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What	is	Gossip?



Gossip	algorithms

• In	a	gossip	algorithm,	each	node	in	the	network	periodically exchanges	

information	with	a	subset	of	nodes	

• This	subset	is	usually	the	set	of	neighbors	of	each	node

Every	node	only	has	a	local	view	of	the	network

• Objective:	each	node	receives	some	desired	global	information,	through	a	

certain	number	of	periodically	update	of	the	nodes. the same msg,
value of a function,

……



Background

Technological: Gossip algorithms are widely used in
communication networks which, more and more, are likely
to exhibit a social dimension. This knowledge might be
exploited for more efficient communication protocols.
Application: analysis of community structure/computer

virus, help us to build better networks, ……

Sociological: Gossip is a basic, simple form of a contagion
dynamics. By studying it we hope to gain some insight
into more complex diffusion phenomena.
Application: analysis of spread of virus/fake news in an

election, … …



Rumor	spreading

Solution	1		Initial	node	sends	the	rumor	to	one	of	its	neighbours,	and	every	
informed	node	forwards	it	to	all	its	neighbours.	

• Downside	1:	every	node	needs	to	interact	with	all	its	neighbours.
• Downside	2:	every	node	receives	its	degree	copies	of	the	rumor.

Solution	2		Construct	a	spanning	tree,	and	transfer	the	rumor	only	along	the	
edges	of	the	tree.	

•Downside:	Failure	of	links	in	the	tree	breaks	rumor	spreading	process.

We	need	a	simple,	local,	distributed,	fast,	and	robust algorithm	for	information	spreading.

without	coordination	
among	nodes

nodes	only	talk	to	their	
neighbours

tolerate	certain	link	
failures

Problem

Design an	algorithm so that all the nodes	receive the rumor as	fast	as	possible.



Push	protocol	of	rumor	spreading

Protocol (Synchronous	model)

• There is a rumor initially located
at a node of a network;

• The protocol proceeds by rounds,
in which each node only contacts
one of its neighbours.



Push	protocol	of	rumor	spreading

1.		t=0
2.		while	t<T do
3. every	informed	node	sends	the	rumor	to	its	random	neighbour.
4.											t=t+1

Algorithm	Description

PUSH

Nodes	with	rumor	sends it to	a	random	neighbour



Push	protocol	of	rumor	spreading



Push	protocol	of	rumor	spreading



Push	protocol	of	rumor	spreading



Push	protocol	of	rumor	spreading



Push	protocol	of	rumor	spreading



Push	protocol	of	rumor	spreading

Properties:
• Nodes	only	contact	with	their	neighbours;	network’s	global	structure	is	unknown	to	each	node.
• Robust:	Failure	of	transmission	among	a	few	nodes	won’t	affect	the	algorithm’s	performance.
• The	algorithm	efficiently sends	a	rumor	to	all	nodes	in	the	network.

1.		t=0
2.		while	t<T do
3. every	informed	node	sends	the	rumor	to	its	random	neighbour.
4.											t=t+1

Algorithm	Description

PUSH

Nodes	with	rumor	sends	to	a	random	neighbour

Randomisation is the key to ensure robustness and efficiency!



Bad	instance	for	the	Push	protocol	

Homework: It takes 𝑂(𝑛 ⋅ log	𝑛) rounds for all nodes to receive the rumor w.h.p.



Push-Pull	Protocol

PUSH

Nodes	with	rumor	sends	to	a	random	neighbour

PULL

Nodes	without	rumor	asks	a	random	neighbour

Bad	instance	for	PUSH Bad	instance	for	PULL



Push-Pull	Protocol

1.		t=0
2.		while	t<T do
3-1. every	informed	node	sends	the	rumor	to	its	random	neighbour.
3-2.							every	uninformed	node	calls	a	random	neighbour,	and	gets	the	

rumor	if	the	neighbour has	one.
4.											t=t+1
5.		end

Algorithm	Description



Push	versus	Pull

Rumor	spreads	fast	in	social	networks!

