑈 , whereas the Dolbeault cohomology also takes into account
the complex structure. Note that 𝐻(0,0)(𝑈) is just the set of �̄�-closed (0, 0)-forms, that
is, it is the set O(𝑈) of holomorphic functions on𝑈 . More generally, 𝐻(𝑝,0)(𝑈) is the
set of �̄�-closed (𝑝, 0)-forms, that is, forms

𝜂 =
∑
𝛼

𝜂𝛼 𝑑𝑧𝛼 such that �̄�𝜂 =
∑
𝛼

𝑛∑
𝑘=1

𝜕𝜂𝛼
𝜕�̄�𝑘

𝑑�̄�𝑘 ∧ 𝑑𝑧𝛼 = 0.

That is, all the functions 𝜂𝛼 are holomorphic.
Solvability of the equation �̄�𝜔 = 𝜂 for every (𝑝, 𝑞)-form 𝜂 such that �̄�𝜂 = 0

whenever 𝑞 ≥ 1 is equivalent to holomorphic convexity, although the complete proof
is beyond the scope of this book. You will prove one direction of this theorem in ℂ2

in the exercises in this section, and we will prove the general version of this direction
in the next section; see  Theorem 4.5.6 . That is, we will prove that the vanishing of
the cohomology groups implies domain of holomorphy. Let us state this theorem
without proof.

Theorem 4.4.2. A domain𝑈 ⊂ ℂ𝑛 is a domain of holomorphy (and hence holomorphically
convex) if and only if 𝐻(0,𝑞)(𝑈) = 0 whenever 1 ≤ 𝑞 ≤ 𝑛 − 1.

If𝑈 is a domain of holomorphy, it is in fact true that 𝐻(𝑝,𝑞)(𝑈) = 0 whenever 𝑞 ≥ 1.
We will not prove this fact, but we will prove it for a polydisc, and we saw above that
𝐻(𝑝,0)(𝑈) is never trivial.

Exercise 4.4.6: Prove that it is sufficient to consider 𝑝 = 0, that is, 𝐻(0,𝑞)(𝑈) = 0 if and
only if 𝐻(𝑝,𝑞)(𝑈) = 0 for all 𝑝.

Exercise 4.4.7: Suppose 𝑈 ⊂ ℂ𝑛 is open. Show that 𝐻(𝑝,𝑞)(𝑈) = 0 if and only if
𝐻(𝑝,𝑞)(𝑊) = 0 for every connected component𝑊 of𝑈 .

Example 4.4.3: As we mentioned, if𝑈 is not a domain of holomorphy, the �̄� problem
is not always solvable, and hence the Dolbeault cohomology groups may be nonzero.
Let us show that 𝐻(0,1) (ℂ2 \ {0}

)
contains a nonzero element.

Let 𝑟 = |𝑧 |2 + |𝑤 |2. Write
1
𝑧𝑤

=
�̄�

𝑧𝑟
− −�̄�
𝑤𝑟

.

That is, the two functions on the right hand side differ by a holomorphic function
wherever 𝑧 and 𝑤 are both not zero and hence their �̄�’s are equal (where they are
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both defined). The left hand term is defined when 𝑧 ≠ 0 and the right hand term is
defined when 𝑤 ≠ 0. So the following form is well-defined on ℂ2 \ {0}

𝜂 = �̄�
( �̄�
𝑧𝑟

)
if 𝑧 ≠ 0, and 𝜂 = �̄�

(−�̄�
𝑤𝑟

)
if 𝑤 ≠ 0.

That 𝜂 is �̄�-closed follows by �̄�2 = 0. Suppose for contradiction that there existed
a smooth 𝑓 : ℂ2 \ {0} → ℂ such that �̄� 𝑓 = 𝜂. Define 𝑔 = 𝑧 𝑓 − �̄�/𝑟. When 𝑧 ≠ 0,
then 𝑔

𝑧 = 𝑓 − �̄�/𝑧𝑟, and so �̄�
(
𝑔/𝑧

)
= 0. Therefore, 𝑔 is holomorphic where 𝑧 ≠ 0, but

𝑔 is, and this is really where the contradiction comes in, smooth on ℂ2 \ {0} and
hence satisfies the Cauchy–Riemann equations on ℂ2 \ {0} and so is holomorphic. By
Hartogs phenomenon (any version) 𝑔 extends to be holomorphic in ℂ2, in particular,
near 0, which contradicts the fact that 𝑔(0, 𝑤) = 1/𝑤.

Example 4.4.4: It is not simply the topology (as we know already) that determines
the 𝐻(𝑝,𝑞) groups. The previous example still works in ℂ2 \ ℝ2 =

{
(𝑧, 𝑤) ∈ ℂ2 :

Im 𝑧 ≠ 0 or Im𝑤 ≠ 0
}
. That is, the function 𝑔 from the previous example can be

defined in ℂ2 \ ℝ2 and hence extends to ℂ2 (see  Exercise 2.1.10  ), leading again to
a contradiction. Notice that the domain ℂ2 \ {𝑧 = 0} has the same exact topology
as ℂ2 \ℝ2. However, ℂ2 \ {𝑧 = 0} is a domain of holomorphy, and via an exercise
below, 𝐻(0,1) (ℂ2 \ {𝑧 = 0}

)
= 0. The thing is that the 𝑓 actually exists by construction:

𝑓 = �̄�/𝑧𝑟. Then 𝑔 is identically zero, so we do not get any contradiction.

Exercise 4.4.8: Prove that if𝑈 ⊂ ℂ2 is a domain and 𝐾 ⊂ 𝑈 is compact, then𝐻(0,1)(𝑈 \𝐾)
is nontrivial.

Exercise 4.4.9: Give another example for why topology is not enough. Consider the Hartogs
figure 𝐻 =

{
(𝑧, 𝑤) ∈ 𝔻2 : |𝑧 | > 1/2 or |𝑤 | < 1/2

}
. Show that while 𝐻 is homeomorphic to

the polydisc (has trivial topology), 𝐻(0,1)(𝐻) is nontrivial.

Exercise 4.4.10: Suppose 𝑈 ⊂ ℂ2 is a domain such that 𝐻(0,1)(𝑈) = 0, then 𝑈 is a
domain of holomorphy. Hint: Prove the contrapositive, suppose that𝑈 is not a domain of
holomorphy and show that 𝐻(0,1)(𝑈) ≠ 0 using the reasoning from the examples.

Exercise 4.4.11: Suppose 𝑈 ⊂ ℂ𝑛 is a domain with smooth boundary, 0 ∈ 𝜕𝑈 , {𝑧1 =

𝑧2 = 0} ∩𝑈 = ∅, and the Levi form at the origin has a negative eigenvalue. Show that
𝐻(0,1)(𝑈) = 0.

Exercise 4.4.12: Prove that 𝐻(0,1) (ℂ2 \ {0}
)

is not just nontrivial, it is an infinite-
dimensional vector space.

We will prove the solvability of the �̄�-problem for the polydisc. We will allow
some of the factors in the polydisc to be ℂ, so for the moment we define possibly
unbounded polydisc Δ ⊂ ℂ𝑛 to mean Δ = 𝐷1 × · · · × 𝐷𝑛 where each 𝐷𝑘 is either a disc
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or ℂ. In this way, we also achieve a solution on ℂ𝑛 itself. This is the theorem we will
actually prove:

Theorem 4.4.5. Let Δ ⊂ ℂ𝑛 be a possibly unbounded polydisc, let 𝑝 ≥ 0 and 𝑞 ≥ 1
be integers, and let 𝜂 be a smooth (𝑝, 𝑞)-form on Δ such that �̄�𝜂 = 0, then there exists a
(𝑝, 𝑞 − 1)-form 𝜔 such that �̄�𝜔 = 𝜂. In other words, 𝐻(𝑝,𝑞)(Δ) = 0 for 𝑞 ≥ 1.

Before tackling the proof of the theorem, let us solve a simple �̄�-problem in one
dimension using the Cauchy–Pompeiu formula.

Lemma 4.4.6. Let 𝑈 ⊂ ℂ be a bounded open set with piecewise-𝐶1 boundary, and let
𝑔 : 𝑈 → ℂ be a smooth function (restriction of a smooth function on a neighborhood of 𝑈).
Then 𝜓 : 𝑈 → ℂ given by

𝜓(𝑧) = 1
2𝜋𝑖

∫
𝑈

𝑔(𝜁)
𝜁 − 𝑧 𝑑𝜁 ∧ 𝑑�̄�

is a smooth function such that 𝜕𝜓
𝜕�̄� = 𝑔.

By taking conjugates, we can also similarly solve the 𝜕𝜓
𝜕𝑧 = 𝑔 problem. Moreover,

since the solution is given as an integral, we can also solve the problem with
parameters. That is, if 𝑔 depends on some other variables in a smooth or holomorphic
way, then the solution 𝜓 also depends on those variables smoothly or holomorphically.
Compare the expression for 𝜓 to the one used in the proof of  Theorem 4.2.1 . The
proof is around the fact that 𝜓(𝑧) = log|𝑧 |2 solves the problem for 𝑔(𝑧) = 1/�̄�. This fact
may be surprising, as doing calculus blindly, one would arrive at the multivalued
function log �̄� + holomorphic function, but log �̄� + log 𝑧 = log|𝑧 |2 is single valued as
needed. The lemma, via the exercises, leads to showing that 𝐻(0,1)(𝑈) = 0 for every
domain𝑈 ⊂ ℂ. Note that every (0, 1)-form 𝑔 𝑑�̄� in𝑈 is �̄�-closed, so the statement is
equivalent to showing that 𝜕𝜓

𝜕�̄� = 𝑔 is solvable for any smooth function 𝑔 on𝑈 .

Exercise 4.4.13: The fact that the functions are complex-valued is important. Show that for
𝑔(𝑥 + 𝑖𝑦) = 𝑦

𝑥2+𝑦2 for ℂ \ {0}, there is no real-valued 𝜓 : ℂ \ {0} → ℝ such that 𝜕𝜓
𝜕𝑧 = 𝑔

or 𝜕𝜓
𝜕�̄� = 𝑔.

Proof of the lemma. Fix 𝑧 ∈ 𝑈 for a moment and take a small disc Δ𝑟(𝑧) such that
Δ𝑟(𝑧) ⊂ 𝑈 , see  Figure 4.4 . Then via Stokes,∫

𝜕𝑈
𝑔(𝜁) log|𝜁 − 𝑧 |2𝑑�̄� −

∫
𝜕Δ𝑟(𝑧)

𝑔(𝜁) log|𝜁 − 𝑧 |2𝑑�̄� =

∫
𝑈\Δ𝑟(𝑧)

𝑑
(
𝑔(𝜁) log|𝜁 − 𝑧 |2𝑑�̄�

)
=

∫
𝑈\Δ𝑟(𝑧)

𝜕𝑔

𝜕𝜁
(𝜁) log|𝜁 − 𝑧 |2𝑑𝜁 ∧ 𝑑�̄� +

∫
𝑈\Δ𝑟(𝑧)

𝑔(𝜁)
𝜁 − 𝑧 𝑑𝜁 ∧ 𝑑�̄�.
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Note that both log|𝜁 − 𝑧 |2 and 1
𝜁−𝑧 are integrable over 𝑈 with respect to the area

measure. As 𝑟 → 0, the last term above goes to
∫
𝑈

𝑔(𝜁)
𝜁−𝑧 𝑑𝜁 ∧ 𝑑�̄�, which is 2𝜋𝑖𝜓(𝑧).

Next, the function 𝑔 is bounded on𝑈 , by say 𝑀, so����∫
𝜕Δ𝑟(𝑧)

𝑔(𝜁) log|𝜁 − 𝑧 |2𝑑�̄�
���� ≤ ∫

𝜕Δ𝑟(𝑧)
𝑀

��log(𝑟2)
�� |𝑑�̄� | = 2𝜋𝑟𝑀

��log(𝑟2)
�� →

as 𝑟→0
0.

Thus, taking the limit we get

𝜓(𝑧) = 1
2𝜋𝑖

∫
𝜕𝑈
𝑔(𝜁) log|𝜁 − 𝑧 |2𝑑�̄� − 1

2𝜋𝑖

∫
𝑈

𝜕𝑔

𝜕𝜁
(𝜁) log|𝜁 − 𝑧 |2𝑑𝜁 ∧ 𝑑�̄�.

𝑈
Δ𝑟(𝑧)𝑧

Figure 4.4: Using Stokes.

Taking partial derivatives (in Re 𝑧 and Im 𝑧) still leaves the integrands integrable,
and hence we can pass them under the integral sign. In particular, the function 𝜓 is
𝐶1 and we can take the �̄� derivative. We then apply the Cauchy–Pompeiu formula
(actually its conjugate applied to �̄�)

𝜕𝜓

𝜕�̄�
(𝑧) = −1

2𝜋𝑖

∫
𝜕𝑈

𝑔(𝜁)
�̄� − �̄�

𝑑�̄� + 1
2𝜋𝑖

∫
𝑈

𝜕𝑔
𝜕𝜁 (𝜁)
�̄� − �̄�

𝑑𝜁 ∧ 𝑑�̄� = 𝑔(𝑧).

So we are done with the existence of this solution, we need to show that it is also
smooth. As 𝑔 is smooth, then 𝜕𝜓

𝜕�̄� is also smooth. If we prove that 𝜕𝜓
𝜕𝑧 is also smooth,

then 𝜓 must be smooth. We take the 𝑧 derivative instead of the �̄� derivative to find

𝜕𝜓

𝜕𝑧
(𝑧) = −1

2𝜋𝑖

∫
𝜕𝑈

𝑔(𝜁)
𝜁 − 𝑧 𝑑�̄� + 1

2𝜋𝑖

∫
𝑈

𝜕𝑔
𝜕𝜁 (𝜁)
𝜁 − 𝑧 𝑑𝜁 ∧ 𝑑�̄�.

The first integral is clearly smooth. The second integral is precisely the sort of integral
we have just shown is 𝐶1 (with 𝑔 replaced by 𝜕𝑔

𝜕𝜁 ), so 𝜓 is 𝐶2. By induction, 𝜕𝜓
𝜕𝑧 is

smooth, and hence 𝜓 is smooth. □

Moving to several variables, we prove that we can solve the problem on a
subpolydisc of any polydisc, which is usually called the Dolbeault lemma or Dolbeault–
Grothendieck lemma. As it is the analogue of the Poincaré lemma, it is sometimes called
the �̄�-Poincaré lemma.
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Lemma 4.4.7 (Dolbeault–Grothendieck). Let Δ𝑠(𝑤) ⊂ Δ𝑟(𝑤) ⊂ ℂ𝑛 be polydiscs where
0 < 𝑠ℓ < 𝑟ℓ < ∞ for each ℓ . Let 𝑝 ≥ 0 and 𝑞 ≥ 1 be integers, and let 𝜂 be a smooth
(𝑝, 𝑞)-form on Δ𝑟(𝑤) such that �̄�𝜂 = 0, then there exists a smooth (𝑝, 𝑞 − 1)-form 𝜔 on
Δ𝑠(𝑤) such that �̄�𝜔 = 𝜂.

Proof. Le 𝑘 be an integer such that 𝜂 only involves 𝑑�̄�1, . . . , 𝑑�̄�𝑘 from the barred
differentials. If 𝑘 = 0, then the lemma is true trivially as 𝑞 ≥ 1 so 𝜂 would just have to
be zero. We will proceed by induction.

Write
𝜂 = 𝑑�̄�𝑘 ∧ 𝜏 + 𝜃,

where 𝜏 and 𝜃 only involve the barred differentials 𝑑�̄�1, . . . , 𝑑�̄�𝑘−1. Now

0 = �̄�𝜂 = �̄�(𝑑�̄�𝑘 ∧ 𝜏 + 𝜃) = −𝑑�̄�𝑘 ∧ �̄�𝜏 + �̄�𝜃.

Hence the coefficients of 𝜏 and 𝜃 must be holomorphic in 𝑧𝑘+1, . . . , 𝑧𝑛 as their
derivatives in the bars of those variables are zero. In particular, if 𝜏𝛼𝛽 is one of
the coefficients of 𝜏, then it is a smooth function of the larger polydisc, but also
holomorphic in the variables 𝑧𝑘+1, . . . , 𝑧𝑛 .

Exercise 4.4.14: Check the assertion that the coefficients of 𝜏 and 𝜃 are holomorphic in the
variables 𝑧𝑘+1, . . . , 𝑧𝑛 .

By  Lemma 4.4.6 , there is a smooth function 𝜓𝛼𝛽 in the 𝑧𝑘 variable such that
𝜕𝜓𝛼𝛽

𝜕�̄�𝑘
= 𝜏𝛼𝛽. Moreover, each 𝜓𝛼𝛽 is also a smooth function in

Δ𝑟1(𝑤1) × · · · × Δ𝑟𝑘−1(𝑤𝑘−1) × Δ𝑡(𝑤𝑘) × Δ𝑟𝑘+1(𝑤𝑘+1) × · · · × Δ𝑟𝑛 (𝑤𝑛)
for some 𝑡 such that 𝑠𝑘 < 𝑡 < 𝑟𝑘 . It is also holomorphic in the variables 𝑧𝑘+1, . . . , 𝑧𝑛 .
From the 𝜓𝛼𝛽 functions we construct a (𝑝, 𝑞 − 1)-form 𝜓. We compute �̄�𝜓:

�̄�
©«
∑
𝛼𝛽

𝜓𝛼𝛽 𝑑𝑧𝛼 ∧ 𝑑�̄�𝛽ª®¬ =
∑
𝛼𝛽

𝜕𝜓𝛼𝛽

𝜕�̄�𝑘
𝑑�̄�𝑘 ∧ 𝑑𝑧𝛼 ∧ 𝑑�̄�𝛽 +

∑
𝛼𝛽

𝑘−1∑
ℓ=1

𝜕𝜓𝛼𝛽

𝜕�̄�ℓ
𝑑�̄�ℓ ∧ 𝑑𝑧𝛼 ∧ 𝑑�̄�𝛽

= 𝑑�̄�𝑘 ∧ ©«
∑
𝛼𝛽

𝜏𝛼𝛽 𝑑𝑧𝛼 ∧ 𝑑�̄�𝛽ª®¬ +
∑
𝛼𝛽

𝑘−1∑
ℓ=1

𝜕𝜓𝛼𝛽

𝜕�̄�ℓ
𝑑�̄�ℓ ∧ 𝑑𝑧𝛼 ∧ 𝑑�̄�𝛽

= 𝑑�̄�𝑘 ∧ 𝜏 + 𝛿,

where 𝛿 also does not contain the barred differentials other than 𝑑�̄�1, . . . , 𝑑�̄�𝑘−1. Now
note that

�̄�(𝜃 − 𝛿) = �̄�(𝜂 − �̄�𝜓) = �̄�𝜂 − �̄�2𝜓 = 0.
Since 𝜃 and 𝛿 both only contain the barred differentials 𝑑�̄�1, . . . , 𝑑�̄�𝑘−1, we can apply
the induction hypothesis, to find a (𝑝, 𝑞 − 1)-form 𝜑 such that �̄�𝜑 = 𝜃 − 𝛿. Then we
let 𝜔 = 𝜓 + 𝜑 and note that we are done:

�̄�𝜔 = �̄�(𝜓 + 𝜑) = 𝑑�̄�𝑘 ∧ 𝜏 + 𝛿 + 𝜃 − 𝛿 = 𝜂. □
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Exercise 4.4.15: Prove that the construction from the proof of the lemma reproduces the
compactly supported solution for compactly supported (0, 1)-forms from  section 4.2 provided
we start with a sufficiently large polydisc, of course.

Exercise 4.4.16: Prove the lemma if you replace the polydiscs Δ𝑠(𝑤) and Δ𝑟(𝑤) with two
nested balls with center 𝑤.

We can now prove the theorem itself.

Proof of  Theorem 4.4.5 . The proof splits in two cases. First, suppose that 𝑞 > 1. Pick
a sequence of polydiscs Δ𝑘 all centered at the origin, such that

⋃
𝑘 Δ𝑘 = Δ and such

that Δ𝑘 ⊂ Δ𝑘+1 for all 𝑘. Using the  Dolbeault–Grothendieck lemma with Δ3 and Δ4,
we find a smooth form 𝜔1 defined on Δ3 such that �̄�𝜔1 = 𝜂. We will construct a
sequence of forms {𝜔𝑘} each 𝜔𝑘 defined in Δ𝑘+2 such that 𝜔𝑘+1 |Δ𝑘 = 𝜔𝑘 |Δ𝑘 . Suppose
we have defined 𝜔1, . . . , 𝜔𝑘 . Now using Δ𝑘+3 and Δ𝑘+4 using the lemma again, define
a new form 𝜎 on Δ𝑘+3 such that �̄�𝜎 = 𝜂. What we need to do is to correct 𝜎 so that it
equals 𝜔𝑘 on Δ𝑘 . On Δ𝑘+2, we have �̄�(𝜔𝑘 − 𝜎) = 𝜂 − 𝜂 = 0, so 𝜔𝑘 − 𝜎 is closed. The
lemma gives a new form 𝜃 on Δ𝑘+1 such that �̄�𝜃 = 𝜔𝑘 − 𝜎. Define a smooth bump
function 𝜑 on ℂ𝑛 such that 𝜑 = 1 on Δ𝑘 and 𝜑 is compactly supported in Δ𝑘+1. Define
𝜔𝑘+1 = 𝜎 + �̄�(𝜑𝜃), which can be defined as a smooth form on Δ𝑘+3 as 𝜑 is identically
zero where 𝜃 is undefined. The fact that �̄�2 = 0 ensures that �̄�𝜔𝑘+1 = �̄�𝜎 = 𝜂 on Δ𝑘+3.
On Δ𝑘 , we have 𝜔𝑘+1 = 𝜎 + �̄�𝜃 = 𝜎 + 𝜔𝑘 − 𝜎 = 𝜔𝑘 . See  Figure 4.5 . The sequence {𝜔𝑘}
is defined. We define 𝜔 on Δ by simply letting 𝜔 = 𝜔𝑘 on Δ𝑘 .

Δ𝑘+3

�̄�𝜎 = 𝜂

𝜑 = 1
𝜔𝑘+1 = 𝜔𝑘

Δ𝑘

Δ𝑘+2

�̄�(𝜔𝑘 − 𝜎) = 0
�̄�𝜔𝑘+1 = 𝜂

�̄�𝜃 = 𝜔𝑘 − 𝜎

Δ𝑘+1

𝜑 = 0

Figure 4.5: Diagram for defining 𝜔𝑘+1 = 𝜎 + �̄�(𝜑𝜃). The dotted line gives supp 𝜑.

Now assume 𝑞 = 1. By  Exercise 4.4.6 , it is enough to consider 𝑝 = 0 to simplify
notation. That is, we are now looking for a smooth function 𝜔 so that �̄�𝜔 = 𝜂. We
take the polydiscs Δ𝑘 as before and define 𝜔1 on Δ2 using 𝜂 on Δ3. But instead of
ensuring that 𝜔𝑘+1 and 𝜔𝑘 are equal on Δ𝑘 , we will ask that

|𝜔𝑘+1(𝑧) − 𝜔𝑘(𝑧)| < 2−𝑘 for 𝑧 ∈ Δ𝑘 .

Suppose that such 𝜔1, . . . , 𝜔𝑘 have been defined. Use the lemma with Δ𝑘+3 and Δ𝑘+2
to obtain a smooth function 𝜎 on Δ𝑘+2 such that �̄�𝜎 = 𝜂. The function 𝜎 − 𝜔𝑘 is
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holomorphic (on Δ𝑘+1 where 𝜔𝑘 is defined) as �̄�(𝜎 − 𝜔𝑘) = 𝜂 − 𝜂 = 0, and hence it
has a power series representation converging uniformly on Δ𝑘 . Thus there exists a
holomorphic polynomial 𝑃 such that

|𝜎(𝑧) − 𝜔𝑘(𝑧) − 𝑃(𝑧)| < 2−𝑘 for 𝑧 ∈ Δ𝑘 .

So let 𝜔𝑘+1 = 𝜎 − 𝑃. As 𝑃 is holomorphic, we have �̄�𝜔𝑘+1 = 𝜂, and we satisfied the
required properties.

On any particular Δℓ , the sequence {𝜔𝑘} is uniformly Cauchy as if 𝑚 > 𝑘 ≥ ℓ ,
then |𝜔𝑚(𝑧) − 𝜔𝑘(𝑧)| < 2−𝑘 + 2−𝑘−1 + · · · + 2−𝑚+1 < 2−𝑘+1. So the sequence converges
uniformly on compact subsets of Δ to a function 𝜔 : Δ → ℂ. We need to show that
𝜔 is smooth and satisfies �̄�𝜔 = 𝜂. The functions 𝜔𝑚 − 𝜔ℓ converge uniformly as
𝑚 → ∞ on Δℓ . As �̄�(𝜔𝑚 − 𝜔ℓ ) = 𝜂 − 𝜂 = 0, these functions are holomorphic, and
so the limit 𝜔 − 𝜔ℓ is holomorphic. In particular, 𝜔 is smooth as 𝜔ℓ is smooth and
�̄�𝜔 = �̄�𝜔ℓ = 𝜂. □

Exercise 4.4.17: Prove the theorem also holds for a ball, say the unit ball 𝔹𝑛 ⊂ ℂ𝑛 . Hint:
Use  Exercise 4.4.16 .

Exercise 4.4.18: For any disc𝐷 ⊂ ℂ, let𝐷∗ denote the punctured disc𝐷∗ = 𝐷 \{𝑎} where
𝑎 is the center. Prove that the theorem also holds for𝑈 = 𝐷1 × · · · ×𝐷𝑘 ×𝐷∗

𝑘+1 × · · · ×𝐷∗
𝑛

for some (possibly unbounded) discs 𝐷1, . . . , 𝐷𝑛 . Hint: You may have to prove a slightly
more general version of the Dolbeault–Grothendieck lemma. Also, see  Exercise 1.2.4 .

Exercise 4.4.19: Prove that in one variable, for any domain𝑈 ⊂ ℂ, we have 𝐻(0,1)(𝑈) = 0.

Exercise 4.4.20: Prove the theorem for the Hartogs triangle𝑇 =
{
(𝑧, 𝑤) ∈ 𝔻2 : |𝑧 | > |𝑤 |

}
.

Exercise 4.4.21: Suppose𝑈 ⊂ ℂ𝑛 is a domain and 𝑝 ∈ 𝜕𝑈 . Suppose there is some polydisc
Δ centered at 𝑝 such that 𝐻(0,𝑞)(𝑈 ∩ Δ) ≠ 0, then 𝐻(0,𝑞)(𝑈) ≠ 0. Hint: Find a smooth
function 𝜑 on𝑈 ∩Δ such that 𝜑 is identically zero near the boundary of𝑈 and identically
one near the boundary of Δ. And use the theorem.

Exercise 4.4.22: Use the  Exercise 4.4.21 and  Exercise 4.4.11 to prove that if 𝑈 ⊂ ℂ𝑛 ,
𝑛 ≥ 2, is a domain with smooth boundary and 𝑝 ∈ 𝜕𝑈 such that the Levi form at 𝑝 has a
negative eigenvalue and 𝑛 − 2 positive eigenvalues, then 𝐻(0,1)(𝑈) ≠ 0.

Exercise 4.4.23: Being a subset gives us no relation between the Dolbeault cohomology
groups: Find domains 𝑈 ⊂ 𝑉 ⊂ 𝑊 ⊂ ℂ2 such that 𝐻(0,1)(𝑈) = 𝐻(0,1)(𝑊) = 0, but
𝐻(0,1)(𝑉) is nontrivial.
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4.5 \ Extension from an affine subspace
Let 𝐿 ⊂ ℂ𝑛 be a (complex) affine subspace of dimension 𝑘, that is, the set defined by
𝑀𝑧 = 𝑐 for a rank 𝑛 − 𝑘 matrix 𝑀 and 𝑐 ∈ ℂ𝑛 . After a complex linear transformation
and translation, we may assume that 𝐿 = {𝑧 ∈ ℂ𝑛 : 𝑧𝑘+1 = · · · = 𝑧𝑛 = 0}. We say
a function 𝑓 defined on an open subset of 𝐿 is holomorphic if after this change of
coordinates it is holomorphic in the 𝑧1, . . . , 𝑧𝑘 variables. If 𝑘 = 𝑛 − 1, we call 𝐿 a
(complex) affine hyperplane, and if 𝑘 = 1, we call 𝐿 a complex line.

It is easy to see that if𝑈 ⊂ ℂ𝑛 is open, 𝐿 is an affine subspace, and 𝐹 ∈ O(𝑈), then
𝐹 |𝑈∩𝐿 is holomorphic. It is not hard to see that being able to do the inverse may be
quite useful in proofs by induction on dimension, that is, starting with a holomorphic
function 𝑓 on𝑈 ∩ 𝐿 and finding a holomorphic function on𝑈 whose restriction is 𝑓 .
If 𝑓 is just smooth, then finding such a smooth extension is not difficult no matter
what𝑈 looks like, however, in the holomorphic category it is not that easy (or even
always possible). A holomorphic extension from an affine subspace is possible for
domains of holomorphy, in fact, it is a defining characteristic of such domains.

Example 4.5.1: Suppose 𝑈 = ℂ2 \ {0} and 𝐿 = {(𝑧, 𝑤) ∈ ℂ2 : 𝑤 = 0}. Then 𝑈 ∩ 𝐿 is
the punctured plane. Let 𝑓 (𝑧) = 1/𝑧 be the function on𝑈 ∩ 𝐿. Suppose that there was
an 𝐹 ∈ O(𝑈) whose restriction to 𝑈 ∩ 𝐿 was 𝑓 . Such an 𝐹 extends to all of ℂ2, and
hence 𝑓 extends to all of 𝐿 (which is just the 𝑧-plane), which is impossible. Note that
we proved that 𝐻(0,1)(𝑈) is nontrivial.

Example 4.5.2: Suppose 𝑈 = 𝐵2
(
(0, 1)

)
⊂ ℂ2 and 𝐿 = {(𝑧, 𝑤) ∈ ℂ2 : 𝑤 = 0}. Then

𝑈 ∩ 𝐿 is a disc of radius
√

3 in the 𝑧-plane. Take a function 𝑓 : Δ√
3(0) → ℂ be such

that it does not extend past any point in the boundary of the disc. The obvious way
to extend 𝑓 to an 𝐹 would be to simply take a function 𝐹(𝑧, 𝑤) = 𝑓 (𝑧), but that is not
defined on all of𝑈 . Extension to all of𝑈 is somewhat harder to prove. See  Figure 4.6  .
It is possible to do this explicitly in this specific case (exercise below). Note that
𝐻(0,1)(𝑈) = 0, which you proved as an exercise in the previous section.

𝑈 = 𝐵2
(
(0, 1)

)
𝐿𝑈 ∩ 𝐿

Figure 4.6: Extending 𝑓 from a hyperplane to the ball, it is easy to extend to within the
dotted lines.
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Exercise 4.5.1: Explicitly define the extension of the holomorphic function 𝑓 to 𝐹 in the
setup of  Example 4.5.2 .

Exercise 4.5.2: Come up with an example domain 𝑈 and hyperplane 𝐿 (in ℂ2) where
𝐻(0,1)(𝑈) is nontrivial, but where every 𝑓 ∈ O(𝑈 ∩ 𝐿) extends holomorphically to𝑈 .

Exercise 4.5.3: You can also do this with multiple hyperplanes. Suppose that in ℂ2, 𝐿 is
the set where 𝑧 = 0, 𝑀 is the set where 𝑤 = 0, 𝑁 is the set where 𝑧 = 𝑤. Let 𝑓 , 𝑔, ℎ be
holomorphic functions on 𝐿, 𝑀, and 𝑁 , respectively such that 𝑓 (0) = 𝑔(0) = ℎ(0). Prove
that there is a holomorphic 𝐹 on ℂ2 such that 𝐹 |𝐿 = 𝑓 , 𝐹 |𝑀 = 𝑔, 𝐹 |𝑁 = ℎ.

Exercise 4.5.4: Show that you cannot replace the hyperplane with something that has no
complex structure. Find an example of a domain of holomorphy𝑈 ⊂ ℂ2, and a real-analytic
𝑓 : 𝑈 ∩ℝ2 → ℂ that is not a restriction of a holomorphic function on𝑈 . Note that 𝑓 does
extend holomorphically to some neighborhood of𝑈 ∩ℝ2 in𝑈 , just perhaps not all of𝑈 .

The way to do the extension in general is to do the simple extension as in
𝐹(𝑧, 𝑤) = 𝑓 (𝑧) to a neighborhood of 𝐿, then extend in a smooth way via a cutoff
function to all of𝑈 . But to make the extension holomorphic, we need to then correct
via the appropriate �̄�-problem. We stated the extension with holomorphic functions,
but really it is no harder to prove a more general version of the problem about �̄�-closed
(𝑝, 𝑞)-forms, where holomorphic functions are the �̄�-closed (0, 0)-forms.

To be able to prove this more general theorem, we need to know what it means to
restrict (𝑝, 𝑞)-forms to 𝐿, not just functions. Instead of making this too complicated,
let us do the same simplification as we did above for functions. Informally, we will
restrict the values of the form to 𝐿 and only take the parts of the form that “point
along 𝐿.” Let us, also for simplicity, suppose that 𝐿 is a hyperplane, as the more
general case then follows. As before, after a linear map and a translation, assume
𝐿 = {𝑧 ∈ ℂ𝑛 : 𝑧𝑛 = 0}. Write a (𝑝, 𝑞)-form as

𝜂 =
∑
𝛼𝛽

𝜂𝛼𝛽 𝑑𝑧𝛼 ∧ 𝑑�̄�𝛽 + 𝜔2 ∧ 𝑑𝑧𝑛 + 𝜔3 ∧ 𝑑�̄�𝑛 ,

where 𝛼 and 𝛽 do not include 𝑛 (so no 𝑑𝑧𝑛 nor 𝑑�̄�𝑛 in the first term). Then

𝜂|𝐿 =
∑
𝛼𝛽

𝜂𝛼𝛽 |𝐿 𝑑𝑧𝛼 ∧ 𝑑�̄�𝛽 .

Basically we restrict the components to 𝐿, and throw out the differentials that do
not change along 𝐿. If 𝜂 is a function (a (0, 0)-form), then, of course, this is just the
restriction of the function.
Theorem 4.5.3. Suppose that 𝑈 ⊂ ℂ𝑛 is open with 𝐻(𝑝,𝑞+1)(𝑈) = 0 and 𝐿 is an affine
hyperplane. Let 𝜓 be a smooth �̄�-closed (𝑝, 𝑞)-form on 𝑈 ∩ 𝐿, then there exists a smooth
�̄�-closed (𝑝, 𝑞)-form Ψ on𝑈 such that Ψ|𝑈∩𝐿 = 𝜓.
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So to extend holomorphic functions from a hyperplane, we need 𝐻(0,1)(𝑈) = 0.

Proof. After a translation and a linear map, we assume 𝐿 = {𝑧 ∈ ℂ𝑛 : 𝑧𝑛 = 0}. Write
𝑧 = (𝑧′, 𝑧𝑛) as usual. Let 𝜒 : 𝑈 → ℝ be the function that is identically 1 in some
neighborhood of 𝑈 ∩ 𝐿 and such that it is identically 0 in some neighborhood of
{𝑧 ∈ 𝑈 : (𝑧′, 0) ∉ 𝑈 ∩ 𝐿}. See  Figure 4.7 .

𝜒 ≡ 1

𝜒 ≡ 0

𝑈 ∩ 𝐿
𝐿

Figure 4.7: The cutoff function 𝜒. Note that 𝜒 ≡ 0 on a neighborhood where it is not
trivial to extend 𝜓.

We will define
Ψ(𝑧) = 𝜒(𝑧)𝜓(𝑧′) + 𝑧𝑛𝜂(𝑧),

where 𝜂 is chosen appropriately so that Ψ is �̄�-closed. This form is defined in𝑈 as 𝜒
is identically zero where 𝜓 is undefined. Clearly, if such an 𝜂 can be found, we have
Ψ|𝑈∩𝐿 = 𝜓. Let us compute �̄�Ψ to see what is required of 𝜂.

�̄�Ψ = �̄�𝜒 ∧ 𝜓 + 𝜒�
��

0
�̄�𝜓 +�

��>
0

�̄�𝑧𝑛 ∧ 𝜂 + 𝑧𝑛 �̄�𝜂 = �̄�𝜒 ∧ 𝜓 + 𝑧𝑛 �̄�𝜂.

As �̄�𝜒 is 0 in a neighborhood of 𝑈 ∩ 𝐿, the form −�̄�𝜒∧𝜓
𝑧𝑛

extends smoothly through
𝑈∩𝐿. It is a smooth (𝑝, 𝑞+1)-form on𝑈 as �̄�𝜒 is identically zero in a neighborhood of
where 𝜓 is undefined. The form is �̄�-closed as �̄�2 = 0, �̄�𝜓 = 0, and 1/𝑧𝑛 is holomorphic.
By hypothesis, we find an 𝜂 such that �̄�𝜂 =

−�̄�𝜒∧𝜓
𝑧𝑛

, and we are done. □

We remark that an extension works for zero sets of holomorphic functions, that is,
subvarieties (see  chapter 6 ), not just hyperplanes, a result which is called the Cartan
extension theorem, but we will not prove this fact. However, as an exercise prove the
extension for two hyperplanes.

Exercise 4.5.5: Suppose that𝑈 ⊂ ℂ𝑛 is open with 𝐻(𝑝,𝑞+1)(𝑈) = 0 and 𝐿1 and 𝐿2 are two
affine hyperplanes such that𝑈 ∩ 𝐿1 ∩ 𝐿2 = ∅. Let 𝜓1 be a smooth �̄�-closed (𝑝, 𝑞)-form on
𝑈 ∩ 𝐿1 and 𝜓2 be a smooth �̄�-closed (𝑝, 𝑞)-form on𝑈 ∩ 𝐿2. Show that there is a smooth
�̄�-closed (𝑝, 𝑞)-form Ψ on𝑈 such that Ψ|𝑈∩𝐿1 = 𝜓1 and Ψ|𝑈∩𝐿2 = 𝜓2.
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In what follows, when we talk about 𝑈 ∩ 𝐿 as an open set for a hyperplane 𝐿,
we think of it as an open set in ℂ𝑛−1. More generally, if 𝐿 is a 𝑘-dimensional affine
subspace, then we will treat𝑈 ∩ 𝐿 as an open set in ℂ𝑛−𝑘 .

Corollary 4.5.4. Suppose 𝑈 ⊂ ℂ𝑛 is open and 𝐿 is an affine hyperplane. If 𝐻(𝑝,𝑞)(𝑈) = 0
and 𝐻(𝑝,𝑞+1)(𝑈) = 0 then 𝐻(𝑝,𝑞)(𝑈 ∩ 𝐿) = 0.

Proof. Let 𝜓 be a �̄�-closed (𝑝, 𝑞)-form on𝑈 ∩ 𝐿. As 𝐻(𝑝,𝑞+1)(𝑈) = 0, via the theorem,
there is a �̄�-closed (𝑝, 𝑞)-form Ψ on 𝑈 such that Ψ|𝑈∩𝐿 = 𝜓. As 𝐻(𝑝,𝑞)(𝑈) = 0,
there is a (𝑝, 𝑞 − 1)-form Φ on 𝑈 such that �̄�Φ = Ψ. It is not difficult to see that
(�̄�Φ)|𝑈∩𝐿 = �̄�(Φ|𝑈∩𝐿) (true for any form), so 𝜑 = Φ|𝑈∩𝐿 is the solution to �̄�𝜑 = 𝜓. □

Exercise 4.5.6: Prove the claim that for any (𝑝, 𝑞)-form, (�̄�Φ)|𝑈∩𝐿 = �̄�(Φ|𝑈∩𝐿).

We have the following immediate corollary.

Corollary 4.5.5. Suppose that𝑈 ⊂ ℂ𝑛 is open such that 𝐻(0,𝑞)(𝑈) = 0 whenever 1 ≤ 𝑞 ≤
𝑛 − 1 and 𝐿 is an affine hyperplane. Then 𝐻(0,𝑞)(𝑈 ∩ 𝐿) = 0 whenever 1 ≤ 𝑞 ≤ 𝑛 − 2.

Exercise 4.5.7: Prove a more general corollary. Suppose that 𝑈 ⊂ ℂ𝑛 is a domain
and suppose that 𝐿 is a 𝑘-dimensional affine subspace 1 ≤ 𝑘 ≤ 𝑛 − 1. Suppose that
𝐻(0,𝑞)(𝑈) = 0 whenever 1 ≤ 𝑞 ≤ 𝑛 − 1. Then 𝐻(0,𝑞)(𝑈 ∩ 𝐿) = 0 whenever 1 ≤ 𝑞 ≤ 𝑘 − 1,
and every 𝑓 ∈ O(𝑈 ∩ 𝐿) has a holomorphic extension to𝑈 .

We now prove the general version of one direction of the theorem mentioned in
the previous section. That is, as an exercise, you proved by direct construction that
𝐻(0,1)(𝑈) = 0 in ℂ2, then𝑈 is a domain of holomorphy. We extend this result to ℂ𝑛 .

Theorem 4.5.6. Suppose𝑈 ⊂ ℂ𝑛 is domain such that𝐻(0,𝑞)(𝑈) = 0 whenever 1 ≤ 𝑞 ≤ 𝑛−1.
Then𝑈 is a domain of holomorphy.

Proof. We induct on dimension. When 𝑛 = 1, the hypothesis just says that 𝑈 is a
domain, and any domain in ℂ is a domain of holomorphy. Assume the theorem
holds for any domain in ℂ𝑛−1.

