Distributed Systems

Gossip Algorithms

He Sun School of Informatics University of Edinburgh

What is Gossip?

Gossip algorithms

• In a gossip algorithm, each node in the network *periodically* exchanges

information with a subset of nodes

• This subset is usually *the set of neighbors of each node*

Every node only has a local view of the network

• **Objective:** each node receives some desired *global information*, through a

certain number of periodically update of the nodes.

the same msg, value of a function,

Background

Technological: Gossip algorithms are widely used in communication networks which, more and more, are likely to exhibit a social dimension. This knowledge might be exploited for more efficient communication protocols. Application: analysis of community structure/computer virus, help us to build better networks,

Sociological: Gossip is a basic, simple form of a contagion dynamics. By studying it we hope to gain some insight into more complex diffusion phenomena.

Application: analysis of spread of virus/fake news in an

election,

Rumor spreading

High communication

cost

Problem

Design an algorithm so that all the nodes receive the rumor as fast as possible.

Solution 1 Initial node sends the rumor to one of its neighbours, and every informed node forwards it to all its neighbours.

- Downside 1: every node needs to interact with all its neighbours.
- Downside 2: every node receives its degree copies of the rumor.

Solution 2 Construct a spanning tree, and transfer the rumor only along the edges of the tree.

•Downside: Failure of links in the tree breaks rumor spreading process.

nodes only talk to their	without coordination
neighbours	among nodes
We need a simple, <i>local</i> , <i>dist</i>	ributed, fast, and robust algorithm for information spreading.

tolerate certain link	
failures	
	2

Protocol (Synchronous model)

- There is a rumor *initially* located at a node of a network;
- The protocol proceeds by rounds, in which each node only contacts one of its neighbours.

Nodes with rumor sends it to a random neighbour

Properties:

- Nodes only contact with their neighbours; network's global structure is unknown to each node.
- Robust: Failure of transmission among a few nodes won't affect the algorithm's performance.
- The algorithm **efficiently** sends a rumor to all nodes in the network.

Randomisation is the key to ensure robustness and efficiency!

Bad instance for the Push protocol

Homework: It takes $O(n \cdot \log n)$ rounds for all nodes to receive the rumor w.h.p.

Push-Pull Protocol

Bad instance for PUSH

Bad instance for PULL

Push-Pull Protocol

Algorithm Description

1. t=0

- 2. while t<T do
- 3-1. every informed node sends the rumor to its random neighbour.
- 3-2. every uninformed node calls a random neighbour, and gets the rumor if the neighbour has one.
- 4. t=t+1

5. end

Push versus Pull

Rumor spreads fast in social networks!

Cookie-based Advertising

Google Advertisement

Analysis of the Push protocol

- Question

How many rounds are needed before every node gets the rumor w.h.p.?

Properties:

• $\Omega(\text{Diam}(G))$ rounds are needed before every node gets the rumor.

• $\Omega(\log n)$ rounds are needed before every node gets the rumor.

Since the number of informed vertices at most doubles after each round.

- Theorem

Let G be a complete graph with n nodes. Then, with high probability, every nodes gets the rumor after $\log n + \ln n + o(\log n)$ rounds.

Proof sketch

Theorem

Let G be a complete graph with n nodes. Then, with high probability, every nodes gets the rumor after $\log n + \ln n + o(\log n)$ rounds.

Let I_t be the set of informed nodes in the end of round t, and U_t be the set of non-informed nodes in the end of round t. We divide the analysis into three phases:

• (# informed nodes) is small

 I_t

 I_t

Since $|I_t|$ is small, there is a good chance that different informed nodes choose different non-informed nodes , in which case the number of informed nodes almost doubles after each round.

• (# informed nodes) \approx (# uninformed nodes)

There are already a lot of informed nodes , and hence the rate of number of informed nodes becomes increasing slowly.

• (#uninformed nodes) is small

There are few non-informed nodes, and the number of non-informed vertices decreases exponentially.