PUSH PULL

Cookie-based Advertising Google Advertisement



Analysis	of	the	Push	protocol

Properties:

• Ω(Diam 𝐺 ) rounds	are	needed	before	every	node gets	the	rumor.

• Ω(log 𝑛) rounds	are	needed	before	every	node gets	the	rumor.

Since	the	number	of	informed	vertices	at	most	doubles	after	each	round.

Question

How	many	rounds	are	needed	before	every	node	gets	the	rumor	w.h.p.?

Theorem
Let	𝐺 be	a	complete	graph	with	𝑛 nodes.	Then,	with	high	probability,	every	nodes
gets	the	rumor	after	log 𝑛 + ln 𝑛 + 𝑜(log 𝑛) rounds.



Let	𝐼4 be	the	set	of	informed	nodes in	the	end	of	round	𝑡,	and	𝑈4 be	the	set	of	non-informed	
nodes in	the	end	of	round	𝑡.	We	divide	the	analysis	into	three	phases:

• (#	informed	nodes)	is	small
§ Since	|𝐼4| is	small,	there	is	a	good	chance	that	different	informed	nodes

choose	different	non-informed	nodes ,	in	which	case	the	number	of	
informed	nodes almost	doubles	after	each	round.

• (#	informed	nodes)	≈ (#	uninformed	nodes)
§ There	are	already	a	lot	of	informed	nodes ,	and	hence	the	rate of number	

of	informed	nodes becomes	increasing	slowly.		

• 	(#uninformed	nodes)	is	small
§ There	are	few	non-informed	nodes,	and	the	number	of	non-informed	

vertices	decreases	exponentially.

Proof	sketch

Theorem
Let	𝐺 be	a	complete	graph	with	𝑛 nodes.	Then,	with	high	probability,	every	nodes
gets	the	rumor	after	log 𝑛 + ln 𝑛 + 𝑜(log 𝑛) rounds.



With	the	inequality	 1 − 𝑥 < ≤ 1 − 𝑛𝑥 + 𝑛>𝑥>,	it	holds	that	

𝔼 |𝐼4@A\I4| = E ℙ 𝑢 ∈ 𝐼4@A =E 1− ℙ 𝑢 ∈ 𝑈4@A =E 1− 1 −
1

𝑛 − 1

|IJ|�

L∉IJ

�

L∉IJ

�

L∉IJ

Proof: Let	𝐼4 be	the	set	of	informed	nodes in	the	end	of	round	𝑡,	and	𝑈4 be	the	set	of	non-informed	
nodes in	the	end	of	round	𝑡.	We	divide	the	analysis	into	three	phases:

• 1 ≤ 𝐼4 ≤ (𝑛 − 1)/ log 𝑛
• (𝑛 − 1)/ log 𝑛 ≤ 𝐼4 ≤ 𝑛 − 𝑛/ log 𝑛
• 𝑛 − 𝑛/ log 𝑛 ≤ 𝐼4 ≤ 𝑛

Analysis	of	Phase	I	 Let	𝑡 be	any	round	with	1 ≤ 𝐼4 ≤ (𝑛 − 1)/ log 𝑛.	Notice	that	

𝐼4@A\𝐼4

Since	 𝐼4@A\I4 ≤ |𝐼4|,	it	follows	by	Markov	inequality	that	

ℙ 𝐼4 − 𝐼4@A\𝐼4 ≥ 𝑐 ≤
𝔼 𝐼4 − 𝐼4@A\𝐼4
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Analysis	on	complete	graphs



Proof: Analysis	of	Phase	I	(Contd)

Choosing	𝑐 = 2 𝐼4 / ln 𝑛� yields

ℙ 𝐼4 − 𝐼4@A\𝐼4 ≥
2|𝐼4|
ln 𝑛� ≤

1
ln 𝑛�

which	is	equivalent	to

ℙ 𝐼4@A\𝐼4 ≥ 1 −
2
ln 𝑛� 𝐼4 ≥ 1 −

1
ln 𝑛�

We	call	a	round	good if	the	above	happens.	Notice	that	after

log>R>/ ST <� 𝑛/log	𝑛 = log> 𝑛 + 𝑜 log 𝑛 ≔ 𝛽
good	rounds,	we	have	 𝐼4 ≥ 𝑛/ln 𝑛.		