Let𝑈 ⊂ ℂ𝑛 be a domain and suppose that 𝑉 and𝑊 are open sets in ℂ𝑛 such that
∅ ≠ 𝑉 ⊂ 𝑈 ∩𝑊 ,𝑊 is connected, and𝑊 contains points outside of𝑈 . That is, 𝑉 and
𝑊 are like in the definition of the domain of holomorphy. We want to show that there
must exist at least one 𝐹 ∈ O(𝑈) for which there does not exist any 𝐺 ∈ O(𝑊) such
that 𝐹 = 𝐺 on 𝑉 . Consider a component of𝑊 ∩𝑈 that contains some component of
𝑉 . Without loss of generality we could take 𝑉 to be any small ball in this component
of 𝑊 ∩𝑈 . It is not difficult to check (exercise) that there exists such a 𝑉 (move it
around if you must) so that there is a point 𝑧0 ∈ 𝜕𝑈 ∩ 𝜕𝑉 ∩𝑊 .
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Exercise 4.5.8: Prove that such a 𝑉 exists.

There is some affine hyperplane 𝐿 through 𝑧0 such that the boundary of 𝑉 ∩ 𝐿
(in the topology of 𝐿) includes 𝑧0, and hence the boundary of𝑈 ∩ 𝐿 (in the topology
of 𝐿) includes 𝑧0. Here we use the fact that 𝑉 is a ball; pick an 𝐿 that includes the
normal direction to the boundary of 𝑉 at 𝑧0. See  Figure 4.8 . By  Corollary 4.5.5 ,
𝐻(0,𝑞)(𝑈 ∩ 𝐿) = 0 for 1 ≤ 𝑞 ≤ 𝑛 − 2. By the induction hypothesis (and  Exercise 4.4.7 ),
every component of𝑈 ∩ 𝐿 is a domain of holomorphy. Since 𝑧0 is in the boundary
of𝑈 ∩ 𝐿, we have a holomorphic function 𝑓 ∈ O(𝑈 ∩ 𝐿) that does not extend (along
𝐿) through 𝑧0. As 𝐻(0,1)(𝑈) = 0, we have that there exists an 𝐹 ∈ O(𝑈) such that
𝐹 |𝑈∩𝐿 = 𝑓 . If there existed a 𝐺 ∈ O(𝑊) that agreed with 𝐹 on𝑉 , then 𝐺 |𝑊∩𝐿 would be
an extension of 𝑓 through 𝑧0, which we know is impossible, so no such 𝐺 exists. □

𝑈

𝐿
𝑧0

𝑊
𝑉

Figure 4.8: Location of 𝑧0 and the placement of 𝑉 and 𝐿 with respect to𝑈 and𝑊 .

If you think about what we really needed in the proof, it was not the cohomology
vanishing, we needed the extension. It is sufficient to extend from complex lines,
that is, affine subspaces of dimension 1, since the intersection of𝑈 ∩ 𝐿 in that case
is always a domain of holomorphy. On the other hand, it is not sufficient to have
extension from hyperplanes, see  Exercise 4.5.12 .

Theorem 4.5.7. Suppose 𝑈 ⊂ ℂ𝑛 is domain such that for every complex line 𝐿 and every
𝑓 ∈ O(𝑈∩𝐿) there exists an 𝐹 ∈ O(𝑈)where 𝐹 |𝑈∩𝐿 = 𝑓 . Then𝑈 is a domain of holomorphy.

Exercise 4.5.9: Prove the theorem.

Exercise 4.5.10: Suppose𝑈 ⊂ ℂ𝑛 is domain of holomorphy and 𝐿 is an affine subspace of
dimension 𝑘. Then every component of𝑈 ∩ 𝐿 is a domain of holomorphy.

Exercise 4.5.11: Suppose𝑈 ⊂ ℂ𝑛 is domain and 𝑘 ∈ ℕ is such that 𝐻(0,𝑞)(𝑈) = 0 for all
1 ≤ 𝑞 ≤ 𝑛 − 𝑘, and every component of𝑈 ∩ 𝐿 is a domain of holomorphy for every affine
subspace 𝐿 of dimension 𝑘. Prove that𝑈 is a domain of holomorphy.
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Exercise 4.5.12: Extension from hyperplanes is not enough: Find a domain𝑈 ⊂ ℂ3 that is
not a domain of holomorphy, such that for every affine hyperplane 𝐿 and every 𝑓 ∈ O(𝑈 ∩𝐿)
there is an 𝐹 ∈ O(𝑈) such that 𝐹 |𝑈∩𝐿 = 𝑓 . Hint: Modify  Example 4.5.1 .

Remark 4.5.8. We have by now stated several equivalent conditions for a domain to be
a domain of holomorphy, although we have not proved all the implications in this
book. In particular, for a domain𝑈 ⊂ ℂ𝑛 , the following are equivalent:

(i) 𝑈 is a domain of holomorphy.

(ii) 𝑈 is Levi pseudoconvex (if𝑈 has smooth boundary).

(iii) 𝑈 is Hartogs pseudoconvex (continuous plurisubharmonic exhaustion function).

(iv) − log 𝜌(𝑧) is plurisubharmonic (𝜌 is distance to 𝜕𝑈).

(v) 𝑈 is convex with respect to plurisubharmonic functions.

(vi) 𝑈 is holomorphically convex.

(vii) dist(𝐾, 𝜕𝑈) = dist(�̂�𝑈 , 𝜕𝑈) for every 𝐾 ⊂⊂ 𝑈 .

(viii) 𝐻(0,𝑞)(𝑈) = 0 for all 1 ≤ 𝑞 ≤ 𝑛 − 1.

(ix) Every 𝑓 ∈ O(𝑈 ∩ 𝐿) extends holomorphically to𝑈 for every complex line 𝐿.

4.6 \ The Cousin problems
A chapter in many a book on one complex variable is devoted to the Mittag-Leffler
theorem on finding a meromorphic function with prescribed poles, and another one
on a theorem of Weierstrass for finding a holomorphic function with a prescribed
zero set. The analogues of these results in several complex variables are the so-called
Cousin I and Cousin II problems  

*
 respectively. The Cousin I problem is an additive

version of the problem and obtains an analogue to Mittag-Leffler. The Cousin II
problem is the multiplicative version to obtain an analogue of Weierstrass.

Definition 4.6.1 (Cousin I). Suppose𝑈 ⊂ ℂ𝑛 is open. Let {𝑈𝜄}𝜄∈𝐼 be an open covering
of𝑈 , and when𝑈𝜄 ∩𝑈𝜅 ≠ ∅, let ℎ𝜄𝜅 ∈ O(𝑈𝜄 ∩𝑈𝜅) be such that

ℎ𝜄𝜅 + ℎ𝜅𝜄 = 0 in𝑈𝜄 ∩𝑈𝜅 ,

ℎ𝜄𝜅 + ℎ𝜅𝜆 + ℎ𝜆𝜄 = 0 in𝑈𝜄 ∩𝑈𝜅 ∩𝑈𝜆.

The covering and the functions ℎ𝜄𝜅 are called Cousin I data. The solution of the Cousin I
problem is a set of holomorphic functions 𝑓𝜄 ∈ O(𝑈𝜄) such that

ℎ𝜄𝜅 = 𝑓𝜄 − 𝑓𝜅 .

*Named for Pierre Cousin, the French mathematician, and not for some family scuffle.



152 CHAPTER 4. THE �̄�-PROBLEM

Clearly if the functions 𝑓𝜄 exist, then their differences must satisfy the two
conditions. The point is going the other way: finding 𝑓𝜄 given ℎ𝜄𝜅. We remark that we
could always take 𝜄, 𝜅, and 𝜆 to be distinct, as the first condition means that ℎ𝜄𝜄 = 0
for all 𝜄 otherwise, and the second condition then just reduces to the first if two of the
indices are equal.

Exercise 4.6.1: The triple sum is enough to force the similar condition on 4 or more
summands, but the double sum is not enough. That is,

a) Find an example where the first condition ℎ𝜄𝜅 + ℎ𝜅𝜄 = 0 is satisfied but the second
condition ℎ𝜄𝜅 + ℎ𝜅𝜆 + ℎ𝜆𝜄 = 0 is not.

b) Show that if both conditions are satisfied (we have valid Cousin I data), then
ℎ𝜄𝜅 + ℎ𝜅𝜆 + ℎ𝜆𝜇 + ℎ𝜇𝜄 = 0, and similarly for any number of terms.

To see how Cousin I relates to Mittag-Leffler, note that Mittag-Leffler could be
stated by giving meromorphic functions locally and then trying to piece them together.
Recall that meromorphic functions are locally a ratio of holomorphic functions. So
suppose that we have a covering {𝑈𝜄} and in each𝑈𝜄 we have a meromorphic function
𝑔𝜄 such that 𝑔𝜄 − 𝑔𝜅 is holomorphic in 𝑈𝜄 ∩ 𝑈𝜅 (or more precisely, extends to be
holomorphic on that set). That is, if we were in one dimension, the two functions
would have the same principal part. The solution is to find a global meromorphic
function with the same singular behavior (principal part).

On𝑈𝜄 ∩𝑈𝜅, let
ℎ𝜄𝜅 = 𝑔𝜄 − 𝑔𝜅 .

It is easy to see that we obtain Cousin I data. Suppose the Cousin I problem is solvable
in 𝑈 . Then we would find holomorphic 𝑓𝜄 as above. We define a meromorphic
function 𝑓 on𝑈 by defining it in each𝑈𝜄 as

𝑓 = 𝑔𝜄 − 𝑓𝜄 .

The function is well-defined. Indeed, on𝑈𝜄 ∩𝑈𝜅 the possible definitions are 𝑔𝜄 − 𝑓𝜄
and 𝑔𝜅 − 𝑓𝜅, and their difference is zero:

(𝑔𝜄 − 𝑓𝜄) − (𝑔𝜅 − 𝑓𝜅) = (𝑔𝜄 − 𝑔𝜅) + ( 𝑓𝜅 − 𝑓𝜄) = ℎ𝜄𝜅 + ℎ𝜅𝜄 = 0.

The function 𝑓 has the same singularity as 𝑔𝜄 in𝑈𝜄 since 𝑓 − 𝑔𝜄 is holomorphic.
So the data gives some local solution to some problem and the solution of the

Cousin problem gives a way of gluing the local data together into a global solution.
We state this as a proposition (the converse also holds but we do not prove it here):

Proposition 4.6.2. Suppose 𝑈 ⊂ ℂ𝑛 is open, {𝑈𝜄}𝜄∈𝐼 an open covering of 𝑈 , and 𝑔𝜄 are
meromorphic functions on each 𝑈𝜄 such that 𝑔𝜄 − 𝑔𝜅 is holomorphic on 𝑈𝜄 ∩𝑈𝜅. Suppose
that the Cousin I problem is solvable on 𝑈 . Then there exists a meromorphic function 𝑓 on
𝑈 such that on each𝑈𝜄, 𝑓 − 𝑔𝜄 is holomorphic.
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In one dimension, Cousin I (that is, Mittag-Leffler) is solvable for any domain
in ℂ. In several variables, Cousin I is solvable on domains of holomorphy in ℂ𝑛 , in
particular, it is solvable when we can solve the �̄�-problem for (0, 1)-forms.

Example 4.6.3: Let us see an example where the Cousin I problem is not solvable.
Let 𝑈 = ℂ2 \ {0}, where we know that 𝐻(0,1)(𝑈) is nontrivial. Write 𝑈 = 𝑈1 ∪𝑈2
where𝑈1 = {(𝑧, 𝑤) ∈ ℂ2 : 𝑧 ≠ 0} and𝑈2 = {(𝑧, 𝑤) ∈ ℂ2 : 𝑤 ≠ 0}. On𝑈1 ∩𝑈2, define

ℎ12(𝑧, 𝑤) =
1
𝑧𝑤

, ℎ21(𝑧, 𝑤) =
−1
𝑧𝑤

.

These are holomorphic functions giving Cousin I data. Suppose the problem was
solvable and we find 𝑓1 ∈ O(𝑈1) and 𝑓2 ∈ O(𝑈2) such that on𝑈1 ∩𝑈2, we have

𝑓1 − 𝑓2 = ℎ12 =
1
𝑧𝑤

.

In other words, 𝑓1 = 1
𝑧𝑤 + 𝑓2 on𝑈1 ∩𝑈2. But that means that 𝑧 𝑓1 is holomorphic in𝑈2

and therefore in𝑈 , and thus extends to ℂ2. Similarly, 𝑤 𝑓2 extends to a holomorphic
function on ℂ2. Thus 𝑧𝑤 𝑓1 − 𝑧𝑤 𝑓2 is a holomorphic function on ℂ2 that vanishes at
the origin, but 𝑧𝑤 𝑓1 − 𝑧𝑤 𝑓2 = 𝑧𝑤(ℎ12) ≡ 1 on𝑈1 ∩𝑈2, which leads to a contradiction.

The Cousin I problem with smooth data is smoothly solvable in any domain.

Lemma 4.6.4. Suppose 𝑈 ⊂ ℂ𝑛 is open, {𝑈𝜄}𝜄∈𝐼 be an open covering of 𝑈 , and let ℎ𝜄𝜅 be
smooth (not necessarily holomorphic) Cousin I data. Then there exist smooth (not necessarily
holomorphic) solution functions 𝑓𝜄.

Proof. Find a smooth partition of unity {𝜑𝛾}𝛾∈Γ subordinate to the cover {𝑈𝜄}𝜄∈𝐼 .
That is, 𝜑𝛾 are smooth functions of𝑈 valued in [0, 1] that add up to 1 at every point,
in a neighborhood of any point only finitely many 𝜑𝛾 are nonzero, and each 𝜑𝛾 is
supported in some𝑈𝜅, so denote such 𝜅 ∈ 𝐼 as 𝜅𝛾. For 𝑧 ∈ 𝑈𝜄, let

𝑓𝜄(𝑧) =
∑
𝛾∈Γ

𝜑𝛾(𝑧)ℎ𝜄𝜅𝛾(𝑧).

Note why this is well-defined and smooth: For 𝑧 ∈ 𝑈𝜄, given a 𝛾 and hence 𝜅𝛾, either
𝜑𝛾 = 0 in some neighborhood of 𝑧 or 𝑧 ∈ 𝑈𝜅𝛾 ∩𝑈𝜄. So each term can be interpretted
as a smooth function on𝑈𝜄, and in a neighborhood of 𝑧 we are adding at most finitely
smooth functions, so 𝑓𝜄 is smooth in𝑈𝜄. For 𝑧 ∈ 𝑈𝜄 ∩𝑈𝜆,

𝑓𝜄(𝑧) − 𝑓𝜆(𝑧) =
∑
𝛾∈Γ

𝜑𝛾(𝑧)
(
ℎ𝜄𝜅𝛾(𝑧) − ℎ𝜆𝜅𝛾(𝑧)

)
=

∑
𝛾∈Γ

𝜑𝛾(𝑧)ℎ𝜄𝜆(𝑧) = ℎ𝜄𝜆(𝑧). □

The (holomorphic) Cousin I problem is solvable on any domain of holomorphy
and in general on any domain with a trivial first Dolbeault cohomology group.

Theorem 4.6.5. Suppose 𝑈 ⊂ ℂ𝑛 is a domain with 𝐻(0,1)(𝑈) = 0. Then the Cousin I
problem is solvable.
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Proof. Let {𝑈𝜄}𝜄∈𝐼 be an open covering of 𝑈 , and let ℎ𝜄𝜅 be (holomorphic) Cousin I
data. Using the lemma, find the smooth solutions 𝑓𝜄. The functions 𝑓𝜄 need not be
holomorphic, but 𝑓𝜄 − 𝑓𝜅 = ℎ𝜄𝜅 are holomorphic, and so �̄� 𝑓𝜄 − �̄� 𝑓𝜅 = �̄�( 𝑓𝜄 − 𝑓𝜅) = 0.
The (0, 1)-form 𝜂 given by

𝜂 = �̄� 𝑓𝜄

is therefore well-defined on𝑈 . Moreover, 𝜂 is �̄�-closed, so by assumption on𝑈 , there
exists a 𝜓 ∈ O(𝑈) such that �̄�𝜓 = 𝜂. On each𝑈𝜄,

𝐹𝜄 = 𝑓𝜄 − 𝜓.

On𝑈𝜄 ∩𝑈𝜅, we have
𝐹𝜄 − 𝐹𝜅 = 𝑓𝜄 − 𝑓𝜅 = ℎ𝜄𝜅 ,

and on𝑈𝜄, we have
�̄�𝐹𝜄 = �̄� 𝑓𝜄 − �̄�𝜓 = 𝜂 − 𝜂 = 0.

Therefore, the 𝐹𝜄 give a solution to the Cousin I problem. □

Corollary 4.6.6. Cousin I problem is solvable on any possibly unbounded polydisc in ℂ𝑛 .

Exercise 4.6.2: Use the solution of the �̄�-problem in the disc to show that if the Cousin I
problem is solvable in a domain𝑈 ⊂ ℂ𝑛 , then 𝐻(0,1)(𝑈) = 0. Hint: Solve locally and then
follow the same idea as trying to piece together the meromorphic function above.

Exercise 4.6.3: Formulate a version of Cousin I problem for integer-valued continuous
functions on domains in ℝ2. Prove that the problem is not always solvable in ℝ2 \ {(0, 0)}.

Let us briefly mention the second Cousin problem and its relation to the Cousin I
problem and to the theorem of Weierstrass.

Definition 4.6.7 (Cousin II). Suppose𝑈 ⊂ ℂ𝑛 is open. Let {𝑈𝜄}𝜄∈𝐼 be an open covering
of𝑈 , and when𝑈𝜄 ∩𝑈𝜅 ≠ ∅, let ℎ𝜄𝜅 ∈ O(𝑈𝜄 ∩𝑈𝜅) be nonvanishing functions such that

ℎ𝜄𝜅ℎ𝜅𝜄 = 1 in𝑈𝜄 ∩𝑈𝜅 ,

ℎ𝜄𝜅ℎ𝜅𝜆ℎ𝜆𝜄 = 1 in𝑈𝜄 ∩𝑈𝜅 ∩𝑈𝜆.

The covering and the functions ℎ𝜄𝜅 are called Cousin II data. The solution of the Cousin
II problem is a set of nonvanishing holomorphic functions 𝑓𝜄 ∈ O(𝑈𝜄) such that

ℎ𝜄𝜅 =
𝑓𝜄

𝑓𝜅
.

Cousin II is the analogue of the Weierstrass product theorem, that is, finding a
function with a prescribed zero set. Suppose that 𝑀 ⊂ 𝑈 is locally given by the
vanishing of a single holomorphic function with a nonvanishing derivative (a complex
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submanifold of codimension 1), that is for every 𝑝 ∈ 𝑈 , there is a neighborhood𝑈𝜄

and a holomorphic 𝑔𝜄 with 𝑑𝑔𝜄 ≠ 0 such that 𝑔−1
𝜄 (0) = 𝑀 ∩𝑈𝜄. On𝑈𝜄 ∩𝑈𝜅, let

ℎ𝜄𝜅 =
𝑔𝜄

𝑔𝜅
.

Exercise 4.6.4: Prove that ℎ𝜄𝜅 is holomorphic and nonvanishing.

Thus we have Cousin II data. If the Cousin II problem is solvable, we have 𝑓𝜄 as
above. Define a holomorphic function 𝑓 on𝑈 by defining it on each𝑈𝜄 via

𝑓 =
𝑔𝜄

𝑓𝜄
.

Similarly as before, this gives a well-defined function, and clearly it vanishes precisely
on 𝑀. Moreover, the derivative is nonzero on 𝑀. We state this result as a proposition.

Proposition 4.6.8. Suppose𝑈 ⊂ ℂ𝑛 is a domain on which the Cousin II problem is solvable
and 𝑀 ⊂ 𝑈 is a complex hypersurface (locally the zero set of a holomorphic function with
nonvanishing derivative). Then there exists an 𝑓 ∈ O(𝑈) such that 𝑓 −1(0) = 𝑀 and 𝑑𝑓 ≠ 0
on 𝑀.

The second Cousin problem is not always solvable on every domain of holomorphy
like the Cousin I problem. An extra condition on the topology of the domain is
necessary. Interestingly, on a domain of holomorphy, if the Cousin II problem is
solvable just continuously, then it is solvable. We will skip the proof of this fact, but
let us describe how the topological obstruction arises. Suppose we have Cousin II
data ℎ𝜄𝜅. We refine the covering to make the sets𝑈𝜄 and their intersections𝑈𝜄 ∩𝑈𝜅

simply connected. Then we take logarithms 𝑔𝜄𝜅 = log ℎ𝜄𝜅 and we take the correct
branch to also get 𝑔𝜅𝜄 = −𝑔𝜄𝜅, so 𝑔𝜄𝜅 + 𝑔𝜅𝜄 = 0. For the triple sum we get

𝑔𝜄𝜅 + 𝑔𝜅𝜆 + 𝑔𝜆𝜄 = 2𝜋𝑖𝑚𝜄𝜅𝜆

for some integer 𝑚𝜄𝜅𝜆. It is not always possible to pick the branches in such a way to
make 𝑚𝜄𝜅𝜆 = 0 for all indices. If it were possible, we could apply the solution to the
Cousin I data. This question is just a question of cohomology, that is, just topology. 

*
 

Exercise 4.6.5: Suppose𝑈 ⊂ ℂ𝑛 is a domain with 𝐻(0,1)(𝑈) = 0 and 𝑀 ⊂ 𝑈 is a complex
hypersurface. Suppose there is a continuous function 𝑔 on𝑈 such that locally near every
𝑝 ∈ 𝑀, if 𝑟 is a defining function for 𝑀 (holomorphic with nonvanishing derivative), then
𝑟/𝑔 extends to be continuous and nonvanishing in a neighborhood of 𝑝. Prove that there
exists an 𝑓 ∈ O(𝑀) such that 𝑓 −1(0) = 𝑀 and 𝑑𝑓 ≠ 0 on 𝑀. Hint: Cover with balls𝑈𝜄

and in each ball define log
(
𝑓𝜄/𝑔

)
, then obtain a Cousin I problem.

*For the interested reader, the needed extra cohomology condition is 𝐻2(𝑈,ℤ) = 0.
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Exercise 4.6.6: Let𝑈 ⊂ ℂ be a domain and assume the Cousin II problem is solvable (it
always is in ℂ). Prove the classical theorem of Weierstrass using Cousin II. That is, given a
countable set of points in𝑈 and multiplicities, and assuming the set has no limit points in
𝑈 , find a function 𝑓 ∈ O(𝑈) that has zeros precisely at the given points of precisely the
given multiplicities.



5 \\ Integral Kernels

5.1 \ The Bochner–Martinelli kernel
A generalization of Cauchy’s formula to several variables is called the Bochner–
Martinelli integral formula, which reduces to Cauchy’s (Cauchy–Pompeiu) formula
when 𝑛 = 1. As for Cauchy’s formula, we will prove the formula for all smooth
functions via Stokes’ theorem. First, let us define the Bochner–Martinelli kernel:

𝜔(𝜁, 𝑧) def
=

(𝑛 − 1)!
(2𝜋𝑖)𝑛

𝑛∑
𝑘=1

�̄�𝑘 − �̄�𝑘
∥𝜁 − 𝑧∥2𝑛 𝑑�̄�1 ∧ 𝑑𝜁1 ∧ · · · ∧ �̂��̄�𝑘 ∧ 𝑑𝜁𝑘 ∧ · · · ∧ 𝑑�̄�𝑛 ∧ 𝑑𝜁𝑛 .

The notation �̂��̄�𝑘 means that this term is simply left out.
Theorem 5.1.1 (Bochner–Martinelli). Let 𝑈 ⊂ ℂ𝑛 be a bounded open set with smooth
boundary and let 𝑓 : 𝑈 → ℂ be a smooth function. Then for 𝑧 ∈ 𝑈 ,

𝑓 (𝑧) =
∫
𝜕𝑈

𝑓 (𝜁)𝜔(𝜁, 𝑧) −
∫
𝑈

�̄� 𝑓 (𝜁) ∧ 𝜔(𝜁, 𝑧).

In particular, if 𝑓 ∈ O(𝑈), then

𝑓 (𝑧) =
∫
𝜕𝑈

𝑓 (𝜁)𝜔(𝜁, 𝑧).

Recall that if 𝜁 = 𝑥 + 𝑖𝑦 are the coordinates in ℂ𝑛 , the orientation that we assigned
to ℂ𝑛 in this book 

†
 is the one corresponding to the volume form

𝑑𝑉 = 𝑑𝑥1 ∧ 𝑑𝑦1 ∧ 𝑑𝑥2 ∧ 𝑑𝑦2 ∧ · · · ∧ 𝑑𝑥𝑛 ∧ 𝑑𝑦𝑛 .

With this orientation,

𝑑𝜁1 ∧ 𝑑�̄�1 ∧ 𝑑𝜁2 ∧ 𝑑�̄�2 ∧ · · · ∧ 𝑑𝜁𝑛 ∧ 𝑑�̄�𝑛 = (−2𝑖)𝑛𝑑𝑉,

and hence
𝑑�̄�1 ∧ 𝑑𝜁1 ∧ 𝑑�̄�2 ∧ 𝑑𝜁2 ∧ · · · ∧ 𝑑�̄�𝑛 ∧ 𝑑𝜁𝑛 = (2𝑖)𝑛𝑑𝑉.

†Again, there is no canonical orientation of ℂ𝑛 , and not all authors follow this (perhaps more
prevalent) convention.
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Exercise 5.1.1: Similarly to the Cauchy–Pompeiu formula, note the singularity in the
second term of the Bochner–Martinelli formula. Prove that the integral still makes sense
(the function is integrable).

Exercise 5.1.2: Check that for 𝑛 = 1, the Bochner–Martinelli formula reduces to the
standard Cauchy–Pompeiu formula.

Recall the definition of 𝜕 and �̄� from  Definition 4.4.1 , and recall that 𝑑𝜂 = 𝜕𝜂 + �̄�𝜂.

Proof of Bochner–Martinelli. The structure of the proof is essentially the same as that of
the Cauchy–Pompeiu theorem for 𝑛 = 1, although some of the formulas are somewhat
more involved.

Let 𝑧 ∈ 𝑈 be fixed. Suppose 𝑟 > 0 is small enough so that 𝐵𝑟(𝑧) ⊂ 𝑈 . Orient both
𝜕𝑈 and 𝜕𝐵𝑟(𝑧) positively. As 𝑓 (𝜁)𝜔(𝜁, 𝑧) contains all the holomorphic 𝑑𝜁𝑘 ,

𝑑
(
𝑓 (𝜁)𝜔(𝜁, 𝑧)

)
= �̄�

(
𝑓 (𝜁)𝜔(𝜁, 𝑧)

)
= �̄� 𝑓 (𝜁) ∧ 𝜔(𝜁, 𝑧)

+ 𝑓 (𝜁)(𝑛 − 1)!
(2𝜋𝑖)𝑛

𝑛∑
𝑘=1

𝜕

𝜕�̄�𝑘

[
�̄�𝑘 − �̄�𝑘

∥𝜁 − 𝑧∥2𝑛

]
𝑑�̄�1 ∧ 𝑑𝜁1 ∧ · · · ∧ 𝑑�̄�𝑛 ∧ 𝑑𝜁𝑛 .

We compute

𝑛∑
𝑘=1

𝜕

𝜕�̄�𝑘

[
�̄�𝑘 − �̄�𝑘

∥𝜁 − 𝑧∥2𝑛

]
=

𝑛∑
𝑘=1

(
1

∥𝜁 − 𝑧∥2𝑛 − 𝑛 |𝜁𝑘 − 𝑧𝑘 |2

∥𝜁 − 𝑧∥2𝑛+2

)
= 0.

Therefore, 𝑑
(
𝑓 (𝜁)𝜔(𝜁, 𝑧)

)
= �̄� 𝑓 (𝜁) ∧ 𝜔(𝜁, 𝑧). We apply Stokes:∫

𝜕𝑈
𝑓 (𝜁)𝜔(𝜁, 𝑧) −

∫
𝜕𝐵𝑟(𝑧)

𝑓 (𝜁)𝜔(𝜁, 𝑧) =
∫
𝑈\𝐵𝑟(𝑧)

𝑑
(
𝑓 (𝜁)𝜔(𝜁, 𝑧)

)
=

∫
𝑈\𝐵𝑟(𝑧)

�̄� 𝑓 (𝜁) ∧ 𝜔(𝜁, 𝑧).

Again, due to the integrability, which you showed in an exercise above, the right-hand
side converges to the integral over 𝑈 as 𝑟 → 0. Just as for the Cauchy–Pompeiu
formula, we now need to show that the integral over 𝜕𝐵𝑟(𝑧) goes to 𝑓 (𝑧) as 𝑟 → 0.

So ∫
𝜕𝐵𝑟(𝑧)

𝑓 (𝜁)𝜔(𝜁, 𝑧) = 𝑓 (𝑧)
∫
𝜕𝐵𝑟(𝑧)

𝜔(𝜁, 𝑧) +
∫
𝜕𝐵𝑟(𝑧)

(
𝑓 (𝜁) − 𝑓 (𝑧)

)
𝜔(𝜁, 𝑧).
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To finish the proof, we will show that
∫
𝜕𝐵𝑟(𝑧)

𝜔(𝜁, 𝑧) = 1, and that the second term
goes to zero. We apply Stokes again and note that the volume of 𝐵𝑟(𝑧) is 𝜋𝑛

𝑛! 𝑟
2𝑛 .∫

𝜕𝐵𝑟(𝑧)
𝜔(𝜁, 𝑧)

=

∫
𝜕𝐵𝑟(𝑧)

(𝑛 − 1)!
(2𝜋𝑖)𝑛

𝑛∑
𝑘=1

�̄�𝑘 − �̄�𝑘
∥𝜁 − 𝑧∥2𝑛 𝑑�̄�1 ∧ 𝑑𝜁1 ∧ · · · ∧ �̂��̄�𝑘 ∧ 𝑑𝜁𝑘 ∧ · · · ∧ 𝑑�̄�𝑛 ∧ 𝑑𝜁𝑛

=
(𝑛 − 1)!
(2𝜋𝑖)𝑛

1
𝑟2𝑛

∫
𝜕𝐵𝑟(𝑧)

𝑛∑
𝑘=1

(�̄�𝑘 − �̄�𝑘)𝑑�̄�1 ∧ 𝑑𝜁1 ∧ · · · ∧ �̂��̄�𝑘 ∧ 𝑑𝜁𝑘 ∧ · · · ∧ 𝑑�̄�𝑛 ∧ 𝑑𝜁𝑛

=
(𝑛 − 1)!
(2𝜋𝑖)𝑛

1
𝑟2𝑛

∫
𝐵𝑟(𝑧)

𝑑

(
𝑛∑
𝑘=1

(�̄�𝑘 − �̄�𝑘)𝑑�̄�1 ∧ 𝑑𝜁1 ∧ · · · ∧ �̂��̄�𝑘 ∧ 𝑑𝜁𝑘 ∧ · · · ∧ 𝑑�̄�𝑛 ∧ 𝑑𝜁𝑛

)
=

(𝑛 − 1)!
(2𝜋𝑖)𝑛

1
𝑟2𝑛

∫
𝐵𝑟(𝑧)

𝑛 𝑑�̄�1 ∧ 𝑑𝜁1 ∧ · · · ∧ 𝑑�̄�𝑛 ∧ 𝑑𝜁𝑛

=
(𝑛 − 1)!
(2𝜋𝑖)𝑛

1
𝑟2𝑛

∫
𝐵𝑟(𝑧)

𝑛(2𝑖)𝑛𝑑𝑉 = 1.

Next, we tackle the second term. Via the same computation as above we find∫
𝜕𝐵𝑟(𝑧)

(
𝑓 (𝜁) − 𝑓 (𝑧)

)
𝜔(𝜁, 𝑧)

=
(𝑛 − 1)!
(2𝜋𝑖)𝑛

1
𝑟2𝑛

(∫
𝐵𝑟(𝑧)

(
𝑓 (𝜁) − 𝑓 (𝑧)

)
𝑛 𝑑�̄�1 ∧ 𝑑𝜁1 ∧ · · · ∧ 𝑑�̄�𝑛 ∧ 𝑑𝜁𝑛

+
∫
𝐵𝑟(𝑧)

𝑛∑
𝑘=1

𝜕 𝑓

𝜕�̄�𝑘
(𝜁)(�̄�𝑘 − �̄�𝑘) 𝑑�̄�1 ∧ 𝑑𝜁1 ∧ · · · ∧ 𝑑�̄�𝑛 ∧ 𝑑𝜁𝑛

)
.

As 𝑈 is bounded, | 𝑓 (𝜁) − 𝑓 (𝑧)| ≤ 𝑀∥𝜁 − 𝑧∥ and
��� 𝜕 𝑓
𝜕�̄�𝑘

(𝜁)(�̄�𝑘 − �̄�𝑘)
��� ≤ 𝑀∥𝜁 − 𝑧∥ for

some 𝑀. So for all 𝜁 ∈ 𝜕𝐵𝑟(𝑧), we have | 𝑓 (𝜁) − 𝑓 (𝑧)| ≤ 𝑀𝑟 and
��� 𝜕 𝑓
𝜕�̄�𝑘

(𝜁)(�̄�𝑘 − �̄�𝑘)
��� ≤ 𝑀𝑟.

Hence����∫
𝜕𝐵𝑟(𝑧)

(
𝑓 (𝜁) − 𝑓 (𝑧)

)
𝜔(𝜁, 𝑧)

����
≤ (𝑛 − 1)!

(2𝜋)𝑛
1
𝑟2𝑛

(∫
𝐵𝑟(𝑧)

𝑛2𝑛𝑀𝑟 𝑑𝑉 +
∫
𝐵𝑟(𝑧)

𝑛2𝑛𝑀𝑟 𝑑𝑉

)
= 2𝑀𝑟.

Therefore, this term goes to zero as 𝑟 → 0. □

One drawback of the Bochner–Martinelli formula
∫
𝜕𝑈

𝑓 (𝜁)𝜔(𝜁, 𝑧) is that the kernel
is not holomorphic in 𝑧 unless 𝑛 = 1. It does not simply produce holomorphic
functions. If we differentiate in �̄� underneath the 𝜕𝑈 integral, we do not necessarily
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obtain zero. On the other hand, we have an explicit formula and this formula does
not depend on𝑈 . This is not the case for the Bergman and Szegö kernels, which we
will see next, although those are holomorphic in the right way.

Exercise 5.1.3: Prove that if 𝑧 ∉ 𝑈 , then rather than 𝑓 (𝑧) in the formula you obtain∫
𝜕𝑈

𝑓 (𝜁)𝜔(𝜁, 𝑧) −
∫
𝑈

�̄� 𝑓 (𝜁) ∧ 𝜔(𝜁, 𝑧) = 0.

Exercise 5.1.4: Suppose 𝑓 is holomorphic on a neighborhood of 𝐵𝑟(𝑧).
a) Using the Bochner–Martinelli formula, prove that

𝑓 (𝑧) = 1
𝑉

(
𝐵𝑟(𝑧)

) ∫
𝐵𝑟(𝑧)

𝑓 (𝜁) 𝑑𝑉(𝜁),

where 𝑉
(
𝐵𝑟(𝑧)

)
is the volume of 𝐵𝑟(𝑧).

b) Use part a) to prove the maximum principle for holomorphic functions.

Exercise 5.1.5: Use Bochner–Martinelli for the solution of �̄� with compact support. That
is, suppose 𝑔 = 𝑔1𝑑�̄�1 + · · · + 𝑔𝑛𝑑�̄�𝑛 is a smooth compactly supported (0, 1)-form on ℂ𝑛 ,
𝑛 ≥ 2, and 𝜕𝑔𝑘

𝜕�̄�ℓ
=

𝜕𝑔ℓ
𝜕�̄�𝑘

for all 𝑘, ℓ . Prove that

𝜓(𝑧) = −
∫
ℂ𝑛

𝑔(𝜁) ∧ 𝜔(𝜁, 𝑧)

is a compactly supported smooth solution to �̄�𝜓 = 𝑔. Hint: Look at the previous proof.

5.2 \ The Bergman kernel
Let𝑈 ⊂ ℂ𝑛 be a domain. Define Bergman space of𝑈 :

𝐴2(𝑈) def
= O(𝑈) ∩ 𝐿2(𝑈).

That is, 𝐴2(𝑈) denotes the space of holomorphic functions 𝑓 ∈ O(𝑈) such that

∥ 𝑓 ∥2
𝐴2(𝑈)

def
= ∥ 𝑓 ∥2

𝐿2(𝑈) =

∫
𝑈

| 𝑓 (𝑧)|2𝑑𝑉 < ∞.

𝐴2(𝑈) is an inner product space with the 𝐿2(𝑈) inner product

⟨ 𝑓 , 𝑔⟩ def
=

∫
𝑈

𝑓 (𝑧)𝑔(𝑧) 𝑑𝑉.

We will prove that 𝐴2(𝑈) is complete, in other words, it is a Hilbert space. We first
prove that the 𝐴2(𝑈) norm bounds the uniform norm on compact sets.
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Lemma 5.2.1. Let𝑈 ⊂ ℂ𝑛 be a domain and 𝐾 ⊂⊂ 𝑈 compact. Then there exists a constant
𝐶𝐾 , such that

∥ 𝑓 ∥𝐾 = sup
𝑧∈𝐾

| 𝑓 (𝑧)| ≤ 𝐶𝐾∥ 𝑓 ∥𝐴2(𝑈) for all 𝑓 ∈ 𝐴2(𝑈).

Consequently, 𝐴2(𝑈) is complete.

Proof. As 𝐾 is compact there exists an 𝑟 > 0 such that Δ𝑟(𝑧) ⊂ 𝑈 for all 𝑧 ∈ 𝐾. Take
any 𝑧 ∈ 𝐾, and apply  Exercise 1.2.10 and Cauchy–Schwarz:

| 𝑓 (𝑧)| =
���� 1
𝑉

(
Δ𝑟(𝑧)

) ∫
Δ𝑟(𝑧)

𝑓 (𝜉) 𝑑𝑉(𝜉)
����

≤ 1
𝜋𝑛𝑟2𝑛

√∫
Δ𝑟(𝑧)

12 𝑑𝑉(𝜉)
√∫

Δ𝑟(𝑧)
| 𝑓 (𝜉)|2 𝑑𝑉(𝜉)

=
1

𝜋𝑛/2𝑟𝑛
∥ 𝑓 ∥𝐴2(Δ𝑟(𝑧)) ≤

1
𝜋𝑛/2𝑟𝑛

∥ 𝑓 ∥𝐴2(𝑈).

Taking supremum over 𝑧 ∈ 𝐾 proves the estimate. Therefore, if { 𝑓ℓ } is a sequence of
functions in𝐴2(𝑈) converging in 𝐿2(𝑈) to some 𝑓 ∈ 𝐿2(𝑈), then it converges uniformly
on compact sets, and so 𝑓 ∈ O(𝑈). Consequently, 𝐴2(𝑈) is a closed subspace of 𝐿2(𝑈),
and hence complete. □

For a bounded domain, 𝐴2(𝑈) is always infinite-dimensional, see exercise below.
There exist unbounded domains for which either 𝐴2(𝑈) is trivial (just the zero
function) or even finite-dimensional. When 𝑛 = 1, 𝐴2(𝑈) is either trivial, or infinite-
dimensional.

Exercise 5.2.1: Show that if a domain 𝑈 ⊂ ℂ𝑛 is bounded, then 𝐴2(𝑈) is infinite-
dimensional.

Exercise 5.2.2:
a) Show that 𝐴2(ℂ𝑛) is trivial (it is just the zero function).
b) Show that 𝐴2(𝔻 ×ℂ) is trivial.
c) Find an example of an unbounded domain𝑈 for which 𝐴2(𝑈) is infinite-dimensional.

Hint: Think in one dimension for simplicity.

Exercise 5.2.3:
a) Show that 𝐴2(𝔻) can be identified with 𝐴2(𝔻 \ {0}), that is, every function in the

latter can be extended to a function in the former.
b) Let𝑈 ⊂ ℂ𝑛 be a domain, 𝑓 ∈ O(𝑈), and 𝑋 = 𝑓 −1(0). Show that every function in
𝐴2(𝑈 \ 𝑋) is a restriction of a function in 𝐴2(𝑈), that is, 𝐴2(𝑈) � 𝐴2(𝑈 \ 𝑋).



162 CHAPTER 5. INTEGRAL KERNELS

The lemma says that point evaluation is a bounded linear functional. That is, fix
𝑧 ∈ 𝑈 and take 𝐾 = {𝑧}, then the linear operator

𝑓 ↦→ 𝑓 (𝑧)

is a bounded linear functional. By the Riesz–Fisher theorem, there exists a 𝑘𝑧 ∈ 𝐴2(𝑈),
such that

𝑓 (𝑧) = ⟨ 𝑓 , 𝑘𝑧⟩.
Define the Bergman kernel for𝑈 as

𝐾𝑈(𝑧, �̄�)
def
= 𝑘𝑧(𝜁).

The function 𝐾𝑈 is defined as (𝑧, �̄�) vary over𝑈 ×𝑈∗, where we write

𝑈∗ = {𝜁 ∈ ℂ𝑛 : �̄� ∈ 𝑈}.

Then for all 𝑓 ∈ 𝐴2(𝑈), we have

𝑓 (𝑧) =
∫
𝑈

𝑓 (𝜁)𝐾𝑈(𝑧, �̄�) 𝑑𝑉(𝜁). (5.1)

This last equation is sometimes called the reproducing property of the kernel.
Note that the Bergman kernel depends on𝑈 , which is why we write it as 𝐾𝑈(𝑧, �̄�).