11.1

Proof: Let I_t be the set of informed nodes in the end of round t, and U_t be the set of non-informed nodes in the end of round t. We divide the analysis into three phases:

- $1 \leq |I_t| \leq (n-1)/\log n$
- $(n-1)/\log n \le |I_t| \le n-n/\log n$
- $n-n/\log n \le |I_t| \le n$

<u>Analysis of Phase I</u> Let t be any round with $1 \le |I_t| \le (n-1)/\log n$. Notice that

$$\mathbb{E}[|I_{t+1} \setminus I_t|] = \sum_{u \notin I_t} \mathbb{P}[u \in I_{t+1}] = \sum_{u \notin I_t} 1 - \mathbb{P}[u \in U_{t+1}] = \sum_{u \notin I_t} 1 - \left(1 - \frac{1}{n-1}\right)^{|I_t|}$$
With the inequality $(1-x)^n \le 1 - nx + n^2 x^2$, it holds that
$$\underbrace{I_{t+1} \setminus I_t}_{u \notin I_t} \sum_{u \notin I_t} 1 - \left(1 - \frac{1}{n-1}\right)^{|I_t|} \ge \sum_{u \notin I_t} 1 - \left(1 - \frac{|I_t|}{n-1} + \frac{|I_t|^2}{(n-1)^2}\right)$$

$$\ge \sum_{u \notin I_t} \frac{|I_t|}{n-1} \cdot \left(1 - \frac{|I_t|}{n-1}\right) \ge (n - |I_t|) \frac{|I_t|}{n-1} \left(1 - \frac{1}{\ln n}\right)$$

$$\geq \left(n - \frac{n-1}{\ln n}\right) \frac{|I_t|}{n-1} \left(1 - \frac{1}{\ln n}\right) \geq \left(1 - \frac{2}{\ln n}\right) |I_t|$$

Since $|I_{t+1} \setminus I_t| \le |I_t|$, it follows by Markov inequality that

$$\mathbb{P}[|I_t| - |I_{t+1} \setminus I_t| \ge c] \le \frac{\mathbb{E}[|I_t| - |I_{t+1} \setminus I_t|]}{c} \le \frac{2|I_t| / \ln n}{c}$$

Proof: <u>Analysis of Phase I (Contd</u>) $\mathbb{P}[|I_t| - |I_{t+1} \setminus I_t| \ge c] \le \frac{\mathbb{E}[|I_t| - |I_{t+1} \setminus I_t|]}{c} \le \frac{2|I_t|/\ln n}{c}$ Choosing $c = 2|I_t|/\sqrt{\ln n}$ yields

$$\mathbb{P}\left[|I_t| - |I_{t+1} \setminus I_t| \ge \frac{2|I_t|}{\sqrt{\ln n}}\right] \le \frac{1}{\sqrt{\ln n}} \qquad \text{with high prob.,} \\ \text{#informed nodes} \\ \text{almost doubles} \end{cases}$$

which is equivalent to

$$\mathbb{P}\left[|I_{t+1} \setminus I_t| \ge \left(1 - \frac{2}{\sqrt{\ln n}}\right)|I_t|\right] \ge 1 - \frac{1}{\sqrt{\ln n}}$$

We call a round *good* if the above happens. Notice that after

$$\log_{2-2/\sqrt{\ln n}}(n/\log n) = \log_2 n + o(\log n) \coloneqq \beta$$

good rounds, we have $|I_t| \ge n/\ln n$.

If we consider $\beta + 8 \ln n / \ln \ln n$ consecutive rounds, the probability for having more than $8 \ln n / \ln \ln n$ bad rounds is upper bounded by

$$\binom{\beta + 8\ln n / \ln \ln n}{8\ln n / \ln \ln n} \cdot \left(\frac{1}{\sqrt{\ln n}}\right)^{\frac{8\ln n}{\ln \ln n}} \le 2^{2\log_2 n} \cdot n^{-4} = n^{-2}$$

Hence, with probability at least $1 - n^{-2}$, there is a round $\tau \le \log_2 n + o(\log n)$ such that $|I_{\tau}| \ge n/\log n$.

