

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, Danai Koutra

Limitations of GNNs Beyond Homophily

Problem: many popular GNN models (e.g. GCN) rely on assumed **homophily** and fail to generalize in **heterophily**.

Observation: In heterophily, existing methods have worse classification accuracy than graph-agnostic MLP.

- M. Defferrard et al. 2016. Convolutional neural networks on graphs with fast localized spectral filtering. NeurIPS.
- T. Kipf et al. (2017). "Semi-Supervised Classification with Graph Convolutional Networks". ICLR.
- W. L. Hamilton, et al. (2017). "Inductive Representation Learning on Large Graphs". NeurIPS.
- P. Veličković et al. (2018). "Graph Attention Networks". In ICLR.
- K. Xu et al. (2018). "Representation Learning on Graphs with Jumping Knowledge Networks". ICML S. Abu-El-Haija et al. (2019). "MixHop: Higher-Order Graph Convolution Architectures via
- Sparsified Neighborhood Mixing". ICML
- H. Pei et al. (2020). "Geom-GCN: Geometric Graph Convolutional Networks". ICLR.

Effective Designs for GNNs in Heterophily

Design D1: Model the of ego- and neighbor-embeddings distinctly (per layer).
In heterophily, neighbors may have information complementary to ego.

Design D2: Leverage representations of neighbors at different hops distinctly (per layer).Under heterophily, higher-order neighborhoods may still show homophily.

Design D3: Leverage the intermediate representations distinctly (at the final layer).Information with different locality contains different frequency components.

Empirical Analysis

Edge homophily ratio $h = \frac{intra-class \ edges}{total \ edges}$

- H₂GCN, our base model effectively combining all designs, has the best trend overall.
- Ablation study on H₂GCN shows effectiveness of each design, which results in up to 40% performance gain in heterophily.

Real Benchmarks

S

- In heterophily, models leveraging all or subsets of the designs perform significantly better than methods lacking them (e.g. GCN, GAT):
 - GraphSAGE (D1) vs. GCN: up to +23%
 - GCN-Cheby (D2) vs. GCN: up to +20%
 - GCN+JK (D3) vs. GCN: up to +14%

Method (Designs)	Average Rank		
	Het.	Hom.	Overall
H ₂ GCN-1 (D1, D2, D3)	3.8	3.0	3.6
H ₂ GCN-2 (D1, D2, D3)	4.0	2.0	3.3
GraphSAGE (D1)	5.0	6.0	5.3
GCN-Cheby (D2)	7.0	6.3	6.8
MixHop (D2)	6.5	6.0	6.3
GraphSAGE+JK (D1, D3)	5.0	7.0	5.7
GCN-Cheby+JK (D2, D3)	3.7	7.7	5.0
GCN+JK (D3)	7.2	8.7	7.7
GCN	9.8	5.3	8.3
GAT	11.5	10.7	11.2
GEOM-GCN*	8.2	4.0	6.8
MLP	6.2	11.3	7.9

GemsLab/H2GCN

Detailed Results.