Proposition 5.2.2. The Bergman kernel 𝐾𝑈(𝑧, �̄�) is holomorphic in 𝑧, antiholomorphic in
𝜁, and

𝐾𝑈(𝑧, �̄�) = 𝐾𝑈(𝜁, �̄�).

Proof. As each 𝑘𝑧 is in 𝐴2(𝑈), it is holomorphic in 𝜁. Hence, 𝐾𝑈 is antiholomorphic
in 𝜁. If we prove 𝐾𝑈(𝑧, �̄�) = 𝐾𝑈(𝜁, �̄�), then we prove 𝐾𝑈 is holomorphic in 𝑧.

As 𝐾𝑈(𝑧, �̄�) = 𝑘𝑧(𝜁) is in 𝐴2(𝑈), then

𝐾𝑈(𝑧, �̄�) =
∫
𝑈

𝐾𝑈(𝑧, �̄�)𝐾𝑈(𝜁, �̄�)𝑑𝑉(𝑤)

=

(∫
𝑈

𝐾𝑈(𝜁, �̄�)𝐾𝑈(𝑧, �̄�)𝑑𝑉(𝑤)
)
= 𝐾𝑈(𝜁, �̄�) = 𝐾𝑈(𝜁, �̄�). □

Therefore, thinking of �̄� as the variable, 𝐾𝑈 is a holomorphic function of 2𝑛
variables.

Example 5.2.3: Let us compute the Bergman kernel (and the Szegö kernel of the next
section while we’re at it) explicitly for the unit disc 𝔻 ⊂ ℂ. Let 𝑓 ∈ O(𝔻) ∩ 𝐶(𝐷), that
is, 𝑓 is holomorphic in 𝔻 and continuous up to the boundary. Let 𝑧 ∈ 𝔻. Then

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝜕𝔻

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁.
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On the unit circle 𝜁�̄� = 1. Let 𝑑𝑠 be the arc-length measure on the circle, parametrized
as 𝜁 = 𝑒 𝑖𝑠 . Then 𝑑𝜁 = 𝑖𝑒 𝑖𝑠𝑑𝑠, and

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝜕𝔻

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁 =

1
2𝜋𝑖

∫
𝜕𝔻

𝑓 (𝜁)
1 − 𝑧 �̄�

�̄� 𝑑𝜁 =
1

2𝜋

∫
𝜕𝔻

𝑓 (𝜁)
1 − 𝑧 �̄�

𝑑𝑠.

The integral is now a regular line integral of a function whose singularity, which used
to be inside the unit disc, disappeared (we “reflected it” to the outside). The kernel
1

2𝜋
1

1−𝑧 �̄� is called the Szegö kernel, which we will briefly mention next. We apply Stokes
to the second integral above:

1
2𝜋𝑖

∫
𝜕𝔻

𝑓 (𝜁)
1 − 𝑧 �̄�

�̄� 𝑑𝜁 =
1

2𝜋𝑖

∫
𝔻

𝑓 (𝜁) 𝜕
𝜕�̄�

[
�̄�

1 − 𝑧 �̄�

]
𝑑�̄� ∧ 𝑑𝜁

=
1
𝜋

∫
𝔻

𝑓 (𝜁)
(1 − 𝑧 �̄�)2

𝑑𝐴(𝜁).

The Bergman kernel in the unit disc is, therefore,

𝐾𝔻(𝑧, �̄�) =
1
𝜋

1
(1 − 𝑧 �̄�)2

.

It follows from the exercises below that this function really is the Bergman kernel.
That is, 𝐾𝔻 is the unique conjugate symmetric reproducing function that is in 𝐴2(𝔻)
for a fixed 𝜁. We have only shown the formula for functions continuous up to the
boundary, but those are dense in 𝐴2(𝔻).

Example 5.2.4: In an exercise you found that 𝐴2(ℂ𝑛) = {0}. Therefore, 𝐾ℂ𝑛 (𝑧, �̄�) ≡ 0.

The Bergman kernel for a more general domain is diffcult (usually impossible) to
compute explicitly. We do have the following formula however.

Proposition 5.2.5. Suppose𝑈 ⊂ ℂ𝑛 is a domain, and {𝜑ℓ (𝑧)}ℓ∈𝐼 is a complete orthonormal
system for 𝐴2(𝑈). Then

𝐾𝑈(𝑧, �̄�) =
∑
ℓ∈𝐼

𝜑ℓ (𝑧)𝜑ℓ (𝜁),

with uniform convergence on compact subsets of𝑈 ×𝑈∗.

Proof. For a fixed 𝜁 ∈ 𝑈 , the function 𝑧 ↦→ 𝐾𝑈(𝑧, �̄�) is in 𝐴2(𝑈). Expand this function
in terms of the basis and use the reproducing property of 𝐾𝑈 :

𝐾𝑈(𝑧, �̄�) =
∑
ℓ∈𝐼

(∫
𝑈

𝐾𝑈(𝑤, �̄�)𝜑ℓ (𝑤) 𝑑𝑉(𝑤)
)
𝜑ℓ (𝑧) =

∑
ℓ∈𝐼

𝜑ℓ (𝜁)𝜑ℓ (𝑧).

The convergence is in 𝐿2 as a function of 𝑧, for a fixed 𝜁. Let 𝐾 ⊂⊂ 𝑈 be a compact
set. Via  Lemma 5.2.1 , 𝐿2 convergence in 𝐴2(𝑈) is uniform convergence on compact
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sets. Therefore, for a fixed 𝜁 the convergence is uniform in 𝑧 ∈ 𝐾. In particular, we
get pointwise convergence. So,∑

ℓ∈𝐼
|𝜑ℓ (𝑧)|2 =

∑
ℓ∈𝐼

𝜑ℓ (𝑧)𝜑ℓ (𝑧) = 𝐾𝑈(𝑧, �̄�) ≤ 𝐶𝐾 < ∞,

where 𝐶𝐾 is the supremum of 𝐾𝑈(𝑧, �̄�) on 𝐾 × 𝐾∗. Hence for (𝑧, �̄�) ∈ 𝐾 × 𝐾∗,∑
ℓ∈𝐼

���𝜑ℓ (𝑧)𝜑ℓ (𝜁)��� ≤ √∑
ℓ∈𝐼

|𝜑ℓ (𝑧)|2
√∑

ℓ∈𝐼
|𝜑ℓ (𝜁)|2 ≤ 𝐶𝐾 < ∞.

And so the convergence is uniform on 𝐾 × 𝐾∗. □

Exercise 5.2.4:
a) Show that if𝑈 ⊂ ℂ𝑛 is bounded, then 𝐾𝑈(𝑧, �̄�) > 0 for all 𝑧 ∈ 𝑈 .
b) Why can this fail if𝑈 is unbounded? Find a (trivial) counterexample.

Exercise 5.2.5: Show that given a domain 𝑈 ⊂ ℂ𝑛 , the Bergman kernel is the unique
function 𝐾𝑈(𝑧, �̄�) such that

1) for a fixed 𝜁, 𝐾𝑈(𝑧, �̄�) is in 𝐴2(𝑈),
2) 𝐾𝑈(𝑧, �̄�) = 𝐾𝑈(𝜁, �̄�),
3) the reproducing property ( 5.1 ) holds.

Exercise 5.2.6: Let 𝑈 ⊂ ℂ𝑛 be either the unit ball or the unit polydisc. Show that
𝐴2(𝑈) ∩ 𝐶(𝑈) is dense in 𝐴2(𝑈). In particular, this exercise says we only need to check
the reproducing property on functions continuous up to the boundary to show we have the
Bergman kernel.

Exercise 5.2.7: Let𝑈,𝑉 ⊂ ℂ𝑛 be two domains and 𝑓 : 𝑈 → 𝑉 a biholomorphism. Prove

𝐾𝑈(𝑧, �̄�) = det𝐷 𝑓 (𝑧)det𝐷 𝑓 (𝜁)𝐾𝑉
(
𝑓 (𝑧), 𝑓 (𝜁)

)
.

Exercise 5.2.8: Show that the Bergman kernel for the polydisc is

𝐾𝔻𝑛 (𝑧, �̄�) = 1
𝜋𝑛

𝑛∏
ℓ=1

1
(1 − 𝑧ℓ �̄�ℓ )2

.

Exercise 5.2.9 (Hard): Show that for some constants 𝑐𝛼, the set of all monomials 𝑧𝛼

𝑐𝛼
gives

a complete orthonormal system of 𝐴2(𝔹𝑛). Hint: To show orthonormality compute the
integral using polar coordinates in each variable separately, that is, let 𝑧ℓ = 𝑟ℓ 𝑒

𝑖𝜃ℓ where
𝜃 ∈ [0, 2𝜋]𝑛 and

∑
ℓ 𝑟

2
ℓ
< 1. Then show completeness by showing that if 𝑓 ∈ 𝐴2(𝔹𝑛) is

orthogonal to all 𝑧𝛼, then 𝑓 = 0. Finding 𝑐𝛼 =

√
𝜋𝑛𝛼!

(𝑛+|𝛼 |)! requires the classical 𝛽 function of
special function theory.
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Exercise 5.2.10: Using the previous exercise, show that the Bergman kernel for the unit
ball is

𝐾𝔹𝑛 (𝑧, �̄�) =
𝑛!
𝜋𝑛

1
(1 − ⟨𝑧, 𝜁⟩)𝑛+1 ,

where ⟨𝑧, 𝜁⟩ is the standard inner product on ℂ𝑛 .

5.3 \ The Szegö kernel
We use the same technique to create a reproducing kernel on the boundary by starting
with 𝐿2(𝜕𝑈, 𝑑𝜎) instead of 𝐿2(𝑈). We obtain a kernel where we integrate over the
boundary rather than the domain itself. Let us give a quick overview, but let us not
get into the details.

Let 𝑈 ⊂ ℂ𝑛 be a bounded domain with smooth boundary. Let 𝐶(𝑈) ∩ O(𝑈) be
the holomorphic functions in𝑈 continuous up to the boundary. The restriction of
𝑓 ∈ 𝐶(𝑈) ∩ O(𝑈) to 𝜕𝑈 is a continuous function, and hence 𝑓 |𝜕𝑈 is in 𝐿2(𝜕𝑈, 𝑑𝜎),
where 𝑑𝜎 is the surface measure on 𝜕𝑈 . Taking a closure of these restrictions in
𝐿2(𝜕𝑈) obtains the Hilbert space 𝐻2(𝜕𝑈), which is called the Hardy space. The inner
product on 𝐻2(𝜕𝑈) is the 𝐿2(𝜕𝑈, 𝑑𝜎) inner product:

⟨ 𝑓 , 𝑔⟩ def
=

∫
𝜕𝑈

𝑓 (𝑧)𝑔(𝑧) 𝑑𝜎(𝑧).

Exercise 5.3.1: Show that monomials 𝑧𝛼 are a complete orthonormal system in 𝐻2(𝜕𝔹𝑛).

Exercise 5.3.2: Let 𝑈 ⊂ ℂ𝑛 be a bounded domain with smooth boundary. Prove that
𝐻2(𝜕𝑈) is infinite-dimensional.

Given an 𝑓 ∈ 𝐻2(𝜕𝑈), write the Poisson integral

𝑃 𝑓 (𝑧) =
∫
𝜕𝑈

𝑓 (𝜁)𝑃(𝑧, 𝜁) 𝑑𝜎(𝜁),

where 𝑃(𝑧, 𝜁) is the Poisson kernel. The Poisson integral reproduces harmonic
functions. As holomorphic functions are harmonic, we find that if 𝑓 ∈ 𝐶(𝑈) ∩ O(𝑈),
then 𝑃 𝑓 = 𝑓 .

Although 𝑓 ∈ 𝐻2(𝜕𝑈) is only defined on the boundary, through the Poisson
integral, we have the values 𝑃 𝑓 (𝑧) for 𝑧 ∈ 𝑈 . For each 𝑧 ∈ 𝑈 ,

𝑓 ↦→ 𝑃 𝑓 (𝑧)

defines a continuous linear functional. Again we find a 𝑠𝑧 ∈ 𝐻2(𝜕𝑈) such that

𝑃 𝑓 (𝑧) = ⟨ 𝑓 , 𝑠𝑧⟩.
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For 𝑧 ∈ 𝑈 and 𝜁 ∈ 𝜕𝑈 , define

𝑆𝑈(𝑧, �̄�)
def
= 𝑠𝑧(𝜁),

although for a fixed 𝑧 this is a function only defined almost everywhere as it is an
element of 𝐿2(𝜕𝑈, 𝑑𝜎). The function 𝑆𝑈 is the Szegö kernel. If 𝑓 ∈ 𝐻2(𝜕𝑈), then

𝑃 𝑓 (𝑧) =
∫
𝜕𝑈

𝑓 (𝜁) 𝑆𝑈(𝑧, �̄�) 𝑑𝜎(𝜁).

As functions in 𝐻2(𝜕𝑈) extend to 𝑈 , then 𝑓 ∈ 𝐻2(𝜕𝑈) may be considered a
function on 𝑈 , where values in 𝑈 are given by 𝑃 𝑓 . Similarly, we extend 𝑆(𝑧, �̄�) to
a function on 𝑈 ×𝑈∗

(where the values on the boundary are defined only almost
everywhere). We state without proof that if {𝜑ℓ }ℓ∈𝐼 is a complete orthonormal system
for 𝐻2(𝜕𝑈), then

𝑆𝑈(𝑧, �̄�) =
∑
ℓ∈𝐼

𝜑ℓ (𝑧)𝜑ℓ (𝜁) (5.2)

for (𝑧, �̄�) ∈ 𝑈 ×𝑈∗, converging uniformly on compact subsets. As before, this formula
shows that 𝑆 is conjugate symmetric, and so it extends to (𝑈 ×𝑈∗) ∪ (𝑈 ×𝑈∗).

Example 5.3.1: In  Exercise 5.2.3 , we computed that if 𝑓 ∈ 𝐶(𝔻) ∩ O(𝔻), then

𝑓 (𝑧) = 1
2𝜋

∫
𝜕𝔻

𝑓 (𝜁)
1 − 𝑧 �̄�

𝑑𝑠.

In other words, 𝑆𝔻(𝑧, 𝜁) = 1
𝜋

1
1−𝑧 �̄� .

Exercise 5.3.3: Using the formula ( 5.2 ) compute 𝑆𝔹𝑛 .
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6.1 \ The ring of germs
Definition 6.1.1. Let 𝑝 be a point in a topological space 𝑋. Let𝑌 be a set and𝑈,𝑉 ⊂ 𝑋

be open neighborhoods of 𝑝. Say that two functions 𝑓 : 𝑈 → 𝑌 and 𝑔 : 𝑉 → 𝑌 are
equivalent if there exists a neighborhood𝑊 of 𝑝 such that 𝑓 |𝑊 = 𝑔 |𝑊 . An equivalence
class of functions under this relation defined in neighborhoods of 𝑝 is called a germ of
a function. The germ is denoted by ( 𝑓 , 𝑝), but we may say 𝑓 when the context is clear.
We usually restrict the functions to a certain category: smooth, holomorphic, etc.

The set of germs of complex-valued functions forms a commutative ring, see
exercise below to check the details. For example, to multiply ( 𝑓 , 𝑝) and (𝑔, 𝑝), take
two representatives 𝑓 and 𝑔 defined on a common neighborhood multiply them and
then consider the germ ( 𝑓 𝑔, 𝑝). Similarly, ( 𝑓 , 𝑝) + (𝑔, 𝑝) is defined as ( 𝑓 + 𝑔, 𝑝). It is
easy to check that these operations are well-defined.

Exercise 6.1.1: Let 𝑋 be a topological space and 𝑝 ∈ 𝑋. Let Fbe a class of complex-valued
functions defined on open subsets of such that whenever 𝑓 : 𝑈 → ℂ is in Fand𝑊 ⊂ 𝑈 is
open, then 𝑓 |𝑊 ∈ F, and such that whenever 𝑓 and 𝑔 are two functions in F, and𝑊 is an
open set where both are defined, then 𝑓 𝑔 |𝑊 and ( 𝑓 + 𝑔)|𝑊 are also in F. Assume that all
constant functions are in F. Show that the ring operations defined above on a set of germs
at 𝑝 of functions from Fare well-defined, and that the set of germs at 𝑝 of functions from F

is a commutative ring.

Exercise 6.1.2: Let 𝑋 = 𝑌 = ℝ and 𝑝 = 0. Consider the ring of germs of continuous
functions (or smooth functions). Show that for every continuous 𝑓 : ℝ → ℝ and every
neighborhood𝑊 of 0, there exists a 𝑔 : ℝ → ℝ such that ( 𝑓 , 0) = (𝑔, 0), but 𝑔 |𝑊 ≠ 𝑓 |𝑊 .

Germs are particularly useful for holomorphic functions because of the identity
theorem. In particular, the behavior of  Exercise 6.1.2  does not happen for holomorphic
functions. Furthermore, for holomorphic functions, the ring of germs is the same as
the ring of convergent power series, see exercise below. No similar result is true for
smooth functions.
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Definition 6.1.2. Let 𝑝 ∈ ℂ𝑛 . Write 𝑛O𝑝 = O𝑝 as the ring of germs at 𝑝 of holomorphic
functions.

The ring of germs O𝑝 has many nice properties, and it is generally a “nicer” ring
than the ring O(𝑈) for some open𝑈 , and so it is easier to work with if we are interested
in local properties and not the geometry of𝑈 .

Exercise 6.1.3:
a) Show that O𝑝 is an integral domain (has no zero divisors).
b) Prove the ring of germs at 0 ∈ ℝ of smooth real-valued functions is not an integral

domain.

Exercise 6.1.4: Show that the units (elements with multiplicative inverse) of O𝑝 are the
germs of functions which do not vanish at 𝑝.

Exercise 6.1.5:
a) (easy) Show that given a germ ( 𝑓 , 𝑝) ∈ O𝑝 , there exists a fixed open neighborhood
𝑈 of 𝑝 and a representative 𝑓 : 𝑈 → ℂ such that any other representative 𝑔 can be
analytically continued from 𝑝 to a holomorphic function𝑈 .

b) (easy) Given two representatives 𝑓 : 𝑈 → ℂ and 𝑔 : 𝑉 → ℂ of a germ ( 𝑓 , 𝑝) ∈ O𝑝 ,
let𝑊 be the connected component of𝑈 ∩𝑉 that contains 𝑝. Prove that 𝑓 |𝑊 = 𝑔 |𝑊 .

c) Find a germ ( 𝑓 , 𝑝) ∈ O𝑝 , such that for every representative 𝑓 : 𝑈 → ℂ, we can find
another representative of 𝑔 : 𝑉 → ℂ of that same germ such that 𝑔 |𝑈∩𝑉 ≠ 𝑓 |𝑈∩𝑉 .
Hint: 𝑛 = 1 is sufficient.

Exercise 6.1.6: Show that O𝑝 is isomorphic to the ring of convergent power series.

Definition 6.1.3. Let 𝑝 be a point in a topological space 𝑋. Say that sets 𝐴, 𝐵 ⊂ 𝑋

are equivalent if there exists a neighborhood𝑊 of 𝑝 such that 𝐴 ∩𝑊 = 𝐵 ∩𝑊 . An
equivalence class of sets under this relation is called a germ of a set at 𝑝. It is denoted
by (𝐴, 𝑝), but we may write 𝐴 when the context is clear.

The concept of (𝐴, 𝑝) ⊂ (𝐵, 𝑝) is defined in an obvious manner, that is, there exist
representatives 𝐴 and 𝐵, and a neighborhood 𝑊 of 𝑝 such that 𝐴 ∩𝑊 ⊂ 𝐵 ∩𝑊 .
Similarly, if (𝐴, 𝑝), (𝐵, 𝑝) are germs and 𝐴, 𝐵 are some representatives of these germs,
then the intersection (𝐴, 𝑝) ∩ (𝐵, 𝑝) is the germ (𝐴 ∩ 𝐵, 𝑝), the union (𝐴, 𝑝) ∪ (𝐵, 𝑝) is
the germ (𝐴 ∪ 𝐵, 𝑝), and the complement (𝐴, 𝑝)𝑐 is the germ (𝐴𝑐 , 𝑝).

Exercise 6.1.7: Check that the definition of subset, union, intersection, and complement of
germs of sets is well-defined.

Let 𝑅 be some ring of germs of complex-valued functions at 𝑝 ∈ 𝑋 for some
topological space 𝑋. If 𝑓 is a complex-valued function, let 𝑍 𝑓 be the zero set of 𝑓 , that
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is 𝑓 −1(0). When ( 𝑓 , 𝑝) ∈ 𝑅 is a germ of a function it makes sense to talk about the
germ (𝑍 𝑓 , 𝑝). We take the zero set of some representative and look at its germ at 𝑝.

Exercise 6.1.8: Suppose 𝑓 and 𝑔 are two representatives of a germ ( 𝑓 , 𝑝) show that the
germs (𝑍 𝑓 , 𝑝) and (𝑍𝑔 , 𝑝) are the same.

Exercise 6.1.9: Show that if ( 𝑓 , 𝑝) and (𝑔, 𝑝) are in 𝑅 and 𝑓 and 𝑔 are some representatives,
then (𝑍 𝑓 , 𝑝) ∪ (𝑍𝑔 , 𝑝) = (𝑍 𝑓 𝑔 , 𝑝).

6.2 \ Weierstrass preparation and division theorems
Suppose 𝑓 is (a germ of) a holomorphic function at a point 𝑝 ∈ ℂ𝑛 . Write

𝑓 (𝑧) =
∞∑
𝑘=0

𝑓𝑘(𝑧 − 𝑝),

where 𝑓𝑘 is a homogeneous polynomial of degree 𝑘, that is, 𝑓𝑘(𝑡𝑧) = 𝑡𝑘 𝑓𝑘(𝑧).

Definition 6.2.1. Let 𝑝 ∈ ℂ𝑛 and 𝑓 be a function holomorphic in a neighborhood of 𝑝.
If 𝑓 is not identically zero, define

ord𝑝 𝑓
def
= min

{
𝑘 ∈ ℕ0 : 𝑓𝑘 . 0

}
.

If 𝑓 ≡ 0, define ord𝑝 𝑓 = ∞. We call the number ord𝑝 𝑓 the order of vanishing of 𝑓 at 𝑝.

In other words, the order of vanishing of 𝑓 at 𝑝 is 𝑘 whenever all partial derivatives
of order less than 𝑘 vanish at 𝑝, and there exists at least one derivative of order 𝑘 that
does not vanish at 𝑝.

In one complex variable, a holomorphic function 𝑓 with ord0 𝑓 = 𝑘 can be written
(locally) as 𝑓 (𝑧) = 𝑧𝑘𝑢(𝑧) for a nonvanishing holomorphic 𝑢. Such a 𝑢 is a unit in the
ring O0, that is, an element with a multiplicative inverse. In several variables, there is
a similar theorem, or in fact a pair of theorems, the so-called Weierstrass preparation
and division theorems. We first need to replace 𝑧𝑘 with something.

Definition 6.2.2. Let 𝑈 ⊂ ℂ𝑛−1 be open, 0 ∈ 𝑈 , and let 𝑧′ ∈ ℂ𝑛−1 denote the
coordinates. Suppose 𝑃 ∈ O(𝑈)[𝑧𝑛] is a monic polynomial of degree 𝑘 ≥ 0,

𝑃(𝑧′, 𝑧𝑛) = 𝑧𝑘𝑛 +
𝑘−1∑
ℓ=0

𝑐ℓ (𝑧′) 𝑧ℓ𝑛 ,

where 𝑐ℓ are holomorphic functions defined on𝑈 such that 𝑐ℓ (0) = 0 for all ℓ . Then 𝑃
is called a Weierstrass polynomial of degree 𝑘. If the 𝑐ℓ are germs in O0 = 𝑛−1O0, then
𝑃 ∈ O0[𝑧𝑛] and 𝑃 is called a germ of a Weierstrass polynomial.
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The definition (and the theorem that follows) still holds for 𝑛 = 1. If you read the
definition carefully, you will find that if 𝑛 = 1, then the only Weierstrass polynomial
of degree 𝑘 is 𝑧𝑘 . Note that for any 𝑛, if 𝑘 = 0, then 𝑃 = 1.

The purpose of this section is to show that every holomorphic function in O0 is
up to a unit and a possible small rotation a Weierstrass polynomial, which carries
the zeros of 𝑓 . Consequently the algebraic and geometric properties of 𝑛O0 can be
understood via algebraic and geometric properties of 𝑛−1O0[𝑧𝑛].
Theorem 6.2.3 (Weierstrass preparation theorem). Suppose 𝑓 ∈ O(𝑈) for an open
𝑈 ⊂ ℂ𝑛−1 × ℂ, where 0 ∈ 𝑈 , and 𝑓 (0) = 0. Suppose 𝑧𝑛 ↦→ 𝑓 (0, 𝑧𝑛) is not identically zero
near the origin and its order of vanishing at the origin is 𝑘 ≥ 1.

Then there exists an open polydisc 𝑉 = 𝑉′ × 𝐷 ⊂ ℂ𝑛−1 × ℂ with 0 ∈ 𝑉 ⊂ 𝑈 , a unique
𝑢 ∈ O(𝑉), 𝑢(𝑧) ≠ 0 for all 𝑧 ∈ 𝑉 , and a unique Weierstrass polynomial 𝑃 of degree 𝑘 with
coefficients holomorphic in 𝑉′ such that

𝑓 (𝑧′, 𝑧𝑛) = 𝑢(𝑧′, 𝑧𝑛)𝑃(𝑧′, 𝑧𝑛),

and such that all 𝑘 zeros (counting multiplicity) of 𝑧𝑛 ↦→ 𝑃(𝑧′, 𝑧𝑛) lie in 𝐷 for all 𝑧′ ∈ 𝑉′

Proof. There exists a small disc 𝐷 ⊂ ℂ centered at zero such that {0} × 𝐷 ⊂ 𝑈 and
such that 𝑓 (0, 𝑧𝑛) ≠ 0 for 𝑧𝑛 ∈ 𝐷 \ {0}. By continuity of 𝑓 , there is a small polydisc
𝑉 = 𝑉′ × 𝐷 such that 𝑉 ⊂ 𝑈 and 𝑓 is not zero on 𝑉′ × 𝜕𝐷. See  Figure 6.1  for the
setup. We will consider the zeros of 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) for 𝑧′ ∈ 𝑉′. See  Figure 6.2 .

𝑈

𝑧𝑛

𝑉

𝑉′ × 𝜕𝐷 zeros of 𝑓

{0} × 𝐷
𝑧′

Figure 6.1: Setting up the neighborhood 𝑉 , the two discs in  Figure 6.2 are the vertical
thick black line and the thin dashed line.

By the one-variable argument principle ( Theorem B.25 ) the number of zeros (with
multiplicity) of 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) in 𝐷 is

1
2𝜋𝑖

∫
𝜕𝐷

𝜕 𝑓
𝜕𝑧𝑛

(𝑧′, 𝜁)
𝑓 (𝑧′, 𝜁) 𝑑𝜁.

As 𝑓 (𝑧′, 𝜁) does not vanish when 𝑧′ ∈ 𝑉′ and 𝜁 ∈ 𝜕𝐷, the expression above is a
continuous integer-valued function of 𝑧′ ∈ 𝑉′. The expression is equal to 𝑘 when
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𝑧𝑛-plane where 𝑧′ = 0

𝑧𝑛 = 0

𝛼1(𝑧′)
𝛼2(𝑧′)

𝛼3(𝑧′)

𝑧𝑛-plane where 𝑧′ ∈ 𝑉′

𝛼4(𝑧′)

of order 𝑘
zero of 𝑧𝑛 ↦→ 𝑓 (0, 𝑧𝑛)

𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛)
the 𝑘 (𝑘 = 4) zeros of

𝐷𝐷

Figure 6.2: The zeros of 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛).

𝑧′ = 0, and so it is equal to 𝑘 for all 𝑧′ ∈ 𝑉′. Write the zeros of 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) as
𝛼1(𝑧′), . . . , 𝛼𝑘(𝑧′), including multiplicity. The zeros are not ordered in any particular
way—pick some ordering for every 𝑧′. Write

𝑃(𝑧′, 𝑧𝑛) =
𝑘∏
ℓ=1

(
𝑧𝑛 − 𝛼ℓ (𝑧′)

)
= 𝑧𝑘𝑛 + 𝑐𝑘−1(𝑧′) 𝑧𝑘−1

𝑛 + · · · + 𝑐0(𝑧′).

For a fixed 𝑧′, 𝑃 (and thus the coefficients 𝑐0, . . . , 𝑐𝑘−1) is uniquely defined as its
definition is independent of the ordering of the zeros. That 𝑐 𝑗(0) = 0 for all 𝑗 follows
as 𝛼ℓ (0) = 0 for all ℓ . As the above is the unique way to define a monic polynomial
with these zeros (  Exercise 6.2.6 ), the uniqueness part of the theorem follows. We
need to show that the coefficients are holomorphic functions on 𝑉′, and that 𝑢 is a
holomorphic function on 𝑉 .

No matter how you ordered the zeros for each 𝑧′, the functions 𝛼ℓ may not be
continuous in general (see  Example 6.2.4 ). However, we will prove that the functions
𝑐ℓ are holomorphic. The functions 𝑐ℓ are (up to sign) the elementary symmetric functions
of 𝛼1, . . . , 𝛼𝑘 (see below). A standard theorem in algebra (Newton’s identities, see

 Exercise 6.2.1 ) says that the elementary symmetric functions are polynomials in the
so-called power sum functions in the 𝛼ℓs:

𝑠𝑚(𝑧′) =
𝑘∑
ℓ=1

𝛼ℓ (𝑧′)𝑚 , 𝑚 = 1, . . . , 𝑘.

So if the power sums 𝑠𝑚 are holomorphic on 𝑉′, then 𝑐ℓ are holomorphic on 𝑉′.
A refinement of the argument principle (see  Theorem B.25 ) says: If ℎ and 𝑔 are

holomorphic functions on a disc 𝐷, continuous on 𝐷, such that 𝑔 has no zeros on 𝜕𝐷,
and 𝛼1, . . . , 𝛼𝑘 are the zeros of 𝑔 in 𝐷, then

1
2𝜋𝑖

∫
𝜕𝐷
ℎ(𝜁) 𝑔

′(𝜁)
𝑔(𝜁) 𝑑𝜁 =

𝑘∑
ℓ=1

ℎ(𝛼ℓ ).
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With ℎ(𝜁) = 𝜁𝑚 and 𝑔(𝜁) = 𝑓 (𝑧′, 𝜁), the theorem says

𝑠𝑚(𝑧′) =
𝑘∑
ℓ=1

𝛼ℓ (𝑧′)𝑚 =
1

2𝜋𝑖

∫
𝜕𝐷

𝜁𝑚
𝜕 𝑓
𝜕𝜁 (𝑧

′, 𝜁)
𝑓 (𝑧′, 𝜁) 𝑑𝜁.

The function 𝑠𝑚 is clearly continuous, and if we differentiate under the integral with
𝜕
𝜕�̄�1
, . . . , 𝜕

𝜕�̄�𝑛−1
we find that 𝑠𝑚 is holomorphic. Thus 𝑐0, . . . , 𝑐𝑘−1 are holomorphic, and

so 𝑃 is a Weierstrass polynomial.
Finally, we wish to show that 𝑃 divides 𝑓 as claimed, that is, that 𝑢 is holomorphic.

For each fixed 𝑧′, one variable theory says that 𝑧𝑛 ↦→ 𝑓 (𝑧′,𝑧𝑛)
𝑃(𝑧′,𝑧𝑛) has only removable

singularities, and in fact, it has no zeros as we defined 𝑃 to exactly cancel them all
out. The Cauchy formula on 𝑓/𝑃 then says that the function

𝑢(𝑧′, 𝑧𝑛) =
1

2𝜋𝑖

∫
𝜕𝐷

𝑓 (𝑧′, 𝜁)
𝑃(𝑧′, 𝜁)(𝜁 − 𝑧𝑛)

𝑑𝜁

is equal to 𝑓 (𝑧′,𝑧𝑛)
𝑃(𝑧′,𝑧𝑛) . The function 𝑢 is clearly continuous and holomorphic in 𝑧𝑛 for

each fixed 𝑧′. Differentiating under the integral shows it is also holomorphic in 𝑧′. □

Example 6.2.4: Consider the zero set of 𝑓 (𝑧1, 𝑧2) = 𝑧2
2 − 𝑧1, a Weierstrass polynomial

in 𝑧2 of degree 𝑘 = 2. So 𝑧′ = 𝑧1. For all 𝑧1 except the origin there are two zeros, ±√𝑧1.
Call one of them 𝛼1(𝑧1) and one of them 𝛼2(𝑧1). Recall there is no continuous choice
of a square root that works for all 𝑧1, so no matter how you choose, 𝛼1 and 𝛼2 will not
be continuous. At the origin there is one zero of multiplicity two, so 𝛼1(0) = 𝛼2(0) = 0.
On the other hand, the symmetric functions 𝑐1(𝑧1) = −𝛼1(𝑧1) − 𝛼2(𝑧1) = 0 and
𝑐0(𝑧1) = 𝛼1(𝑧1)𝛼2(𝑧1) = −𝑧1 are holomorphic. See  Figure 6.3 .

Figure 6.3: Graphs of the real and imaginary parts of both branches ±√𝑧1. A possible
choice of branch 𝛼1(𝑧1) is drawn darker; note the discontinuity of its imaginary part. The
surface 𝑧2

2 − 𝑧1 = 0 does not cross itself in ℂ2, we just lack the dimensions to see it.
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The 𝑘 depends on the coordinates chosen. Consider 𝑔(𝑧1, 𝑧2) = − 𝑓 (𝑧2, 𝑧1) = 𝑧2−𝑧2
1,

which is a Weierstrass polynomial in 𝑧2 of degree 𝑘 = 1. In these coordinates, there is
only one zero for each 𝑧′, 𝛼1(𝑧1) = 𝑧2

1, and so 𝑐0(𝑧1) = −𝑧2
1.

A function 𝑓 (𝑧1, . . . , 𝑧𝑛) is symmetric if 𝑓 = 𝑓 ◦ 𝑝 for all permutations of the
variables 𝑝. The elementary symmetric functions of 𝛼1, . . . , 𝛼𝑘 are the coefficients
𝜎1, . . . , 𝜎𝑘 of the polynomial

𝑘∏
ℓ=1

(
𝑡 + 𝛼ℓ

)
= 𝑡𝑘 + 𝜎1 𝑡

𝑘−1 + · · · + 𝜎𝑘−2 𝑡
2 + 𝜎𝑘−1 𝑡 + 𝜎𝑘 .

So,
𝜎1 = 𝛼1 + 𝛼2 + · · · + 𝛼𝑘 ,

𝜎2 = 𝛼1𝛼2 + 𝛼1𝛼3 + · · · + 𝛼𝑘−1𝛼𝑘 ,
...

𝜎𝑘−1 = 𝛼2𝛼3 · · · 𝛼𝑘 + 𝛼1𝛼3𝛼4 · · · 𝛼𝑘 + · · · + 𝛼1𝛼2 · · · 𝛼𝑘−1,

𝜎𝑘 = 𝛼1𝛼2 · · · 𝛼𝑘 .
For example, when 𝑘 = 2, then 𝜎2 = 𝛼1𝛼2 and 𝜎1 = 𝛼1 + 𝛼2. The function 𝜎1 happens
to already be a power sum. We can write 𝜎2 as a polynomial in the power sums:

𝜎2 =
1
2

( (
𝛼1 + 𝛼2

)2 −
(
𝛼2

1 + 𝛼2
2
) )
.

In general, as we said we can write any 𝜎ℓ in terms of the power sums of the 𝛼 𝑗s.
The formulas for this are called the Newton’s identities or Girard–Newton formulas,
although we will avoid writing these down explicitly, and we leave finding them (or
just proving that they exist) as an exercise.

Exercise 6.2.1: Show that elementary symmetric functions are polynomials in the power
sums. Equivalently, show that the elementary symmetric functions 𝜎ℓ can be found in
terms of the power sums of the 𝛼 𝑗s.

Exercise 6.2.2: Prove the fundamental theorem of symmetric polynomials: Every
symmetric polynomial can be written as a polynomial in the elementary symmetric functions.
Use the following procedure. Using double induction, suppose the theorem is true if the
number of variables is less than 𝑘, and the theorem is true in 𝑘 variables for degree less
than 𝑑. Consider a symmetric 𝑃(𝑧1, . . . , 𝑧𝑘) of degree 𝑑. Write 𝑃(𝑧1, . . . , 𝑧𝑘−1, 0) by
induction hypothesis as a polynomial in the elementary symmetric functions of one less
variable. Use the same coefficients, but plug in the elementary symmetric functions of
𝑘 variables except the symmetric polynomial in 𝑘 variables of degree 𝑘, that is, except
𝑧1𝑧2 · · · 𝑧𝑘 . You will obtain a symmetric function 𝐿(𝑧1, . . . , 𝑧𝑘) and you need to show
𝐿(𝑧1, . . . , 𝑧𝑘−1, 0) = 𝑃(𝑧1, . . . , 𝑧𝑘−1, 0). Now use symmetry to prove that

𝑃(𝑧1, . . . , 𝑧𝑘) = 𝐿(𝑧1, . . . , 𝑧𝑘) + 𝑧1𝑧2 · · · 𝑧𝑘𝑄(𝑧1, . . . , 𝑧𝑘).

Then note that 𝑄 has lower degree and finish by induction.
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Exercise 6.2.3: Extend the previous exercise to power series. Suppose 𝑓 (𝑧1, . . . , 𝑧𝑘) is a
convergent symmetric power series at 0, show that 𝑓 can be written as a convergent power
series in the elementary symmetric functions.

Exercise 6.2.4: Suppose𝑃(𝑧′, 𝑧𝑛) is a Weierstrass polynomial of degree 𝑘, and write the zeros
as 𝛼1(𝑧′), . . . , 𝛼𝑘(𝑧′). These are not holomorphic functions, but suppose that 𝑓 is a symmet-
ric convergent power series at the origin in 𝑘 variables. Show that 𝑓

(
𝛼1(𝑧′), . . . , 𝛼𝑘(𝑧′)

)
is

a holomorphic function of 𝑧′ near the origin.

The hypotheses of the preparation theorem are not an obstacle. If a holomorphic
function 𝑓 is such that 𝑧𝑛 ↦→ 𝑓 (0, 𝑧𝑛) vanishes identically, then we can make a small
linear change of coordinates 𝐿 (𝐿 can be a matrix arbitrarily close to the identity)
such that 𝑓 ◦ 𝐿 satisfies the hypotheses of the theorem. For example, 𝑓 (𝑧1, 𝑧2, 𝑧3) =
𝑧1𝑧3 + 𝑧2𝑧3 does not satisfy the hypotheses of the theorem as 𝑓 (0, 0, 𝑧3) ≡ 0. But
for an arbitrarily small 𝜖 ≠ 0, replacing 𝑧2 with 𝑧2 + 𝜖𝑧3 leads to 𝑓 (𝑧1, 𝑧2, 𝑧3) =

𝑓 (𝑧1, 𝑧2 + 𝜖𝑧3, 𝑧3) = 𝑧1𝑧3 + 𝑧2𝑧3 + 𝜖𝑧2
3, and 𝑓 (0, 0, 𝑧3) = 𝜖𝑧2

3. Thence, 𝑓 satisfies the
hypotheses of the theorem.

Exercise 6.2.5: Prove the fact above about the existence of 𝐿 arbitrarily close to the identity.

Exercise 6.2.6: Prove that a monic polynomial 𝑃(𝜁) of one variable is uniquely determined
by its zeros up to multiplicity: If 𝑃 and 𝑄 are two monic polynomials with the same zeros
up to multiplicity, then 𝑃 = 𝑄. That proves the uniqueness of the Weierstrass polynomial.

Exercise 6.2.7: Suppose 𝐷 ⊂ ℂ is a bounded domain, 0 ∈ 𝐷, 𝑈′ ⊂ ℂ𝑛−1 is a domain,
0 ∈ 𝑈′, and 𝑃 ∈ O(𝑈′)[𝑧𝑛] is a Weierstrass polynomial such that 𝑃(𝑧′, 𝑧𝑛) is not zero on
𝑈′ × 𝜕𝐷. Show that for every 𝑧′ ∈ 𝑈 , all zeros of 𝑧𝑛 ↦→ 𝑃(𝑧′, 𝑧𝑛) are in 𝐷.

Exercise 6.2.8: Let 𝐷 ⊂ ℂ be a bounded domain, and𝑈′ ⊂ ℂ𝑛−1 a domain. Suppose 𝑓 is
a continuous function on𝑈′ × 𝐷 holomorphic on𝑈′ × 𝐷, where 𝑓 is zero on at least one
point of𝑈′ × 𝐷, and 𝑓 is never zero on𝑈′ × 𝜕𝐷. Prove that 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) has at least
one zero in 𝐷 for every 𝑧′ ∈ 𝑈′.

The order of vanishing of 𝑓 at the origin is a lower bound on the number 𝑘 in
the theorem. The order of vanishing for a certain variable may be larger than this
lower bound. If 𝑓 (𝑧1, 𝑧2) = 𝑧2

1 + 𝑧
3
2, then the 𝑘 we get is 3, but ord0 𝑓 = 2. We can

make a small linear change of coordinates to ensure 𝑘 = ord0 𝑓 . With the 𝑓 as above,
𝑓 (𝑧1 + 𝜖𝑧2, 𝑧2) gives 𝑘 = 2 as expected.

