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Limitations of GNNs Beyond Homophily

Task: semi-supervised node classification with node
features

Problem: many popular GNN models (e.g. GCN) rely on
assumed homophily and fail to generalize in heterophily.
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Observation: In heterophily, existing methods have worse
classification accuracy than graph-agnostic MLP.
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Beyond Homophily in Graph Neural Networks:
Current Limitations and Effective Designs

Effective Designs for GNNs in Heterophily

Design D1: Model the of ego- and neighbor-embeddings distinctly (per layer). A
* In heterophily, neighbors may have information complementary to ego.
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Design D2: Leverage representations of neighbors at different hops distinctly (per layer).
» Under heterophily, higher-order neighborhoods may still show homophily.
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Design D3: Leverage the intermediate representations distinctly (at the final layer).
* Information with different locality contains different frequency components.
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* H,GCN, our base model effectively combining all
designs, has the best trend overall.

« Ablation study on H,GCN shows effectiveness of each
design, which results in up to 40% performance gain in
heterophily.

Real Benchmarks

* In heterophily, models leveraging all or subsets of the
designs perform significantly better than methods
lacking them (e.g. GCN, GAT):

» GraphSAGE (D1) vs. GCN: up to +23%
* GCN-Cheby (D2) vs. GCN: up to +20%
* GCN+JK (D3) vs. GCN: up to +14%

Average Rank
Het. Hom. Overall

H>GCN-1 (D1, D2, D3) 38 3.0 3.6
H>GCN-2 (DI, D2, D3) 40 20 33

Method (Designs)

Detailed Results,
Theorems & Code

GraphSAGE (D1) 50 60 53
GCN-Cheby (D2) 70 63 6.8
MixHop (D2) 65 6.0 6.3

GraphSAGE+JK (D1,D3) 50 7.0 5.7
GCN-Cheby+JK (D2,D3) 3.7 7.7 5.0

GCN+JK (D3) 72 87 7.7
GCN 98 53 8.3
GAT 115 10.7 11.2
GEOM-GCN* 82 40 6.8
MLP 62 113 7.9
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