

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, Danai Koutra

Semi-supervised Node Classification

- Given a graph G = (V, E) with adjacency matrix A; feature vector x for each node; a few labeled nodes (orange/blue)
- Find the class label for each of the remaining nodes.

Graph Neural Networks (GNNs) are effective and widely-adopted approaches for this problem.

However, many existing GNNs relies on the homophily assumption in the network.

Graphs: Homophily and the Beyond

Homophily

"Birds of a feather, flock together" Majority of linked nodes are similar

- Social Networks (wrt. political beliefs, age)
- Citation Networks (wrt. research area)

Heterophily

"Opposites Attract" Majority of linked nodes are different

- Friend network (e.g., talkative / silent friends)
- Protein structures (wrt. amino acid types)
- E-commerce (wrt. fraudsters / accomplices)

[Newman Networks18, Newman 04, Lee+ arXiv18, Chau+ ECML/PKDD06]

Our Contributions

We reveal current limitations of GNNs in **heterophily**.

We identify **key design choices** that boost learning in heterophily, without sacrificing in homophily, and analyze them theoretically.

We conduct **extensive empirical evaluation** across the full spectrum of low-to-high homophily, which confirms the effectiveness of the designs.

Current Limitations of GNNs in Heterophily

Under heterophily, all existing methods fail to perform better than Multilayer Perceptron (MLP), which is graph agnostic.

• (D1) Ego- and Neighbor-embedding Separation;

- (D1) Ego- and Neighbor-embedding Separation;
- (D2) Higher-order Neighborhoods;

- (D1) Ego- and Neighbor-embedding Separation;
- (D2) Higher-order Neighborhoods;
- (D3) Combination of Intermediate Representations.

H₂GCN

- (D1) Ego- and Neighbor-embedding Separation;
- (D2) Higher-order Neighborhoods;
- (D3) Combination of Intermediate Representations.

Empirical Evaluation of Identified Designs

- In synthetic graphs with heterophily, the identified designs help H₂GCN perform up to 40% better in accuracy compared to the variants without them.
- In real graphs with heterophily, methods with our identified designs perform up to 27% better compared to vanilla GCN.
- Under homophily, methods with our identified designs remain competitive.

Thank you!

We reveal current limitations of GNNs in **heterophily**.

We identify **key design choices** that boost learning in heterophily, without sacrificing in homophily, and analyze them theoretically. Join our poster presentation at NeurIPS 2020 for more details!

Follow us on GitHub

Extensive empirical evaluation

across the full spectrum of low-to-high homophily confirms the effectiveness of the designs.