When 𝑘 = 1 in the Weierstrass preparation theorem, we obtain the Weierstrass
polynomial 𝑧𝑛+ 𝑐0(𝑧′). That is, the zero set of 𝑓 is a graph of the holomorphic function
−𝑐0. Therefore, the Weierstrass theorem is a generalization of the implicit function
theorem to the case when 𝜕 𝑓

𝜕𝑧𝑛
is zero. In such a case, we can still “solve” for 𝑧𝑛 , but we

find a 𝑘-valued solution given by the zeros of the obtained Weierstrass polynomial.
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There is an obvious statement of the preparation theorem for germs.

Exercise 6.2.9: State and prove a germ version of the preparation theorem.

The next theorem is rather trivial in one variable. Let 𝑓 be any holomorphic
function near the origin in ℂ and take any 𝑘 ∈ ℕ. Let 𝑟 be the Taylor polynomial for
𝑓 at 0 of degree 𝑘 − 1. Then 𝑓 − 𝑟 is divisible by 𝑧𝑘 , in other words, 𝑓 = 𝑞𝑧𝑘 + 𝑟. In
several variables, we replace 𝑧𝑘 with a Weierstrass polynomial and we still have this
division theorem.

Theorem 6.2.5 (Weierstrass division theorem). Suppose 𝑓 is holomorphic near the origin,
and suppose 𝑃 is a Weierstrass polynomial of degree 𝑘 ≥ 1 in 𝑧𝑛 . Then there exists a
neighborhood𝑉 of the origin and unique 𝑞, 𝑟 ∈ O(𝑉), where 𝑟 is a polynomial in 𝑧𝑛 of degree
less than 𝑘, and on 𝑉 ,

𝑓 = 𝑞𝑃 + 𝑟.
Note that 𝑟 need not be a Weierstrass polynomial; it need not be monic nor do

the coefficients need to vanish at the origin. It is simply a polynomial in 𝑧𝑛 with
coefficients that are holomorphic functions of the first 𝑛 − 1 variables.

Proof. Uniqueness is left as an exercise. There exists a connected neighborhood
𝑉 = 𝑉′ ×𝐷 of the origin, where 𝐷 is a disc, 𝑓 and 𝑃 are continuous on 𝑉′ ×𝐷, and 𝑃
is not zero on 𝑉′ × 𝜕𝐷. Let

𝑞(𝑧′, 𝑧𝑛) =
1

2𝜋𝑖

∫
𝜕𝐷

𝑓 (𝑧′, 𝜁)
𝑃(𝑧′, 𝜁)(𝜁 − 𝑧𝑛)

𝑑𝜁.

As 𝑃 is not zero on𝑉′×𝜕𝐷, the function 𝑞 is holomorphic in𝑉 (differentiate under the
integral). If 𝑃 did divide 𝑓 , then 𝑞 would really be 𝑓/𝑃. But if 𝑃 does not divide 𝑓 , then
the Cauchy integral formula does not apply and 𝑞 is not equal to 𝑓/𝑃. Interestingly,
the expression does give the quotient in the division with remainder.

Write 𝑓 using the Cauchy integral formula in 𝑧𝑛 and subtract 𝑞𝑃 to obtain 𝑟:

𝑟(𝑧′, 𝑧𝑛) = 𝑓 (𝑧′, 𝑧𝑛) − 𝑞(𝑧′, 𝑧𝑛)𝑃(𝑧′, 𝑧𝑛)

=
1

2𝜋𝑖

∫
𝜕𝐷

𝑓 (𝑧′, 𝜁)𝑃(𝑧′, 𝜁) − 𝑓 (𝑧′, 𝜁)𝑃(𝑧′, 𝑧𝑛)
𝑃(𝑧′, 𝜁)(𝜁 − 𝑧𝑛)

𝑑𝜁.

We need to show 𝑟 is a polynomial in 𝑧𝑛 of degree less than 𝑘. In the expression
inside the integral, the numerator is of the form

∑𝑘
ℓ=1 ℎℓ (𝑧′, 𝜁)(𝜁ℓ − 𝑧ℓ𝑛) and is therefore

divisible by (𝜁 − 𝑧𝑛). The numerator is a polynomial of degree 𝑘 in 𝑧𝑛 . After dividing
by (𝜁 − 𝑧𝑛), the integrand becomes a polynomial in 𝑧𝑛 of degree 𝑘 − 1. Use linearity
of the integral to integrate the coefficients of the polynomial. Each coefficient is a
holomorphic function in 𝑉′ and the proof is finished. Some coefficients may have
integrated to zero, so we can only say that 𝑟 is a polynomial of degree 𝑘 − 1 or less. □
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For example, let 𝑓 (𝑧, 𝑤) = 𝑒𝑧 + 𝑧4𝑒𝑤 + 𝑧𝑤2𝑒𝑤 + 𝑧𝑤 and 𝑃(𝑧, 𝑤) = 𝑤2 + 𝑧3. Then 𝑃
is a Weierstrass polynomial in 𝑤 of degree 𝑘 = 2. A bit of computation shows

1
2𝜋𝑖

∫
𝜕𝔻

𝑒𝑧 + 𝑧4𝑒𝜁 + 𝑧𝜁2𝑒𝜁 + 𝑧𝜁
(𝜁2 + 𝑧3)(𝜁 − 𝑤) 𝑑𝜁 = 𝑧𝑒𝑤 , so 𝑓 (𝑧, 𝑤) =

(
𝑧𝑒𝑤

)︸︷︷︸
𝑞

(
𝑤2 + 𝑧3)︸     ︷︷     ︸

𝑃

+ 𝑧𝑤 + 𝑒𝑧︸   ︷︷   ︸
𝑟

.

Notice that 𝑟 is a polynomial of degree 1 in 𝑤, but it is neither monic, nor do the
coefficients vanish at 0.

Exercise 6.2.10: Prove the uniqueness part of the theorem. Hint: Don’t forget that we
defined 𝑉 to be connected.

Exercise 6.2.11: State and prove a germ version of the division theorem.

The Weierstrass division theorem is a generalization of the division algorithm
for polynomials with coefficients in a field, such as the complex numbers: If 𝑓 (𝜁)
is a polynomial, and 𝑃(𝜁) is a nonzero polynomial of degree 𝑘, then there exist
polynomials 𝑞(𝜁) and 𝑟(𝜁) with degree of 𝑟 less than 𝑘 such that 𝑓 = 𝑞𝑃 + 𝑟. If the
coefficients are in a commutative ring, we can divide as long as 𝑃 is monic. The
Weierstrass division theorem says that we can divide by a monic 𝑃 ∈ 𝑛−1O𝑝[𝑧𝑛], even
if 𝑓 is a holomorphic function (a “polynomial of infinite degree”).

Remark 6.2.6. Despite what it looks like given our proofs, the preparation and division
theorems are really theorems about power series, and they also work with formal
power series, that is, power series which do not necessarily converge. Another
standard way to prove the theorems is to prove the formal version and then to prove
that in case we stick in convergent power series, the series we obtain back are also
convergent.

6.3 \ The dependence of zeros on parameters
Let us prove that the zeros change holomorphically as long as they do not come
together. We will prove shortly that the zeros come together only on a small set: a
zero set of a certain holomorphic function called the discriminant.

A set of zeros of a function of one variable are said to be geometrically distinct if
they are distinct points of ℂ. A zero is called geometrically unique if it is a unique
complex number. For example, (𝜁 − 1)2 has a geometrically unique zero at 1, and
(𝜁 − 1)2(𝜁 + 1) has two geometrically distinct zeros, 1 and −1.

Proposition 6.3.1. Let 𝑈′ ⊂ ℂ𝑛−1 and 𝐷 ⊂ ℂ be domains, and 𝑓 ∈ O(𝑈′ × 𝐷). Suppose
that for each fixed 𝑧′ ∈ 𝑈′ the function 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) has a geometrically unique zero
𝛼(𝑧′) ∈ 𝐷. Then 𝛼 is holomorphic in𝑈′.
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The proposition shows that the regularity conclusion of the holomorphic implicit
function theorem holds under the hypothesis that there exists some locally unique
solution for 𝑧𝑛 , regardless of the derivative vanishing or not. Such a result holds only
for holomorphic functions and not for real-analytic or smooth functions. For example,
𝑥2 − 𝑦3 = 0 has a unique real solution 𝑦 = 𝑥2/3, but 𝑥2/3 is not even differentiable.

Proof. We must show that 𝛼 is holomorphic near any point, which, without loss of
generality, is the origin and 𝛼(0) = 0. Apply the preparation theorem to find 𝑓 = 𝑢𝑃,
where 𝑃 is a Weierstrass polynomial in O(𝑉′)[𝑧𝑛] for some 𝑉′ ⊂ 𝑈′ and all zeros of
𝑧𝑛 ↦→ 𝑃(𝑧′, 𝑧𝑛) are in 𝐷. As 𝛼 is a geometrically unique zero in 𝐷,

𝑃(𝑧′, 𝑧𝑛) =
(
𝑧𝑛 − 𝛼(𝑧′)

) 𝑘
= 𝑧𝑘𝑛 − 𝑘𝛼(𝑧′)𝑧𝑘−1

𝑛 + · · ·

The coefficients of 𝑃 are holomorphic, so 𝛼 is holomorphic. □

Proposition 6.3.2. Let𝑈′ ⊂ ℂ𝑛−1 and 𝐷 ⊂ ℂ be domains, and 𝑓 ∈ O(𝑈′×𝐷). Let 𝑚 ∈ ℕ

be such that for each 𝑧′ ∈ 𝑈′, the function 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) has precisely 𝑚 geometrically
distinct zeros. Then locally near each point in 𝑈′ there exist 𝑚 holomorphic functions
𝛼1(𝑧′), . . . , 𝛼𝑚(𝑧′), positive integers 𝑘1, . . . , 𝑘𝑚 , and a nonvanishing holomorphic function
𝑢 such that

𝑓 (𝑧′, 𝑧𝑛) = 𝑢(𝑧′, 𝑧𝑛)
𝑚∏
ℓ=1

(
𝑧𝑛 − 𝛼ℓ (𝑧′)

) 𝑘ℓ .
Proof is left as an exercise. We can only define 𝛼1 through 𝛼𝑚 locally (on a smaller

domain) as we cannot consistently order 𝛼1 through 𝛼𝑚 as we move around𝑈′ if it is
not simply connected. If𝑈′ is simply connected, then the functions can be defined
globally by analytic continuation. For an example where𝑈′ is not simply connected,
recall  Example 6.2.4 . Consider 𝑈′ = ℂ \ {0} and think 𝐷 = ℂ rather than a disc
for simplicity. Then 𝑈′ is not simply connected, and there do not exist continuous
functions 𝛼1(𝑧1) and 𝛼2(𝑧1) defined in𝑈′ that are zeros of the Weierstrass polynomial,
that is 𝑧2

2 − 𝑧1 =
(
𝑧2 − 𝛼1(𝑧1)

) (
𝑧2 − 𝛼2(𝑧1)

)
. These would be the two square roots of 𝑧1,

and there is no continuous (let alone holomorphic) square root defined in ℂ \ {0}.
Such roots can be chosen to be holomorphic on any smaller simply connected open
subset of𝑈′, for example, on any disc Δ ⊂ 𝑈′.

Exercise 6.3.1: Let 𝐷 ⊂ ℂ be a bounded domain, 𝑈′ ⊂ ℂ𝑛−1 a domain, 𝑓 a continuous
function on 𝑈′ × 𝐷 holomorphic on 𝑈′ × 𝐷, where 𝑓 is zero on at least one point of
𝑈′ × 𝐷, and 𝑓 is never zero on𝑈′ × 𝜕𝐷. Suppose that for each fixed 𝑧′ ∈ 𝑈′, the function
𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) has at most one zero in 𝐷. Prove that for each 𝑧′ ∈ 𝑈′, 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛)
has exactly one zero in 𝐷. Note: By  Proposition 6.3.1 , that zero is a holomorphic function.

Exercise 6.3.2: Prove  Proposition 6.3.2 . See the exercise above and  Proposition 6.3.1 .
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Theorem 6.3.3. Let𝐷 ⊂ ℂ be a bounded domain,𝑈′ ⊂ ℂ𝑛−1 a domain, and 𝑓 ∈ O(𝑈′×𝐷).
Suppose the zero set 𝑓 −1(0) has no limit points on𝑈′× 𝜕𝐷. Then there exists an 𝑚 ∈ ℕ and
a holomorphic function Δ : 𝑈′ → ℂ, not identically zero, such that for every 𝑧′ ∈ 𝑈′ \ 𝐸,
where 𝐸 = Δ−1(0), 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) has exactly 𝑚 geometrically distinct zeros in 𝐷, and
𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) has strictly less than 𝑚 geometrically distinct zeros for 𝑧′ ∈ 𝐸.

The complement of a zero set of a holomorphic function is connected, open, and
dense. We call Δ the discriminant function and its zero set 𝐸 the discriminant set. For
the quadratic equation 𝑎(𝑧′)𝑧2

𝑛 + 𝑏(𝑧′)𝑧𝑛 + 𝑐(𝑧′) = 0, Δ is the discriminant we learned
about in high school: Δ = 𝑏2 − 4𝑎𝑐 (that is, this is equal to the Δ from the theorem
assuming we get at least two zeros at some 𝑧′).

Proof. The zeros of 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) are isolated, and there are finitely many for every 𝑧′
as𝐷 is bounded and 𝑓 −1(0) has no limit points on𝑈′×𝜕𝐷. For any 𝑝′ ∈ 𝑈′, we define
two useful paths. Let 𝛾 be the union of nonintersecting small simple closed curves
around small nonintersecting discs in 𝐷, one around each geometrically distinct zero
of 𝑧𝑛 ↦→ 𝑓 (𝑝′, 𝑧𝑛). Let 𝜆 be a large closed path in 𝐷 going exactly once around all the
zeros and such that the interior of 𝜆 is in 𝐷. Suppose 𝛾 and 𝜆 intersect no zeros. See

 Figure 6.4  . By continuity, the curves 𝛾 and 𝜆 do not intersect any zeros for 𝑧′ near 𝑝′.
Since the set 𝑓 −1(0) is closed and the zeros do not accumulate on𝑈′ × 𝜕𝐷, then for 𝑧′
near 𝑝′ the zeros stay a positive distance away from the boundary. So 𝜆 can be picked
to go around all the zeros of 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) exactly once for 𝑧′ near 𝑝′.

𝛾
𝛾 𝛾

𝛾

𝛼2(𝑝′)

roots of 𝑧𝑛 ↦→ 𝑓 (𝑝′, 𝑧𝑛)

𝛼3(𝑝′)

𝜆

𝑧𝑛-plane for fixed 𝑝′

𝛼4(𝑝′)𝛼1(𝑝′)

Figure 6.4: Curve around each zero.

Let 𝑀(𝑧′) be the number of zeros (counting multiplicity) of 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛). Given
any 𝑝′ pick a 𝜆 as above that contains all zeros of 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) for all 𝑧′ in some
neighborhood of 𝑝′. The argument principle show that

𝑀(𝑧′) = 1
2𝜋𝑖

∫
𝜆

𝜕 𝑓
𝜕𝑧𝑛

(𝑧′, 𝜁)
𝑓 (𝑧′, 𝜁) 𝑑𝜁,

and so𝑀 is constant in this neighborhood (it is an integer-valued continuous function).
So 𝑀 is a locally constant function on𝑈′, which is connected and so 𝑀 is constant.
The number of geometrically distinct zeros at any 𝑧′ is bounded by 𝑀, although the
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number of geometrically distinct zeros may not be constant. Let 𝑚 be the maximal
number of geometrically distinct zeros and suppose that at some point in𝑈′, there
are exactly 𝑚 geometrically distinct zeros.

Let 𝑈′
𝑚 ⊂ 𝑈′ be the set of 𝑧′ ∈ 𝑈′ for which 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) has exactly 𝑚

geometrically distinct zeros. Write𝑈′ as a union of disjoint sets𝑈′ = 𝑈′
𝑚 ∪ 𝐸, where

𝐸 = 𝑈′ \ 𝑈′
𝑚 . By definition of 𝑚, 𝑈′

𝑚 is nonempty. Suppose 𝑝′ ∈ 𝑈′
𝑚 and 𝛾 goes

around the zeros as above. Let 𝛾𝑗 be a single component curve of the path 𝛾 going
around one of the zeros. The argument principle with respect to 𝛾𝑗 says that 𝛾𝑗 must
contain at least one zero for all 𝑧′ near 𝑝′. There are finitely many components of 𝛾,
so for 𝑧′ in some neighborhood of 𝑝′, 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) has at least 𝑚 zeros in 𝛾 (at least
one in each component), and as 𝑚 is the maximum, it has exactly 𝑚 zeros. In other
words,𝑈′

𝑚 is open.
Locally on𝑈′

𝑚 , there exist 𝑚 holomorphic functions 𝛼1, . . . , 𝛼𝑚 giving the zeros
by the previous proposition. We cannot define these on all of𝑈′

𝑚 as we do not know
how they are ordered. The function

Δ(𝑧′) =
∏
𝑗≠𝑘

(
𝛼 𝑗(𝑧′) − 𝛼𝑘(𝑧′)

)
defined for 𝑧′ ∈ 𝑈′

𝑚 does not depend on the order. That means Δ is well-defined as a
function on the open set𝑈′

𝑚 , and since 𝛼𝑘 can locally be picked to be holomorphic, Δ
is holomorphic.

Let 𝑝′ ∈ 𝐸 ∩𝑈′
𝑚 , so there are fewer than 𝑚 zeros at 𝑝′. Suppose 𝛾 and 𝜆 are as

above, so there are fewer than 𝑚 components of 𝛾. In each component 𝛾𝑗 of 𝛾, there
is at least one zero for all 𝑧′ near 𝑝′ by the same argument as above. The path 𝜆 goes
around all the zeros of 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) for 𝑧′ near 𝑝′. The number of between 𝜆 and 𝛾
at 𝑧′ is

1
2𝜋𝑖

∫
𝜆−𝛾

𝜕 𝑓
𝜕𝑧𝑛

(𝑧′, 𝜁)
𝑓 (𝑧′, 𝜁) 𝑑𝜁,

which is a continuous integer-valued function that is zero at 𝑧′ = 𝑝′ and so it is zero
in a neighborhood. Thus there are no zeros between 𝛾 and 𝜆. As 𝜆 goes around all
the zeros for 𝑧′ near 𝑝′, all zeros of 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) lie inside 𝛾 for 𝑧′ near 𝑝′. There
exist such 𝑧′ ∈ 𝑈′

𝑚 arbitrarily near 𝑝′, in which case, by pidgeonhole principle, some
component 𝛾𝑗 contains at least two geometrically distinct zeros of 𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛).
Let {𝑧′

ℓ
} be an arbitrary sequence of points in 𝑈′

𝑚 going to 𝑝′. As the number of
components of 𝛾 is finite, we pass to a subsequence so that there is some fixed
component 𝛾𝑗 of 𝛾 where 𝑧𝑛 ↦→ 𝑓 (𝑧′

ℓ
, 𝑧𝑛) has at least two distinct zeros in 𝛾𝑗 for every

𝑧′
ℓ
. Label the two distinct zeros as 𝛼1(𝑧′ℓ ) and 𝛼2(𝑧′ℓ ). At 𝑝′ there is only a single

(geometrically) zero in 𝛾𝑗 , let us name it 𝛼1(𝑝′). As 𝑓 −1(0) is closed, 𝛼1(𝑧′ℓ ) and 𝛼2(𝑧′ℓ )
both approach 𝛼1(𝑝′) as ℓ → ∞. The zeros are bounded, so limℓ→∞ Δ(𝑧′

ℓ
) = 0. As the

limit is zero for a subsequence of an arbitrary sequence,

lim
𝑧′∈𝑈′

𝑚→𝑝′
Δ(𝑧′) = 0.
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We have already defined Δ on𝑈′
𝑚 , where it is nonzero, so set Δ(𝑧′) = 0 for 𝑧′ ∈ 𝐸.

The function Δ is continuous on𝑈′ and is zero precisely on 𝐸 and holomorphic on
𝑈′
𝑚 . Radó’s theorem ( Theorem 2.4.12 ) says that Δ is holomorphic in𝑈′. □

The discriminant given above is really the discriminant of the set 𝑓 −1(0) rather than
of the corresponding function, which we can, via the preparation theorem, assume
is a Weierstrass polynomial. For Weierstrass polynomials, the discriminant is often
defined as

∏
𝑗≠𝑘

(
𝛼 𝑗(𝑧′) − 𝛼𝑘(𝑧′)

)
taking multiple zeros into account, and therefore the

“discriminant” could be identically zero. It will be clear from upcoming exercises that
if the Weierstrass polynomial is irreducible, then the two notions do in fact coincide.

Exercise 6.3.3: Prove that if 𝑓 ∈ O(𝑈), then𝑈 \ 𝑓 −1(0) is not simply connected if 𝑓 −1(0)
is nonempty. In particular, in the theorem,𝑈′ \ 𝐸 is not simply connected if 𝐸 ≠ ∅.

Exercise 6.3.4: Let 𝐷 ⊂ ℂ be a bounded domain and𝑈′ ⊂ ℂ𝑛−1 a domain. Suppose 𝑓 is
a continuous function on𝑈′ ×𝐷 holomorphic on𝑈′ ×𝐷, and 𝑓 is never zero on𝑈′ × 𝜕𝐷.
Suppose 𝛾 : [0, 1] → 𝑈′ is continuous and 𝑓

(
𝛾(0), 𝑐

)
= 0 for some 𝑐 ∈ 𝐷. Prove that

there exists a continuous 𝛼 : [0, 1] → ℂ such that 𝛼(0) = 𝑐 and 𝑓
(
𝛾(𝑡), 𝛼(𝑡)

)
= 0 for all

𝑡 ∈ [0, 1]. Hint: Start with a path arbitrarily close to 𝛾 that misses the discriminant.

6.4 \ Properties of the ring of germs
Given a commutative ring 𝑅, an ideal 𝐼 ⊂ 𝑅 is a subset such that firstly, 𝑓 𝑔 ∈ 𝐼

whenever 𝑓 ∈ 𝑅 and 𝑔 ∈ 𝐼, and secondly, 𝑔 + ℎ ∈ 𝐼 whenever 𝑔, ℎ ∈ 𝐼. An intersection
of ideals is again an ideal, and hence it makes sense to talk about the smallest ideal
containing a set of elements. An ideal 𝐼 is generated by 𝑓1, . . . , 𝑓𝑘 if 𝐼 is the smallest
ideal containing { 𝑓1, . . . , 𝑓𝑘}. We then write 𝐼 = ( 𝑓1, . . . , 𝑓𝑘). Every element in 𝐼 can be
written as 𝑐1 𝑓1 + · · · + 𝑐𝑘 𝑓𝑘 where 𝑐1, . . . , 𝑐𝑘 ∈ 𝑅. A principal ideal is an ideal generated
by a single element, that is, ( 𝑓 ).

For convenience, when talking about germs of functions, we often identify a
representative with the germ when the context is clear. So by abuse of notation, we
may write 𝑓 ∈ O𝑝 instead of ( 𝑓 , 𝑝) ∈ O𝑝 and ( 𝑓1, . . . , 𝑓𝑘) instead of

(
( 𝑓1, 𝑝), . . . , ( 𝑓𝑘 , 𝑝)

)
.

As in the following exercises.

Exercise 6.4.1:
a) Suppose 𝑓 ∈ O𝑝 , 𝑓 (𝑝) ≠ 0, and ( 𝑓 ) is the ideal generated by 𝑓 . Prove ( 𝑓 ) = O𝑝 .
b) Let 𝔪𝑝 = (𝑧1 − 𝑝1, . . . , 𝑧𝑛 − 𝑝𝑛) ⊂ O𝑝 be the ideal generated by the coordinate

functions. Show that if 𝑓 (𝑝) = 0, then 𝑓 ∈ 𝔪𝑝 .
c) Show that if 𝐼 ⊊ O𝑝 is a proper ideal (ideal such that 𝐼 ≠ O0), then 𝐼 ⊂ 𝔪𝑝 , that is,

𝔪𝑝 is a maximal ideal.
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Exercise 6.4.2: Suppose 𝑛 = 1. Show that 1O𝑝 is a principal ideal domain (PID), that
is, every ideal is a principal ideal. More precisely, show that given an ideal 𝐼 ⊂ 1O𝑝 , then
there exists a 𝑘 = 0, 1, 2, . . ., such that 𝐼 =

(
(𝑧 − 𝑝)𝑘

)
.

Exercise 6.4.3: If𝑈,𝑉 ⊂ ℂ𝑛 are two neighborhoods of 𝑝 and ℎ : 𝑈 → 𝑉 is a biholomor-
phism. First prove that it makes sense to talk about 𝑓 ◦ ℎ for any ( 𝑓 , 𝑝) ∈ O𝑝 . Then prove
that 𝑓 ↦→ 𝑓 ◦ ℎ is a ring isomorphism.

A commutative ring 𝑅 is Noetherian if every ideal in 𝑅 is finitely generated. That
is, for every ideal 𝐼 ⊂ 𝑅 there exist finitely many generators 𝑓1, . . . , 𝑓𝑘 ∈ 𝐼: Every 𝑔 ∈ 𝐼
can be written as 𝑔 = 𝑐1 𝑓1 + · · · + 𝑐𝑘 𝑓𝑘 , for some 𝑐1, . . . , 𝑐𝑘 ∈ 𝑅. In an exercise, you
proved 1O𝑝 is a PID. So 1O𝑝 is Noetherian. In higher dimensions, the ring of germs
may not be a PID, but it is Noetherian.
Theorem 6.4.1. O𝑝 is Noetherian.

Proof. Without loss of generality, 𝑝 = 0. The proof is by induction on dimension. By
 Exercise 6.4.2 , 1O0 is Noetherian. By  Exercise 6.4.3 , we are allowed a biholomorphic
change of coordinates near the origin.

For induction, suppose 𝑛−1O0 is Noetherian and let 𝐼 ⊂ 𝑛O0 be an ideal. If 𝐼 = {0}
or 𝐼 = 𝑛O0, then the assertion is obvious. Therefore, assume that all elements of 𝐼
vanish at the origin (𝐼 ≠ 𝑛O0), and that there exist elements that are not identically
zero (𝐼 ≠ {0}). Let 𝑔 be such an element. After perhaps a linear change of coordinates,
assume 𝑔 is a Weierstrass polynomial in 𝑧𝑛 by the preparation theorem.

The ring 𝑛−1O0[𝑧𝑛] is a subring of 𝑛O0. The set 𝐽 = 𝑛−1O0[𝑧𝑛] ∩ 𝐼 is an ideal in the
ring 𝑛−1O0[𝑧𝑛]. By the Hilbert basis theorem (see  Theorem D.4  in the appendix for
a proof), as 𝑛−1O0 is Noetherian, the ring 𝑛−1O0[𝑧𝑛] is also Noetherian. Thus 𝐽 has
finitely many generators, that is, 𝐽 = (ℎ1, . . . , ℎ𝑘) in the ring 𝑛−1O0[𝑧𝑛].

By the division theorem, every 𝑓 ∈ 𝐼 is of the form 𝑓 = 𝑞𝑔 + 𝑟, where 𝑟 ∈
𝑛−1O0[𝑧𝑛] and 𝑞 ∈ 𝑛O0. As 𝑓 and 𝑔 are in 𝐼, so is 𝑟. As 𝑔 and 𝑟 are in 𝑛−1O0[𝑧𝑛],
they are both in 𝐽. Write 𝑔 = 𝑐1ℎ1 + · · · + 𝑐𝑘ℎ𝑘 and 𝑟 = 𝑑1ℎ1 + · · · + 𝑑𝑘ℎ𝑘 . Then
𝑓 = (𝑞𝑐1 + 𝑑1)ℎ1 + · · · + (𝑞𝑐𝑘 + 𝑑𝑘)ℎ𝑘 . So ℎ1, . . . , ℎ𝑘 also generate 𝐼 in 𝑛O0. □

Exercise 6.4.4: Prove that every proper ideal 𝐼 ⊂ O0 where 𝐼 ≠ {0} is generated by
Weierstrass polynomials. As a technicality, note that a Weierstrass polynomial of degree 0
is just 1, so it works for 𝐼 = O0.

Exercise 6.4.5: We saw above that 1O𝑝 is a PID. Prove that if 𝑛 > 1, then 𝑛O𝑝 is not a PID.

In a commutative ring 𝑅, 𝑓 ∈ 𝑅 is irreducible if 𝑓 is not a unit and whenever 𝑓 = 𝑔ℎ,
either 𝑔 or ℎ is a unit.
Theorem 6.4.2. O𝑝 is a unique factorization domain (UFD). That is, up to a multiplication
by a unit, every nonzero nonunit has a unique factorization into irreducible elements of O𝑝 .
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Proof. Again assume 𝑝 = 0 and induct on the dimension. The one-dimensional
statement is an exercise below. If 𝑛−1O0 is a UFD, then 𝑛−1O0[𝑧𝑛] is a UFD by the
Gauss lemma (see  Theorem D.6 ).

Take 𝑓 ∈ 𝑛O0 such that 𝑓 (0) = 0 and 𝑓 . 0. After perhaps a linear change of
coordinates 𝑓 = 𝑞𝑃, for 𝑞 a unit in 𝑛O0, and 𝑃 a Weierstrass polynomial in 𝑧𝑛 . As
𝑛−1O0[𝑧𝑛] is a UFD, 𝑃 has a unique factorization in 𝑛−1O0[𝑧𝑛] into 𝑃 = 𝑃1𝑃2 · · · 𝑃𝑘 . So
𝑓 = 𝑞𝑃1𝑃2 · · · 𝑃𝑘 . That 𝑃ℓ are irreducible in 𝑛O0 is left as an exercise.

Suppose 𝑓 = �̃� 𝑔1𝑔2 · · · 𝑔𝑚 is another factorization. The preparation theorem
applies to each 𝑔ℓ . Therefore, write 𝑔ℓ = 𝑢ℓ𝑃ℓ for a unit 𝑢ℓ and a Weierstrass
polynomial 𝑃ℓ . We obtain 𝑓 = 𝑢𝑃1𝑃2 · · · 𝑃𝑚 for a unit 𝑢. By uniqueness part of the
preparation theorem we obtain 𝑃 = 𝑃1𝑃2 · · · 𝑃𝑚 . The conclusion is obtained by noting
that 𝑛−1O0[𝑧𝑛] is a UFD. □

Exercise 6.4.6: Prove that 1O𝑝 is a UFD.

Exercise 6.4.7: Show that an irreducible element of 𝑛−1O0[𝑧𝑛], is irreducible in 𝑛O0.

6.5 \ Varieties

As before, if 𝑓 : 𝑈 → ℂ is a function, let 𝑍 𝑓 = 𝑓 −1(0) ⊂ 𝑈 denote the zero set of 𝑓 .

Definition 6.5.1. Let 𝑈 ⊂ ℂ𝑛 be an open set. Let 𝑋 ⊂ 𝑈 be a set such that near
each point 𝑝 ∈ 𝑈 , there exists a neighborhood𝑊 of 𝑝 and a family of holomorphic
functions Fdefined on𝑊 such that

𝑊 ∩ 𝑋 =
{
𝑧 ∈𝑊 : 𝑓 (𝑧) = 0 for all 𝑓 ∈ F

}
=

⋂
𝑓 ∈F

𝑍 𝑓 .

Then 𝑋 is called a (complex or complex-analytic) variety or a subvariety of𝑈 . Sometimes
𝑋 is called an analytic set. We say 𝑋 ⊂ 𝑈 is a proper subvariety if ∅ ≠ 𝑋 ⊊ 𝑈 .

We generally leave out the “complex” from “complex subvariety” as it is clear
from context. But you should know that there are other types of subvarieties, namely
real subvarieties given by real-analytic functions. We will not cover those in this book.

Example 6.5.2: The set 𝑋 = {0} ⊂ ℂ𝑛 is a subvariety as it is the only common
vanishing point of the functions F= {𝑧1, . . . , 𝑧𝑛}. Similarly, 𝑋 = ℂ𝑛 is a subvariety
of ℂ𝑛 , where we let F= ∅.

Example 6.5.3: The set defined by 𝑧2 = 𝑒1/𝑧1 is a subvariety of𝑈 =
{
𝑧 ∈ ℂ2 : 𝑧1 ≠ 0

}
.

It is not a subvariety of any open set larger than𝑈 .



6.5. VARIETIES 183

It is useful to note what happens when we replace “near each point 𝑝 ∈ 𝑈” with
“near each point 𝑝 ∈ 𝑋.” We get a slightly different concept, and 𝑋 is said to be a local
variety. A local variety 𝑋 is a subvariety of some neighborhood of 𝑋, but it is not
necessarily closed in𝑈 . As a simple example, the set 𝑋 =

{
𝑧 ∈ ℂ2 : 𝑧1 = 0, |𝑧2 | < 1

}
is a local variety, but not a subvariety of ℂ2. On the other hand, 𝑋 is a subvariety of
the unit ball

{
𝑧 ∈ ℂ2 : ∥𝑧∥ < 1

}
.

Note that Fdepends on 𝑝 and near each point may have a different set of functions.
Clearly the family F is not unique. A priori, we let Fbe infinite, but let us note why
it would be sufficient to restrict to finite families F.

We work with germs of functions. Recall, that when ( 𝑓 , 𝑝) is a germ of a function
the germ (𝑍 𝑓 , 𝑝) is the germ of the zero set of some representative. Let

𝐼𝑝(𝑋) def
=

{
( 𝑓 , 𝑝) ∈ O𝑝 : (𝑋, 𝑝) ⊂ (𝑍 𝑓 , 𝑝)

}
.

That is, 𝐼𝑝(𝑋) is the set of germs of holomorphic functions vanishing on 𝑋 near 𝑝. The
sum of two functions that vanish on 𝑋 also vanishes on 𝑋, and if a function vanishes
on 𝑋, then any multiple of it also vanishes on 𝑋. So 𝐼𝑝(𝑋) is an ideal. Really 𝐼𝑝(𝑋)
depends only on the germ of 𝑋 at 𝑝, so define 𝐼𝑝

(
(𝑋, 𝑝)

)
= 𝐼𝑝(𝑋).

As O𝑝 is Noetherian, every ideal in O𝑝 is finitely generated. Let 𝐼 ⊂ O𝑝 be an ideal
generated by 𝑓1, 𝑓2, . . . , 𝑓𝑘 . Write

𝑉𝑝(𝐼)
def
= (𝑍 𝑓1 , 𝑝) ∩ (𝑍 𝑓2 , 𝑝) ∩ · · · ∩ (𝑍 𝑓𝑘 , 𝑝).

That is, 𝑉𝑝(𝐼) is the germ of the subvariety “cut out” by the elements of 𝐼, since
every element of 𝐼 vanishes on the points where all the generators vanish. Suppose
representatives 𝑓1, . . . , 𝑓𝑘 of the generators are defined in some neighborhood𝑊 of 𝑝,
and a germ (𝑔, 𝑝) ∈ 𝐼 has a representative 𝑔 defined in𝑊 such that 𝑔 = 𝑐1 𝑓1+· · ·+𝑐𝑘 𝑓𝑘 ,
where 𝑐𝑘 are also holomorphic functions on𝑊 . If 𝑞 ∈ 𝑍 𝑓1 ∩ · · · ∩ 𝑍 𝑓𝑘 , then 𝑔(𝑞) = 0.
Thus, 𝑍 𝑓1 ∩ · · · ∩ 𝑍 𝑓𝑘 ⊂ 𝑍𝑔 , or in terms of germs, 𝑉𝑝(𝐼) ⊂ (𝑍𝑔 , 𝑝). The reason why we
did not define 𝑉𝑝(𝐼) to be the intersection of zero sets of all germs in 𝐼 is that this
would be an infinite intersection, and we did not define such an object for germs.

Exercise 6.5.1: Show that 𝑉𝑝(𝐼) is independent of the choice of generators.

Exercise 6.5.2: Suppose 𝐼𝑝(𝑋) is generated by the functions 𝑓1, 𝑓2, . . . , 𝑓𝑘 . Prove

(𝑋, 𝑝) = (𝑍 𝑓1 , 𝑝) ∩ (𝑍 𝑓2 , 𝑝) ∩ · · · ∩ (𝑍 𝑓𝑘 , 𝑝).

Exercise 6.5.3: Given a germ (𝑋, 𝑝) of a subvariety at 𝑝, show 𝑉
(
𝐼𝑝(𝑋)

)
= (𝑋, 𝑝) (see

above). Then given an ideal 𝐼 ⊂ O𝑝 , show 𝐼𝑝
(
𝑉𝑝(𝐼)

)
⊃ 𝐼.

Exercise 6.5.4: Let 𝑋 ⊂ ℂ𝑛 be a subvariety that is a complex cone, in other words, if
𝑧 ∈ 𝑋, then 𝜆𝑧 ∈ 𝑋 for all 𝜆 ∈ ℂ. Prove that 𝐼0(𝑋) is generated by finitely many
homogeneous polynomials. Hint: Given any 𝑓 holomorphic near 0 that vanishes on 𝑋,
write 𝑓 =

∑
𝑘 𝑓𝑘(𝑧) where 𝑓𝑘 are homogeneous polynomials. Show that 𝑓𝑘 vanish on 𝑋.

Use that Hilbert basis theorem applies and so the ring of polynomials is Noetherian.
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Exercise 6.5.5: Suppose Ω ⊂ ℂ𝑛 is a domain, 𝑈 ⊂ ℂ𝑘 open, 𝑓 : Ω → 𝑈 holomorphic,
and 𝑋 ⊂ 𝑈 is a subvariety. Suppose that there exists a nonempty open subset𝑊 ⊂ Ω such
that 𝑓 (𝑊) ⊂ 𝑋. Prove that 𝑓 (Ω) ⊂ 𝑋.

The ideal 𝐼𝑝(𝑋) is finitely generated. Near each point 𝑝 only finitely many functions
are necessary to define a subvariety, that is, by an exercise above, those functions “cut
out” the subvariety. When one says defining functions for a germ of a subvariety, one
generally means that those functions generate the ideal, not just that their common
zero set happens to be the subvariety. A theorem that we will not prove here in full
generality, the Nullstellensatz, says that if we take the germ of a subvariety defined by
functions in an ideal 𝐼 ⊂ O𝑝 , and look at the ideal given by that subvariety, we obtain
the radical of 𝐼. The radical of 𝐼 is defined as

√
𝐼

def
= { 𝑓 : 𝑓 𝑚 ∈ 𝐼 for some 𝑚}. In more

concise language, the Nullstellensatz says 𝐼𝑝
(
𝑉𝑝(𝐼)

)
=
√
𝐼. Germs of subvarieties are

in one-to-one correspondence with radical ideals of O𝑝 .

Example 6.5.4: The subvariety 𝑋 = {0} ⊂ ℂ2 can be given by F =
{
𝑧2

1 , 𝑧
2
2
}
. If

𝐼 =
(
𝑧2

1 , 𝑧
2
2
)
⊂ O0 is the ideal of germs generated by these two functions, then

𝐼0(𝑋) ≠ 𝐼. We have seen that the ideal 𝐼0(𝑋) is the maximal ideal 𝔪0 = (𝑧1, 𝑧2). As
𝐼 ⊂ (𝑧1, 𝑧2) = 𝔪0 and the square of 𝑧1 and 𝑧2 are both in 𝐼, we find

√
𝐼 = (𝑧1, 𝑧2) = 𝔪0.

The local properties of a subvariety at 𝑝 are encoded in the properties of the ideal
𝐼𝑝(𝑋). Therefore, the study of subvarieties often involves the study of the various
algebraic properties of the ideals of O𝑝 . Let us also mention in passing that the other
object that is studied is the so-called coordinate ring O𝑝/𝐼𝑝(𝑋), which represents the
functions on (𝑋, 𝑝). That is, we identify two functions if they differ by something in
the ideal, since then they are equal on 𝑋.

At most points a subvariety is like a piece of ℂ𝑘 , more precisely like a graph over
ℂ𝑘 . A graph of 𝑓 : 𝑈′ ⊂ ℂ𝑘 → ℂ𝑛−𝑘 is the set Γ 𝑓 ⊂ 𝑈′×ℂ𝑛−𝑘 ⊂ ℂ𝑘 ×ℂ𝑛−𝑘 defined by

Γ 𝑓
def
=

{
(𝑧, 𝑤) ∈ 𝑈′ ×ℂ𝑛−𝑘 : 𝑤 = 𝑓 (𝑧)

}
.

Definition 6.5.5. Let𝑈 ⊂ ℂ𝑛 be open and 𝑋 ⊂ 𝑈 a subvariety. Let 𝑝 ∈ 𝑋 be a point
where after a permutation of coordinates, the set 𝑋 is a graph of a holomorphic
mapping near 𝑝. That is, after relabeling coordinates, there is a neighborhood
𝑈′ ×𝑈′′ ⊂ ℂ𝑘 ×ℂ𝑛−𝑘 of 𝑝, for some 𝑘 = 0, 1, . . . , 𝑛, and a holomorphic 𝑓 : 𝑈′ → ℂ𝑛−𝑘

such that
𝑋 ∩ (𝑈′ ×𝑈′′) = Γ 𝑓 .

Then 𝑝 is a regular point (or a simple point) of 𝑋 and the (complex) dimension of 𝑋 at 𝑝
is 𝑘. We write dim𝑝 𝑋 = 𝑘. As the ambient 

*
 dimension is 𝑛 (𝑋 is a subvariety of𝑈),

we say 𝑋 is of codimension 𝑛 − 𝑘 at 𝑝. If all points of 𝑋 are regular points of dimension
𝑘, then 𝑋 is a complex manifold, or a complex submanifold, of (complex) dimension 𝑘.

