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In addition to the solids with regular faces found
nearly 50 years ago [1], another 76 polyhedra with
conditional edges joining regular polygons constitut�
ing a single face are on the recently compiled list of all
convex polyhedra with a positive curvature at each ver�
tex and with each face composed of convex regular
polygons or being such a polygon [2, 3]. Below, each
polyhedron on this list is referred to as a convex regu�
lar�hedron.1 Applications of regular�hedra and the
influence of applications on the development of the
theory of polyhedra are addressed in [2]. It should only
be added to what was said in [2] that new regular�hedra
are of interest to architects and designers, including
space architects [10].

In [2, 3] both proofs of the theorem describing the
convex regular�hedra are based on the 1973 list of all
noncomposite (simple) solids [5–7], i.e., convex reg�
ular�hedra that cannot be dissected into two other reg�
ular�hedra by a plane. All the composite solids can be
obtained by joining the noncomposite polyhedra

where the first six are prisms with the subscript indi�
cating the number of sides in the base, the following
five are antiprisms, the following 17 are Zalgaller sol�
ids, and the last is the Ivanov polyhedron. The solid Q4
(Fig. 1) can be deleted from this list, but the composite
polyhedron M3 + Q4 is then obtained by joining three
solids: two pentagonal pyramids M3 and the biluna�
birotunda M8.

1 I am taking this opportunity to note that in [4] the last polyhe�
dron in Proposition 3(iv) is to be deleted, while, in the theorem,
the number 151 is to be replaced by 149 or 151 remains, but the
word “two” is to be deleted from the definition of a regular�
hedron.

Π3 Π4 Π5 Π6 Π8 Π10;, , , , ,

A4 A5 A6 A8 A10; M1 … M15 M20 M22; Q4,, , , ,, , , ,

The algorithm used in [3] to produce each compos�
ite polyhedron involves a linear representation of the
symmetry group of its constituent regular�hedra and
explicit coordinate triples of fundamental vertices of
these regular�hedra specified as elements of an alge�
braic extension of the field of rational numbers. To
compute the symmetry group of a polyhedron, it is
convenient to consider its “skeleton” in the form of an
algebraic model whose support consists of the vertex
set and whose relation set is composed of the edges,
i.e., of unordered pairs of vertices. Thus, in contrast to
the purely geometric constructions in [2], the classifi�
cation proof in [3] combines algebraic, geometric, and
computer arguments with the visual monitoring of
three�dimensional constructions and computer alge�
bra calculations. To a certain extent, due to this poof,
the reader gets rid of the inconveniences associated
with the risk of logical gaps or misprints.

The pattern complicates considerably if we assume
that there is a vertex with a zero curvature. Such a ver�
tex is called conditional. It can lie on an edge (Fig. 2)
or inside a face (as in a prism whose base is composed
of two squares and three triangles). Moreover, by Des�
cartes’ theorem, the total curvature of all the vertices
of a convex polyhedron is 4π and, even if we consider
polyhedra with a bounded number of face sides, the
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Fig. 1. The tridiminished icosahedron M7 inside the
Ivanov polyhedron Q4.
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number of regular faces can increase in an infinite
series of polyhedra with conditional vertices. An
example is a series of k prisms kΠl (k = 1, 2, …) joined
by their bases with a fixed number l of base sides. The
lateral faces of kΠl are rectangles composed of k
squares. Starting with the second, each polyhedron in
this and other similar series can be divided by a plane
into polyhedra with regular faces or faces composed of
regular polygons. For each polyhedron in the follow�
ing series, there is no such plane.

Example. The tridiminished icosahedron M7 (Fig. 1)
is cut along edges into two 4�hedral surfaces: two adja�
cent pentagons with triangles in between and, sharing
a vertex, three triangles with a pentagon. Then we sep�
arate these surfaces by an edge�length distance along a
line perpendicular to the common edge of two penta�
gons in one surface and to the edge joining the triangle
in this surface to a pentagon in the other surface. Now
four rhombuses, each composed of two regular trian�
gles, and two squares can be fitted between these sur�
faces. Adding these six quadrilaterals to two 4�hedral
surfaces yields the regular�hedron M7, 1, which is the
Pryakhin polyhedron Q4 (Fig. 1). Then, again, one of
the above 4�hedral surfaces is cut off and shifted by an
edge�length distance along the same line. Again, there
are four rhombuses (composed of two regular trian�
gles) and two squares between the surfaces. Adding
these six quadrilaterals to the tetrahedral and decahe�
dral surfaces making up Q4 before cutting, we obtain a
polyhedron with conditional vertices, which is
denoted by M7, 2. The faces of M7, 2 that were faces of
M7 before cutting are shown in white in Fig. 2. Con�
tinuing to move the 4�hedral surface and add the above
six faces at each step, we obtain the polyhedra M7, 3,
M7, 4, … .

It may seem that the problem of describing all these
series is intractable. However, if we put aside the edge
lengths but leave the angles the same as in regular poly�
gons, as was shown in [8], convex polyhedra with equi�
angular faces and faces divided by conditional edges
into equiangular ones can be investigated in a similar
manner to convex regular�hedra. The fact is that, in
addition to four infinite series, there are only a finite
number of types of such polyhedra, i.e., polyhedra
with a given combinatorial structure and a fixed list of
plane angles in the faces at each vertex. Although this
was known as early as 35 years ago, the process of
describing convex polyhedra with regular faces and
faces composed of regular polygons under the assump�
tion of zero�curvature vertices did not begin until last
year, when the above�mentioned description of convex
regular�hedra was produced. Apparently, the reason is
that describing all such polyhedra requires repeating,
in a more general situation, the path followed by
researchers while creating the list of all noncomposite
polyhedra, which took about ten years in the last cen�
tury [5–7]. At present, the difficulties in this path
associated with the large amount of computations and
repeated logically indistinguishable arguments can be

overcome by using computer algebra and computer
graphics systems. Moreover, the series of same�type
polyhedra, which seem immense at first glance (see
the typical remark in [2, p. 245]), admit an explicit
description when constraints are introduced on the
number of conditional vertices in each edge of a poly�
hedron.