If	we	consider	𝛽 + 8 ln 𝑛/ ln ln 𝑛 consecutive	rounds,	the	probability	for	having	more	than	
8 ln 𝑛/ ln ln 𝑛 bad	rounds	is	upper	bounded	by

𝛽 + 8 ln 𝑛/ ln ln 𝑛
8 ln 𝑛/ ln ln 𝑛 X

1
ln 𝑛�

Y ST <
ST ST <

≤ 2> SZ[\ < ⋅ 𝑛R] = 𝑛R>

Hence,	with	probability	at	least	1 − 𝑛R>,	there	is	a	round	𝜏 ≤ log>𝑛 + 𝑜(log	𝑛) 	such	that	
𝐼_ ≥ 𝑛/ log 𝑛.

with	high	prob.,	
#informed	nodes	
almost	doubles

ℙ 𝐼4 − 𝐼4@A\𝐼4 ≥ 𝑐 ≤
𝔼 𝐼4 − 𝐼4@A\𝐼4

𝑐
≤
2 𝐼4 /ln 𝑛	

𝑐

Analysis	on	complete	graphs



Proof: Let	𝐼4 be	the	set	of	informed	nodes in	the	end	of	round	𝑡,	and	𝑈4 be	the	set	of	non-informed	
nodes in	the	end	of	round	𝑡.	We	divide	the	analysis	into	three	phases:

• 1 ≤ 𝐼4 ≤ (𝑛 − 1)/ log 𝑛
• (𝑛 − 1)/ log 𝑛 ≤ 𝐼4 ≤ 𝑛 − 𝑛/ log 𝑛
• 𝑛 − 𝑛/ log 𝑛 ≤ 𝐼4 ≤ 𝑛

Analysis	of	Phase	II	 Let	𝑡 be	the	first	round	with	 𝐼4 ≥ 𝑛 − 1 /log 𝑛,	and	assume	 𝐼4 ≤ 𝑛/2.
As	in	Phase	I,	we	have

𝔼 𝐼4@A\𝐼4 =E ℙ 𝑢 ∈ 𝐼4@A =E 1− 1 −
1

𝑛 − 1
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X 1 −
𝑛/2
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for	sufficiently	large	𝑛.		

Applying	the	same	analysis	as	in	Phase	I,	we	have	there	is	a	constant	𝑐,	s.t.

ℙ 𝐼4@A ≥ a
]
|𝐼4| ≥ 𝑐

Call	a	round	good if	 𝐼4@A ≥ 5|𝐼4|/4.	Starting	with	 𝐼4 ≥ 𝑛 − 1 / log 𝑛,	we	only	need	𝑂(log log 𝑛)

good	rounds	before	the	number	of	informed	nodes	reaches	𝑛/2.		Since	every	good	round	happens	

with	constant	probability,	if	we	spend	𝑂 log 𝑛� rounds,	then	the	probability	for	having	less	than	

𝑂(log log 𝑛) good	rounds	is	𝑜(1).

𝐼4@A\𝐼4 #informed	nodes
grows	slower!!!