*The word ambient is used often to mean the set that contains whatever object we are talking about.
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The set of regular points of 𝑋 is denoted by 𝑋reg. Any point that is not regular is
singular. The set of singular points of 𝑋 is denoted by 𝑋sing.

A couple of remarks are in order. A subvariety 𝑋 can have regular points of
several different dimensions, although if a point is a regular point of dimension 𝑘,
then all nearby points are regular points of dimension 𝑘 as the same𝑈′ and𝑈′′ works.
In particular, 𝑋reg is an open subset of 𝑋. An isolated point of 𝑋 is automatically
a regular point of dimension 0. Sometimes the empty set is considered a complex
manifold of dimension −1 (or −∞). Although it may not perhaps be immediately
clear, but it is not difficult to show that the definition of a regular point is invariant
under biholomorphic changes of coordinates ( Exercise 6.5.8 ). Finally, we remark is
that dimension is well-defined ( Exercise 6.5.6 ).

Example 6.5.6: The set𝑈 = ℂ𝑛 is a complex submanifold of dimension 𝑛 (codimension
0). In particular,𝑈reg = 𝑈 and𝑈sing = ∅.

The set 𝑀 =
{
𝑧 ∈ ℂ3 : 𝑧3 = 𝑧2

1 − 𝑧2
2
}

is a complex submanifold of dimension 2
(codimension 1). Again, 𝑀reg = 𝑀 and 𝑀sing = ∅.

On the other hand, the so-called cusp, 𝐶 =
{
𝑧 ∈ ℂ2 : 𝑧3

1 − 𝑧
2
2 = 0

}
is not a complex

submanifold. The origin is a singular point of 𝐶 (see exercise below). At every other
point, we can write 𝑧2 = ±𝑧3/2

1 , so 𝐶reg = 𝐶 \ {0}, and so 𝐶sing = {0}. The dimension
at every regular point is 1. See  Figure 6.5 for a plot of 𝐶 in two real dimensions.

Another type of singularity could be where two complex manifolds intersect.
For example, 𝑋 = {𝑧 ∈ ℂ2 : 𝑧2

1 − 𝑧
2
2 = 0} is the union of the two complex manifolds

of dimension 1 given by 𝑧1 + 𝑧2 = 0 and 𝑧1 − 𝑧2 = 0. In this case 𝑋sing = {0} and
𝑋reg = 𝑋 \ {0}. See  Figure 6.5 for a plot of 𝑋 in two real dimensions.
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Figure 6.5: The cusp 𝐶 (left), and the intersecting manifolds 𝑋 (right).

Exercise 6.5.6: Prove that if 𝑝 is a regular point of a subvariety 𝑋 ⊂ 𝑈 ⊂ ℂ𝑛 of a domain
𝑈 , then the dimension at 𝑝 is well-defined. Hint: If there were two possible𝑈′ of different
dimension (possibly different affine coordinates), construct a map from one such 𝑈′ to
another such𝑈′ with nonvanishing derivative.
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Exercise 6.5.7: Consider the cusp 𝐶 =
{
𝑧 ∈ ℂ2 : 𝑧3

1 − 𝑧
2
2 = 0

}
. Prove that the origin is

not a regular point of 𝐶.

Exercise 6.5.8: Show that 𝑝 is a regular point of dimension 𝑘 of a subvariety 𝑋 if and
only if there exists a local biholomorphic change of coordinates that puts 𝑝 to the origin and
near 0, 𝑋 is given by 𝑤 = 0, where (𝑧, 𝑤) ∈ ℂ𝑘 × ℂ𝑛−𝑘 . In other words, if we allow a
biholomorphic change of coordinates instead of just reordering of coordinates, we can let
𝑓 = 0 in the definition.

We also define dimension at a singular point. Below, we will prove that the set
of regular points is not only nonempty, but also dense in any subvariety, and so
arbitrarily near to every point, there is a regular point.

Definition 6.5.7. Let 𝑋 ⊂ 𝑈 ⊂ ℂ𝑛 be a subvariety of 𝑈 . Let 𝑝 ∈ 𝑋 be a point. We
define the (complex) dimension of 𝑋 at 𝑝 to be

dim𝑝 𝑋
def
= max

{
𝑘 ∈ ℕ0 : ∀ neighbhds. 𝑊 of 𝑝, ∃ 𝑞 ∈𝑊 ∩ 𝑋reg with dim𝑞 𝑋 = 𝑘

}
.

If (𝑋, 𝑝) is a germ and 𝑋 a representative, the dimension of (𝑋, 𝑝) is the dimension of
𝑋 at 𝑝. The dimension of the entire subvariety 𝑋 is defined to be

dim𝑋
def
= max

𝑝∈𝑋reg
dim𝑝 𝑋.

We say that 𝑋 is of pure dimension 𝑘 if at all regular points 𝑝, dimension of 𝑋 at 𝑝 is 𝑘.
We say a germ (𝑋, 𝑝) is of pure dimension 𝑘 if there exists a representative of 𝑋 that
is of pure dimension 𝑘. We define the word codimension as before, that is, the ambient
dimension minus the dimension of 𝑋.

Example 6.5.8: The cusp 𝐶 =
{
𝑧 ∈ ℂ2 : 𝑧3

1 − 𝑧
2
2 = 0

}
is of dimension 1 at all the regular

points, and the only singular point is the origin. Hence dim0 𝐶 = 1, and so dim𝐶 = 1.
The subvariety 𝐶 is of pure dimension 1.

Let us restate  Theorem 1.6.2  we proved in  section 1.6 in the language of varieties.

Theorem 6.5.9. Let 𝑈 ⊂ ℂ𝑛 be a domain and 𝑓 ∈ O(𝑈). Then 𝑍 𝑓 is empty, 𝑍 𝑓 is a
subvariety of pure codimension 1, or 𝑍 𝑓 = 𝑈 . Furthermore, (𝑍 𝑓 )reg is open and dense in 𝑍 𝑓 .

Let us improve on this for arbitrary varieties.

Lemma 6.5.10. Let𝑈 ⊂ ℂ𝑛 be open and let 𝑋 ⊂ 𝑈 be a subvariety, then 𝑋reg is nonempty.
Consequently, 𝑋reg is open and dense in 𝑋.

Proof. In the same way that we proved  Theorem 1.6.2 , by intersecting 𝑋 with arbitrary
neighborhoods, it is sufficient to show the existence of one regular point.

We will induct on dimension. For 𝑛 = 1, the only subvarieties are either isolated
points or entire components of 𝑈 , so all points are regular. Suppose the lemma is
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true in dimension 𝑛 − 1. It is enough to find a regular point in some neighborhood
of some point 𝑝 ∈ 𝑋. Suppose 𝑝 = 0 for simplicity. Either 𝑋 contains a whole
neighborhood of 0, in which case 0 is a regular point, or there is some holomorphic
function 𝑓 near 0 that vanishes on 𝑋. After a small linear change of coordinates, the
Weierstrass preparation theorem applies and we can assume that 𝑓 is a Weierstrass
polynomial. Write the variables as (𝑧1, . . . , 𝑧𝑛−1, 𝑧𝑛) = (𝑧′, 𝑧𝑛). In some neighborhood
𝑉 of the origin (where 𝑉 ⊂ 𝑈),  Theorem 6.3.3 applies to 𝑓 , so let Δ(𝑧′) denote the
discriminant function. Thinking of Δ as a function on 𝑉 , suppose that Δ(𝑞) ≠ 0 for
some 𝑞 ∈ 𝑋 ∩ 𝑉 . Then there is some neighborhood 𝑊 of 𝑞, such that 𝑍 𝑓 ∩𝑊 is a
graph of a holomorphic function and 𝑋 ∩𝑊 ⊂ 𝑍 𝑓 ∩𝑊 . By a local biholomorphic
change of variables, we make 𝑊 an open subset of ℂ𝑛−1 × {0}, so 𝑋 ∩𝑊 is really
contained in ℂ𝑛−1 and we apply induction.

So suppose Δ vanishes on 𝑋. Note that Δ is a function of 𝑧′ = (𝑧1, . . . , 𝑧𝑛−1). After
a linear change of variables in 𝑧′, we apply the preparation theorem in 𝑧′ with respect
to 𝑧𝑛−1 and get Δ = 𝑢𝑃 in some neighborhood of 0, where 𝑢 is a unit and 𝑃 is a
Weierstrass polynomial in 𝑧𝑛−1 with coefficients that only depend on 𝑧1, . . . , 𝑧𝑛−2. Let
Δ′ be the discriminant for 𝑃 and repeat the procedure above. Either Δ′ is nonzero
at some point of 𝑋, in which case we apply the induction hypothesis as above, or
near the origin, 𝑋 is contained in the zero set of Δ′. If 𝑋 is contained in the zero set
of Δ′, we again apply the preparation theorem and get a polynomial in 𝑧𝑛−2 with
coefficients depending only on 𝑧1, . . . , 𝑧𝑛−3. Rinse and repeat. Either at some point
we could apply the induction hypothesis, or we end after 𝑛 steps with 𝑋 being in the
zero set of the Weierstrass polynomial in one variable, that is, 𝑋 is locally near the
origin contained in the set where 𝑧1 = 0, and we can again apply the induction. □

We will state without proof that we actually have that the singular set is a
subvariety, that is, we have the following theorem. We will prove it for varieties of
pure codimension 1 in the next section.

Theorem 6.5.11. Let 𝑈 ⊂ ℂ𝑛 be open and let 𝑋 ⊂ 𝑈 be a subvariety, then 𝑋sing ⊂ 𝑋 is a
subvariety, which is nowhere dense in 𝑋 and dim𝑋sing < dim𝑋.

Exercise 6.5.9: Suppose that 𝑋 ⊂ 𝑈 ⊂ ℂ𝑛 is a subvariety of a domain𝑈 , such that 𝑋reg
is connected. Show that 𝑋 is of pure dimension.

6.6 \ Hypervarieties
Pure codimension-1 subvarieties are particularly nice. Sometimes pure codimension-1
subvarieties are called hypervarieties. We will prove two things for hypervarieties.
First we will prove that locally, a hypervariety can be defined via a single function,
and second, we will prove that the singular set of a hypervariety is a subvariety.
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Theorem 6.6.1. If (𝑋, 𝑝) is a germ of a pure codimension-1 subvariety, then there is a germ
of a holomorphic function 𝑓 at 𝑝 such that (𝑍 𝑓 , 𝑝) = (𝑋, 𝑝) and 𝐼𝑝(𝑋) is generated by ( 𝑓 , 𝑝).

Proof. We need to find a function that vanishes on (𝑋, 𝑝) and divides every other
function that vanishes there. There must exist at least one germ of a function that
vanishes on 𝑋 near 𝑝 (although it could vanish on a larger set). Without loss of
generality, assume 𝑝 = 0 and after a linear change of coordinates the Weierstrass
preparation theorem applies. More precisely, suppose 𝑋 is a pure codimension-1
subvariety of a small enough polydisc 𝑈′ × 𝐷 ⊂ ℂ𝑛−1 × ℂ centered at the origin,
and the function that vanishes on 𝑋 is a Weierstrass polynomial 𝑃(𝑧′, 𝑧𝑛) defined for
𝑧′ ∈ 𝑈′, and all zeros of 𝑧𝑛 ↦→ 𝑃(𝑧′, 𝑧𝑛) are in 𝐷 for 𝑧′ ∈ 𝑈 .  Theorem 6.3.3 applies.
Let 𝐸 ⊂ 𝑈′ be the discriminant set, a zero set of a holomorphic function. On𝑈′ \ 𝐸,
there are a certain number of geometrically distinct zeros of 𝑧𝑛 ↦→ 𝑃(𝑧′, 𝑧𝑛).

Let 𝑋′ be a topological component of 𝑋 \ (𝐸 × 𝐷). Above each 𝑧′ ∈ 𝑈′ \ 𝐸, let
𝛼1(𝑧′), . . . , 𝛼𝑘(𝑧′) denote the distinct zeros that are in 𝑋′, that is,

(
𝑧′, 𝛼ℓ (𝑧′)

)
∈ 𝑋′.

Near each point 𝑋′ is a graph of a holomorphic function over𝑈′ \ 𝐸, and so we can
locally choose 𝛼1, . . . , 𝛼𝑘 to be holomorphic. Furthermore, this means that the set 𝑋′

contains only regular points of 𝑋, which are of dimension 𝑛 − 1. The number of such
geometrically distinct zeros in 𝑋′ above each point in𝑈′ \ 𝐸 is locally constant. As
𝑈′ \ 𝐸 is connected ( Exercise 1.6.5 ), there exists a unique 𝑘. Take

𝐹(𝑧′, 𝑧𝑛) =
𝑘∏
ℓ=1

(
𝑧𝑛 − 𝛼ℓ (𝑧′)

)
= 𝑧𝑘𝑛 +

𝑘−1∑
ℓ=0

𝑔ℓ (𝑧′)𝑧ℓ𝑛 .

The coefficients 𝑔ℓ are well-defined for 𝑧 ∈ 𝑈′ \ 𝐸 as they are independent of how
𝛼1, . . . , 𝛼𝑘 are ordered. The 𝑔ℓ are holomorphic for 𝑧 ∈ 𝑈′ \ 𝐸 as locally we can
ensure that each 𝛼ℓ is holomorphic. The coefficients 𝑔ℓ are bounded on 𝑈′ and so
extend to holomorphic functions of𝑈′ via the Riemann extension theorem. Hence, 𝐹
is a polynomial in O(𝑈′)[𝑧𝑛]. The zeros of 𝐹 above 𝑧′ ∈ 𝑈′ \ 𝐸 are simple and give
precisely 𝑋′. The zeros of 𝐹 above 𝑧′ ∈ 𝐸, must be limits zeros above points of𝑈′ \ 𝐸
by the argument principle. Consequently, the zero set of 𝐹 is the closure of 𝑋′ in
𝑈′ × 𝐷. It is left to the reader to check that all the functions 𝑔ℓ vanish at the origin
and 𝐹 is a Weierstrass polynomial, a fact that will be useful in the exercises below.

If the polynomial 𝑃(𝑧′, 𝑧𝑛) is of degree 𝑚, then 𝑧′ ↦→ 𝑃(𝑧′, 𝑧𝑛) has at most 𝑚 zeros.
Together with the fact that𝑈′ \𝐸 is connected, this means that 𝑋 \ (𝐸×𝐷) has at most
finitely many components (at most 𝑚). We find an 𝐹 for every topological component
of 𝑋 \ (𝐸 × 𝐷) and we multiply those functions together to get 𝑓 . No open piece
𝑀 ⊂ 𝑋reg can lie completely in 𝐸 × 𝐷, as otherwise an open subset of 𝑀 would also
be an open piece of 𝐸 × 𝐷, see  Exercise 6.6.4 , but we know that 𝑃 must vanish on
𝑀, which is impossible as it only vanishes at finitely many points for each fixed 𝑧′.
Therefore, as 𝑋reg is dense in 𝑋 ( Lemma 6.5.10  ), the closure of 𝑋 \ (𝐸 ×𝐷) contains 𝑋
and so 𝑍 𝑓 = 𝑋.

The fact that this 𝑓 generates 𝐼𝑝(𝑋) is left as  Exercise 6.6.3 . □
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In other words, local properties of a codimension 1 subvariety can be studied by
studying the zero set of a single Weierstrass polynomial.

Example 6.6.2: It is not true that a subvariety in ℂ𝑛 of dimension 𝑛 − 𝑘 (codimension
𝑘) has 𝑘 holomorphic functions that “cut it out.” That only works for 𝑘 = 1. The set
defined by

rank
[
𝑧1 𝑧2 𝑧3
𝑧4 𝑧5 𝑧6

]
< 2

is a pure 4-dimensional subvariety of ℂ6, so of codimension 2, and the defining
equations are 𝑧1𝑧5− 𝑧2𝑧4 = 0, 𝑧1𝑧6− 𝑧3𝑧4 = 0, and 𝑧2𝑧6− 𝑧3𝑧5 = 0. Let us state without
proof that the unique singular point is the origin and there exist no 2 holomorphic
functions near the origin that define this subvariety. In more technical language, the
subvariety is not a complete intersection.

Interestingly, a small refinement of the proof of the theorem above gives the
following. Same result holds for higher codimension, but it is harder to prove.

Corollary 6.6.3. Let (𝑋, 𝑝) is a germ of a subvariety of pure codimension 1. Then there exists
a neighborhood 𝑈 of 𝑝, a representative 𝑋 ⊂ 𝑈 of (𝑋, 𝑝) and subvarieties 𝑋1, . . . , 𝑋𝑘 ⊂ 𝑈

of pure codimension 1 such that (𝑋ℓ )reg is connected for every ℓ , and 𝑋 = 𝑋1 ∪ · · · ∪ 𝑋𝑘 .

Proof. A particular𝑋ℓ is defined by considering a topological component of𝑋 \(𝐸×𝐷)
as in the proof of  Theorem 6.6.1 , getting the 𝐹, and setting 𝑋ℓ = 𝑍𝐹. The topological
component is a connected set and it is dense in (𝑋ℓ )reg, which proves the corollary. □

Exercise 6.6.1: Suppose 𝑝(𝑧′, 𝑧𝑛) is a Weierstrass polynomial of degree 𝑘 such that for an
open dense set of 𝑧′ near the origin 𝑧𝑛 ↦→ 𝑝(𝑧′, 𝑧𝑛) has geometrically 𝑘 zeros, and such that
the regular points of 𝑍𝑝 are connected. Show that 𝑝 is irreducible in the sense that if 𝑝 = 𝑟𝑠

for two Weierstrass polynomials 𝑟 and 𝑠, then either 𝑟 = 1 or 𝑠 = 1.

Exercise 6.6.2: Suppose 𝑓 is a function holomorphic in a neighborhood of the origin with
𝑧𝑛 ↦→ 𝑓 (0, 𝑧𝑛) being of finite order. Show that

𝑓 = 𝑢𝑝
𝑑1
1 𝑝

𝑑2
2 · · · 𝑝𝑑ℓ

ℓ
,

where 𝑝𝑘 are Weierstrass polynomials of degree 𝜇𝑘 such that for an open dense set of 𝑧′,
𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) has 𝜇𝑘 geometrically distinct zeros (no multiple zeros), the set of regular
points of 𝑍𝑝𝑘 are connected, and 𝑢 is a nonzero holomorphic function near 0. Note: In the
next section, these polynomials will be the irreducible factors in the factorization of 𝑓 .

Exercise 6.6.3: Prove the last part of  Theorem 6.6.1 : Show that if (𝑋, 𝑝) is a germ of a pure
codimension-1 subvariety, then the ideal 𝐼𝑝(𝑋) is a principal ideal (has a single generator).
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Exercise 6.6.4: Suppose𝑈 ⊂ ℂ𝑛 is open and 𝑋 ⊂ 𝑈 is a subvariety of dimension 𝑛 − 1.
Suppose 𝑀 is a small piece of a complex submanifold of dimension 𝑛 − 1 such that 𝑀 ⊂ 𝑋.
Prove that 𝑀 agrees with 𝑋reg on a dense open set, that is, for each 𝑝 a dense open subset
of 𝑀, there is a neighborhood 𝑊 of 𝑝 such that 𝑀 ∩𝑊 = 𝑋reg ∩𝑊 . Hint: Consider
coordinates where 𝑀 is a graph and  Theorem 6.3.3 applies to 𝑋.

Exercise 6.6.5: Suppose 𝐼 ⊂ O𝑝 is a principal ideal. Prove the Nullstellensatz for
hypervarieties: 𝐼𝑝

(
𝑉𝑝(𝐼)

)
=
√
𝐼. That is, show that if ( 𝑓 , 𝑝) ∈ 𝐼𝑝

(
𝑉𝑝(𝐼)

)
, then ( 𝑓 𝑘 , 𝑝) ∈ 𝐼

for some integer 𝑘.

Exercise 6.6.6: Suppose 𝑋 ⊂ 𝑈 is a subvariety of pure codimension 1 for an open set
𝑈 ⊂ ℂ𝑛 . Let𝑋′ be a topological component of𝑋reg. Prove that the closure𝑋′ is a subvariety
of𝑈 of pure codimension 1.

Example 6.6.4: If 𝑋 is a hypervariety, the preparation theorem applies, and 𝐸 the
corresponding discriminant set, it is tempting to say that the singular set of 𝑋 is the
set 𝑋 ∩ (𝐸 ×ℂ), which is a codimension-2 subvariety. It is true that 𝑋 ∩ (𝐸 ×ℂ) will
contain the singular set, but in general the singular set is smaller. A simple example
of this behavior is the set defined by 𝑧2

2 − 𝑧1 = 0. The defining function is a Weierstrass
polynomial in 𝑧2 and the discriminant set is given by 𝑧1 = 0. However, the subvariety
has no singular points as it is the graph of 𝑧1 over 𝑧2. See  Figure 6.6 .

−1 0 1
−1

0

1

Figure 6.6: The sideways parabola 𝑧2
2 − 𝑧1 = 0 for real 𝑧1 and 𝑧2. For each nonzero 𝑧1,

there are two solutions (for negative 𝑧1 these are obviously not real). But for each fixed
𝑧2, there is exactly one solution.

A less trivial example 𝑧2
1 + · · · + 𝑧2

𝑘
= 0, where the singular set is of any given

dimension 𝑛 − 𝑘 is given in  Exercise 6.6.8 .

Let us prove the version of  Theorem 6.5.11 for hypervarieties. We now know that
locally hypervarieties are defined by a single function, so we can use the discriminant
to locate singularities, but we must allow infinitely many linear changes of coordinates.
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Theorem 6.6.5. Let 𝑈 ⊂ ℂ𝑛 be open and 𝑋 ⊂ 𝑈 a subvariety of pure codimension 1 (a
hypervariety). Then 𝑋sing is a subvariety of dimension less than or equal to 𝑛 − 2.

Proof. It is sufficient to consider a certain fixed point 𝑝 ∈ 𝑋 and prove the result
locally near 𝑝. At 𝑝, there is a single holomorphic function 𝑓 that defines the germ
of (𝑋, 𝑝) meaning that its zero set is equal to 𝑋 near 𝑝. Without loss of generality,
assume that 𝑝 = 0, and after a linear change of coordinates, assume that we can
apply the preparation theorem and  Theorem 6.3.3  near the origin with respect to
each variable. Then we can assume that 𝑓 is holomorphic in some neighborhood
𝑊 , 𝑍 𝑓 = 𝑋 ∩𝑊 , and there exists an open neighborhood 𝑉 of the origin so that for
every variable 𝑧𝑘 , 𝑘 = 1, . . . , 𝑛, there is a polydisc 𝐷 = 𝐷1 × · · · × 𝐷𝑛 centered at the
origin with 𝑉 ⊂ 𝐷 and 𝐷 ⊂ 𝑊 , where  Theorem 6.3.3 applies with respect to 𝑧𝑘 , that
is, 𝑍 𝑓 ∩ (𝐷1 × · · · × 𝜕𝐷𝑘 × · · · × 𝐷𝑛) = ∅.

Consider a 𝑞 ∈ 𝑋reg ∩𝑉 . By definition, 𝑋 is a graph near 𝑞, so after reordering
variables, we assume it is a graph of 𝑧𝑛 over 𝑧′ = (𝑧1, . . . , 𝑧𝑛−1). Let 𝐷 be the
corresponding polydisc and write 𝐷 = 𝐷′ × 𝐷𝑛 ⊂ ℂ𝑛−1 × ℂ. Let 𝐸 ⊂ 𝐷′ be the
discriminant set given by the function Δ ∈ O(𝐷′). We think of Δ as a function in O(𝐷).
If 𝑞 ∉ 𝐸 × 𝐷𝑛 , then Δ(𝑞) ≠ 0, so we have found a function holomorphic in 𝑉 that is
nonzero at 𝑞. Let us start a collection Fof holomorphic functions on 𝑉 , one for each
𝑞 ∈ 𝑋reg ∩𝑉 , and we put Δ in F.

Suppose that Δ(𝑞) = 0. We may assume that the 𝑓 is the Weierstrass polynomial in
𝑧𝑛 we found in the proof of  Theorem 6.6.1  . In particular, it is a Weierstrass polynomial
of degree 𝑚 and for a generic 𝑧′ (outside of the discriminant set), the function
𝑧𝑛 ↦→ 𝑓 (𝑧′, 𝑧𝑛) has 𝑚 geometrically distinct roots (so 𝑚 roots up to multiplicity as
well). Write 𝑞 = (𝑞′, 𝑞𝑛). The zero of 𝑧𝑛 ↦→ 𝑓 (𝑞′, 𝑧𝑛) at 𝑧𝑛 = 𝑞𝑛 is simple, but the
others are not all simple as 𝑞′ is in the discriminant. We will change variables so that
the new vertical line through 𝑞 intersects 𝑋 only at simple zeros. The root at 𝑞 is
already simple and so we will rotate the line around 𝑞.

We will change variables to �̃� = (�̃�′, 𝑧𝑛) where (𝑧′, 𝑧𝑛) =
(
�̃�′ + (𝑞𝑛 − 𝑧𝑛)𝜖′, 𝑧𝑛

)
and

where 𝜖′ ∈ ℂ𝑛−1 is small, so that the chosen line becomes the vertical {�̃�′ = 𝑞′}. For
small 𝜖′ and �̃�′ near 𝑞′, the function 𝑧𝑛 ↦→ 𝑓

(
�̃�′ + (𝑞𝑛 − 𝑧𝑛)𝜖′, 𝑧𝑛

)
still has exactly 𝑚

roots up to multiplicity via the argument principle. If 𝑧𝑛 ↦→ 𝑓
(
𝑞′+ (𝑞𝑛 − 𝑧𝑛)𝜖′, 𝑧𝑛

)
has

𝑚 geometrically distinct roots, then so does 𝑧𝑛 ↦→ 𝑓
(
�̃�′ + (𝑞𝑛 − 𝑧𝑛)𝜖′, 𝑧𝑛

)
for �̃�′ near 𝑞′

via the same argument with the 𝑚 small discs and the argument principle as in the
proof of  Theorem 6.3.3 . The problem of finding arbitrarily small 𝜖′ that do the trick is
left as an exercise. It can be done one intersection of the line 𝑧𝑛 ↦→

(
𝑞′+(𝑞𝑛− 𝑧𝑛)𝜖′, 𝑧𝑛

)
with 𝑋 at a time, that is, if we have an intersection of multiplicity 𝑘, a small generic
change in 𝜖′ will give us 𝑘 distinct intersections nearby. See  Exercise 6.6.7 .

Take a slightly smaller polydisc 𝐷 = 𝐷′ × 𝐷𝑛 ⊂ 𝐷 in the �̃� variables such that still
𝑉 ⊂ 𝐷 (we may need to pick 𝜖′ small enough to arrange this) and  Theorem 6.3.3 

applies in 𝐷. As the number of distinct zeros of 𝑓
(
�̃�′ + (𝑞𝑛 − 𝑧𝑛)𝜖′, 𝑧𝑛

)
is 𝑚 for all �̃�′

near 𝑞′ including �̃�′ = 𝑞′, the discriminant Δ̃ in these variables does not vanish at 𝑞′.
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We againt consider Δ̃ as a function on 𝑉 and as it does not vanish at 𝑞, we add Δ̃ to F.
See  Figure 6.7 for the setup. We define Fby repeating for each 𝑞 ∈ 𝑋reg ∩𝑉 .

𝐷
𝑉

𝑞
𝑋

𝑋

𝑋

𝐷

𝐿 𝐿𝑧′

𝑧𝑛

Figure 6.7: Changing variables to make the discriminant not vanish at 𝑞, where 𝐿 is the
line {𝑧′ = 𝑞′} while 𝐿 is the tilted line {�̃�′ = 𝑞′}.

Next, if 𝑞 ∈ 𝑋 ∩𝑉 is singular, then every discriminant function used above must
be zero at 𝑞; outside of the discriminant set, all points of 𝑋 are graphs of the zeros
and hence nonsingular. That is, 𝜑(𝑞) = 0 for every 𝜑 ∈ F. Thus the common zero set
of all the functions in F intersected with 𝑋 ∩𝑉 gives us precisely 𝑋sing ∩𝑉 , so 𝑋sing
is a subvariety. It cannot be of dimension 𝑛 − 1 as if it were, it would be a complex
submanifold of dimension 𝑛 − 1 near some point and then not all of those points
would be singular for 𝑋, see  Exercise 6.6.4 . □

We used infinitely many functions in F to define 𝑋sing. It is possible to use
finitely many near each point as the ideals 𝐼𝑝(𝑋sing) are Noetherian, but despite the
temptation, it is not possible to do a single generic linear change of variables and use
just the 𝑛 discriminant functions, one for each variable. More than 𝑛 functions may
be necessary as situations like the one depicted in  Figure 6.7 may occur for some 𝑞,
no matter how we change variables to start with.

Exercise 6.6.7:
a) Suppose 𝐷 ⊂ ℂ𝑛 is a polydisc, 0 ∈ 𝐷, 𝑞 = (0, 1) ∈ ℂ𝑛−1 ×ℂ, and 𝑃 is a Weierstrass

polynomial of degree 𝑘 such that for a generic 𝑧′ (not in the discriminant set),
𝑧𝑛 ↦→ 𝑃(𝑧′, 𝑧𝑛) has 𝑘 simple zeros. Prove that there exists a ball 𝐵 ⊂ ℂ𝑛−1 centered
at the origin and a dense open set𝑊 ⊂ 𝐵 such that for every 𝜖′ ∈ 𝑊 , the function
𝑧𝑛 ↦→

(
(1 − 𝑧𝑛)𝜖′, 𝑧𝑛

)
has exactly 𝑘 geometrically distinct zeros. Hint: Change

coordinates near the origin to make all these lines vertical.
b) Show that part a) proves the claim in the proof of theorem.
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Exercise 6.6.8:
a) Prove that the hypervariety in ℂ𝑛 , 𝑛 ≥ 2, given by 𝑧2

1 + 𝑧
2
2 + · · · + 𝑧2

𝑛 = 0 has an
isolated singularity at the origin (that is, the origin is the only singular point).

b) For every 0 ≤ 𝑘 ≤ 𝑛 − 2, find a hypervariety 𝑋 of ℂ𝑛 whose set of singular points is
a subvariety of dimension 𝑘.

6.7 \ Irreducibility, local parametrization, and Puiseux
Definition 6.7.1. A germ of a subvariety (𝑋, 𝑝) ⊂ (ℂ𝑛 , 𝑝) is reducible at 𝑝 if there exist
two germs (𝑋1, 𝑝) and (𝑋2, 𝑝) with (𝑋1, 𝑝) ⊄ (𝑋2, 𝑝) and (𝑋2, 𝑝) ⊄ (𝑋1, 𝑝) such that
(𝑋, 𝑝) = (𝑋1, 𝑝) ∪ (𝑋2, 𝑝). Otherwise, the germ (𝑋, 𝑝) is irreducible at 𝑝.

Similarly globally, a subvariety𝑋 ⊂ 𝑈 is reducible in𝑈 if there exist two subvarieties
𝑋1 and 𝑋2 of 𝑈 with 𝑋1 ⊄ 𝑋2 and 𝑋2 ⊄ 𝑋1 such that 𝑋 = 𝑋1 ∪ 𝑋2. Otherwise, the
subvariety 𝑋 is irreducible in𝑈 .
Example 6.7.2: Local and global reducibility are different. The subvariety given by

𝑧2
2 = 𝑧1(𝑧1 − 1)2

is irreducible in ℂ2 (the regular points are connected), but locally at the point (1, 0) it
is reducible. There, the subvariety is a union of two graphs: 𝑧2 = ±√𝑧1(𝑧1 − 1). See

 Figure 6.8 for a plot in two real dimensions.

−1 0 1 2
−1

0

1

Figure 6.8: Locally reducible curve.

Exercise 6.7.1: Prove a germ of a subvariety (𝑋, 𝑝) is irreducible if and only if 𝐼𝑝(𝑋) is a
prime ideal. Recall an ideal 𝐼 is prime if 𝑎𝑏 ∈ 𝐼 implies either 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼.
Exercise 6.7.2: Suppose a germ of a subvariety (𝑋, 𝑝) is of pure codimension 1. Prove
(𝑋, 𝑝) is irreducible if and only if there exists a representative of 𝑋 where 𝑋reg is connected.

Exercise 6.7.3: Let 𝑋 ⊂ 𝑈 be a subvariety of pure codimension 1 of a domain 𝑈 ⊂ ℂ𝑛 .
Prove 𝑋 is irreducible if and only if 𝑋reg is connected. Hint: See previous exercise.
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For complex subvarieties, a subvariety is irreducible if and only if the set of regular
points is connected. We omit the proof in the general case, and for hypervarieties
it is an exercise above. It then makes sense that we can split a subvariety into its
irreducible parts.

Proposition 6.7.3. Let (𝑋, 𝑝) ⊂ (ℂ𝑛 , 𝑝) be a germ of a subvariety. Then there exist finitely
many irreducible subvarieties (𝑋1, 𝑝), . . . , (𝑋𝑘 , 𝑝) such that (𝑋1, 𝑝)∪ . . .∪(𝑋𝑘 , 𝑝) = (𝑋, 𝑝)
and such that (𝑋𝑚 , 𝑝) ⊄ (𝑋ℓ , 𝑝) for all 𝑚 and ℓ .

Proof. Suppose (𝑋, 𝑝) is reducible: Find (𝑌1, 𝑝) and (𝑌1, 𝑝) such that (𝑌1, 𝑝) ⊄ (𝑌2, 𝑝),
(𝑌2, 𝑝) ⊄ (𝑌1, 𝑝), and (𝑌1, 𝑝) ∪ (𝑌2, 𝑝) = (𝑋, 𝑝). As (𝑌ℓ , 𝑝) ⊊ (𝑋, 𝑝), then 𝐼𝑝(𝑌ℓ ) ⊋ 𝐼𝑝(𝑋)
for both ℓ . If both (𝑌1, 𝑝) and (𝑌2, 𝑝) are irreducible, then stop, we are done. Otherwise
apply the same reasoning to whichever (or both) (𝑌ℓ , 𝑝) that was reducible. After
finitely many steps you must come to a stop as you cannot have an infinite ascending
chain of ideals since O𝑝 is Noetherian. □

These (𝑋1, 𝑝), . . . , (𝑋𝑘 , 𝑝) are the irreducible components. We omit the proof in
general that they are unique. For a germ of a hypervariety, the UFD property of 𝑛O𝑝
gives the irreducible components. You found this factorization in an exercise above,
and so this factorization is unique.

Each irreducible component has the following structure. We give the theorem
without proof in the general case, although we have essentially proved it already for
pure codimension 1 (to put it together is left as an exercise).

Theorem 6.7.4 (Local parametrization theorem). Let (𝑋, 0) be an irreducible germ of
a subvariety of dimension 𝑘 in ℂ𝑛 . Let 𝑋 denote a representative of the germ. Then after
a possible linear change of coordinates, letting 𝜋 : ℂ𝑛 → ℂ𝑘 be the projection onto the first
𝑘 components, there exists a neighborhood 𝑈 ⊂ ℂ𝑛 of the origin, and a proper subvariety
𝐸 ⊂ 𝜋(𝑈) (the discriminant set) such that

(i) 𝑋′ = 𝑋 ∩𝑈 \ 𝜋−1(𝐸) is a connected 𝑘-dimensional complex manifold that is dense in
𝑋 ∩𝑈 .

(ii) 𝜋 : 𝑋′ → 𝜋(𝑈) \ 𝐸 is an 𝑚-sheeted covering map for some integer 𝑚.

(iii) 𝜋 : 𝑋 ∩𝑈 → 𝜋(𝑈) is a proper mapping.

The 𝑚-sheeted covering map in this case is a local biholomorphism that is an
𝑚-to-1 map.

Exercise 6.7.4: Use  Theorem 6.3.3 to prove the parametrization theorem if (𝑋, 0) is of pure
codimension 1.

Let (𝑧1, . . . , 𝑧𝑛) be the coordinates. The linear change of coordinates needed in the
theorem is to ensure that the set defined by 𝑧1 = 𝑧2 = · · · = 𝑧𝑘 = 0 intersected with
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𝑋 is an isolated point at the origin. This is precisely the same condition needed to
apply Weierstrass preparation theorem in the case when 𝑋 is the zero set of a single
function.

We saw that hypersurfaces are the simpler cases of subvarieties. At the other
end of the spectrum, subvarieties of dimension 1 are also reasonably simple for
different reasons. Locally, subvarieties of dimension 1 are analytic discs. Moreover,
these disccs can be chosen to be one-to-one, and so such subvarieties have a natural
topological manifold structure even at singular points.

Example 6.7.5: The image of the holomorphic map 𝜉 ↦→ (𝜉2, 𝜉3) is the cusp subvariety
defined by 𝑧3

1 − 𝑧
2
2 = 0 in ℂ2.

The following theorem is often stated only in ℂ2 for zero sets of a single function
although it follows in the same way from the local parametrization theorem in
higher-dimensional spaces. Of course, we only proved that theorem (or in fact you
the reader did so in an exercise), for codimension-1 subvarieties, and therefore, we
also only have a complete proof of the following in ℂ2.
Theorem 6.7.6 (Puiseux). Let (𝑧, 𝑤) ∈ ℂ × ℂ𝑛−1 be coordinates. Suppose 𝑓 : 𝑈 ⊂
ℂ × ℂ𝑛−1 → ℂℓ is a holomorphic map such that 𝑓 (𝑧, 𝑤) = 0 defines a one-dimensional
subvariety 𝑋 of 𝑈 , 0 ∈ 𝑋, and 𝑤 ↦→ 𝑓 (0, 𝑤) has an isolated zero at the origin. Then there
exists an integer 𝑘 and a holomorphic function 𝑔 defined near the origin in ℂ such that for
all 𝜉 near the origin

𝑓
(
𝜉𝑘 , 𝑔(𝜉)

)
= 0.

Proof. Without loss of generality assume (𝑋, 0) is irreducible, so that the local
parametrization theorem applies. We work in a small disc 𝐷 ⊂ ℂ centered at the
origin, so that the origin is the unique point of the discriminant set (the subvariety
𝐸). Let 𝑁 = {𝑧 ∈ 𝐷 : Im 𝑧 = 0,Re 𝑧 ≤ 0}. As 𝐷 \ 𝑁 is simply connected, we have
the well-defined functions 𝛼1(𝑧), . . . , 𝛼𝑚(𝑧) holomorphic on 𝐷 \ 𝑁 that are solutions
to 𝑓

(
𝑧, 𝛼 𝑗(𝑧)

)
= 0. These functions continue analytically across 𝑁 away from the

origin. The continuation equals one of the zeros, e.g. 𝛼 𝑗(𝑧) becomes 𝛼ℓ (𝑧) (and by
continuity it is the same zero along the entire 𝑁). So there is a permutation 𝜎 on 𝑚
elements such that as 𝑧 moves counter-clockwise around the origin from the upper
half-plane across 𝑁 to the lower half-plane, 𝛼 𝑗(𝑧) is continued as 𝛼𝜎(𝑗)(𝑧). There exists
some number 𝑘 (e.g. 𝑘 = 𝑚!) such that 𝜎𝑘 is the identity. As 𝜉 goes around a circle
around the origin, 𝜉𝑘 goes around the origin 𝑘 times. Start at a positive real 𝜉 and
start defining a function 𝑔(𝜉) as 𝛼1(𝜉𝑘). Move 𝜉 around the origin counter-clockwise
continuing 𝑔 analytically. Divide the disc into sectors of angle 2𝜋/𝑘, whose boundaries
are where 𝜉𝑘 ∈ 𝑁 . Transition to 𝛼𝜎(1)(𝜉𝑘) after we reach the boundary of the first
sector, then to 𝛼𝜎(𝜎(1))(𝜉𝑘) after we reach the boundary of the next sector, and so on.
After 𝑘 steps, that is, as 𝜉 moved all the way around the circle, we are back at 𝛼1(𝜉𝑘),
because 𝜎𝑘 is the identity. So 𝑔(𝜉) is a well-defined holomorphic function outside the
origin. Let 𝑔(0) = 0, and 𝑔 is holomorphic at 0 by the Riemann extension theorem.
See  Figure 6.9 for an example. □
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𝛼3(𝜉4)

𝐷

𝛼1(𝜉4)

𝛼2(𝜉4)

𝛼4(𝜉4)

𝜉4

𝜉

𝑁

Figure 6.9: Proving Puiseux with 𝑚 = 𝑘 = 4. The permutation 𝜎 takes 1 to 2, 2 to 3, 3 to 4,
and 4 to 1. As 𝜉 moves along the short circular arrow on the right, 𝜉4 moves along the
long circular arrow on the left. The definition of 𝑔 is given in the right-hand diagram.

Exercise 6.7.5: Consider an irreducible germ (𝑋, 0) ⊂ (ℂ2, 0) defined by an irreducible
Weierstrass polynomial 𝑓 (𝑧, 𝑤) = 0 (polynomial in 𝑤) of degree 𝑘. Prove there exists a
holomorphic 𝑔 such that 𝑓

(
𝑧𝑘 , 𝑔(𝑧)

)
= 0 and 𝑧 ↦→

(
𝑧𝑘 , 𝑔(𝑧)

)
is one-to-one and onto a

neighborhood of 0 in 𝑋.

Exercise 6.7.6: Suppose (𝑋, 0) ⊂ (ℂ2, 0) is a germ of a one-dimensional subvariety. Show
that after a possible linear change of coordinates, there are natural numbers 𝑑1, . . . , 𝑑𝑘 and
holomorphic functions 𝑐1(𝑧), . . . , 𝑐𝑘(𝑧) vanishing at 0, such that 𝑋 is given near 0 by

𝑘∏
ℓ=1

(
𝑤𝑑ℓ − 𝑐ℓ (𝑧)

)
= 0.

