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Overview

Speech Signal Analysis for ASR

Features for ASR

Spectral analysis

Cepstral analysis

Standard features for ASR: FBANK, MFCCs and PLP analysis

Dynamic features

Reading:

Jurafsky & Martin, sec 9.3

P Taylor, Text-to-Speech Synthesis, chapter 12, signal
processing background chapter 10
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Speech signal analysis for ASR
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Speech production model
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A/D conversion — Sampling

Convert analogue signals in digital form
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A/D conversion — Sampling (cont.)

Things to know:

Sampling Frequency (Fs = 1/Ts )

Speech Sufficient Fs
Microphone voice (< 10kHz) 20 kHz
Telephone voice (< 4kHz) 8 kHz

Analogue low-pass filtering to avoid ’aliasing’
NB: the cut-off frequency should be less than the
Nyquist frequency (= Fs/2)
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Acoustic Features for ASR

Acoustic 
Model

ASR
Front End

Sampled signal

x(n) ot(k)

Acoustic feature vectors

Speech signal analysis to produce a sequence of acoustic feature
vectors
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Acoustic Features for ASR

Desirable characteristics of acoustic features used for ASR:

Features should contain sufficient information to distinguish
between phones

good time resolution (10ms)
good frequency resolution (20 ∼ 40 channels)

Be separated from F0 and its harmonics

Be robust against speaker variation

Be robust against noise or channel distortions

Have good “pattern recognition characteristics”

low feature dimension
features are independent of each other (NB: this applies to
GMMs, but not required for NN-based systems)
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MFCC-based front end for ASR
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Pre-emphasis and spectral tilt

Pre-emphasis increases the magnitude of higher frequencies in
the speech signal compared with lower frequencies

Spectral Tilt

The speech signal has more energy at low frequencies (for
voiced speech)
This is due to the glottal source (see the figure)

Pre-emphasis (first-order) filter boosts higher frequencies:

x ′[td ] = x [td ]− αx [td−1] 0.95 < α < 0.99
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Pre-emphasis: example

Example of pre-emphasis 

•  Before and after pre-emphasis 

 Spectral slice from the vowel [aa] 

Vowel /aa/ - time slice of the spectrum

(Jurafsky & Martin, fig. 9.9)
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Windowing

The speech signal is constantly changing (non-stationary)
Signal processing algorithms usually assume that the signal is
stationary
Piecewise stationarity: model speech signal as a sequence of
frames (each assumed to be stationary)
Windowing: multiply the full waveform s[n] by a window
w [n] (in time domain):

x [n] = w [n] s[n] ( xt [n] = w [n] x ′[td +n] )

Simply cutting out a short segment (frame) from s[n] is a
rectangular window — causes discontinuities at the edges of
the segment
Instead, a tapered window is usually used
e.g. Hamming (α = 0.46164) or Hanning (α = 0.5) window

w [n] = (1−α)− α cos

(
2πn

L−1

)
L : window width
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Windowing and spectral analysis

Window the signal x ′[td ]
into frames xt [n] and apply
Fourier Transform to each
segment.

Short frame width:
wide-band,
high time resolution,
low frequency resolution
Long frame width:
narrow-band,
low time resolution,
high frequency resolution

For ASR:

frame width ∼ 25ms
frame shift ∼ 10ms

t’th frame

DFT
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Effect of windowing — time domain
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(c) Hamming window

Figure 12.1 Effect of windowing in the time domain

shows a spike at the sinusoid frequency, but also shows prominent energy on either side. This
effect is much reduced in the hanning window. In the log version of this, it is clear there there
is a wider main lobe than in the rectangular case - this is the key feature as it means that more
energy is allowed to pass through at this point in comparison with the neighbouring frequencies.
The hamming window is very similar to the hanning, but has the additional advantage that the side
lobes immediately neighbouring the main lobe are more suppressed. Figure 12.3 shows the effect
of the windowing operation on a square wave signal and shows that the harmonics are preserved
far more clearly in the case where the Hamming window is used.

12.1.2 Short term spectral representations

Using windowing followed by a DFT, we can generate short term spectra from speech wave-
forms. The DFT spectrum is complex and and can be represented by its real and imaginary parts
or its magnitude and phase parts. As explained in section 10.1.5 the ear is not sensitive to phase
information in speech, and so the magnitude spectrum is the most suitable frequency domain rep-
resentation. The ear interprets sound amplitude in an approximately logarithmic fashion - so a
doubling in sound only produces an additive increase in perceived loudness. Because of this, it is
usual to represent amplitude logarithmically, most commonly on the decibel scale. By convention,
we normally look at the log power spectrum, that is the log of the square of the magnitude spec-
trum. These operations produce a representation of the spectrum which attempts to match human
perception: because phase is not perceived, we use the power spectrum, and because our response
to signal level is logarithmic we use the log power spectrum.