𝐼4

Analysis	on	complete	graphs



Proof:

𝐼4@A\𝐼4

𝐼4

Let	𝐼4 be	the	set	of	informed	nodes in	the	end	of	round	𝑡,	and	𝑈4 be	the	set	of	non-informed	
nodes in	the	end	of	round	𝑡.	We	divide	the	analysis	into	three	phases:

• 1 ≤ 𝐼4 ≤ (𝑛 − 1)/ log 𝑛
• (𝑛 − 1)/ log 𝑛 ≤ 𝐼4 ≤ 𝑛 − 𝑛/ log 𝑛
• 𝑛 − 𝑛/ log 𝑛 ≤ 𝐼4 ≤ 𝑛

Analysis	of	Phase	II	(contd.)	 Let	𝑡 be	a	round	with	𝑛/2 ≤ 𝐼4 ≤ 𝑛 − 𝑛/ log 𝑛.	We	upper	bound	
the	expected	number	of	non-informed nodes	by

𝔼 𝑈4@A =E ℙ 𝑢 ∈ 𝑈4@A =E 1−
1

𝑛 − 1

|IJ|
≤ 𝑈4 ⋅ 1 −

1
𝑛
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Iterating	this	argument	by	for	any	𝜏 ∈ ℕ rounds	yields

𝔼 𝑈4@_ ≤ 𝑈4 ⋅ eR_/>

Hence	by	choosing	𝜏 = 4 ln ln 𝑛 gives	us	that	

𝔼 𝑈4@_ ≤
𝑛
2
⋅ eR> ST ST < = 𝑛/2 ⋅ ln 𝑛 R>	

By	Markov’s	inequality,	it	holds	that		

ℙ 𝑈4@_ ≥
𝑛
2
⋅ ln 𝑛 RA ≤ ℙ 𝑈4@_ ≥ ln 𝑛 ⋅ 𝔼 𝑈4@_ ≤

1
ln 𝑛

#	non-informed	
vertices	shrinks	
by	const	factor!!!

Analysis	on	complete	graphs



Proof:

Analysis	of	Phase	III	 Let	𝑡	be	a	round	with	 𝐼4 ≥ 𝑛 − 𝑛/ log 𝑛	.

The	probability	that	a	fixed	node is	not	informed	by	any	vertex	in	𝐼4 for	𝛼 = ln𝑛 + ln 𝑛 / ln ln 𝑛
rounds	is	at	most

1 − A
<RA	

<R</ST< ⋅h
≤ exp − 1 − A

ST <
⋅ ln 𝑛 + ST <

ST ST <

= exp − ln 𝑛 − ST <
ST ST <

+ 1 + A
ST ST <

= 𝑛RA	 ⋅ 𝑜 1

Taking	the	union	bound,	with	high	probability	every	node	gets	informed	after	𝛼 rounds.

𝐼4@A\𝐼4

A	similar	proof	can	be	applied	for	highly-connected	graphs.

Let	𝐼4 be	the	set	of	informed	nodes in	the	end	of	round	𝑡,	and	𝑈4 be	the	set	of	non-informed	
nodes in	the	end	of	round	𝑡.	We	divide	the	analysis	into	three	phases:

• 1 ≤ 𝐼4 ≤ (𝑛 − 1)/ log 𝑛
• (𝑛 − 1)/ log 𝑛 ≤ 𝐼4 ≤ 𝑛 − 𝑛/ log 𝑛
• 𝑛 − 𝑛/ log 𝑛 ≤ 𝐼4 ≤ 𝑛

Analysis	on	complete	graphs



Application:	ID	Distribution

1.		Initial	node	𝑣 sets IDl = 0.
2.		t=0
3.		while	t<T do
4-1. every	node	v with	ID	sends		 IDl, 𝑡 to	its	random	neighbour.
4-2.							if	a	node	u	without	ID	receives	 IDl, 𝑡 from	its	neigbhour,	then

IDL = 24RA + IDl
Note:	if	node	u	receives	msg from	multiple	neighbours,	u	chooses	

a	random	one	to	perform	the	operation	above.
4.											t=t+1
5.		end

Algorithm	Description

Homework:	Prove	that	every	node	receives	a	unique	ID.


