Relational Division and SQL

Robert Soulé

1 Example Relations and Queries

As a motivating example, consider the following two relations: Taken(Student,Course)
which contains the courses that each student has completed, and Required (Course),
which contains the courses that are required to graduate. The instances for

this example are shown below:

Taken | Student Course
Robert Databases
Robert | Programming Languages
Susie Databases
Susie Operating Systems
Julie Programming Languages
Julie Machine Learning
Emilie Operating Systems
Required Course
Databases

Programming Languages

Suppose we are asked the following two queries:

1. Find all students who have taken a required course.

2. Find all students who can graduate (i.e., who have taken all required

courses).

2 Asking About Some

We have already seen how to do Query 1 using the standard SELECT ...
FROM ... WHERE clauses. To remove duplicates from our result, we can use



the SQL keyword DISTINCT. In terms of relational algebra, we use a selection
(o), to filter rows with the appropriate predicate, and a projection (7) to
get the desired columns.

SELECT DISTINCT Student
FROM Taken
WHERE Course = ’Databases’
or Course = ’Programming Languages’;

If we want to be slightly more general, we can use a sub-query:

SELECT DISTINCT Student
FROM Taken
WHERE Course IN (SELECT Course FROM Required);

Informally, we might read this query as “give me the set of students who
have taken a course that appears in the set of required courses”, or “the set
of students whose courses contain at least one course that is required.”

3 Asking About All

Query 2 is more difficult. Just by looking at this small instance, it is easy
to see that the answer we want is:

CanGraduate | Student
Robert
Robert

There is a relational operator that directly gives us this result. The
operator is division, written R =+ S.

Unfortunately, there is no direct way to express division in SQL. We can
write this query, but to do so, we will have to express our query through
double negation and existential quantifiers. We will produce this query in
stages. Our roadmap is as follows

1. Find all students

2. Find all students and the courses required to graduate

3. Find all students and the required courses that they have not taken
4. Find all students who can not graduate

5. Find all students who can graduate



All Students First, we create a set of all student that have taken courses.
We can express this positively using a selection and projection:
CREATE TEMP TABLE AllStudent as

SELECT Student
FROM Taken ;

AllStudent | Student
Robert
Susie
Julie
Emilie

All Students and Required Classes Next, we will create a set of stu-
dents and the courses they need to graduate. We can express this as a
Cartesian product, creating the pairs of the form (student,course):

CREATE TABLE StudentsAndRequired AS

SELECT DISTINCT AllStudent.student, Required.course
FROM AllStudent, Required ;

StudentsAndRequired | Student Course
Robert Databases
Robert | Programming Languages
Susie Databases
Susie | Programming Languages
Julie Databases
Julie Programming Languages
Emilie Databases
Emilie | Programming Languages

All Students and Required Classes Not Taken This is where our
query starts to get tricky. We want to find the subset of the relation we just
produced that includes the students and the required courses that they have
not taken. We are doing this as a first step towards finding the students who
cannot graduate.

The intuition is that we want to find all (student,course) pairs that are
in the relation StudentsAndRequired, but not in the relation Taken. This
should give us the set of students who cannot graduate, with the courses
that they still need to take:



CREATE TEMP TABLE StudentsAndRequiredNotTaken AS
SELECT * FROM StudentsAndRequired
WHERE NOT EXISTS (SELECT *

FROM Taken
WHERE StudentsAndRequired.student = Taken.student AND StudentsAndRequired.Course = Taken.Course);

StudentsAndRequiredNotTaken | Student Course
Susie | Programming Languages
Julie Databases
Emilie Databases
FEmilie | Programming Languages

Students Who Can Not Graduate From the previous relation, we can
apply a projection to get the set of students who cannot graduate.

CREATE TEMP TABLE CannotGraduate AS
SELECT Student FROM StudentsAndRequiredNotTaken;

CannotGraduate | Student
Susie
Julie

Emilie

Emilie

Students Who Can Graduate This is the second tricky part of our
query. We find the subset of students who can graduate by looking at the
students in Al11Students who are not in the set of CannotGraduate. Put
another way, the set of all students except the students who cannot graduate:

CREATE TEMP TABLE CanGraduate AS

SELECT * FROM AllStudents

WHERE NOT EXISTS (SELECT *

FROM CannotGraduate

WHERE CannotGraduate.Student = AllStudents.Student);

CanGraduate | Student
Robert
Robert




Re-write As a Single Query We can re-write the above set of queries
into a single query that does not use the temporary tables:

SELECT DISTINCT x.Student
FROM taken AS x
WHERE NOT EXISTS (
SELECT *
FROM required AS y
WHERE NOT EXISTS (
SELECT =*
FROM taken AS z
WHERE (z.Student=x.Student)
AND (z.Course=y.Course)));

Re-write Using Except (or Minus) We can re-write the above to use
EXCEPT instead of NOT EXISTS:

SELECT Student FROM Taken

EXCEPT

SELECT Student FROM (

SELECT Student,Course

FROM (select Student FROM Taken), Required
EXCEPT

SELECT Student,Course FROM Taken);

Re-write Using Aggregations We can write the query in an (arguably)
simpler version, using set membership (i.e., IN), GROUP BY, COUNT aggrega-
tions, and HAVING:

SELECT Student

From Taken

WHERE Course IN (SELECT Course FROM Required)
GROUP BY Student

HAVING COUNT(*) = (SELECT COUNT(*) FROM Required);