(Taylor, fig 12.1)
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Effect of windowing — frequency domain
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x(t) = 0.15 sin(πf1t) + 0.85 sin(πf2t + 0.3)
f1 = 0.13, f2 = 0.22
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Effect of windowing — frequency domain
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Discrete Fourier Transform (DFT)

Purpose: extracts spectral information from a windowed
signal (i.e. how much energy at each frequency band)

Input: windowed signal x [0], . . . , x [L−1] (time domain)

Output: a complex number X [k] for each of N frequency
bands representing magnitude and phase for the kth frequency
component (frequency domain)

Discrete Fourier Transform (DFT):

X [k] =
N−1∑
n=0

x [n] exp

(
−j 2π

N
kn

)
NB: exp(jθ) = e jθ = cos(θ) + j sin(θ)

Fast Fourier Transform (FFT) — efficient algorithm for
computing DFT when N is a power of 2, and N ≥ L.
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Wide-band and narrow-band spectrograms
358 Chapter 12. Analysis of Speech Signals

Figure 12.8 Wide band spectrogram

Figure 12.9 Narrow band spectrogram

is centred around the pitch period. As pitch is generally changing, this makes the frame shift
variable. Pitch-synchronous analysis has the advantage that each frame represents the output of
the same process, that is, the excitation of the vocal tract with a glottal pulse. In unvoiced sections,
the frame rate is calculated at even intervals. Of course, for pitch-synchronous analysis to work,
we must know where the pitch periods actually are: this is not a trivial problem and will be
addressed further in section 12.7.2. Note that fixed frame shift analysis is sometimes referred to
as pitch-asynchronous analysis.

Figure 12.3 shows the waveform and power spectrum for 5 different window lengths. To
some extent, all capture the envelope of the spectrum. For window lengths of less than one period,
it is impossible to resolve the fundamental frequency and so no harmonics are present. As the win-
dow length increases, the harmonics can clearly be seen. At the longest window length, we have
a very good frequency resolution, but because so much time-domain waveform is analysed, the
position of the vocal tract and pitch have changed over the analysis window, leaving the harmonics
and envelope to represent an average over this time rather than a single snapshot.

window width = 2.5ms

window width = 25ms

(Taylor, figs 12.8, 12.9)
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Short-time spectral analysis
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DFT Spectrum

Discrete Fourier Transform 
computing a spectrum 

•  A 25 ms Hamming-windowed signal from [iy] 

 And its spectrum as computed by DFT (plus 
other smoothing) 

25ms Hamming window of vowel /iy/ and its spectrum computed
by DFT

(Jurafsky and Martin, fig 9.12)
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DFT Spectrum Features for ASR

Equally-spaced frequency bands — but human hearing less
sensitive at higher frequencies (above ∼ 1000Hz)

The estimated power spectrum contains harmonics of F0,
which makes it difficult to estimate the envelope of the
spectrum
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Frequency bins of STFT are highly correlated each other, i.e.
power spectrum representation is highly redundant
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Human hearing

Physical quality Perceptual quality
Intensity Loudness

Fundamental frequency Pitch
Spectral shape Timbre

Onset/offset time Timing
Phase difference in binaural hearing Location

Technical terms

equal-loudness contours

masking

auditory filters (critical-band filters)

critical bandwidth
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Equal loudness contour
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Nonlinear frequency scaling

Human hearing is less sensitive to higher frequencies — thus
human perception of frequency is nonlinear

Mel scale

M(f ) = 1127 ln(1 + f /700)

Bark scale

b(f ) = 13 arctan(0.00076f )

+ 3.5 arctan((f /7500)2)
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Mel-Filter Bank

Apply a mel-scale filter bank to DFT power spectrum to
obtain mel-scale power spectrum
Each filter collects energy from a number of frequency bands
in the DFT
Linearly spaced < 1000 Hz, logarithmically spaced > 1000 Hz

|Y[m]|

|X[k]|

Frequency bins

Triangular band−pass filters

Mel−scale power spectrum

DFT(STFT) power spectrum

N21

1 2 M
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Mel-Filter Bank (cont.)

|Yt [m]| =
N∑

k=1

Wm[k] |Xt [k]|

where k : DFT bin number (1, . . . ,N)
m : mel-filter bank number (1, . . . ,M).

How many number of mel-filter channels?

≈ 20 for GMM-HMM based ASR
20 ∼ 40 for DNN (+HMM) based ASR
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Log Mel Power Spectrum

Compute the log magnitude squared of each mel-filter bank
output: log |Y [m]|2

Taking the log compresses the dynamic range
Human sensitivity to signal energy is logarithmic — i.e.
humans are less sensitive to small changes in energy at high
energy than small changes at low energy
Log makes features less variable to acoustic coupling variations
Removes phase information — not important for speech
recognition (not everyone agrees with this)

Aka “log mel-filter bank outputs” or “FBANK features”,
which are widely used in recent DNN-HMM based ASR
systems
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DFT Spectrum Features for ASR

Equally-spaced frequency bands — but human hearing less
sensitive at higher frequencies (above ∼ 1000Hz)