Recall that a convex polygon is said to be a parquet
one if it can be composed of a finite number of equian�
gular polygons [8]. The alternation of angles in tra�
versing a parquet k�gon is called its type, which is
characterized by the set of numbers (n1, n2, …, nk).
Each number is assigned to a vertex and means that the
polygon angle with the vertex ni equals the angle in a
regular ni�gon. If there are sequential vertices of iden�
tical angles, power notation is used. For example, a
parquet pentagon composed of a square and a triangle
has the type (3, 12, 42, 12). All 23 types of parquet k�
gons, each admitting a partition into more than one
equiangular polygon, were indicated in [8]. Moreover,
it was found that k = 3, 4, …, 12.

Proposition 1. A parquet polygon of each type can be
made up of regular polygons with unit edges. Each edge
of such a parquet polygon has a length of one or two, and
only the following types of parquet polygons must have
edges with different lengths:

Note that some noncomposite polyhedra become
composite under the assumption of zero�curvature
vertices and parquet faces. Indeed, after conditional
vertices appear at the middle of its edges, the noncom�
posite tetrahedron M1 is divided by a square section
into two equal polyhedra, each consisting of a square
pyramid M2 and two tetrahedra M1. In turn, M2 can
also be divided by a plane through the midlines of
three triangular lateral faces and the base into parts
with triangular and parquet faces composed of trian�
gles and squares. This division process can be contin�
ued infinitely to obtain increasingly finer pyramids M1
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Fig. 2. The 1�regular�hedron M7,2.
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and M2 at each step. To describe these and above�dis�
cussed series of polyhedra, we introduce the following
definition.

Definition. Let m be a nonnegative integer. A con�
vex polyhedron is called an m�regular�hedron if the
following conditions are satisfied: (1) the faces are
composed of regular polygons with positive integer
side lengths; (2) the longest edge has a length of m + 1;
and (3) any similar polyhedron with a similarity coef�
ficient less than unity has an edge whose length is not
a positive integer or has a face that cannot be made up
of regular polygons with integer edges.

Thus, each convex regular�hedron is a 0�regular�
hedron. Examples of 0�regular�hedra that are not reg�
ular�hedra are prisms whose bases consist of parquet
polygons of types (4, 122, 4, 12, 6, 12), (62, 122, 62,
122), (6, 122, 6, 122, 6, 122), and (6, 124, 6, 124) and
whose lateral faces are squares. The series of polyhedra
M7, M7, 1 = Q4, M7, 2, … consists of two regular�hedra
and m�regular�hedra, m = 1, 2, … .

Definition. Let m0 be a nonnegative integer. A con�
vex m0�regular�hedron is said to be composite if some
plane divides it into an m1�regular�hedron and an m2�
regular�hedron, where m1 and m2 are nonnegative
integers. Otherwise, the convex m0�regular�hedron is
called noncomposite.

Theorem. Except for seven polyhedra, each noncom�
posite regular�hedron with unit edges is a noncomposite
0�regular�hedron. The exceptions can be represented as
the following joins of m�regular�hedra, m = 0, 1.

(i) The prism Π6 consists of two prisms with (32, 62)�
type trapezoidal bases joined along the rectangular faces,
Π6 = 3Π3.

(ii) The triangular cupola M4 = (P2, 25 + M1) + (P2, 25 +
P2, 25) = 4M1 + 3M2, where P2, 25 = M1 + M2 is the join
of the tetrahedron M1 and the square pyramid M2 by lat�
eral faces [3].

(iii) The truncated tetrahedron M10 = (3M1 + 2M2) +
(M4 + 3M2) = 7M1 + 8M2.

(iv) The truncated octahedron M16 = 2M2a + M16a,
where M2a is a quadrilateral pyramid with a square base
of side length 2 truncated at the midlines of the lateral
faces and M16a is the 1�regular�hedron remaining after
two solids M16 have been cut off from M2a by parallel
planes.

(v) The truncated icosahedron M19 + 2M3a + M19a =
3M3a + M19b, where M3a is a pentagonal pyramid with a
regular pentagonal base of side length 2 truncated at the
midlines of the lateral faces, M19a is the 1�regular�
hedron remaining after two solids M19 have been cut off
from M19 by parallel planes of two solids M3a and M19b is
the 1�regular�hedron remaining after three solids M3a
have been cut off from M19 by three planes.

(vi) The oblique prism (Ivanov polyhedron) Q1 =
6M1 + 6M2.

(vii) The Ivanov polyhedron Q2 = 16M1 + 16M2. 

Proposition 2. The noncomposite 1�regular�hedra
consist of the solids M2a, M3a, M16a, M19a, and M19b men�
tioned in the theorem; the solids Q6a (Fig. 3) and Q6b
(Fig. 4), which are obtained from the Ivanov polyhedron
Q6 in the same way as the latter is obtained from the tri�
angular hebesphenorotunda M20 [7, 9]; and the anti�
prism B obtained from the antiprism Ak with edge length 2
and a k�angular base (k = 4, 5, …) by cutting the latter
with a plane through the midlines of the side triangles [8].
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Fig. 3. The polyhedron Q6a joined to the pyramid M2,
whose lateral faces are shaded. Fig. 4. The polyhedron Q6b. 
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