Proof: Let I_t be the set of informed nodes in the end of round t, and U_t be the set of non-informed nodes in the end of round t. We divide the analysis into three phases:

- $1 \leq |I_t| \leq (n-1)/\log n$
- $(n-1)/\log n \le |I_t| \le n-n/\log n$
- $n n/\log n \le |I_t| \le n$

<u>Analysis of Phase II</u> Let t be the first round with $|I_t| \ge (n-1)/\log n$, and assume $|I_t| \le n/2$.

As in Phase I, we have

Call a round *good* if $|I_{t+1}| \ge 5|I_t|/4$. Starting with $|I_t| \ge (n-1)/\log n$, we only need $O(\log \log n)$ good rounds before the number of informed nodes reaches n/2. Since every good round happens with constant probability, if we spend $O(\sqrt{\log n})$ rounds, then the probability for having less than $O(\log \log n)$ good rounds is o(1).

Proof: Let I_t be the set of informed nodes in the end of round t, and U_t be the set of non-informed nodes in the end of round t. We divide the analysis into three phases:

- $1 \leq |l_t| \leq (n-1)/\log n$
- $(n-1)/\log n \le |I_t| \le n-n/\log n$
- $n n/\log n \le |I_t| \le n$

<u>Analysis of Phase II (contd.)</u> Let t be a round with $n/2 \le |I_t| \le n - n/\log n$. We upper bound the expected number of *non-informed* nodes by

$$\mathbb{E}[|U_{t+1}|] = \sum_{u \in U_t} \mathbb{P}[u \in U_{t+1}] = \sum_{u \in U_t} \left(1 - \frac{1}{n-1}\right)^{|I_t|} \le |U_t| \cdot \left(1 - \frac{1}{n}\right)^{\frac{n}{2}} \le |U_t| \cdot e^{-1/2}$$

$$Iterating this argument by for any \tau \in \mathbb{N} \text{ rounds yields}$$

$$\mathbb{E}[|U_{t+\tau}|] \le |U_t| \cdot e^{-\tau/2}$$

$$\# \text{ non-informed vertices shrinks}$$
by const factor!!

Hence by choosing $\tau = 4 \ln \ln n$ gives us that

$$\mathbb{E}[|U_{t+\tau}|] \le \frac{n}{2} \cdot e^{-2\ln\ln n} = n/2 \cdot (\ln n)^{-2}$$

By Markov's inequality, it holds that

$$\mathbb{P}\left[|U_{t+\tau}| \ge \frac{n}{2} \cdot (\ln n)^{-1}\right] \le \mathbb{P}\left[|U_{t+\tau}| \ge (\ln n) \cdot \mathbb{E}[|U_{t+\tau}|]\right] \le \frac{1}{\ln n}$$

Proof: Let I_t be the set of informed nodes in the end of round t, and U_t be the set of non-informed nodes in the end of round t. We divide the analysis into three phases:

- $1 \le |I_t| \le (n-1)/\log n$
- $(n-1)/\log n \le |I_t| \le n-n/\log n$
- $n n/\log n \le |I_t| \le n$

<u>Analysis of Phase III</u> Let t be a round with $|I_t| \ge n - n/\log n$.

The probability that a fixed node is not informed by any vertex in I_t for $\alpha = \ln n + \ln n / \ln \ln n$ rounds is at most

Taking the union bound, with high probability every node gets informed after α rounds.

A similar proof can be applied for highly-connected graphs.

Application: ID Distribution

- Algorithm Description

- 1. Initial node v sets $ID_v = 0$.
- 2. t=0
- 3. while t<T do
- 4-1. every node v with ID sends (ID_v, t) to its random neighbour.
- 4-2. *if a node u without ID receives* (ID_v, t) *from its neigbhour, then* $ID_u = 2^{t-1} + ID_v$

Note: if node u receives msg from multiple neighbours, u chooses a random one to perform the operation above.

t=t+1
 end

Homework: Prove that every node receives a unique ID.