The estimated power spectrum contains harmonics of F0,
which makes it difficult to estimate the envelope of the
spectrum
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Frequency bins of STFT are highly correlated each other, i.e.
power spectrum representation is highly redundant
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Cepstral Analysis

Source-Filter model of speech production

Source: Vocal cord vibrations create a glottal source waveform
Filter: Source waveform is passed through the vocal tract:
position of tongue, jaw, etc. give it a particular shape and
hence a particular filtering characteristic

Source characteristics (F0, dynamics of glottal pulse) do not
help to discriminate between phones

The filter specifies the position of the articulators

... and hence is directly related to phone discrimination

Cepstral analysis enables us to separate source and filter
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Cepstral Analysis

Split power spectrum into spectral envelope and F0 harmonics.
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The Cepstrum

Cepstrum obtained by applying inverse DFT to log magnitude
spectrum (may be mel-scaled)

Cepstrum is time-domain (we talk about quefrency)

Inverse DFT:

yt [k] =
M∑

m=1

log(|Yt [m]|) cos
(
k(m−0.5)

π

M

)
, k = 0, . . . , J

Since log power spectrum is real and symmetric the inverse
DFT is equivalent to a discrete cosine transform (DCT)
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MFCCs

Smoothed spectrum: transform to cepstral domain, truncate,
transform back to spectral domain

Mel-frequency cepstral coefficients (MFCCs): use the cepstral
coefficients directly

Widely used as acoustic features in HMM-based ASR
First 12 MFCCs are often used as the feature vector (removes
F0 information)
Less correlated than spectral features — easier to model than
spectral features
Very compact representation — 12 features describe a 20ms
frame of data
For standard HMM-based systems, MFCCs result in better
ASR performance than filter bank or spectrogram features
MFCCs are not robust against noise
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PLP — Perceptual Linear Prediction

ŷ [n] =
P∑

k=1

ak yt [n−k]

PLP (Hermansky, JASA 1990)

Uses equal loudness pre-emphasis
and cube-root compression
(motivated by perceptual results)
rather than log compression

Uses linear predictive
auto-regressive modelling to obtain
cepstral coefficients

PLP has been shown to lead to

slightly better ASR accuracy
slightly better noise
robustness

compared with MFCCs
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Dynamic features

Speech is not constant frame-to-frame, so we can add features
to do with how the cepstral coefficients change over time

∆∗, ∆2∗ are delta features (dynamic features / time
derivatives)

Simple calculation of delta features d(t) at time t for cepstral
feature c(t) (e.g. yt [j ]):

d(t) =
c(t + 1)− c(t − 1)

2

More sophisticated approach estimates the temporal derivative
by using regression to estimate the slope (typically using 4
frames each side)
“Standard” ASR features (for GMM-based systems) are 39
dimensions:

12 MFCCs, and energy
12 ∆MFCCs, ∆energy
12 ∆2MFCCs, ∆2energy
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Estimating dynamic features

timet0

0

c(t)

’c (t )
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Feature Transforms

Orthogonal transformation (orthogonal bases)

DCT (discrete cosine transform)
PCA (principal component analysis)

Transformation based on the bases that maximises the
separability between classes.

LDA (linear discriminant analysis) / Fisher’s linear
discriminant
HLDA (heteroscedastic linear discriminant analysis)
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Feature Normalisation

Basic Idea: Transform the features to reduce mismatch
between training and test

Cepstral Mean Normalisation (CMN): subtract the average
feature value from each feature, so each feature has a mean
value of 0. makes features robust to some linear filtering of
the signal (channel variation)

Cepstral Variance Normalisation (CVN): Divide feature vector
by standard deviation of feature vectors, so each feature
vector element has a variance of 1

Cepstral mean and variance normalisation, CMN/CVN:

ŷt [j ] =
yt [j ]− µ(y [j ])

σ(y [j ])

Compute mean and variance statistics over longest available
segments with the same speaker/channel

Real time normalisation: compute a moving average
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Acoustic features in state-of-the-art ASR systems

See Tables 1, 2, and 3 in

Jinyu Li, Dong Yu, Jui-Ting Huang, and Yifan Gong,
“Improving Wideband Speech Recognition Using Mixed-Bandwidth
Training Data In CD-DNN-HMM”,
2012 IEEE Workshop in Spoken Language Technology (SLT2012).
http://research-srv.microsoft.com/pubs/179159/li.pdf
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Summary: Speech Signal Analysis for ASR

Good characteristics of ASR features

FBANK features

Short-time DFT analysis
Mel-filter bank
Log magnitude squared
Widely used for DNN ASR (M ≈ 40)

MFCCs - mel frequency cepstral coefficients

FBANK features
Inverse DFT (DCT)
Use first few (12) coefficients
Widely used for GMM-HMM ASR

Delta features (dynamic features)

39-dimension feature vector (for GMM-HMM ASR):
MFCC-12 + energy; + Deltas; + Delta-Deltas

ASR Lectures 2&3 Speech Signal Analysis 43


