
Control Flow Enforcement Technology

(CET)

Compiler Architecture and Tools Conference (CATC) 2017

ittai.anati@intel.com

oren.ben.simhon@intel.com

December 2017

Disclaimers
• Intel technologies’ features and benefits depend on system configuration and may require enabled hardware,

software or service activation. Performance varies depending on system configuration. Learn more at

Intel.com, or from the OEM or retailer.

• You may not use or facilitate the use of this document in connection with any infringement or other legal

analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free

license to any patent claim thereafter drafted which includes subject matter disclosed herein.

• No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this

document.

• Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from

course of performance, course of dealing, or usage in trade.

• No computer system can be absolutely secure.

• Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

 Copyright © Intel Corporation

12/4/2017
2 Compiler Architecture and Tools Conference (CATC) 2017

Agenda

 Introduction

 Motivation

 Technology overview

– Shadow Stack

– Endbranch

 LLVM Compiler enabling

 Summary

3
12/4/2017

Compiler Architecture and Tools Conference (CATC) 2017

mov eax, 0xC3084189 mov eax, 0x08C3d0ff mov [edx+4],eax

A3 FF D0 C3 08

Gadgets

 Modern CPU enhancements prevent code injection: Non-executable stack and
non-writeable code pages

 However: IA allows instruction decoding to start from any byte, providing
attackers with a different set of instructions than intended by the programmer

 Attackers scan the code for meaningful snippets (gadgets) and chain them
together through:

– ROP – “Return” oriented programming

– JOP – “Jump” oriented programming

– COP – “Call” oriented programming

4

B8 89 41 08 C3 89 50 04B8 89 41 08 C3 89 50 04 A3 FF D0 C3 08

mov [eax+8],ecx ret add al,A3 retcall eax

ROP
COP

12/4/2017
Compiler Architecture and Tools Conference (CATC) 2017

Intel’s Control-flow Enforcement Technology - CET

 Goals

– SW friendly ISA to protect from ROP/COP/JOP

– Comprehensive solution with minimal impact to application developers

– Broad enabling via OS, Dev Tools and Runtime

– Acceptable performance and impact on energy usages

 Architecture

– Two mechanisms to enhance protection against unintended changes to execution flow

– ROP: SHADOW-STACK for protecting return addresses

– JOP/COP: ENDBRANCH instruction for marking legal target addresses of indirect jumps

and calls

– Each mechanism can be enabled separately per privilege level

5
12/4/2017

Compiler Architecture and Tools Conference (CATC) 2017

SHADOW STACK

6
12/4/2017

Compiler Architecture and Tools Conference (CATC) 2017

Shadow Stack Operation

 Call
– pushes return address on both

stacks

 No parameters passing on
shadow stack

 Return

– pops return address from both

stacks

– Controlflow Protection (#CP)

exception in case the two return

addresses don’t match

7

Return EIPn-1

Param 1

Param 2

Return EIPn

Return EIPn-1

Return EIPn

Stack usage on near CALL

ESP after call
SSP

Keeps stack ABI intact – no changes to data stack layout

Stack Shadow
Stack SHADOW STACK

• Setup by OS/VMM
• Protected by new

memory access control
• Different shadow stacks

for each privilege level

ESP

SSP after call
--- == ---
SSP after ret

ESP after ret

12/4/2017
Compiler Architecture and Tools Conference (CATC) 2017

Managing the Shadow Stack

 OS/VMM sets up the Shadow stack for the application

 Some usages require to manage the Shadow Stack pointer

– Stack unwinding

– User mode thread switching

 New instructions help manage shadow stack securely:

– RDSSP + INCSSP – To set checkpoint and unwind stack

– SAVEPREVSSP/RSTORSSP – save/restore shadow stack pointer for

user mode thread switching

 Full list in spec

8

Minimal changes to securely support common software constructs

12/4/2017
Compiler Architecture and Tools Conference (CATC) 2017

ENDBRANCH

9
12/4/2017

Compiler Architecture and Tools Conference (CATC) 2017

ENDBRANCH

 New Instruction to mark legal
targets of indirect jumps

 Added by the compiler

 Decodes as “NOP” on legacy
processors

 An indirect jump to a target
not marked by ENDBR
signals an exception

10

<main>:

endbr64

:

movq $0x4004fb, -8(%rbp)

mov -8(%rbp), %rdx

call *%rdx

:

retq

<foo>:

endbr64

:

add rax, rbx

:

retq

main() {

int (*f)();

f = foo;

f();

}

int foo() {

return

}

Recompile

12/4/2017
Compiler Architecture and Tools Conference (CATC) 2017

CET ENDBRANCH State Machine

 Separate state machines for user and for supervisor mode

 Special no-track prefix for protected jumps to reduce ENDBRANCH footprint

 Special treatment for debugging (INT3 opcode “CC”)

11

IDLE
WAIT_FOR_

ENDBRANCH

ENDBR64 in 64-bit mode
ENDBR32 in 32-bit/compatibility

Near indirect CALL/JMP
Far call/JMP

Non control-transfer
Instructions

No-track prefix Missing ENDBRANCH

#CP(ENDBRANCH)

Code break-point

12/4/2017
Compiler Architecture and Tools Conference (CATC) 2017

Compatibility with legacy libraries

 Legacy libraries don’t have ENDBRANCH and could crash the application

 OS/VMM can set the legacy compatibility treatment bitmap for the context

– If the bitmap indicates page has endbranch-enabled code, #CP exception is signaled

– If the bitmap indicates page has legacy code, the violation is waived

 OS can chose between a one-time waiver and suspending endbranch
violations until an ENDBR32/64 is detected

 Legacy compatibility treatment could potentially greatly impact performance, so
users are encouraged to use recompiled libraries

12/4/2017
12 Compiler Architecture and Tools Conference (CATC) 2017

COMPILER SUPPORT

13
12/4/2017

Compiler Architecture and Tools Conference (CATC) 2017

ABI Changes

14

 Updated System V ABI with Intel CET extension

 Program loader Updates

– Enables Shadow-Stack (SHSTK) if the executable and all shared objects are SHSTK

enabled

– Enables Indirect Branch Tracking (IBT) if the executable is IBT enabled and mark non-

IBT enabled shared objects as legacy using an allocated bitmap

 The linker creates IBT-enabled PLT

12/4/2017
Compiler Architecture and Tools Conference (CATC) 2017

Compiler CET Considerations

15

 Compilers minimize the use of ENDBR instruction in order to:

– Avoid possible attacker landing pads

– Reduce code size (consider huge switch cases)

 For guarded (range check) switch cases, ENDBR instructions are not added

 The compiler doesn’t always know which function will be called by indirect call

 Compiler provides ‘no_track’ attribute:

– Function: To avoid ‘ENDBR’ at the beginning of a function

– Function Pointer: To add ‘no_track’ prefix before an indirect call

 Compiler updates exceptions handling builtins to fix the shadow stack

– For example: To fix shadow stack pointer after SetJmp/LongJmp

12/4/2017
Compiler Architecture and Tools Conference (CATC) 2017

Compiler Status

16

 GCC/LLVM/ICC/MS compilers have started implementing CET support

 GCC team updates GNU libraries, loader and linker

 LLVM is currently in the stage of open-sourcing CET support

12/4/2017
Compiler Architecture and Tools Conference (CATC) 2017

SUMMARY

17
12/4/2017

Compiler Architecture and Tools Conference (CATC) 2017

Summary

 Intel’s Control-Flow Enforcement Technology (CET) provides a comprehensive
solution to enhance protection against ROP/JOP/COP attacks

– SHADOW STACK: Enhanced protection against ROP attacks

– ENDBRANCH: Enhanced protection against JOP/COP attacks

 Protects applications and supervisor code

 Minimal impact to existing SW and to application developers

 Spec is published, search for intel CET

18
12/4/2017

Compiler Architecture and Tools Conference (CATC) 2017

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