Exercise 6.7.7: Using the local parametrization theorem, prove that if (𝑋, 𝑝) is an irreducible
germ of a subvariety of dimension greater than 1, then there exists a neighborhood 𝑈 of
𝑝 and a closed subvariety 𝑋 ⊂ 𝑈 (whose germ at 𝑝 is (𝑋, 𝑝)), such that for every 𝑞 ∈ 𝑋
there exists an irreducible subvariety 𝑌 ⊂ 𝑋 of dimension 1 such that 𝑝 ∈ 𝑌 and 𝑞 ∈ 𝑌.

Exercise 6.7.8: Prove a stronger version of the exercise above. Show that not only is there a
𝑌, but an analytic disc 𝜑 : 𝔻 → 𝑈 such that 𝜑(𝔻) ⊂ 𝑋, 𝜑(0) = 𝑝 and 𝜑(1/2) = 𝑞.

Exercise 6.7.9: Suppose 𝑋 ⊂ 𝑈 is a subvariety of a domain 𝑈 ⊂ ℂ𝑛 . Show that 𝑋 is
irreducble if and only if for every pair of points 𝑝, 𝑞 ∈ 𝑋 there exists a finite sequence of
points 𝑝0 = 𝑝, 𝑝1, . . . , 𝑝𝑘 = 𝑞 in 𝑋, and a finite sequence of analytic discs Δℓ ⊂ 𝑋 such
that 𝑝ℓ and 𝑝ℓ−1 are in Δℓ .

Exercise 6.7.10: Prove a maximum principle for subvarieties using the exercises
above: Suppose 𝑋 ⊂ 𝑈 is an irreducible subvariety of an open set 𝑈 , and suppose
𝑓 : 𝑈 → ℝ ∪ {−∞} is a plurisubharmonic function. If the modulus of the restriction 𝑓 |𝑋
achieves a maximum at some point 𝑝 ∈ 𝑋, then the restriction 𝑓 |𝑋 is constant.
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Exercise 6.7.11: Prove that an analytic disc (namely the image of the disc) in ℂ2 is a
one-dimensional local variety (that is, a subvariety of some open subset of ℂ2).

Using the Puiseux theorem, we often simply parametrize germs of complex
one-dimensional subvarieties. And for larger-dimensional varieties, we can find
enough one-dimensional curves through any point and parametrize those.

It is not true that every irreducible subvariety is locally an injective image of a
piece of ℂ𝑘 via a holomorphic map, but it is a very deep theorem, the resolution of
singularities, that says you can do so if you allow some points where the function is
not one-to-one.

6.8 \ Segre varieties and CR geometry
The existence of analytic discs (or subvarieties) in boundaries of domains says a lot
about the geometry of the boundary.

Example 6.8.1: Let 𝑀 ⊂ ℂ𝑛 be a smooth real hypersurface containing a complex
hypersurface 𝑋 (zero set of a holomorphic function with nonzero derivative), at
𝑝 ∈ 𝑋 ⊂ 𝑀. Apply a local biholomorphic change of coordinates at 𝑝, so that in
the new coordinates (𝑧, 𝑤) ∈ ℂ𝑛−1 × ℂ, 𝑋 is given by 𝑤 = 0, and 𝑝 is the origin.
The tangent hyperplane to 𝑀 at 0 contains {𝑤 = 0}. By rotating the 𝑤 coordinate
(multiplying it by 𝑒 𝑖𝜃), we assume 𝑀 is tangent to the set

{
(𝑧, 𝑤) : Im𝑤 = 0

}
. In other

words, 𝑀 is given by
Im𝑤 = 𝜌(𝑧, �̄�,Re𝑤),

where 𝑑𝜌 = 0. As 𝑤 = 0 on 𝑀, then 𝜌 = 0 when Re𝑤 = 0. That is, 𝜌 is divisible by
Re𝑤. So 𝑀 is defined by

Im𝑤 = (Re𝑤)�̃�(𝑧, �̄�,Re𝑤),

for a smooth function �̃�. The Levi form at the origin vanishes. As 𝑝 = 0 was an
arbitrary point on 𝑀 ∩ 𝑋, the Levi form of 𝑀 vanishes on 𝑀 ∩ 𝑋.

Example 6.8.2: The vanishing of the Levi form is not necessary if the complex varieties
in 𝑀 are smaller. Consider 𝑀 ⊂ ℂ3 with a nondegenerate (but not definite) Levi
form:

Im𝑤 = |𝑧1 |2 − |𝑧2 |2 .
For every 𝜃 ∈ ℝ, 𝑀 contains the complex line 𝐿𝜃, given by 𝑧1 = 𝑒 𝑖𝜃𝑧2 and 𝑤 = 0. The
union

⋃
𝜃 𝐿𝜃 of those complex lines is not contained in some single unique complex

subvariety inside 𝑀. Any complex subvariety that contains all the lines 𝐿𝜃 must
contain the entire complex hypersurface given by 𝑤 = 0, which is not contained in 𝑀.
See  Figure 6.10 .
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Figure 6.10: A trace of the hypersurface in the (Re 𝑧1 ,Re 𝑧2 , Im𝑤) space. The traces of the
two complex lines 𝐿0 and 𝐿𝜋 in the plane 𝑤 = 0 corresponding to 𝑧1 = 𝑧2 and 𝑧1 = −𝑧2
are visible.

Exercise 6.8.1: Let 𝑀 ⊂ ℂ𝑛 be a smooth real hypersurface. Show that if 𝑀 at 𝑝 contains
a complex submanifold of (complex) dimension more than 𝑛−1

2 , then the Levi form must be
degenerate, that is, it must have at least one zero eigenvalue.

Exercise 6.8.2: Let 𝑀 ⊂ ℂ𝑛 be a smooth pseudoconvex real hypersurface (one side of 𝑀 is
pseudoconvex). Suppose 𝑀 at 𝑝 contains a dimension 𝑘 complex submanifold 𝑋. Show
that the Levi form has at least 𝑘 zero eigenvalues.

Exercise 6.8.3: Find an example of a smooth real hypersurface 𝑀 ⊂ ℂ𝑛 that contains a
germ of a singular complex-analytic subvariety (𝑋, 𝑝) through a point 𝑝, which is unique
in the sense that if (𝑌, 𝑝) is another germ of a complex analytic subvariety in 𝑀, then
(𝑌, 𝑝) ⊂ (𝑋, 𝑝).

Let us discuss a tool, the Segre variety, that allows us to find such complex
subvarieties inside 𝑀, and much more. Segre varieties only work in the real-analytic
setting and rely on complexification.

Let 𝑀 ⊂ ℂ𝑛 be a real-analytic hypersurface and 𝑝 ∈ 𝑀. Suppose 𝑀 ⊂ 𝑈 , where
𝑈 ⊂ ℂ𝑛 is a small domain with a defining function 𝑟 : 𝑈 → ℝ for 𝑀. That is, 𝑟 is a
real-analytic function in𝑈 such that 𝑀 = 𝑟−1(0), but 𝑑𝑟 ≠ 0 on 𝑀. Define

𝑈∗ =
{
𝑧 ∈ ℂ𝑛 : �̄� ∈ 𝑈

}
.

Suppose𝑈 is small enough so that the Taylor series for 𝑟 converges in𝑈 ×𝑈∗ when
treating 𝑧 and �̄� as separate variables. That is, 𝑟(𝑧, 𝜁) is a well-defined function on
𝑈 ×𝑈∗, and 𝑟(𝑧, 𝜁) = 0 defines a complexification M in𝑈 ×𝑈∗. Assume also that𝑈
is small enough that the derivative 𝑑𝑟 of the complexified 𝑟 does not vanish on M

and that M is connected. See also  Proposition 3.2.8 .
Given 𝑞 ∈ 𝑈 , define the Segre variety

Σ𝑞(𝑈, 𝑟) =
{
𝑧 ∈ 𝑈 : 𝑟(𝑧, �̄�) = 0

}
=

{
𝑧 ∈ 𝑈 : (𝑧, �̄�) ∈ M

}
.
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See a diagram in  Figure 6.11 . A priory, the subvariety Σ𝑝 depends on 𝑈 and 𝑟.
However, if �̃� is a real-analytic function that complexifies to𝑈×𝑈∗ and vanishes on 𝑀,
it must also vanish on the complexification M. If �̃� is a defining function as above, that
is, 𝑑�̃� does not vanish on its zero set and the zero set of the complexified �̃� is connected
in 𝑈 ×𝑈∗, then �̃�(𝑧, 𝜁) = 0 also defines M. Hence the actual 𝑟 does not matter. As
long as 𝑞 ∈ 𝑀, then 𝑞 ∈ Σ𝑞(𝑈, 𝑟), and furthermore the Segre variety is a complex
hypersurface for every 𝑞. It is not hard to see that if 𝑈 is a small neighborhood of
𝑞, the same 𝑟 is a defining function in 𝑈 , and we get the same complexification in
𝑈 ×𝑈∗. So the germ at 𝑞 ∈ 𝑈 is well-defined, and we write

Σ𝑞 =
(
Σ𝑞(𝑈, 𝑟), 𝑞

)
.

The Segre variety is well-defined as a germ, and so often when one talks about Σ𝑞
without mentioning the𝑈 or 𝑟, then one means some small enough representative of
a Segre variety or the germ itself.

𝑧

diagonal 𝜁 = �̄�𝜁

�̄�

𝑞Σ𝑞(𝑈, 𝑟)

M

“𝑀”

Figure 6.11: Diagram of Σ𝑞(𝑈, 𝑟). The “𝑀” is in quotation marks as it is really in the 𝑧
space not in the diagonal, but we identify it with a subset of the diagonal in this picture.

Exercise 6.8.4: Let 𝑟 : 𝑈 → ℝ be a real-valued real-analytic function that complexifies to
𝑈 ×𝑈∗. Show that 𝑟(𝑧, �̄�) = 0 if and only if 𝑟(𝑤, �̄�) = 0. In other words, 𝑧 ∈ Σ𝜁(𝑈, 𝑟) if
and only if 𝜁 ∈ Σ𝑧(𝑈, 𝑟).

Example 6.8.3: Suppose we start with the real-analytic hypersurface 𝑀 given by

Im𝑤 = (Re𝑤)𝜌(𝑧, �̄�,Re𝑤),
with 𝜌 vanishing at the origin. Rewriting in terms of 𝑤 and �̄�, we find

𝑤 − �̄�
2𝑖 =

(𝑤 + �̄�
2

)
𝜌

(
𝑧, �̄�,

𝑤 + �̄�
2

)
.
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Setting �̄� = �̄� = 0, we obtain

𝑤

2𝑖 =
(𝑤

2

)
𝜌

(
𝑧, 0, 𝑤2

)
.

As 𝜌 vanishes at the origin, then near the origin the equation defines the complex
hypersurface given by 𝑤 = 0. So Σ0 is defined by 𝑤 = 0. This is precisely the complex
hypersurface that lies inside 𝑀.

The last example is not a fluke. The most important property of Segre varieties is
that it locates complex subvarieties in a real-analytic submanifold. We will phrase it
in terms of analytic discs, which is enough as complex subvarieties can be filled with
analytic discs, as we have seen.

Proposition 6.8.4. Let 𝑀 ⊂ ℂ𝑛 be a real-analytic hypersurface and 𝑝 ∈ 𝑀. Suppose
Δ ⊂ 𝑀 is an analytic disc through 𝑝. Then as germs (Δ, 𝑝) ⊂ Σ𝑝 .

Proof. Let 𝑈 be a neighborhood of 𝑝 where a representative of Σ𝑝 is defined, that
is, assume that Σ𝑝 is a closed subset of𝑈 , and suppose 𝑟(𝑧, �̄�) is the corresponding
defining function. Let 𝜑 : 𝔻 → ℂ𝑛 be the parametrization of Δ with 𝜑(0) = 𝑝. We
can restrict 𝜑 to a smaller disc around the origin, and since we are only interested in
the germ of Δ at 𝑝 this is sufficient (if there are multiple points of 𝔻 that go to 𝑝, we
repeat the argument for each one). So let us assume without loss of generality that
𝜑(𝔻) = Δ ⊂ 𝑈 . Since Δ ⊂ 𝑀, we have

𝑟
(
𝜑(𝜉), 𝜑(𝜉)

)
= 𝑟

(
𝜑(𝜉), �̄�(�̄�)

)
= 0.

The function 𝜉 ↦→ 𝑟
(
𝜑(𝜉), �̄�(�̄�)

)
is a real-analytic function of 𝜉, and therefore for

some small neighborhood of the origin, it complexifies. In fact, it complexifies to
𝔻 × 𝔻 as 𝜑(𝜉) ∈ 𝑈 for all 𝜉 ∈ 𝔻. So we can treat 𝜉 and �̄� as separate variables. By
complexification, the equation holds for all such independent 𝜉 and �̄�. Set �̄� = 0 to
obtain

0 = 𝑟
(
𝜑(𝜉), �̄�(0)

)
= 𝑟

(
𝜑(𝜉), �̄�

)
for all 𝜉 ∈ 𝔻.

In particular, 𝜑(𝔻) ⊂ Σ𝑝 and the result follows. □

Exercise 6.8.5: Show that if a real-analytic real hypersurface 𝑀 ⊂ ℂ𝑛 is strongly
pseudoconvex at 𝑝 ∈ 𝑀 (one side of 𝑀 is strongly pseudoconvex at 𝑝), then Σ𝑝 ∩ (𝑀, 𝑝) =
{𝑝} (as germs).

Exercise 6.8.6: Use the proposition and the exercise above to show that if a real-analytic
real hypersurface 𝑀 is strongly pseudoconvex, then 𝑀 contains no analytic discs.

We end our discussion of Segre varieties by its perhaps most well-known applica-
tion, the so-called Diederich–Fornæss lemma. Although we state and prove it only
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for real-analytic hypersurfaces it works in greater generality. There are two parts to it,
although it is generally the corollary that is called the Diederich–Fornæss lemma.

First, for real-analytic hypersurfaces each point has a fixed neighborhood such
that germs of complex subvarieties contained in the hypersurface extend to said fixed
neighborhood.
Theorem 6.8.5 (Diederich–Fornæss). Suppose 𝑀 ⊂ ℂ𝑛 is a real-analytic hypersurface.
For every 𝑝 ∈ 𝑀 there exists a neighborhood𝑈 of 𝑝 with the following property: If 𝑞 ∈ 𝑀∩𝑈
and (𝑋, 𝑞) is a germ of a complex subvariety such that (𝑋, 𝑞) ⊂ (𝑀, 𝑞), then there exists
a complex subvariety 𝑌 ⊂ 𝑈 (in particular a closed subset of 𝑈) such that 𝑌 ⊂ 𝑀 and
(𝑋, 𝑞) ⊂ (𝑌, 𝑞).

Proof. Suppose 𝑈 is a polydisc centered at 𝑝, small enough so that the defining
function 𝑟 of 𝑀 complexifies to𝑈 ×𝑈∗ as above. Suppose 𝑞 ∈ 𝑀 ∩𝑈 is a point such
that (𝑋, 𝑞) is a germ of a positive-dimensional complex subvariety with (𝑋, 𝑞) ⊂ (𝑀, 𝑞).
Most points of a subvariety are regular, so without loss of generality assume 𝑞 is
a regular point, that is, (𝑋, 𝑞) is a germ of a complex submanifold. Let 𝑋 be a
representative of the germ (𝑋, 𝑞) such that 𝑋 ⊂ 𝑀, and 𝑋 ⊂ 𝑈 , although we do not
assume it is closed.

Assume 𝑋 is an image of an open subset 𝑉 ⊂ ℂ𝑘 via a holomorphic surjective
mapping 𝜑 : 𝑉 → 𝑋. Since 𝑟

(
𝜑(𝜉), 𝜑(𝜉)

)
= 0 for all 𝜉 ∈ 𝑉 , then we may treat 𝜉 and �̄�

separately. In particular, 𝑟(𝑧, �̄�) = 0 for all 𝑧, 𝜁 ∈ 𝑋.
Define complex subvarieties 𝑌′, 𝑌 ⊂ 𝑈 (closed in𝑈) by

𝑌′ =
⋂
𝑎∈𝑋

Σ𝑎(𝑈, 𝑟) and 𝑌 =
⋂
𝑎∈𝑌′

Σ𝑎(𝑈, 𝑟).

If 𝑎 ∈ 𝑌′ and 𝑏 ∈ 𝑋, then 𝑟(𝑎, 𝑏) = 0. Because 𝑟 is real-valued, 𝑟(𝑏, �̄�) = 0. Therefore,
𝑋 ⊂ 𝑌 ⊂ 𝑌′. Furthermore, 𝑟(𝑧, �̄�) = 0 for all 𝑧 ∈ 𝑌, and so 𝑌 ⊂ 𝑀. □

Corollary 6.8.6 (Diederich–Fornæss). Suppose 𝑀 ⊂ ℂ𝑛 is a compact real-analytic hy-
persurface. Then there does not exist any point 𝑞 ∈ 𝑀 such that there exists a germ of a
positive-dimensional complex subvariety (𝑋, 𝑞) such that (𝑋, 𝑞) ⊂ (𝑀, 𝑞).

Proof. Let 𝑆 ⊂ 𝑀 be the set of points through which there exists a germ of a positive-
dimensional complex subvariety contained in 𝑀. As 𝑀, and hence 𝑆, is compact,
there must exist a point 𝑝 ∈ 𝑆 that is furthest from the origin. After a rotation by
a unitary and rescaling assume 𝑝 = (1, 0, . . . , 0). Let 𝑈 be the neighborhood from
the previous theorem around 𝑝. There exist germs of varieties in 𝑀 through points
arbitrarily close to 𝑝. So for any distance 𝜖 > 0, there exists a subvariety 𝑌 ⊂ 𝑈 (in
particular, 𝑌 closed in𝑈) of positive dimension with 𝑌 ⊂ 𝑀 that contains points 𝜖
close to 𝑝. Consider the function Re 𝑧1, whose modulus attains a strict maximum on
𝑆 at 𝑝. Because Re 𝑧1 achieves a maximum strictly smaller than 1 on 𝜕𝑈 ∩ 𝑆, for a
small enough 𝜖, we would obtain a pluriharmonic function with a strict maximum
on 𝑌, which is impossible by the maximum principle for varieties that you proved in

 Exercise 6.7.10 . The picture would look as in  Figure 6.12 . □
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Re 𝑧1 = 1

𝑝

Figure 6.12: Contradicting the maximum principle at 𝑝.

Example 6.8.7: The results above do not work in the smooth setting. Let us disprove
the theorem in the smooth setting. Disproving the corollary is an exercise. Let
𝑔 : ℝ → ℝ be a smooth function that is strictly positive for |𝑡 | > 1, and 𝑔(𝑡) = 0 for all
|𝑡 | ≤ 1. Define 𝑀 in (𝑧, 𝑤) ∈ ℂ𝑛−1 ×ℂ by

Im𝑤 = 𝑔
(
∥𝑧∥2 + (Re𝑤)2

)
.

The 𝑀 is a smooth real hypersurface. Consider 𝑝 = (0, . . . , 0, 1) ∈ 𝑀. For every
0 < 𝑠 < 1, let 𝑞𝑠 = (0, . . . , 0, 𝑠) ∈ 𝑀 and 𝑋𝑠 =

{
(𝑧, 𝑤) ∈ 𝑀 : 𝑤 = 𝑠

}
. Each 𝑋𝑠 is the

closure of a local complex subvariety of dimension 𝑛 − 1 and (𝑋𝑠 , 𝑞𝑠) ⊂ (𝑀, 𝑞𝑠). The
size (diameter) of 𝑋𝑠 goes to zero as 𝑠 → 1 and 𝑋𝑠 cannot extend to a larger complex
subvariety inside 𝑀. So, no neighborhood𝑈 at 𝑝 (as in the theorem) exists.

Exercise 6.8.7: Find a compact smooth real hypersurface 𝑀 ⊂ ℂ𝑛 that contains a germ of
a positive dimensional complex subvariety.

. . . and that is how using sheep’s bladders can prevent earthquakes!



A \\ Basic Notation and Terminology

We quickly review some basic notation used in this book that is perhaps not described
elsewhere. We use ℂ, ℝ for complex and real numbers, and 𝑖 for imaginary
unit (a square root of −1). We use ℕ = {1, 2, 3, . . .} for the natural numbers,
ℕ0 = {0, 1, 2, 3, . . .} for the zero-based natural numbers, and ℤ for all integers. When
we write ℂ𝑛 or ℝ𝑛 we implicitly mean that 𝑛 ≥ 1, unless otherwise stated.

We denote set subtraction by 𝐴\𝐵, meaning all elements of 𝐴 that are not in 𝐵. We
denote complement of a set by 𝑋 𝑐 . The ambient set should be clear. So, for example,
if 𝑋 ⊂ ℂ naturally, then 𝑋 𝑐 = ℂ \ 𝑋. Topological closure of a set 𝑆 is denoted by 𝑆, its
boundary is denoted by 𝜕𝑆. If 𝑆 is a relatively compact subset of 𝑋 (its closure in 𝑋 is
compact) or compact, we write 𝑆 ⊂⊂ 𝑋.

A function with domain 𝑋 and codomain 𝑌 we denote by 𝑓 : 𝑋 → 𝑌. The direct
image of 𝑆 by if is 𝑓 (𝑆). The notation 𝑓 −1 for the inverse image of sets and single
points. When 𝑓 is bĳective (one-to-one and onto), we use 𝑓 −1 for the inverse mapping.
So 𝑓 −1(𝑇) for a set 𝑇 ⊂ 𝑌 denotes the points of 𝑋 that 𝑓 maps to 𝑇. For a point 𝑞,
𝑓 −1(𝑞) denotes the points that map to 𝑞, but if the mapping is bĳective, then it means
the unique point mapping to 𝑞. To define a function without giving it a name, we use

𝑥 ↦→ 𝐹(𝑥),

where 𝐹(𝑥) would generally be some formula giving the output. The notation 𝑓 |𝑆
is the restriction of 𝑓 to 𝑆: a function 𝑓 |𝑆 : 𝑆 → 𝑌 such that 𝑓 |𝑆(𝑥) = 𝑓 (𝑥) for all
𝑥 ∈ 𝑆. A function 𝑓 : 𝑈 → ℂ is compactly supported if the support, that is the set
{𝑝 ∈ 𝑈 : 𝑓 (𝑝) ≠ 0}, is compact. If 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 in the domain, we write

𝑓 ≡ 𝑔,

and we say that 𝑓 and 𝑔 are identically equal. The notation

𝑓 ◦ 𝑔

denotes the composition defined by 𝑥 ↦→ 𝑓
(
𝑔(𝑥)

)
.

To define 𝑋 to be 𝑌 rather than just show equality, we write

𝑋
def
= 𝑌.



B \\ Results from One Complex
Variable

We review some results from one complex variable useful for reading this book.
The reader should first look through  section 0.1 for basic notation and motivation,
although we review some of the results again here. Let𝑈 ⊂ ℂ be open. A function
𝑓 : 𝑈 → ℂ is holomorphic if it is complex differentiable at every point, that is,

𝑓 ′(𝑧) = lim
ℎ∈ℂ→0

𝑓 (𝑧 + ℎ) − 𝑓 (𝑧)
ℎ

exists for all 𝑧 ∈ 𝑈 . For example, polynomials and rational functions in 𝑧 are
holomorphic. Perhaps the most important holomorphic function is the solution to
the differential equation 𝑓 ′(𝑧) = 𝑓 (𝑧), 𝑓 (0) = 1, the complex exponential,

𝑓 (𝑧) = 𝑒𝑧 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑥
(
cos 𝑦 + 𝑖 sin(𝑦)

)
.

A piecewise-𝐶1 path (or curve) in ℂ is a continuous 𝛾 : [𝑎, 𝑏] → ℂ, continuously
differentiable except at finitely many points, such that one-sided limits of 𝛾′(𝑡) exist
at all 𝑡 ∈ [𝑎, 𝑏] and such that 𝛾′ (or its one-sided limits) is never zero. By abuse of
notation, when 𝛾 is used as a set, we mean the image 𝛾

(
[𝑎, 𝑏]

)
. For a continuous

𝑓 : 𝛾 → ℂ, define ∫
𝛾
𝑓 (𝑧) 𝑑𝑧 def

=

∫ 𝑏

𝑎

𝑓
(
𝛾(𝑡)

)
𝛾′(𝑡) 𝑑𝑡.

As 𝛾′ is continuous at all but finitely many points, the integral is well-defined. Similarly,
one defines the more general path integral in 𝑑𝑧 = 𝑑𝑥 + 𝑖 𝑑𝑦 and 𝑑�̄� = 𝑑𝑥 − 𝑖 𝑑𝑦. Let
𝑧 = 𝛾(𝑡) = 𝛾1(𝑡) + 𝑖 𝛾2(𝑡) = 𝑥 + 𝑖 𝑦 parametrize the path. Then∫
𝛾
𝑓 (𝑧) 𝑑𝑧 + 𝑔(𝑧) 𝑑�̄� =

∫
𝛾

(
𝑓
(
𝑥 + 𝑖 𝑦

)
+ 𝑔

(
𝑥 + 𝑖 𝑦

) )
𝑑𝑥 + 𝑖

(
𝑓
(
𝑥 + 𝑖 𝑦

)
− 𝑔

(
𝑥 + 𝑖 𝑦

) )
𝑑𝑦

=

∫ 𝑏

𝑎

(
𝑓
(
𝛾(𝑡)

)
𝛾′(𝑡) + 𝑓

(
𝛾(𝑡)

)
𝛾′(𝑡)

)
𝑑𝑡

=

∫ 𝑏

𝑎

((
𝑓
(
𝛾(𝑡)

)
+ 𝑔

(
𝛾(𝑡)

) )
𝛾′

1(𝑡) + 𝑖
(
𝑓
(
𝛾(𝑡)

)
− 𝑔

(
𝛾(𝑡)

) )
𝛾′

2(𝑡)
)
𝑑𝑡.
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A path is closed if 𝛾(𝑎) = 𝛾(𝑏), and a path is simple if 𝛾 |(𝑎,𝑏] is one-to-one with the
possible exception of 𝛾(𝑎) = 𝛾(𝑏).

An open 𝑈 ⊂ ℂ has piecewise-𝐶1 boundary if for each 𝑝 ∈ 𝜕𝑈 there is an open
neighborhood𝑊 of 𝑝 such that 𝜕𝑈∩𝑊 = 𝛾

(
(𝑎, 𝑏)

)
where 𝛾 : [𝑎, 𝑏] → ℂ is an injective

piecewise-𝐶1 path, and such that each 𝑝 ∈ 𝜕𝑈 is in the closure of ℂ \𝑈 . Intuitively,
the boundary is locally a piecewise-𝐶1 curve that locally cuts the plane into two
open pieces. If at each point where the parametrization of 𝜕𝑈 is differentiable the
domain is on the left (𝛾′(𝑡) rotated by 𝜋

2 points into the domain), then the boundary
is positively oriented. As in the introduction, we have the following version of Cauchy
integral formula.

Theorem B.1 (Cauchy integral formula). Let 𝑈 ⊂ ℂ be a bounded open set with
piecewise-𝐶1 boundary 𝜕𝑈 oriented positively, and let 𝑓 : 𝑈 → ℂ be a continuous function
holomorphic in𝑈 . Then for 𝑧 ∈ 𝑈 ,

𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝜕𝑈

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁.

Usually the theorem is stated with winding numbers. The winding number is the
number of times a closed path 𝛾 “goes around” a point 𝑝 ∉ 𝛾. More precisely it is
defined by

𝑛(𝛾; 𝑝) def
=

1
2𝜋𝑖

∫
𝛾

1
𝑧 − 𝑝 𝑑𝑧.

It is easy to show that 𝑛(𝛾; 𝑝) is always an integer and it is constant on the components
of ℂ \ 𝛾. It is also defined on cycles, which are just formal sums of closed paths
Γ = 𝛾1 + 𝛾2 + · · · + 𝛾𝑛 , by simply summing the corresponding integrals.

A common statement of the Cauchy integral formula with winding numbers is
that if 𝑈 is open, 𝑓 : 𝑈 → ℂ holomorphic, and 𝛾 is a closed piecewise 𝐶1 path (or
cycle) in𝑈 , such that 𝑛(𝛾; 𝑝) = 0 for all 𝑝 ∉ 𝑈 , then

𝑛(𝛾; 𝑧) 𝑓 (𝑧) = 1
2𝜋𝑖

∫
𝛾

𝑓 (𝜁)
𝜁 − 𝑧 𝑑𝜁.

By the Jordan curve theorem, a simple closed path divides the plane into two
components, one bounded and one unbounded. The bounded component is called
the interior of 𝛾, and the unbounded component, called the exterior. It can be shown
that for a piecewise-𝐶1 path 𝛾, 𝑛(𝛾; 𝑝) = ±1 for 𝑝 in the interior of 𝛾 and 𝑛(𝛾; 𝑝) = 0
for 𝑝 in the exterior of 𝛾. We say 𝛾 is oriented positively if 𝑛(𝛾; 𝑝) = 1 on the interior.

More generally, if 𝑈 is a bounded open set with piecewise-𝐶1 boundary 𝜕𝑈
oriented positively, then one can show that 𝜕𝑈 is composed of finitely many simple
closed paths oriented in such a way that 𝑛(𝜕𝑈 ; 𝑝) = 1 for 𝑝 ∈ 𝑈 and 𝑛(𝜕𝑈 ; 𝑝) = 0 for
𝑝 ∈ ℂ \𝑈 .

One way to get at the Cauchy integral formula is via Green’s theorem, which
is the Stokes’ theorem in two dimensions. In the versions we state, one needs to
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approximate the open set by smaller open sets from the inside to insure the partial
derivatives are bounded. See  Theorem 4.1.1  . Let us state Green’s theorem using the
𝑑𝑧 and 𝑑�̄� for completeness. See  appendix C for an overview of differential forms.
Theorem B.2 (Green’s theorem). Let 𝑈 ⊂ ℂ be a bounded open set with piecewise-𝐶1

boundary 𝜕𝑈 oriented positively, and let 𝑓 : 𝑈 → ℂ be continuous with bounded continuous
partial derivatives in𝑈 . Then∫

𝜕𝑈
𝑓 (𝑧) 𝑑𝑧 + 𝑔(𝑧) 𝑑�̄� =

∫
𝑈

𝑑
(
𝑓 (𝑧) 𝑑𝑧 + 𝑔(𝑧) 𝑑�̄�

)
=

∫
𝑈

(
𝜕𝑔

𝜕𝑧
−

𝜕 𝑓

𝜕�̄�

)
𝑑𝑧 ∧ 𝑑�̄�

= (−2𝑖)
∫
𝑈

(
𝜕𝑔

𝜕𝑧
−

𝜕 𝑓

𝜕�̄�

)
𝑑𝑥 ∧ 𝑑𝑦 = (−2𝑖)

∫
𝑈

(
𝜕𝑔

𝜕𝑧
−

𝜕 𝑓

𝜕�̄�

)
𝑑𝐴.

The Cauchy integral formula is equivalent to what is usually called just Cauchy’s
theorem:
Theorem B.3 (Cauchy). Let𝑈 ⊂ ℂ be a bounded open set with piecewise-𝐶1 boundary 𝜕𝑈
oriented positively, and let 𝑓 : 𝑈 → ℂ be a continuous function holomorphic in𝑈 . Then∫

𝜕𝑈
𝑓 (𝑧) 𝑑𝑧 = 0.

Again, the alternative statement with winding numbers is that if 𝑈 is open,
𝑓 : 𝑈 → ℂ holomorphic, and 𝛾 is a closed piecewise 𝐶1 path (or cycle) in𝑈 , such that
𝑛(𝛾; 𝑝) = 0 for all 𝑝 ∉ 𝑈 , then the integral of 𝑓 over 𝛾 vanishes.

There is a converse to Cauchy. A triangle 𝑇 ⊂ ℂ is the convex hull of the three
vertices (we include the inside of the triangle), and 𝜕𝑇 is the boundary of the triangle
oriented counter-clockwise. We state the following theorem as an “if and only if,”
even though, usually it is only the reverse direction that is called Morera’s theorem.
Theorem B.4 (Morera). Suppose 𝑈 ⊂ ℂ is an open set, and 𝑓 : 𝑈 → ℂ is continuous.
Then 𝑓 is holomorphic if and only if∫

𝜕𝑇
𝑓 (𝑧) 𝑑𝑧 = 0 for all triangles 𝑇 ⊂ 𝑈.

As we saw in the introduction, a holomorphic function has a power series.
Proposition B.5. If 𝑈 ⊂ ℂ is open and 𝑓 : 𝑈 → ℂ is holomorphic, then 𝑓 is infinitely
differentiable, and if Δ𝜌(𝑝) ⊂ ℂ is a disc, then 𝑓 has a power series that converges absolutely
uniformly on compact subsets of Δ𝜌(𝑝):

𝑓 (𝑧) =
∞∑
𝑘=0

𝑐𝑘(𝑧 − 𝑝)𝑘 ,

where given a simple closed (piecewise-𝐶1) path 𝛾 going once counter-clockwise around 𝑝
inside Δ𝜌(𝑝),

𝑐𝑘 =
𝑓 (𝑘)(𝑝)
𝑘! =

1
2𝜋𝑖

∫
𝛾

𝑓 (𝜁)
(𝜁 − 𝑧)𝑘+1 𝑑𝜁.
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Cauchy estimates follow: If 𝑀 is the maximum of | 𝑓 | on the circle 𝜕Δ𝑟(𝑝), then

|𝑐𝑘 | ≤
𝑀

𝑟𝑘
.

Conversely, if a power series satisfies such estimates, it converges on Δ𝑟(𝑝).
A holomorphic 𝑓 : ℂ → ℂ that is entire. An immediate application of Cauchy

estimates is Liouville’s theorem:

Theorem B.6 (Liouville). If 𝑓 is entire and bounded, then 𝑓 is constant.

And as a holomorphic function has a power series it satisfies the identity theorem:

Theorem B.7 (Identity). Suppose 𝑈 ⊂ ℂ is a domain and 𝑓 : 𝑈 → ℂ is holomorphic. If
the zero set 𝑓 −1(0) has a limit point in𝑈 , then 𝑓 ≡ 0.

Another consequence of the Cauchy integral formula is that there is a differential
equation characterizing holomorphic functions.

Proposition B.8 (Cauchy–Riemann equations). Let𝑈 ⊂ ℂ be open. A function 𝑓 : 𝑈 →
ℂ is holomorphic if and only if 𝑓 is continuously differentiable and

𝜕 𝑓

𝜕�̄�
=

1
2

(
𝜕 𝑓

𝜕𝑥
+ 𝑖 𝜕 𝑓

𝜕𝑦

)
= 0 on𝑈 .

Yet another consequence of the Cauchy formula (and one can make an argument
that everything in this appendix is a consequence of the Cauchy formula) is the open
mapping theorem.

Theorem B.9 (Open mapping theorem). Suppose𝑈 ⊂ ℂ is a domain and 𝑓 : 𝑈 → ℂ is
holomorphic and not constant. Then 𝑓 is an open mapping, that is, 𝑓 (𝑉) is open whenever
𝑉 is open.

The real and imaginary parts 𝑢 and 𝑣 of a holomorphic function 𝑓 = 𝑢 + 𝑖𝑣 are
harmonic, that is ∇2𝑢 = ∇2𝑣 = 0, where ∇2 is the Laplacian. A domain 𝑈 is simply
connected if every simple closed path is homotopic in𝑈 to a constant, in other words,
if the domain has no holes. For example a disc is simply connected.

Proposition B.10. If 𝑈 ⊂ ℂ is a simply connected domain and 𝑢 : 𝑈 → ℝ is harmonic,
then there exists a harmonic function 𝑣 : 𝑈 → ℝ such that 𝑓 = 𝑢 + 𝑖𝑣 is holomorphic.

The function 𝑣 is called the harmonic conjugate of 𝑢. For further review of harmonic
functions see  section 2.4 on harmonic functions. We have the following versions of
the maximum principle.

Theorem B.11 (Maximum principles). Suppose𝑈 ⊂ ℂ is a domain.

(i) If 𝑓 : 𝑈 → ℂ is holomorphic and | 𝑓 | achieves a local maximum in 𝑈 , then 𝑓 is
constant.

(ii) If𝑈 is bounded and 𝑓 : 𝑈 → ℂ is holomorphic in𝑈 and continuous, then | 𝑓 | achieves
its maximum on 𝜕𝑈 .
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(iii) If 𝑓 : 𝑈 → ℝ is harmonic achieves a local maximum or a minimum in 𝑈 , then 𝑓 is
constant.

(iv) If𝑈 is bounded and 𝑓 : 𝑈 → ℝ is harmonic in𝑈 and continuous, then 𝑓 achieves its
maximum and minimum on 𝜕𝑈 .

The first two items are sometimes called the maximum modulus principle. The
maximum principle immediately implies the following lemma.

Lemma B.12 (Schwarz’s lemma). Suppose 𝑓 : 𝔻 → 𝔻 is holomorphic and 𝑓 (0) = 0, then

(i) | 𝑓 (𝑧)| ≤ |𝑧 |, and

(ii) | 𝑓 ′(0)| ≤ 1.

Furthermore, if | 𝑓 (𝑧0)| = |𝑧0 | for some 𝑧0 ∈ 𝔻 \ {0} or | 𝑓 ′(0)| = 1, then for some 𝜃 ∈ ℝ we
have 𝑓 (𝑧) = 𝑒 𝑖𝜃𝑧 for all 𝑧 ∈ 𝔻.

The theorem above is actually quite general.

Theorem B.13 (Riemann mapping theorem). If𝑈 ⊂ ℂ is a nonempty simply connected
domain such that𝑈 ≠ ℂ, then𝑈 is biholomorphic to 𝔻. Given 𝑧0 ∈ 𝑈 there exists a unique
biholomorphic 𝑓 : 𝑈 → 𝔻 such that 𝑓 (𝑧0) = 0, 𝑓 ′(𝑧0) > 0, and 𝑓 maximizes | 𝑓 ′(𝑧0)| among
all injective holomorphic maps to 𝔻 such that 𝑓 (𝑧0) = 0.

Schwarz’s lemma can also be used to classify the automorphisms of the disc (and
hence any simply connected domain). Let Aut(𝔻) denote the group of biholomorphic
(both 𝑓 and 𝑓 −1 are holomorphic) self maps of the disc to itself.

Proposition B.14. If 𝑓 ∈ Aut(𝔻), then there exists an 𝑎 ∈ 𝔻 and 𝜃 ∈ ℝ such that

𝑓 (𝑧) = 𝑒 𝑖𝜃
𝑧 − 𝑎
1 − �̄�𝑧 .

Speaking of automorphisms. We have the following version of inverse function
theorem.

Theorem B.15. Suppose𝑈 and 𝑉 are open subsets of ℂ.

(i) If 𝑓 : 𝑈 → 𝑉 is holomorphic and bĳective (one-to-one and onto), then 𝑓 ′(𝑧) ≠ 0 for
all 𝑧 ∈ 𝑉 , and 𝑓 −1 : 𝑉 → 𝑈 is holomorphic. If 𝑓 (𝑝) = 𝑞, then(

𝑓 −1
)
(𝑞) = 1

𝑓 ′(𝑝) .

(ii) If 𝑓 : 𝑈 → 𝑉 is holomorphic, 𝑓 (𝑝) = 𝑞, and 𝑓 ′(𝑝) ≠ 0, then there exists a neighborhood
𝑊 of 𝑞 and a holomorphic function 𝑔 : 𝑊 → 𝑈 that is one-to-one and 𝑓

(
𝑔(𝑧)

)
= 𝑧

for all 𝑧 ∈𝑊 .
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The Riemann mapping theorem actually follows from the following theorem
about existence of branches of the logarithm.

Theorem B.16. Suppose 𝑈 ⊂ ℂ is a simply connected domain, and 𝑓 : 𝑈 → ℂ is a
holomorphic function without zeros in𝑈 . Then there exists a holomorphic function 𝐿 : 𝑈 →
ℂ such that

𝑒𝐿 = 𝑓 .

In particular, we can take roots: For every 𝑘 ∈ ℕ, there exists a holomorphic function
𝑔 : 𝑈 → ℂ such that

𝑔𝑘 = 𝑓 .

In one complex variable, zeros of holomorphic functions can be divided out.
Moreover, zeros of holomorphic functions are of finite order unless the function is
identically zero.

Proposition B.17. Suppose 𝑈 ⊂ ℂ is a domain and 𝑓 : 𝑈 → ℂ is holomorphic, not
identically zero, and 𝑓 (𝑝) = 0 for some 𝑝 ∈ 𝑈 . There exists a 𝑘 ∈ ℕ and a holomorphic
function 𝑔 : 𝑈 → ℂ, such that 𝑔(𝑝) ≠ 0 and

𝑓 (𝑧) = (𝑧 − 𝑝)𝑘 𝑔(𝑧) for all 𝑧 ∈ 𝑈 .

The number 𝑘 above is called the order or multiplicity of the zero at 𝑝. We can use
this fact and the existence of roots to show that every holomorphic function is locally
like 𝑧𝑘 . The function 𝜑 below can be thought of as a local change of coordinates.

Proposition B.18. Suppose 𝑈 ⊂ ℂ is a domain and 𝑓 : 𝑈 → ℂ is holomorphic, not
identically zero, and 𝑝 ∈ 𝑈 . Then there exists a 𝑘 ∈ ℕ, a neighborhood 𝑉 ⊂ 𝑈 of 𝑝, and a
holomorphic function 𝜑 : 𝑉 → ℂ with 𝜑′(𝑝) ≠ 0, such that(

𝜑(𝑧)
) 𝑘

= 𝑓 (𝑧) − 𝑓 (𝑝) for all 𝑧 ∈ 𝑉 .

Convergence of holomorphic functions is the same as for continuous functions:
uniform convergence on compact subsets. Sometimes this is called normal convergence.

Proposition B.19. Suppose 𝑈 ⊂ ℂ is open and 𝑓𝑘 : 𝑈 → ℂ is a sequence of holomorphic
functions which converge uniformly on compact subsets of 𝑈 to 𝑓 : 𝑈 → ℂ. Then 𝑓

is holomorphic, and every derivative 𝑓
(ℓ )
𝑘

converges uniformly on compact subsets to the
derivative 𝑓 (ℓ ).

Holomorphic functions satisfy a Heine–Borel-like property:

Theorem B.20 (Montel). Suppose 𝑈 ⊂ ℂ is open and 𝑓𝑛 ⊂ 𝑈 → ℂ is a sequence of
holomorphic functions. If { 𝑓𝑛} is uniformly bounded on compact subsets of 𝑈 , then there
exists a subsequence converging uniformly on compact subsets of𝑈 .

A sequence of holomorphic functions cannot create or delete zeros out of thin air:
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Theorem B.21 (Hurwitz). Suppose 𝑈 ⊂ ℂ is a domain and 𝑓𝑛 ⊂ 𝑈 → ℂ is a sequence
of holomorphic functions converging uniformly on compact subsets of𝑈 to 𝑓 : 𝑈 → ℂ. If 𝑓
is not identically zero and 𝑧0 is a zero of 𝑓 , then there exists a disc Δ𝑟(𝑧0) and an 𝑁 , such
that for all 𝑛 ≥ 𝑁 , 𝑓𝑛 has the same number of zeros (counting multiplicity) in Δ𝑟(𝑧0) as 𝑓
(counting multiplicity).

A common application, and sometimes the way the theorem is stated, is that if 𝑓𝑛
have no zeros in𝑈 , then either the limit 𝑓 is identically zero, or it also has no zeros.

If 𝑈 ⊂ ℂ is open, 𝑝 ∈ 𝑈 , and 𝑓 : 𝑈 \ {𝑝} → ℂ is holomorphic, we say that 𝑓
has an isolated singularity at 𝑝. An isolated singularity is removable if there exists a
holomorphic function 𝐹 : 𝑈 → ℂ such that 𝑓 (𝑧) = 𝐹(𝑧) for all 𝑧 ∈ 𝑈 \ {𝑝}. An isolated
singularity is a pole if

lim
𝑧→𝑝

𝑓 (𝑧) = ∞ (that is, | 𝑓 (𝑧)| → ∞ as |𝑧 − 𝑝 | → 0).

An isolated singularity that is neither removable nor a pole is said to be essential.
At nonessential isolated singularities the function blows up to a finite integral

order. The first part of the following proposition is usually called the Riemann
extension theorem.

Proposition B.22. Suppose𝑈 ⊂ ℂ is an open set, 𝑝 ∈ 𝑈 , and 𝑓 : 𝑈\{𝑝} → ℂ holomorphic.

(i) If 𝑓 is bounded (near 𝑝 is enough), then 𝑝 is a removable singularity.

(ii) If 𝑝 is a pole, there exists a 𝑘 ∈ ℕ such that

𝑔(𝑧) = (𝑧 − 𝑝)𝑘 𝑓 (𝑧)

is bounded near 𝑝 and hence 𝑔 has a removable singularity at 𝑝.

The number 𝑘 above is called the order of the pole. There is a symmetry between
zeros and poles: If 𝑓 has a zero of order 𝑘, then 1

𝑓
has a pole of order 𝑘. If 𝑓 has a

pole of order 𝑘, then 1
𝑓

has a removable singularity, and the extended function has a
zero of order 𝑘.

Let ℙ1 = ℂ ∪ {∞} be the Riemann sphere. The topology on ℙ1 is given by insisting
that the function 1

𝑧 is a homeomorphism of ℙ1 to itself, where 1
∞ = 0 and 1

0 = ∞. A
function 𝑓 : 𝑈 → ℙ1 is called meromorphic, if it is not identically ∞, is holomorphic
on 𝑈 \ 𝑓 −1(∞), and has poles at 𝑓 −1(∞). A holomorphic function with poles is
meromorphic by setting the value to be ∞ at the poles. A meromorphic function is
one that can locally be written as a quotient of holomorphic functions.

At an isolated singularity we can expand a holomorphic function via the so-called
Laurent series by adding all negative powers. The Laurent series also characterizes the
type of the singularity.



211

Proposition B.23. If Δ ⊂ ℂ is a disc centered at 𝑝 ∈ ℂ, and 𝑓 : Δ \ {𝑝} → ℂ holomorphic,
then there exists a double sequence {𝑐𝑘}∞𝑘=−∞ such that

𝑓 (𝑧) =
∞∑

𝑘=−∞
𝑐𝑘(𝑧 − 𝑝)𝑘 ,

converges absolutely uniformly on compact subsets of Δ. If 𝛾 is a simple closed piecewise-𝐶1

path going once counter-clockwise around 𝑝 in Δ, then

𝑐𝑘 =
1

2𝜋𝑖

∫
𝛾

𝑓 (𝜁)
(𝜁 − 𝑧)𝑘+1 𝑑𝜁.

The singularity at 𝑝 is

(i) removable if 𝑐𝑘 = 0 for all 𝑘 < 0.

(ii) pole of order ℓ ∈ ℕ if 𝑐𝑘 = 0 for all 𝑘 < −ℓ and 𝑐−ℓ ≠ 0.

(iii) essential if for every exist infinitely negative 𝑘 such that 𝑐𝑘 ≠ 0.

If 𝑝 is an isolated singularity of 𝑓 , then call the corresponding 𝑐−1 the residue of 𝑓
at 𝑝, and write it as Res( 𝑓 , 𝑝). The proposition says that for a small 𝛾 around 𝑝 in the
positive direction,

Res( 𝑓 , 𝑝) = 𝑐−1 =
1

2𝜋𝑖

∫
𝛾
𝑓 (𝑧) 𝑑𝑧.

Combining this equation with Cauchy’s theorem tells us that to compute integrals of
functions with isolated singularities we simply need to find the residues, which tend
to be simpler to compute. For example, if 𝑝 is a simple pole (of order 1), then

Res( 𝑓 , 𝑝) = lim
𝑧→𝑝

(𝑧 − 𝑝) 𝑓 (𝑧).

Theorem B.24 (Residue theorem). Suppose𝑈 ⊂ ℂ is an open set, and 𝛾 is a piecewise-𝐶1

closed path in 𝑈 such that 𝑛(𝛾; 𝑝) = 0 for all 𝑝 ∉ 𝑈 . Suppose that 𝑓 : 𝑈 \ 𝑆 → ℂ is a
holomorphic function with isolated singularities in a finite set 𝑆, and suppose 𝑆 lies in the
interior of 𝛾. Then ∫

𝛾
𝑓 (𝑧) 𝑑𝑧 = 2𝜋𝑖

∑
𝑝∈𝑆

𝑛(𝛾; 𝑝)Res( 𝑓 , 𝑝).

If 𝛾 is a simple closed curve positively oriented, then 𝑛(𝛾; 𝑝) = 1 for all 𝑝 in its
interior, and we can replace the hypothesis on 𝛾 by requiring that the interior of 𝛾
lies in𝑈 and hence avoid mentioning winding numbers.

The identity theorem says that zeros of a nonconstant holomorphic 𝑓 have no
limit points, and so are isolated points. Since 1

𝑓
is a meromorphic function with zeros

at the poles of 𝑓 , poles are also isolated. Zeros and poles of can be counted fairly
easily.
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Theorem B.25 (Argument principle). Suppose𝑈 ⊂ ℂ is an open set, and 𝛾 is a piecewise-
𝐶1 closed path in 𝑈 such that 𝑛(𝛾; 𝑝) = 0 for all 𝑝 ∉ 𝑈 and 𝑛(𝛾; 𝑝) ∈ {0, 1} for all 𝑝 ∉ 𝛾.
Suppose that 𝑓 : 𝑈 → ℙ1 is a meromorphic function with no zeros or poles on 𝛾. Then

1
2𝜋𝑖

∫
𝛾

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 = 𝑁 − 𝑃,

where 𝑁 is the number of zeros of 𝑓 inside 𝛾 and 𝑃 is the number of poles inside 𝛾, both
counted with multiplicity.

Furthermore, suppose ℎ : 𝑈 → ℂ is holomorphic. Let 𝑧1, . . . , 𝑧𝑁 be the zeros of 𝑓 inside
𝛾 and 𝑤1, . . . , 𝑤𝑃 be the poles of 𝑓 inside 𝛾. Then

1
2𝜋𝑖

∫
𝛾
ℎ(𝑧)

𝑓 ′(𝑧)
𝑓 (𝑧) 𝑑𝑧 =

𝑁∑
𝑘=1

ℎ(𝑧𝑘) −
𝑃∑
𝑘=1

ℎ(𝑤𝑘).

Again, if 𝛾 is simple closed and positively oriented, the hypothesis on 𝛾 could
be replaced with the requirement that the interior of 𝛾 lies in 𝑈 . The proof is an
immediate application of the residue theorem. Simply compute the residues at the
zeros and poles of 𝑓 . In particular, if 𝑓 has a zero at 𝑝 or multiplicity 𝑚, then ℎ(𝑧) 𝑓

′(𝑧)
𝑓 (𝑧)

has a simple pole at 𝑝 with residue 𝑚 ℎ(𝑝). Similarly, if 𝑓 has a pole at 𝑝 of order 𝑚,
then ℎ(𝑧) 𝑓

′(𝑧)
𝑓 (𝑧) has a simple pole with residue −𝑚 ℎ(𝑝) at 𝑝.

Another useful way to count zeros is Rouché’s theorem.

Theorem B.26 (Rouché). Suppose 𝑈 ⊂ ℂ is an open set, and 𝛾 is a piecewise-𝐶1 closed
path in 𝑈 such that 𝑛(𝛾; 𝑝) = 0 for all 𝑝 ∉ 𝑈 and 𝑛(𝛾; 𝑝) ∈ {0, 1} for all 𝑝 ∉ 𝛾. Suppose
that 𝑓 : 𝑈 → ℂ and 𝑔 : 𝑈 → ℂ are holomorphic functions such that

| 𝑓 (𝑧) − 𝑔(𝑧)| < | 𝑓 (𝑧)| + |𝑔(𝑧)|

for all 𝑧 ∈ 𝛾. Then 𝑓 and 𝑔 have the same number of zeros inside 𝛾 (up to multiplicity).

In the classical statement of the theorem the weaker inequality | 𝑓 (𝑧) − 𝑔(𝑧)| <
| 𝑓 (𝑧)| is used. Notice that either inequality precludes any zeros on 𝛾 itself.

A holomorphic function with an essential singularity achieves essentially every
value. A weak version of this result (and an easy to prove one) is the Casorati–
Weierstrass theorem: If a holomorphic 𝑓 has an essential singularity at 𝑝, then for
every neighborhood𝑊 of 𝑝, 𝑓

(
𝑊 \ {𝑝}

)
is dense in ℂ. Let us state the much stronger

theorem of Picard: A function with an essential singularity is very wild. It achieves
every value (except possibly one) infinitely often.

Theorem B.27 (Picard’s big theorem). Suppose 𝑈 ⊂ ℂ is open, 𝑓 : 𝑈 \ {𝑝} → ℂ is
holomorphic, and 𝑓 has an essential singularity at 𝑝. Then for every neighborhood 𝑊 of 𝑝,
𝑓
(
𝑊 \ {𝑝}

)
is either ℂ or ℂ minus a point.

For example, 𝑒1/𝑧 has an essential singularity at the origin and the function is
never 0. Since we stated the big theorem, let us also state the little theorem.
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Theorem B.28 (Picard’s little theorem). If 𝑓 : ℂ → ℂ is holomorphic, then 𝑓 (ℂ) is either
ℂ or ℂ minus a point.

One theorem from algebra that is important in complex analysis, and becomes
perhaps even more important in several variables is the fundamental theorem of
algebra. It really is a theorem of complex analysis and its standard proof is via the
maximum principle.
Theorem B.29 (Fundamental theorem of algebra). If 𝑃 : ℂ → ℂ is a nonzero polynomial
of degree 𝑘, then 𝑃 has exactly 𝑘 zeros (roots) in ℂ counted with multiplicity.

The set of rational functions is dense in the space of holomorphic functions, and
we even have control over where the poles need to be. Note that a nonconstant
polynomial has a “pole at infinity” meaning 𝑃(𝑧) → ∞ as 𝑧 → ∞. Letting ℙ1 again
be the Riemann sphere, we have Runge’s approximation theorem.
Theorem B.30 (Runge). Suppose𝑈 ⊂ ℂ is an open set and 𝐴 ⊂ ℙ1 \𝑈 is a set containing
at least one point from each component of ℙ1 \𝑈 . Suppose 𝑓 : 𝑈 → ℂ is holomorphic. Then
for every 𝜖 > 0 and every compact 𝐾 ⊂⊂ 𝑈 , there exists a rational function 𝑅 with poles in
𝐴 such that

|𝑅(𝑧) − 𝑓 (𝑧)| < 𝜖 for all 𝑧 ∈ 𝐾.
Perhaps a surprising generalization of the classical Weierstrass approximation

theorem, and one of my favorite one-variable theorems, is Mergelyan’s theorem. It
may be good to note that Mergelyan does not follow from Runge.
Theorem B.31 (Mergelyan). Suppose 𝐾 ⊂⊂ ℂ is a compact set such thatℂ\𝐾 is connected
and 𝑓 : 𝐾 → ℂ is a continuous function that is holomorphic in the interior 𝐾◦. Then for
every 𝜖 > 0 and every compact 𝐾 ⊂⊂ 𝑈 , there exists a polynomial 𝑃 such that

|𝑃(𝑧) − 𝑓 (𝑧)| < 𝜖 for all 𝑧 ∈ 𝐾.

The reason why the theorem is perhaps surprising is that 𝐾 may have only a
small or no interior. Using a closed interval 𝐾 = [𝑎, 𝑏] of the real line we recover the
Weierstrass approximation theorem.

Given an open set𝑈 ⊂ ℂ, we say𝑈 is symmetric with respect to the real axis if 𝑧 ∈ 𝑈
implies �̄� ∈ 𝑈 . We divide𝑈 into three parts

𝑈+ = {𝑧 ∈ 𝑈 : Im 𝑧 > 0}, 𝑈0 = {𝑧 ∈ 𝑈 : Im 𝑧 = 0}, 𝑈− = {𝑧 ∈ 𝑈 : Im 𝑧 < 0}.

We have the following theorem for extending (reflecting) holomorphic functions past
boundaries.
Theorem B.32 (Schwarz reflection principle). Suppose 𝑈 ⊂ ℂ is a domain symmetric
with respect to the real axis, 𝑓 : 𝑈+ ∪ 𝑈0 → ℂ a continuous function holomorphic on 𝑈+
and real-valued on𝑈0. Then the function 𝑔 : 𝑈 → ℂ defined by

𝑔(𝑧) = 𝑓 (𝑧) if 𝑧 ∈ 𝑈+ ∪𝑈0, 𝑔(𝑧) = 𝑓 (�̄�) if 𝑧 ∈ 𝑈−,

is holomorphic on𝑈 .
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In fact, the reflection is really about harmonic functions.

Theorem B.33 (Schwarz reflection principle for harmonic functions). Suppose𝑈 ⊂ ℂ

is a domain symmetric with respect to the real axis, 𝑓 : 𝑈+ ∪𝑈0 → ℝ a continuous function
harmonic on𝑈+ and zero on𝑈0. Then the function 𝑔 : 𝑈 → ℝ defined by

𝑔(𝑧) = 𝑓 (𝑧) if 𝑧 ∈ 𝑈+ ∪𝑈0, 𝑔(𝑧) = − 𝑓 (�̄�) if 𝑧 ∈ 𝑈−,

is harmonic on𝑈 .

Functions may be defined locally, and continued along paths. Suppose 𝑝 is a
point and 𝐷 is a disc centered at 𝑝 ∈ 𝐷. A holomorphic function 𝑓 : 𝐷 → ℂ can
be analytically continued along a path 𝛾 : [0, 1] → ℂ, 𝛾(0) = 𝑝, if for every 𝑡 ∈ [0, 1]
there exists a disc 𝐷𝑡 centered at 𝛾(𝑡), where 𝐷0 = 𝐷, and a holomorphic function
𝑓𝑡 : 𝐷𝑡 → ℂ, where 𝑓0 = 𝑓 , and for each 𝑡0 ∈ [0, 1] there is an 𝜖 > 0 such that if
|𝑡 − 𝑡0 | < 𝜖, then 𝑓𝑡 = 𝑓𝑡0 in 𝐷𝑡 ∩ 𝐷𝑡0 . The monodromy theorem says that as long as
there are no holes, analytic continuation defines a function uniquely.

Theorem B.34 (Monodromy theorem). If𝑈 ⊂ ℂ is a simply connected domain, 𝐷 ⊂ 𝑈 a
disc and 𝑓 : 𝐷 → ℂ a holomorphic function that can be analytically continued from 𝑝 ∈ 𝐷
to every 𝑞 ∈ 𝑈 along every path from 𝑝 to 𝑞, then there exists a unique holomorphic function
𝐹 : 𝑈 → ℂ such that 𝐹 |𝐷 = 𝑓 .

An interesting and useful theorem getting an inequality in the opposite direction
from Schwarz’s lemma, and one which is often not covered in a one-variable course
is the Koebe 1

4-theorem. Think of why no such theorem could possibly hold for just
smooth functions. At first glance the theorem should seem quite counterintuitive,
and at second glance, it should seem outright outrageous.

Theorem B.35 (Koebe quarter theorem). Suppose 𝑓 : 𝔻 → ℂ is holomorphic and injective.
Then 𝑓 (𝔻) contains a disc of radius | 𝑓 ′(0)|

4 centered at 𝑓 (0).

The 1
4 is sharp, that is, it is the best it can be.

Finally, it is useful to factor out all the zeros of a holomorphic function, not just
finitely many. Similarly, we can work with poles.

Theorem B.36 (Weierstrass product theorem). Suppose𝑈 ⊂ ℂ is a domain, {𝑎𝑘}, {𝑏𝑘}
are countable sets in 𝑈 with no limit points in 𝑈 , and {𝑛𝑘}, {𝑚𝑘} countable sets of natural
numbers. Then there exists a meromorphic function 𝑓 of 𝑈 whose zeros are exactly at 𝑎𝑘 ,
with orders given by 𝑛𝑘 , and poles are exactly at 𝑏𝑘 , with orders given by 𝑚𝑘 .

For a more explicit statement, we need infinite products. The product
∏∞

𝑘=1(1+ 𝑎𝑘)
converges if the sequence of partial products

∏𝑛
𝑘=1(1 + 𝑎𝑘) converges. We say that

the product converges absolutely if
∏∞

𝑘=1(1 + |𝑎𝑘 |) converges, which is equivalent to∑∞
𝑘=1 |𝑎𝑘 | converging.
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Define

𝐸0(𝑧) = (1 − 𝑧), 𝐸𝑚(𝑧) = (1 − 𝑧) exp
(
𝑧 + 𝑧2

2 + · · · + 𝑧𝑚

𝑚

)
.

The function 𝐸𝑚
(
𝑧/𝑎

)
has a zero of order 1 at 𝑎.

Theorem B.37 (Weierstrass factorization theorem). Let 𝑓 be an entire function with
zeros (repeated according to multiplicity) at points of the sequence {𝑎𝑘} except the zero at
the origin, whose order is 𝑚 (possibly 𝑚 = 0). Then there exists an entire function 𝑔 and a
sequence {𝑝𝑘} such that

𝑓 (𝑧) = 𝑧𝑚𝑒 𝑔(𝑧)
∞∏
𝑘=1

𝐸𝑝𝑘

(
𝑧

𝑎𝑘

)
,

converges uniformly absolutely on compact subsets.

The 𝑝𝑘 are chosen such that
∞∑
𝑘=1

���� 𝑟𝑎𝑘
����1+𝑝𝑘

converges for all 𝑟 > 0.

* * *

There are many other useful theorems in one complex variable, and we could
spend a lot of time listing them all. However, hopefully the listing above is useful
as a refresher for the reader of the most common results, some of which are used in
this book, some of which are useful in the exercises, and some of which are just too
interesting not to mention.



C \\ Differential Forms and Stokes’
Theorem

Differential forms come up quite a bit in this book, especially in  chapter 4 and
 chapter 5 . Let us overview their definition and state the general Stokes’ theorem.
No proofs are given, this appendix is just a bare bones guide. For a more complete
introduction to differential forms, see Rudin [ R1 ].

The short story about differential forms is that a 𝑘-form is an object that can be
integrated (summed) over a 𝑘-dimensional object, taking orientation into account.
For simplicity, as in most of this book, everything in this appendix is stated for smooth
(𝐶∞) objects to avoid worrying about how much regularity is needed.

The main point of differential forms is to find the proper context for the Funda-
mental theorem of calculus, ∫ 𝑏

𝑎

𝑓 ′(𝑥) 𝑑𝑥 = 𝑓 (𝑏) − 𝑓 (𝑎).

We interpret both sides as integration. The left-hand side is an integral of the 1-form
𝑓 ′ 𝑑𝑥 over the 1-dimensional interval [𝑎, 𝑏] and the right-hand side is an integral of
the 0-form (a function) 𝑓 over the 0-dimensional (two-point) set {𝑎, 𝑏}. Both sides
consider orientation, [𝑎, 𝑏] is integrated from 𝑎 to 𝑏, {𝑎} is oriented negatively and
{𝑏} is oriented positively. The two-point set {𝑎, 𝑏} is the boundary of [𝑎, 𝑏], and the
orientation of {𝑎, 𝑏} is induced by the orientation of [𝑎, 𝑏].

Let us define the objects over which we integrate, that is, smooth submanifolds of
ℝ𝑛 . Our model for a 𝑘-dimensional submanifold-with-boundary is the upper-half-
space and its boundary:

ℍ𝑘 def
= {𝑥 ∈ ℝ𝑘 : 𝑥𝑘 ≥ 0}, 𝜕ℍ𝑘 def

= {𝑥 ∈ ℝ𝑘 : 𝑥𝑘 = 0},

Definition C.1. Let 𝑀 ⊂ ℝ𝑛 have the induced subspace topology. Let 𝑘 ∈ ℕ0. Let
𝑀 have the property that for each 𝑝 ∈ 𝑀, there exists a neighborhood 𝑊 ⊂ ℝ𝑛 of
𝑝, a point 𝑞 ∈ ℍ𝑘 , a neighborhood 𝑈 ⊂ ℍ𝑘 of 𝑞, and a smooth one-to-one open 

†
 

mapping 𝜑 : 𝑈 → 𝑀 such that 𝜑(𝑞) = 𝑝, the derivative 𝐷𝜑 has rank 𝑘 at all points,
†By open, we mean that 𝜑(𝑉) is a relatively open set of 𝑀 for every open set 𝑉 ⊂ 𝑈 .
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and 𝜑(𝑈) = 𝑀 ∩𝑊 . Then 𝑀 is an embedded submanifold-with-boundary of dimension 𝑘.
The map 𝜑 is called a local parametrization. If 𝑞 is such that 𝑞𝑘 = 0 (the last component
is zero), then 𝑝 = 𝜑(𝑞) is a boundary point. Let 𝜕𝑀 denote the set of boundary points.
If 𝜕𝑀 = ∅, then we say 𝑀 is simply an embedded submanifold.

The situation for a boundary point and an interior point is depicted in  Figure C.1  .
Note that𝑊 is a bigger neighborhood in ℝ𝑛 than the image 𝜑(𝑈).

𝑈

𝑞

𝑝

𝑈

𝜑

ℝ𝑛 ℝ𝑛

𝑝

𝑞
Boundary pointInterior point

𝑀 𝑀

𝑊
𝑊

𝜑

ℍ𝑘

𝜕ℍ𝑘

ℍ𝑘

𝜕ℍ𝑘

𝜕𝑀 𝜕𝑀

Figure C.1: Parametrization at an interior and a boundary point of a submanifold.

Completely correctly, we should say submanifold of ℝ𝑘 . Sometimes people (includ-
ing me) say manifold when they mean submanifold. A manifold is a more abstract
concept, but all submanifolds are manifolds. The word embedded has to do with
the topology on 𝑀, and this has to do with the condition 𝜑(𝑈) = 𝑀 ∩𝑊 and 𝜑
being open. The condition means that 𝜑 is a homeomorphism onto 𝑀 ∩𝑊 . It is
important that𝑊 is an open set in ℝ𝑛 . For our purposes here, all submanifolds will
be embedded. We have also made some economy in the definition. If 𝑞 is not on the
boundary of ℍ𝑘 , then we might as well have used ℝ𝑘 instead of ℍ𝑘 . A submanifold is
something that is locally like ℝ𝑘 , and if it has a boundary, then near the boundary it
is locally like ℍ𝑘 near a point of 𝜕ℍ𝑘 .

We also remark that submanifolds are often defined in reverse rather than by
parametrizations, that is, by starting with the (relatively) open sets 𝑀 ∩𝑊 , and
the maps 𝜑−1, calling those charts, and calling the entire set of charts an atlas. The
particular version of the definition we have chosen makes it easy to evaluate integrals
in the same way that parametrizing curves makes it easy to evaluate integrals.

Examples of such submanifolds are domains with smooth boundaries as in
 Definition 2.2.1  , we can take the inclusion map 𝑥 ↦→ 𝑥 as our parametrization. The
domain is then the submanifold 𝑀 and 𝜕𝑀 is the boundary of the domain. Domains
are the key application for our purposes. Another example are smooth curves.
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If 𝑀 is an embedded submanifold-with-boundary of dimension 𝑘, then 𝜕𝑀 is also
an embedded submanifold of dimension 𝑘 − 1. Simply restrict the parametrizations
to the boundary of ℍ𝑘 .

We also need to define an orientation.

Definition C.2. Let 𝑀 ⊂ ℝ𝑛 be an embedded submanifold-with-boundary of di-
mension 𝑘 ≥ 2. Suppose a set of parametrizations can be chosen such that each
point of 𝑀 is in the image of one of the parametrizations, and if 𝜑 : 𝑈 → 𝑀 and
𝜑 : 𝑈 → 𝑀 are two parametrizations such that 𝜑(𝑈) ∩ 𝜑(𝑈) ≠ ∅, then the transition
map (automatically smooth) defined by

𝜑 −1 ◦ 𝜑

on 𝜑−1 (𝜑(𝑈) ∩ 𝜑(𝑈)
)

(in other words, wherever it makes sense) is orientation
preserving, that is,

det𝐷
(
𝜑 −1 ◦ 𝜑

)
> 0

at all points. The set of such parametrizations is the orientation on 𝑀, and we usually
take the maximal set of such parametrizations.

If 𝑀 is oriented, then the restrictions of the parametrizations to 𝜕ℍ𝑘 give an
orientation on 𝜕𝑀. We say this is the induced orientation on 𝜕𝑀.

For dimensions 𝑘 = 0 (isolated points) and 𝑘 = 1 (curves) we must define
orientation differently. For 𝑘 = 0, we simply give each point an orientation of +
or −. For 𝑘 = 1, we need to allow parametrization by open subsets not only of
ℍ1 = [0,∞), but also −ℍ1 = (−∞, 0]. The definition is the same otherwise. To define
the orientation of the boundary, if the boundary point corresponds to the 0 in [0,∞)
we give this boundary point the orientation −, and if it corresponds to the 0 in (−∞, 0],
then we give this point the orientation +. The reason for this complication is that
unlike in ℝ𝑘 for 𝑘 ≥ 2, the set ℍ1 = [0,∞) cannot be “rotated” (in ℝ1) or mapped via
an orientation preserving map onto −ℍ1 = (−∞, 0], but in ℝ2 the upper-half-plane
ℍ2 can be rotated to the lower-half-plane −ℍ2 = {𝑥 ∈ ℝ2 : 𝑥2 ≤ 0}. For computations,
it is often useful for compact curves with endpoints (boundary) to just give one
parametrization from [0, 1] or perhaps [𝑎, 𝑏], then 𝑎 corresponds to the − and 𝑏

corresponds to the +.
The fact that the transition map is smooth does require a proof, which is a good

exercise in basic analysis. It requires a bit of care at boundary points.
An orientation allows us to have a well-defined integral on 𝑀, just like a curve

needs to be oriented in order to define a line integral. However, unlike for curves,
not every submanifold of dimension more than one is orientable, that is, admits an
orientation. A classical nonorientable example is the Möbius strip.

Now that we know “on” what we integrate, let us figure out what “it” is that we
integrate. Let us start with 0-forms. We define 0-forms as smooth functions (possibly
complex-valued). Sometimes we need a function defined just on a submanifold.
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A function 𝑓 defined on a submanifold 𝑀 is smooth when 𝑓 ◦ 𝜑 is smooth on 𝑈
for every parametrization 𝜑 : 𝑈 → 𝑀. Equivalently, one can prove that 𝑓 is the
restriction of some smooth function defined on some neighborhood of 𝑀 in ℝ𝑛 .

A 0-form 𝜔 defined on a 0-dimensional oriented submanifold 𝑀 is integrated as∫
𝑀

𝜔
def
=

∑
𝑝∈𝑀

𝜖𝑝𝜔(𝑝),

where 𝜖𝑝 is the orientation of 𝑝 given as +1 or −1. To avoid problems of integrability,
one can assume that 𝜔 is compactly supported (it is nonzero on at most finitely many
points of 𝑀) or that 𝑀 is compact (it is a finite set).

The correct definition of a 1-form is that it is a “smooth section” of the dual of the
vector bundle 𝑇ℝ𝑛 . It is something that eats a vector field, and spits out a function.
We use the pairing notation ⟨𝜔, 𝑣⟩ instead of the functional notation 𝜔(𝑣) to indicate
linearity in 𝑣 (and in 𝜔). The 1-form 𝑑𝑥𝑘 is supposed to be the object that does〈

𝑑𝑥𝑘 ,
𝜕

𝜕𝑥𝑘

〉
= 1,

〈
𝑑𝑥𝑘 ,

𝜕

𝜕𝑥ℓ

〉
= 0 if ℓ ≠ 𝑘.

For our purposes here, just suppose that a 1-form in ℝ𝑛 is an object of the form

𝜔 = 𝑔1𝑑𝑥1 + 𝑔2𝑑𝑥2 + · · · + 𝑔𝑛𝑑𝑥𝑛 ,

where 𝑔1, 𝑔2, . . . , 𝑔𝑛 are smooth functions. That is, a 1-form is at each point a linear
combination of 𝑑𝑥1, 𝑑𝑥2, . . . , 𝑑𝑥𝑛 that varies smoothly from point to point. Suppose
𝑀 is a one-dimensional submanifold (possibly with boundary), 𝜑 : 𝑈 → 𝑀 is a
parametrization compatible with the orientation of 𝑀, and 𝑔𝑘 is supported in 𝜑(𝑈).
Define ∫

𝑀

𝜔
def
=

𝑛∑
𝑘=1

∫
𝑈

𝑔𝑘
(
𝜑(𝑡)

)
𝜑′
𝑘(𝑡) 𝑑𝑡,

where the integral
∫
𝑈
· · · 𝑑𝑡 is evaluated with the usual positive orientation (left to

right) as𝑈 ⊂ ℝ, and 𝜑𝑘 is the 𝑘th component of 𝜑.
Generally, a 1-form has support bigger than just 𝜑(𝑈). In this case, one needs to

use a so-called partition of unity to write 𝜔 as a locally finite sum

𝜔 =
∑
𝜄

𝜔𝜄 ,

where each 𝜔𝜄 has support in the image of a single parametrization. By locally finite,
we mean that on each compact neighborhood only finitely many 𝜔𝜄 are nonzero.
Define ∫

𝑀

𝜔
def
=

∑
𝜄

∫
𝑀

𝜔𝜄 .

The definition makes sense only if this sum actually exists. For example, if 𝜔 is
compactly supported, then this sum is only finite, and so it exists.
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Higher degree forms are constructed out of 1-forms and 0-forms by the so-called
wedge product. Given a 𝑘-form 𝜔 and an ℓ -form 𝜂,

𝜔 ∧ 𝜂

is a (𝑘 + ℓ )-form. We require the wedge product to be bilinear at each point: If 𝑓 and
𝑔 are smooth functions, then

( 𝑓 𝜔+ 𝑔𝜂)∧𝜉 = 𝑓 (𝜔∧𝜉)+ 𝑔(𝜂∧𝜉), and 𝜔∧( 𝑓 𝜂+ 𝑔𝜉) = 𝑓 (𝜔∧𝜂)+ 𝑔(𝜔∧𝜉).

The wedge product is not commutative; we require it to be anticommutative on
1-forms. If 𝜔 and 𝜂 are 1-forms, then

𝜔 ∧ 𝜂 = −𝜂 ∧ 𝜔.

The negative keeps track of orientation. When 𝜔 is a 𝑘-form and 𝜂 is an 𝑚-form,

𝜔 ∧ 𝜂 = (−1)𝑘𝑚𝜂 ∧ 𝜔.

We wedge together the basis 1-forms to get all 𝑘-forms. A 𝑘-form is then an
expression

𝜔 =

𝑛∑
ℓ1=1

𝑛∑
ℓ2=1

· · ·
𝑛∑

ℓ𝑘=1
𝑔ℓ1 ,...,ℓ𝑘 𝑑𝑥ℓ1 ∧ 𝑑𝑥ℓ2 ∧ · · · ∧ 𝑑𝑥ℓ𝑘 ,

where 𝑔ℓ1 ,...,ℓ𝑘 are smooth functions. We can simplify even more. Since the wedge is
anticommutative on 1-forms,

𝑑𝑥ℓ ∧ 𝑑𝑥𝑚 = −𝑑𝑥𝑚 ∧ 𝑑𝑥ℓ , and 𝑑𝑥ℓ ∧ 𝑑𝑥ℓ = 0.

In other words, every form 𝑑𝑥ℓ1 ∧ 𝑑𝑥ℓ2 ∧ · · · ∧ 𝑑𝑥ℓ𝑘 is either zero, if any two indices
from ℓ1, . . . , ℓ𝑘 are equal, or can be put into the form ±𝑑𝑥ℓ1 ∧ 𝑑𝑥ℓ2 ∧ · · · ∧ 𝑑𝑥ℓ𝑘 , where
ℓ1 < ℓ2 < · · · < ℓ𝑘 . Thus, a 𝑘-form can always be written as

𝜔 =
∑

1≤ℓ1<ℓ2<···<ℓ𝑘≤𝑛
𝑔ℓ1 ,...,ℓ𝑘 𝑑𝑥ℓ1 ∧ 𝑑𝑥ℓ2 ∧ · · · ∧ 𝑑𝑥ℓ𝑘 .

In general, just like 1-forms are linear functionals of vector fields, 𝑘-forms are
alternating multilinear functions of 𝑘 vector fields. To simplify matters, let us note how
𝑘 vectors are plugged into 𝑑𝑥ℓ1 ∧ 𝑑𝑥ℓ2 ∧ · · · ∧ 𝑑𝑥ℓ𝑘 . Consider vector fields 𝑋1, . . . , 𝑋𝑘
given by 𝑋𝑗 =

∑𝑛
𝑚=1 𝑐𝑚𝑗

𝜕
𝜕𝑥𝑚

. As 𝑘-forms are alternating and multilinear, instead
of plugging in the 𝑘-tuple (𝑋1, . . . , 𝑋𝑘), we write it as taking the wedge product
𝑋1 ∧ · · · ∧ 𝑋𝑘 , where the wedge has the same properties as for forms. Then

〈
𝑑𝑥ℓ1 ∧ 𝑑𝑥ℓ2 ∧ · · · ∧ 𝑑𝑥ℓ𝑘 , 𝑋1 ∧ · · · ∧ 𝑋𝑘⟩ = det

©«

𝑐ℓ11 𝑐ℓ12 · · · 𝑐ℓ1𝑘
𝑐ℓ21 𝑐ℓ22 · · · 𝑐ℓ2𝑘
...

...
. . .

...

𝑐ℓ𝑘1 𝑐ℓ𝑘2 · · · 𝑐ℓ𝑘 𝑘


ª®®®®¬
.
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That is, each 𝑑𝑥ℓ 𝑗 picks out the ℓ 𝑗th row out of the matrix of all coefficients and we
take the determinant. Here is an explicit example for 𝑘 = 2:〈

𝑑𝑥1 ∧ 𝑑𝑥2,

(
𝑎

𝜕

𝜕𝑥1
+ 𝑏 𝜕

𝜕𝑥2

)
∧

(
𝑐

𝜕

𝜕𝑥1
+ 𝑑 𝜕

𝜕𝑥2

)〉
= 𝑎𝑑 − 𝑏𝑐.

Consider an oriented 𝑘-dimensional submanifold 𝑀 (possibly with boundary), a
parametrization 𝜑 : 𝑈 → 𝑀 from the orientation, and a 𝑘-form 𝜔 supported in 𝜑(𝑈)
(that is each 𝑔ℓ1 ,...,ℓ𝑘 is supported in 𝜑(𝑈)). Denote by 𝑡 ∈ 𝑈 ⊂ ℝ𝑘 the coordinates on
𝑈 . Define ∫

𝑀

𝜔
def
=

∑
1≤ℓ1<ℓ2<···<ℓ𝑘≤𝑛

∫
𝑈

𝑔ℓ1 ,...,ℓ𝑘 (𝑡)det𝐷(𝜑ℓ1 , 𝜑ℓ2 , . . . , 𝜑ℓ𝑘 ) 𝑑𝑡

where the integral
∫
𝑈
· · · 𝑑𝑡 is evaluated in the usual orientation on ℝ𝑘 with 𝑑𝑡 the

standard measure on ℝ𝑘 (think 𝑑𝑡 = 𝑑𝑡1𝑑𝑡2 · · · 𝑑𝑡𝑛), and 𝐷(𝜑ℓ1 , 𝜑ℓ2 , . . . , 𝜑ℓ𝑘 ) denotes
the derivative of the mapping whose 𝑚th component is 𝜑ℓ𝑚 .

Similarly as before, if 𝜔 is not supported in the image of a single parametrization,
write

𝜔 =
∑
ℓ

𝜔ℓ

as a locally finite sum, where each 𝜔ℓ has support in the image of a single parametriza-
tion of the orientation. Then ∫

𝑀

𝜔
def
=

∑
ℓ

∫
𝑀

𝜔ℓ .

Again, the sum has to exist, such as when 𝜔 is compactly supported and the sum is
finite.

The only nontrivial differential forms on ℝ𝑛 are 0, 1, 2, . . . , 𝑛 forms. The only
𝑛-forms are object of the form

𝑓 (𝑥) 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ · · · ∧ 𝑑𝑥𝑛 .

The form 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ · · · ∧ 𝑑𝑥𝑛 is called the volume form. Integrating it over a domain
(an 𝑛-dimensional submanifold) gives the standard volume integral.

More generally, one defines integration of 𝑘-forms over 𝑘-chains, which are
just linear combinations of smooth submanifolds, but we do not need that level of
generality.

In computations, we can avoid sets of zero measure (𝑘-dimensional), so we
can ignore the boundary of the submanifold. Similarly, if we parametrize several
subsets we can leave out a measure zero subset. Let us give a couple of examples of
computations.
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Example C.3: Consider the circle 𝑆1 ⊂ ℝ2. We use a parametrization 𝜑 : (−𝜋,𝜋) →
𝑆1 where 𝜑(𝑡) =

(
cos(𝑡), sin(𝑡)

)
, so the circle is oriented counter-clockwise. Let

𝜔(𝑥1, 𝑥2) = 𝑃(𝑥1, 𝑥2) 𝑑𝑥1 +𝑄(𝑥1, 𝑥2) 𝑑𝑥2, then∫
𝑆1
𝜔 =

∫ 𝜋

−𝜋

(
𝑃
(
cos(𝑡), sin(𝑡)

) (
− sin(𝑡)

)
+𝑄

(
cos(𝑡), sin(𝑡)

)
cos(𝑡)

)
𝑑𝑡.

We can ignore the point (−1, 0) as a single point is of 1-dimensional measure zero.

Example C.4: Consider a domain𝑈 ⊂ ℝ𝑛 , then𝑈 is an oriented submanifold. We
use the parametrization 𝜑 : 𝑈 → 𝑈 , where 𝜑(𝑥) = 𝑥. Then∫

𝑈

𝑓 (𝑥) 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ · · · ∧ 𝑑𝑥𝑛 =

∫
𝑈

𝑓 (𝑥) 𝑑𝑥1 𝑑𝑥2 · · · 𝑑𝑥𝑛 =

∫
𝑈

𝑓 (𝑥) 𝑑𝑉,

where 𝑑𝑉 is the standard volume measure.

Example C.5: Finally, consider 𝑀 the upper hemisphere of the unit sphere 𝑆2 ⊂ ℝ3

as a submanifold with boundary. That is consider

𝑀 =
{
𝑥 ∈ ℝ3 : 𝑥2

1 + 𝑥
2
2 + 𝑥2

3 = 1, 𝑥3 ≥ 0
}
.

The boundary is the circle in the (𝑥1, 𝑥2)-plane:

𝜕𝑀 =
{
𝑥 ∈ ℝ3 : 𝑥2

1 + 𝑥
2
2 = 1, 𝑥3 = 0

}
.

Consider the parametrization of 𝑀 using the spherical coordinates

𝜑(𝜃,𝜓) =
(
cos(𝜃) sin(𝜓), sin(𝜃) sin(𝜓), cos(𝜓)

)
for𝑈 given by −𝜋 < 𝜃 < 𝜋, 0 < 𝜓 ≤ 𝜋/2. After a rotation this is a subset of a half-plane
with the points corresponding to 𝜓 = 𝜋/2 corresponding to boundary points. We miss
the points where 𝜃 = 𝜋, including the point (0, 0, 1), but the set of those points is a
1-dimensional curve, and so a set of 2-dimensional measure zero. For the purposes
of integration we can ignore it. Let

𝜔(𝑥1, 𝑥2, 𝑥3) = 𝑃(𝑥1, 𝑥2, 𝑥3) 𝑑𝑥1∧ 𝑑𝑥2+𝑄(𝑥1, 𝑥2, 𝑥3) 𝑑𝑥1∧ 𝑑𝑥3+𝑅(𝑥1, 𝑥2, 𝑥3) 𝑑𝑥2∧ 𝑑𝑥3.

Then∫
𝑀

𝜔 =

∫ 𝜋

−𝜋

∫ 𝜋/2

0

[
𝑃
(
𝜑(𝜃,𝜓)

) (𝜕𝜑1

𝜕𝜃

𝜕𝜑2

𝜕𝜓
−

𝜕𝜑2

𝜕𝜃

𝜕𝜑1

𝜕𝜓

)
+𝑄

(
𝜑(𝜃,𝜓)

) (𝜕𝜑1

𝜕𝜃

𝜕𝜑3

𝜕𝜓
−

𝜕𝜑3

𝜕𝜃

𝜕𝜑1

𝜕𝜓

)
+ 𝑅

(
𝜑(𝜃,𝜓)

) (𝜕𝜑2

𝜕𝜃

𝜕𝜑3

𝜕𝜓
− 𝜕𝜑3

𝜕𝜃

𝜕𝜑2

𝜕𝜓

)]
𝑑𝜃 𝑑𝜓

=

∫ 𝜋

−𝜋

∫ 𝜋/2

0

[
𝑃
(
cos(𝜃) sin(𝜓), sin(𝜃) sin(𝜓), cos(𝜓)

) (
− cos(𝜓) sin(𝜓)

)
+𝑄

(
cos(𝜃) sin(𝜓), sin(𝜃) sin(𝜓), cos(𝜓)

)
sin(𝜃) sin2(𝜓)

+ 𝑅
(
cos(𝜃) sin(𝜓), sin(𝜃) sin(𝜓), cos(𝜓)

) (
− cos(𝜃) sin2(𝜓)

) ]
𝑑𝜃 𝑑𝜓.
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The induced orientation on the boundary 𝜕𝑀 is the counter-clockwise orientation
used in  Example C.3 , because that is the parametrization we get when we restrict to
the boundary, 𝜑(𝜃, 𝜋/2) =

(
cos(𝜃), sin(𝜃), 0

)
.

The derivative on 𝑘-forms is the exterior derivative, which is a linear operator that
eats 𝑘-forms and spits out (𝑘 + 1)-forms. For a 𝑘-form

𝜔 = 𝑔ℓ1 ,...,ℓ𝑘 𝑑𝑥ℓ1 ∧ 𝑑𝑥ℓ2 ∧ · · · ∧ 𝑑𝑥ℓ𝑘 ,

define the exterior derivative 𝑑𝜔 as

𝑑𝜔
def
= 𝑑𝑔ℓ1 ,...,ℓ𝑘 ∧ 𝑑𝑥ℓ1 ∧ 𝑑𝑥ℓ2 ∧ · · · ∧ 𝑑𝑥ℓ𝑘 =

𝑛∑
𝑚=1

𝜕𝑔ℓ1 ,...,ℓ𝑘
𝜕𝑥𝑚

𝑑𝑥𝑚 ∧ 𝑑𝑥ℓ1 ∧ 𝑑𝑥ℓ2 ∧ · · · ∧ 𝑑𝑥ℓ𝑘 .

Then define 𝑑 on every 𝑘-form by extending it linearly.
For example,

𝑑 (𝑃 𝑑𝑥2 ∧ 𝑑𝑥3 +𝑄 𝑑𝑥3 ∧ 𝑑𝑥1 + 𝑅 𝑑𝑥1 ∧ 𝑑𝑥2)

=
𝜕𝑃

𝜕𝑥1
𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3 +

𝜕𝑄

𝜕𝑥2
𝑑𝑥2 ∧ 𝑑𝑥3 ∧ 𝑑𝑥1 +

𝜕𝑅

𝜕𝑥3
𝑑𝑥3 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2

=

(
𝜕𝑃

𝜕𝑥1
+ 𝜕𝑄

𝜕𝑥2
+ 𝜕𝑅

𝜕𝑥3

)
𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3.

You should recognize the divergence of the vector field (𝑃, 𝑄, 𝑅) from vector calculus.
All the various derivative operations in ℝ3 from vector calculus make an appearance.
If 𝜔 is a 0-form in ℝ3, then 𝑑𝜔 is like the gradient. If 𝜔 is a 1-form in ℝ3, then 𝑑𝜔 is
like the curl. If 𝜔 is a 2-form in ℝ3, then 𝑑𝜔 is like the divergence.

A quick computation gives the Leibniz rule: If 𝜔 is a 𝑝-form and 𝜂 is a 𝑞-form, then

𝑑(𝜔 ∧ 𝜂) = 𝑑𝜔 ∧ 𝜂 + (−1)𝑝𝜔 ∧ 𝑑𝜂.

Something to notice is that
𝑑(𝑑𝜔) = 0

for every 𝜔, which follows because partial derivatives commute. That is sometimes
written as 𝑑2 = 0. In particular, we get a so-called complex: If Λ𝑘(𝑀) denotes the
𝑘-forms on an 𝑛-dimensional submanifold 𝑀, then we get the complex

Λ0(𝑀) 𝑑→ Λ1(𝑀) 𝑑→ Λ2(𝑀) 𝑑→ · · · 𝑑→ Λ𝑛(𝑀) 𝑑→ 0.

We remark that one can study the topology of 𝑀 by computing from this complex
the cohomology groups, ker(𝑑 : Λ𝑘→Λ𝑘+1)

im(𝑑 : Λ𝑘−1→Λ𝑘) , which is really about global solvability of the
differential equation 𝑑𝜔 = 𝜂 for an unknown 𝜔. There are variations on this idea and
one appears in  chapter 4 , but we digress.

Let us now state Stokes’ theorem, sometimes called the generalized Stokes’ theorem
to distinguish it from the classical Stokes’ theorem you know from vector calculus,
which is a special case.
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Theorem C.6 (Stokes). Suppose 𝑀 ⊂ ℝ𝑛 is an embedded compact smooth oriented (𝑘 + 1)-
dimensional submanifold-with-boundary, 𝜕𝑀 has the induced orientation, and 𝜔 is a smooth
𝑘-form defined on 𝑀. Then ∫

𝜕𝑀
𝜔 =

∫
𝑀

𝑑𝜔.

One can get away with less regularity, both on 𝜔 and 𝑀 (and 𝜕𝑀) including
“corners.” In ℝ2, it is easy to state in more generality, see  Theorem B.2 .

A final note is that the classical Stokes’ theorem is just the generalized Stokes’
theorem with 𝑛 = 3, 𝑘 = 2. Classically instead of using differential forms, the line
integral is an integral of a vector field instead of a 1-form 𝜔, and its derivative 𝑑𝜔 is
the curl operator.

As to at least get a flavor of the theorem, let us prove it in a simpler setting, which
however is often almost good enough, and it is the key idea in the proof. Suppose
𝑈 ⊂ ℝ𝑛 is a domain such that for each 𝑘 = 1, . . . , 𝑛 there exist two smooth functions
𝛼𝑘 and 𝛽𝑘 and𝑈 as a set is given by

(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛) ∈ 𝜋𝑘(𝑈),
𝛼𝑘(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛) ≤ 𝑥𝑘 ≤ 𝛽𝑘(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛),

where 𝜋𝑘(𝑈) is the projection of𝑈 onto the (𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛) components.
Orient 𝜕𝑈 as usual.

Write 𝑥′ = (𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘+1, . . . , 𝑥𝑛), and let 𝑑𝑉𝑛−1 be the volume form for ℝ𝑛−1.
Consider the (𝑛 − 1)-form

𝜔 = 𝑓 𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑘−1 ∧ 𝑑𝑥𝑘+1 ∧ · · · ∧ 𝑑𝑥𝑛 .

Then 𝑑𝜔 =
𝜕 𝑓
𝜕𝑥𝑘
𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑛 . By the fundamental theorem of calculus,∫

𝑈

𝑑𝜔 =

∫
𝑈

𝜕 𝑓

𝜕𝑥𝑘
𝑑𝑉𝑛

=

∫
𝜋𝑘(𝑈)

∫ 𝛽𝑘(𝑥′)

𝛼𝑘(𝑥′)

𝜕 𝑓

𝜕𝑥𝑘
𝑑𝑥𝑘 𝑑𝑉𝑛−1

=

∫
𝜋𝑘(𝑈)

𝑓 (𝑥1, . . . , 𝑥𝑘−1, 𝛽𝑘(𝑥′), 𝑥𝑘+1, . . . , 𝑥𝑛) 𝑑𝑉𝑛−1

−
∫
𝜋𝑘(𝑈)

𝑓 (𝑥1, . . . , 𝑥𝑘−1, 𝛼𝑘(𝑥′), 𝑥𝑘+1, . . . , 𝑥𝑛) 𝑑𝑉𝑛−1

=

∫
𝜕𝑈

𝜔.

Any (𝑛 − 1)-form can be written as a sum of forms like 𝜔 for various 𝑘. Integrating
each one of them in the correct direction provides the result.



D \\ Basic Terminology and Results
from Algebra

We quickly review some basic definitions and a result or two from commutative that
we need in  chapter 6 . See a book such as Zariski–Samuel [ ZS ] for a full reference.

Definition D.1. A set 𝐺 is called a group if it has an operation 𝑥 ∗ 𝑦 defined on it and
it satisfies the following axioms:

(G1) If 𝑥 ∈ 𝐺 and 𝑦 ∈ 𝐺, then 𝑥 ∗ 𝑦 ∈ 𝐺.

(G2) (associativity) (𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑦 ∗ 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝐺.

(G3) (identity) There exists an element 1 ∈ 𝐺 such that 1 ∗ 𝑥 = 𝑥 for all 𝑥 ∈ 𝐺.

(G4) (inverse) For every element 𝑥 ∈ 𝐺 there exists an element 𝑥−1 ∈ 𝐺 such that
𝑥 ∗ 𝑥−1 = 0.

A group 𝐺 is called abelian if it also satisfies:

(G5) (commutativity) 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 for all 𝑥, 𝑦 ∈ 𝐺.

A subset 𝐾 ⊂ 𝐺 is called a subgroup if 𝐾 is a group with the same operation as the
group 𝐺. If 𝐺 and 𝐻 are groups, a function 𝑓 : 𝐺 → 𝐻 is a group homomorphism if it
respects the group law, that is, 𝑓 (𝑎 ∗ 𝑏) = 𝑓 (𝑎) ∗ 𝑓 (𝑏). If 𝑓 is bĳective, then it is a group
isomorphism.

An example of a group is a group of automorphisms. For example, let𝑈 ⊂ ℂ be
open and suppose 𝐺 is the set of biholomorphisms 𝑓 : 𝑈 → 𝑈 . Then 𝐺 is a group
under composition, but 𝐺 is not necessarily abelian: If𝑈 = ℂ, then 𝑓 (𝑧) = 𝑧 + 1 and
𝑔(𝑧) = −𝑧 are members of 𝐺, but 𝑓 ◦ 𝑔(𝑧) = −𝑧 + 1 and 𝑔 ◦ 𝑓 (𝑧) = −𝑧 − 1.

Definition D.2. A set 𝑅 is called a commutative ring if it has two operations defined
on it, addition 𝑥 + 𝑦 and multiplication 𝑥𝑦, and if it satisfies the following axioms:

(A1) If 𝑥 ∈ 𝑅 and 𝑦 ∈ 𝑅, then 𝑥 + 𝑦 ∈ 𝑅.

(A2) (commutativity of addition) 𝑥 + 𝑦 = 𝑦 + 𝑥 for all 𝑥, 𝑦 ∈ 𝑅.
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(A3) (associativity of addition) (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑅.

(A4) There exists an element 0 ∈ 𝑅 such that 0 + 𝑥 = 𝑥 for all 𝑥 ∈ 𝑅.

(A5) For every element 𝑥 ∈ 𝑅 there exists an element −𝑥 ∈ 𝑅 such that 𝑥 + (−𝑥) = 0.

(M1) If 𝑥 ∈ 𝑅 and 𝑦 ∈ 𝑅, then 𝑥𝑦 ∈ 𝑅.

(M2) (commutativity of multiplication) 𝑥𝑦 = 𝑦𝑥 for all 𝑥, 𝑦 ∈ 𝑅.

(M3) (associativity of multiplication) (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑅.

(M4) There exists an element 1 ∈ 𝑅 (and 1 ≠ 0) such that 1𝑥 = 𝑥 for all 𝑥 ∈ 𝑅.

(D) (distributive law) 𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝑅.

The ring 𝑅 is called an integral domain if in addition to being a commutative ring:

(ID) 𝑥𝑦 = 0 implies that 𝑥 = 0 or 𝑦 = 0.

The ring 𝑅 is called a field if in addition to being a commutative ring:

(F) For every 𝑥 ∈ 𝑅 such that 𝑥 ≠ 0 there exists an element 1/𝑥 ∈ 𝑅 such that
𝑥(1/𝑥) = 1.

In a commutative ring 𝑅, the elements 𝑢 ∈ 𝑅 for which there exists an inverse 1/𝑢
as above are called units.

If 𝑅 and 𝑆 are rings, a function 𝑓 : 𝑅 → 𝑆 is a ring homomorphism if it respects the
ring operations, that is, 𝑓 (𝑎 + 𝑏) = 𝑓 (𝑎) + 𝑓 (𝑏) and 𝑓 (𝑎𝑏) = 𝑓 (𝑎) 𝑓 (𝑏), and such that
𝑓 (1) = 1. If 𝑓 is bĳective, then it is called a ring isomorphism.

Namely, a commutative ring is an abelian additive group (by additive group
we just mean we use + for the operation and 0 for the respective identity), with
multiplication thrown in. If the multiplication also defines a group on the set of
nonzero elements, then the ring is a field. A ring that is not commutative is one that
does not satisfy commutativity of multiplication. Some authors define ring without
asking for the existence of 1.

A ring that often comes up in this book is the ring of holomorphic functions.
Let O(𝑈) be the set of holomorphic functions defined on an open set 𝑈 . Pointwise
addition and multiplication give a ring structure on O(𝑈). The set of units is the set
of functions that never vanish in𝑈 . The set of units is a multiplicative group.

Given a commutative ring 𝑅, let 𝑅[𝑥] be the set of polynomials

𝑃(𝑥) = 𝑐𝑘𝑥
𝑘 + 𝑐𝑘−1𝑥

𝑘−1 + · · · + 𝑐1𝑥 + 𝑐0,

where 𝑐0, . . . , 𝑐𝑘 ∈ 𝑅. The integer 𝑘 is the degree of the polynomial and 𝑐𝑘 is the leading
coefficient of 𝑃(𝑥). If the leading coefficient is 1, then 𝑃 is monic. If 𝑅 is a commutative
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ring, then so is 𝑅[𝑥]. Similarly, we define the commutative ring 𝑅[𝑥1, . . . , 𝑥𝑛] of
polynomials in 𝑛 indeterminates.

The most basic result about polynomials,  Theorem B.29 the fundamental theorem
of algebra, which states that every nonconstant polynomial over 𝑅 = ℂ has a root, is
really a theorem in one complex variable.

Definition D.3. Let 𝑅 be a commutative ring. A subset 𝐼 ⊂ 𝑅 is an ideal if 𝑓 ∈ 𝑅 and
𝑔, ℎ ∈ 𝐼 implies that 𝑓 𝑔 ∈ 𝐼 and 𝑔+ ℎ ∈ 𝐼. In short, 𝐼 ⊂ 𝑅 is an additive subgroup such
that 𝑅𝐼 = 𝐼. Given a set of elements 𝑆 ⊂ 𝑅, the ideal generated by 𝑆 is the intersection 𝐼
of all ideals containing 𝑆. If 𝑆 = { 𝑓1, . . . , 𝑓𝑘} is a finite set, we say 𝐼 is finitely generated,
and we write 𝐼 = ( 𝑓1, . . . , 𝑓𝑘). A principal ideal is an ideal generated by a single element.
An integral domain where every ideal is a principal ideal is called a principal ideal
domain or a PID. A commutative ring 𝑅 is Noetherian if every ideal in 𝑅 is finitely
generated.

It is not difficult to prove that “an ideal generated by 𝑆” really is an ideal, that is,
the intersection of ideals is an ideal. If an ideal 𝐼 is generated by 𝑓1, . . . , 𝑓𝑘 , then every
𝑔 ∈ 𝐼 can be written as

𝑔 = 𝑐1 𝑓1 + · · · + 𝑐𝑘 𝑓𝑘 ,
for some 𝑐1, . . . , 𝑐𝑘 ∈ 𝑅. Clearly the set of such elements is the smallest ideal
containing 𝑓1, . . . , 𝑓𝑘 .
Theorem D.4 (Hilbert basis theorem). If 𝑅 is a Noetherian commutative ring, then 𝑅[𝑥]
is Noetherian.

As the proof is rather short, we include it here.

Proof. Suppose 𝑅 is Noetherian, and 𝐼 ⊂ 𝑅[𝑥] is an ideal. Starting with the polynomial
𝑓1 of minimal degree in 𝐼, construct a (possibly finite) sequence of polynomials
𝑓1, 𝑓2, . . . such that 𝑓𝑘 is the polynomial of minimal degree from the set 𝐼 \( 𝑓1, . . . , 𝑓𝑘−1).
The sequence of degrees deg( 𝑓1), deg( 𝑓2), . . . is by construction nondecreasing. Let
𝑐𝑘 be the leading coefficient of 𝑓𝑘 .

As 𝑅 is Noetherian, then there exists a finite 𝑘 such that (𝑐1, 𝑐2, . . . , 𝑐𝑚) ⊂
(𝑐1, 𝑐2, . . . , 𝑐𝑘) for all 𝑚. Suppose for contradiction there exists a 𝑓𝑘+1, that is, the
sequence of polynomials did not end at 𝑘. In particular, (𝑐1, . . . , 𝑐𝑘+1) ⊂ (𝑐1, . . . , 𝑐𝑘)
or

𝑐𝑘+1 = 𝑎1𝑐1 + · · · 𝑎𝑘𝑐𝑘 .
As degree of 𝑓𝑘+1 is at least the degree of 𝑓1 through 𝑓𝑘 , we can define the polynomial

𝑔 = 𝑎1𝑥
deg( 𝑓𝑘+1)−deg( 𝑓1) 𝑓1 + 𝑎2𝑥

deg( 𝑓𝑘+1)−deg( 𝑓2) 𝑓2 + · · · + 𝑎𝑘𝑥deg( 𝑓𝑘+1)−deg( 𝑓𝑘) 𝑓𝑘 .

The polynomial 𝑔 has the same degree as 𝑓𝑘+1, and in fact it also has the same
leading term, 𝑐𝑘+1. On the other hand, 𝑔 ∈ ( 𝑓1, . . . , 𝑓𝑘) while 𝑓𝑘+1 ∉ ( 𝑓1, . . . , 𝑓𝑘) by
construction. The polynomial 𝑔 − 𝑓𝑘+1 is also not in ( 𝑓1, . . . , 𝑓𝑘), but as the leading
terms canceled, deg(𝑔 − 𝑓𝑘+1) < deg( 𝑓𝑘+1), but that is a contradiction, so 𝑓𝑘+1 does not
exist and 𝐼 = ( 𝑓1, . . . , 𝑓𝑘). □
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Definition D.5. An element 𝑓 ∈ 𝑅 is irreducible if 𝑓 is not a unit and whenever 𝑓 = 𝑔ℎ

for two elements 𝑔, ℎ ∈ 𝑅, then either 𝑔 or ℎ is a unit. An integral domain 𝑅 is a
unique factorization domain (UFD) if up to multiplication by a unit, every nonzero
nonunit has a unique factorization into irreducible elements of 𝑅.

One version of a result called the Gauss lemma says that just like the property of
being Noetherian, the property of being a UFD is retained when we take polynomials.

Theorem D.6 (Gauss lemma). If 𝑅 is a commutative ring that is a UFD, then 𝑅[𝑥] is a
UFD.

The proof is not difficult, but it is perhaps beyond the scope of this book.



E \\ Results From Real Analysis

E.1 \ Measure theory review
The beginning of this course does not require the Lebesgue integral, however, knowing
it may make some of the earlier results easier to understand and the exercises easier
to work. In some of the later chapters, Lebesgue integral does become necessary
in several places. To make the first reading of the entire book easier for a student
who has not had a course on measure theory yet, we present the basic ideas of the
Lebesgue integral and list the results that make it so useful. We avoid getting into the
details of the definition and simply state the useful results without proof. A reader
who is interested can consult, for example, [ R1 ] or [ R3 ].

Given a set 𝑋, we designate a collection Mof subsets of 𝑋, called the measurable
sets. The collection M should be a 𝜎-algebra, meaning that it is closed under taking
complements, countable unions, and countable intersections. On these measurable
sets we define a measure, that is, a function 𝜇 : M→ ℝ, such that 𝜇 ≥ 0, 𝜇(∅) = 0, and
𝜇 is 𝜎-additive, that is, the measure of a union of countably many disjoint sets is the
sum of the measures. If 𝑋 is the euclidean space ℝ𝑛 , there always exists a measure
called the Lebesgue measure that will agree with the standard 𝑛-dimensional volume
on simple sets such as rectangles. A complication is that not all subsets of ℝ𝑛 can
then be measurable. We say that (𝑋,M, 𝜇) is a measure space.

A function 𝑓 : 𝑋 → ℝ is measurable if its sublevel sets are measurable. Since one
generally has to work hard to produce a nonmeasurable function in the measure
spaces we consider, the reader may be forgiven for assuming every function in this
book is measurable. A function is simple if its support is of finite measure and it only
has finitely many values, in which case the integral is defined as∫

𝑋

𝑓 𝑑𝜇
def
=

∑
𝑦∈ 𝑓 (𝑋)

𝑦 𝜇
(
𝑓 −1(𝑦)

)
.

That is, on the set where 𝑓 (𝑥) = 𝑦 we define the integral as the value of the function
times the measure of the set and then we add these up. If the function is actually a
step function and the measure was the Lebesgue measure, this is the same as would
be done for the Riemann integral. The integral of a nonnegative measurable 𝑓 is
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defined by ∫
𝑋

𝑓 𝑑𝜇
def
= sup

𝜑≤ 𝑓
𝜑 is simple

∫
𝑋

𝜑 𝑑𝜇.

The integral of any real-valued measurable function is then defined by writing
𝑓 = 𝑓+ − 𝑓− for nonnegative functions 𝑓+ and 𝑓−, as long as the integrals of at least
one of these is not infinite, and writing∫

𝑋

𝑓 𝑑𝜇
def
=

∫
𝑋

𝑓+ 𝑑𝜇 −
∫
𝑋

𝑓− 𝑑𝜇.

Similarly the integral of complex-valued measurable functions is defined by writing
𝑓 = 𝑢 + 𝑖 𝑣, that is, ∫

𝑋

𝑓 𝑑𝜇
def
=

∫
𝑋

𝑢 𝑑𝜇 − 𝑖
∫
𝑋

𝑣 𝑑𝜇.

The most common class of functions we deal with is the class of 𝐿1-integrable (or
simply 𝐿1) functions, which are the functions such that∫

𝑋

| 𝑓 | 𝑑𝜇 < ∞.

For any function where the integral is defined we obtain the most basic estimate����∫
𝑋

𝑓 𝑑𝜇

���� ≤ ∫
𝑋

| 𝑓 | 𝑑𝜇.

For the purposes of integration, we often allow nonnegative functions to take on the
value ∞ at some points. In general, we allow our functions to be undefined on a set
of measure zero if we are integrating them since changing a function on a measure
zero set does not change the integral.

There are a couple of things to notice about the definition. First, because step
functions are simple functions with respect to the Lebesgue measure, the integration
is a generalization of the Riemann integral on the real line and on ℝ𝑛 in general in
the sense that the two integrals agree when they are both defined.

Second, many more functions (all measurable functions in fact) can be limits of
simple functions, and the integral is defined as a limit of such integrals, one would,
rightly, expect that limits can easily pass under the integral and we no longer need to
worry about integrability of the limit.

Besides integration, one often forgotten feature of this setup is that it applies to
series. For a countable set 𝑋 such as ℕ we can define the so-called counting measure,
where every set 𝑆 ⊂ 𝑋 is measurable and 𝜇(𝑆) is simply the number of elements in 𝑆.
If 𝑧𝑛 = 𝑓 (𝑛) is a function defined on 𝑋, then we write∑

𝑛∈𝑋
𝑧𝑛 =

∫
𝑋

𝑓 𝑑𝜇.
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So the following theorems also apply to series, where being 𝐿1 simply means that the
series is absolutely summable.

We say that something happens almost everywhere if the set where it does not
happen is of measure zero. Similarly we may say that this something happens for
almost every 𝑥 ∈ 𝑋. Note that if a sequence of measurable functions converges to a
function 𝑓 almost everywhere, then this function can be assumed to be measurable (it
is equal almost everywhere to a measurable function). We have the following three
theorems, which despite appearances are actually just equivalent to each other, but
each statement is useful in different situations.
Theorem E.1.1 (Fatou’s lemma). Let (𝑋,M, 𝜇) be a measure space and { 𝑓𝑛} a sequence of
nonnegative measurable functions that converges almost everywhere to a function 𝑓 . Then∫

𝑋

𝑓 𝑑𝜇 ≤ lim inf
𝑛→∞

∫
𝑋

𝑓𝑛 𝑑𝜇.

Theorem E.1.2 (Monotone convergence theorem). Let (𝑋,M, 𝜇) be a measure space,
{ 𝑓𝑛} a sequence of nonnegative measurable functions where 𝑓𝑛 ≤ 𝑓𝑛+1 almost everywhere
for all 𝑛, and suppose { 𝑓𝑛} converges to 𝑓 almost everywhere. Then∫

𝑋

𝑓 𝑑𝜇 = lim
𝑛→∞

∫
𝑋

𝑓𝑛 𝑑𝜇.

Theorem E.1.3 (Dominated convergence theorem). Let (𝑋,M, 𝜇) be a measure space,
{ 𝑓𝑛} a sequence of measurable complex-valued functions converging almost everywhere to 𝑓 ,
and 𝑔 : 𝑋 → [0,∞] an 𝐿1 function such that | 𝑓 (𝑥)| ≤ 𝑔(𝑥) for almost every 𝑥. Then∫

𝑋

𝑓 𝑑𝜇 = lim
𝑛→∞

∫
𝑋

𝑓𝑛 𝑑𝜇.

A common application of this theorem is differentiating under the integral.
Theorem E.1.4 (Differentiation under the integral). Let𝑈 ⊂ ℝ be open and (𝑋,M, 𝜇)
be a measure space. Suppose 𝑓 : 𝑈 × 𝑋 → ℂ is such that for each 𝑡 ∈ 𝑈 , 𝑥 ↦→ 𝑓 (𝑡 , 𝑥) is 𝐿1,
for almost every 𝑥, 𝜕 𝑓

𝜕𝑡 exists on all of 𝑈 , and 𝑔 : 𝑋 → [0,∞] is an 𝐿1 function such that��𝜕 𝑓
𝜕𝑡 (𝑡 , 𝑥)

�� ≤ 𝑔(𝑥) for all 𝑡 ∈ 𝑈 and almost every 𝑥 ∈ 𝑋. Then for all 𝑡 ∈ 𝑈 ,

𝑑

𝑑𝑡

∫
𝑋

𝑓 (𝑡 , 𝑥) 𝑑𝜇(𝑥) =
∫
𝑋

𝜕 𝑓

𝜕𝑡
(𝑡 , 𝑥) 𝑑𝜇(𝑥).

A measure space is 𝜎-finite if it is a countable union of sets of finite measure.
For example, the euclidean space with Lebesgue measure is 𝜎-finite because it is a
union of balls, which are of finite measure. We often want to write an integral over a
product space as an iterated integral, such as writing an integral over a subset of ℝ𝑛

using 𝑛 one-dimensional integrals. If (𝑋,M, 𝜇) and (𝑌,N, 𝜈) are product spaces, we
can define a product measure space by requiring that 𝜇 × 𝜈(𝐴 × 𝐵) = 𝜇(𝐴)𝜈(𝐵) (we
again skip details). First, for nonnegative functions we obtain the following simple
theorem where no integrability needs to be checked, and we are allowing things to
be infinite if needed.



232 APPENDIX E. RESULTS FROM REAL ANALYSIS

Theorem E.1.5 (Tonelli). Suppose (𝑋,M, 𝜇) and (𝑌,N, 𝜈) are 𝜎-finite measure spaces and
𝑓 : 𝑋 × 𝑌 → ℝ is a nonnegative measurable function. Then:

(i) For almost every 𝑥 ∈ 𝑋, 𝑦 ↦→ 𝑓 (𝑥, 𝑦) is measurable, and for almost every 𝑦 ∈ 𝑌,
𝑥 ↦→ 𝑓 (𝑥, 𝑦) is measurable.

(ii) The functions 𝑦 ↦→
∫
𝑋
𝑓 (𝑥, 𝑦) 𝑑𝜇(𝑥) and 𝑥 ↦→

∫
𝑌
𝑓 (𝑥, 𝑦) 𝑑𝜈(𝑦) are measurable.

(iii) ∫
𝑋×𝑌

𝑓 (𝑥, 𝑦)𝑑(𝜇 × 𝜈) =
∫
𝑌

(∫
𝑋

𝑓 (𝑥, 𝑦) 𝑑𝜇(𝑥)
)
𝑑𝜈(𝑦)

=

∫
𝑋

(∫
𝑌

𝑓 (𝑥, 𝑦) 𝑑𝜈(𝑦)
)
𝑑𝜇(𝑥).

In general there is the Fubini theorem. A measure is complete, if every subset of a
measure zero set is also measurable. A measure can be completed by simply throwing
those sets in, but it is a minor technicality that the product of two measure spaces is
not in general complete and must be completed. This is an issue for measurability of
the functions involved, but the functions that one usually considers in applications
are easily shown measurable in all of these measure spaces and their completions.
Theorem E.1.6 (Fubini). Suppose (𝑋,M, 𝜇) and (𝑌,N, 𝜈) are complete measure spaces
and 𝑓 : 𝑋 × 𝑌 → ℝ is 𝐿1-integrable. Then:

(i) For almost every 𝑥 ∈ 𝑋, 𝑦 ↦→ 𝑓 (𝑥, 𝑦) is 𝐿1-integrable, and for almost every 𝑦 ∈ 𝑌,
𝑥 ↦→ 𝑓 (𝑥, 𝑦) is 𝐿1-integrable.

(ii) The functions 𝑦 ↦→
∫
𝑋
𝑓 (𝑥, 𝑦) 𝑑𝜇(𝑥) and 𝑥 ↦→

∫
𝑌
𝑓 (𝑥, 𝑦) 𝑑𝜈(𝑦) is 𝐿1-integrable.

(iii) ∫
𝑋×𝑌

𝑓 (𝑥, 𝑦)𝑑(𝜇 × 𝜈) =
∫
𝑌

(∫
𝑋

𝑓 (𝑥, 𝑦) 𝑑𝜇(𝑥)
)
𝑑𝜈(𝑦)

=

∫
𝑋

(∫
𝑌

𝑓 (𝑥, 𝑦) 𝑑𝜈(𝑦)
)
𝑑𝜇(𝑥).

Tonelli theorem is often applied in tandem with the Fubini theorem. Tonelli
establishes integrability and Fubini is used to write the integral we need as iterated
integral, or swap the order of integrations.

The Tonelli and Fubini theorems are useful in simplifying the development of the
power series by using the counting measure as we mentioned above. They are also
useful for swapping a series summation and integration such as∫ 1

0

∞∑
𝑛=1

𝑎𝑛(𝑥) 𝑑𝑥 =

∞∑
𝑛=1

∫ 1

0
𝑎𝑛(𝑥) 𝑑𝑥.
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Here are also a couple of useful estimates for the Lebesgue integral. First, we have
an infinite-dimensional version of Cauchy–Schwarz.

Theorem E.1.7 (Cauchy–Schwarz). Suppose (𝑋,M, 𝜇) is a measure space and 𝑓 : 𝑋 → ℂ

and 𝑔 : 𝑋 → ℂ are so-called 𝐿2 functions on 𝑋, that is, they are measurable and
∫
𝑋
| 𝑓 |2𝑑𝜇 <

∞ and
∫
𝑋
|𝑔 |2𝑑𝜇 < ∞. Then����∫

𝑋

𝑓 �̄�𝑑𝜇

����2 ≤
∫
𝑋

| 𝑓 |2𝑑𝜇
∫
𝑋

|𝑔 |2𝑑𝜇.

Next, we have the integral version of the inequality resulting from a convex
combination of the values of a convex function.

Theorem E.1.8 (Jensen’s inequality). Suppose (𝑋,M, 𝜇) is a probability measure space,
that is, 𝜇(𝑋) = 1, 𝜑 : ℝ → ℝ is convex, and 𝑓 is measurable. Then

𝜑

(∫
𝑋

𝑓 𝑑𝜇

)
≤

∫
𝑋

𝜑 ◦ 𝑓 𝑑𝜇

E.2 \ Classical convexity
A set 𝑆 ⊂ ℝ𝑛 is convex (or as we will say in the main text geometrically convex) if
for every 𝑥, 𝑦 ∈ 𝑆 and every 𝜆 ∈ [0, 1] the point (1 − 𝜆)𝑥 + 𝜆𝑦 is in 𝑆. Interior and
closure of convex sets is convex. Arbitrary intersection of convex sets is convex, and
increasing unions are convex. Given a set 𝑆 the convex hull of 𝑆 is the intersection of
all convex sets containing 𝑆. The closed convex hull is the closure of that.

A hyperplane 𝐻 ⊂ ℝ𝑛 is the set of solutions 𝑥 of the equation 𝑥 · 𝑎 = 𝑏 for some
𝑎 ∈ ℝ𝑛 and 𝑏 ∈ ℝ. A closed half-space is the set of points defined by 𝑥 · 𝑎 ≥ 𝑏. A
function of the form 𝑥 ↦→ 𝑥 · 𝑎 + 𝑏 is called a real affine function.

Theorem E.2.1 (Supporting hyperplane theorem). If 𝑆 ⊂ ℝ𝑛 is convex and 𝑥0 ∈ 𝜕𝑆,
then there exists a supporting hyperplane through 𝑥0. That is, there exists an 𝑎 ∈ ℝ𝑛 and
𝑏 ∈ ℝ such that 𝑥0 · 𝑎 = 𝑏 (𝑥0 is on the hyperplane), and 𝑥 · 𝑎 ≥ 𝑏 for all 𝑥 ∈ 𝑆 (𝑆 is in the
closed half-space defined by that hyperplane).

Note that the supporting hyperplanes need not be unique.

Theorem E.2.2 (Minkowski). If 𝑆, 𝑇 ⊂ ℝ𝑛 are two nonempty disjoint convex sets. Then
there is a separating hyperplane, that is, there exists an 𝑎 ∈ ℝ𝑛 and a 𝑏 ∈ ℝ such that
𝑥 · 𝑎 ≥ 𝑏 for all 𝑥 ∈ 𝑆 and 𝑥 · 𝑎 ≤ 𝑏 for all 𝑥 ∈ 𝑇.

We can also put these together:

Corollary E.2.3. A closed convex set 𝑆 ⊂ ℝ𝑛 is the union of all closed half-spaces contain-
ing 𝑆. More generally, for any set 𝑆, the closed convex hull of 𝑆 is the intersection of all closed
half-spaces that contain 𝑆.
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A point 𝑥0 ∈ 𝑆 is called an extreme point if for every 𝑥, 𝑦 ∈ 𝑆 and 𝜆 ∈ [0, 1] such that
(1 − 𝜆)𝑥 + 𝜆𝑦 = 𝑥0 we have 𝑥0 = 𝑥 or 𝑥0 = 𝑦. A point 𝑥0 ∈ 𝑆 is called an exposed point
if there is an affine linear function whose restriction to 𝑆 achieves a strict maximum
at 𝑥0, in other words if there is a supporting hyperplane which intersects 𝑆 at exactly
one point.

Theorem E.2.4 (Straszewicz). Let 𝑆 ⊂ ℝ𝑛 be closed and convex. Then the set of extreme
points of 𝑆 is the closure of the set of exposed points of 𝑆.

Theorem E.2.5 (Krein–Milman). Let 𝐾 ⊂ ℝ𝑛 be compact and convex, then it is the convex
hull of its extreme points.

What is useful a couple of times for us in this book is that a compact convex set
has exposed points. Or more generally, the convex hull of a compact set has exposed
points.

Given a convex set 𝑆, a function 𝑓 : 𝑆 → ℝ is convex if for every 𝑥, 𝑦 ∈ 𝑆 and
𝜆 ∈ [0, 1], we have

𝑓
(
(1 − 𝜆)𝑥 + 𝜆𝑦

)
≤ (1 − 𝜆) 𝑓 (𝑥) + 𝜆 𝑓 (𝑦).

Alternatively, 𝑓 is convex if its epigraph is a convex set, where

epigraph 𝑓 def
=

{
(𝑥, 𝑦) ∈ 𝑆 ×ℝ : 𝑓 (𝑥) ≤ 𝑦

}
.

So arguments about convex sets translate to convex functions. For example, the
supporting hyperplane theorem shows a couple of rather interesting facts. First,
convex functions have “tangent” hyperplanes although not unique by considering a
supporting hyperplane of the epigraph:

Proposition E.2.6. Suppose 𝑆 ⊂ ℝ𝑛 is a convex set, 𝑓 : 𝑆 → ℝ a convex function, and
𝑥0 ∈ 𝑆. Then there exists an affine function 𝑔 such that 𝑔(𝑥) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝑆 and
𝑔(𝑥0) = 𝑓 (𝑥0).

This proposition has the following consequence:

𝑓 (𝑥0) = sup
{
𝑔(𝑥0) : 𝑔 is an affine function such that 𝑔(𝑥) ≤ 𝑓 (𝑥) for all 𝑥 ∈ 𝑆

}
.

E.3 \ Smooth bump functions and partitions of unity

The function 𝑓 (𝑥) = 0 for 𝑥 ≤ 0 and 𝑓 (𝑥) = 𝑒−1/𝑥 for 𝑥 > 0 is a smooth (𝐶∞) function
that is zero for all 𝑥 ≤ 0 and positive (and less than 1) for 𝑥 > 0. The function
𝑔(𝑥) = 𝑓 (𝑥)

𝑓 (𝑥)+ 𝑓 (1−𝑥) is a smooth function that is zero for all 𝑥 ≤ 0 and 1 for all 𝑥 ≥ 1. By
modifying such examples we obtain the following bump function:

Theorem E.3.1 (Bump function). Suppose𝑈 ⊂ ℝ𝑛 is open and 𝐾 ⊂ 𝑈 is compact. Then
there exists a smooth function 𝜑 : ℝ𝑛 → [0, 1] such that 𝜑 is compactly supported in𝑈 and
𝜑 ≡ 1 on a neighborhood of 𝐾.
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By support, supp 𝜑, we mean the closure of the set {𝑥 : 𝜑(𝑥) ≠ 0}, and by
compactly supported in𝑈 we mean that supp 𝜑 is a compact subset of𝑈 . Another
variant of a bump function is the Urysohn lemma:

Theorem E.3.2 (Smooth Urysohn lemma). Suppose 𝑈 ⊂ ℝ𝑛 is open and 𝐴, 𝐵 ⊂ 𝑈

are disjoint closed (in subspace topology) subsets. Then there exists a smooth function
𝜑 : 𝑈 → [0, 1] such that 𝜑 = 0 on 𝐴 and 𝜑 = 1 on 𝐵.

These functions are used usually for localizing some problem, or extending a
smooth function to all of𝑈 or all of ℝ𝑛 . One can also ask for such bump functions to
glue together nicely. Suppose𝑈 ⊂ ℝ𝑛 is open and {𝑈𝜄}𝜄∈𝐼 is an open cover of𝑈 , that
is,𝑈 =

⋃
𝜄𝑈𝜄.

Theorem E.3.3 (Smooth partition of unity). Suppose𝑈 ⊂ ℝ𝑛 is open and {𝑈𝜄}𝜄∈𝐼 is an
open cover of𝑈 , then there exists a partition of unity subordinate to the cover. That is, there
exist a family {𝜑𝜅}𝜅∈𝐾 of smooth compactly supported functions 𝜑𝜅 : ℝ𝑛 → [0, 1] such that:

(i) For each 𝜅 ∈ 𝐾, there is some 𝜄 ∈ 𝐼 such that supp 𝜑𝜅 ⊂ 𝑈𝜄.

(ii) For each point 𝑥 ∈ 𝑈 , there is a neighborhood on which all but finitely many 𝜑𝜅 vanish.

(iii) For every 𝑥 ∈ 𝑈 , we have
∑

𝜅∈𝐾 𝜑(𝑥) = 1.
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