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Abstract. The ternary Goldbach conjecture, or three-primes problem, states that every odd number
n greater than 5 can be written as the sum of three primes. The conjecture, posed in 1742, remained
unsolved until now, in spite of great progress in the twentieth century. In 2013 – following a line of
research pioneered and developed by Hardy, Littlewood and Vinogradov, among others – the author
proved the conjecture. In this, as in many other additive problems, what is at issue is really the proper
usage of the limited information we possess on the distribution of prime numbers. The problem serves
as a test and whetting-stone for techniques in analysis and number theory – and also as an incentive
to think about the relations between existing techniques with greater clarity. We will go over the main
ideas of the proof. The basic approach is based on the circle method, the large sieve and exponential
sums. For the purposes of this overview, we will not need to work with explicit constants; however, we
will discuss what makes certain strategies and procedures not just effective, but efficient, in the sense
of leading to good constants. Still, our focus will be on qualitative improvements.
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The question we will discuss, or one similar to it, seems to have been first posed by
Descartes, in a manuscript published only centuries after his death [14, p. 298]. Descartes
states: “Sed & omnis numerus par fit ex uno vel duobus vel tribus primis” (“But also every
even number is made out of one, two or three prime numbers.”) This statement comes in the
middle of a discussion of sums of polygonal numbers, such as the squares.

Statements on sums of primes and sums of values of polynomials (polygonal numbers,
powers nk, etc.) have since shown themselves to be much more than mere curiosities – and
not just because they are often very difficult to prove. Whereas the study of sums of powers
can rely on their algebraic structure, the study of sums of primes leads to the realization that,
from several perspectives, the set of primes behaves much like the set of integers – and that
this is truly hard to prove.

If, instead of the primes, we had a random set of odd integers S whose density – an
intuitive concept that can be made precise – equaled that of the primes, then we would
expect to be able to write every odd number as a sum of three elements of S, and every even
number as the sum of two elements of S. We would have to check by hand whether this
is true for small odd and even numbers, but it is relatively easy to show that, after a long
enough check, it would be very unlikely that there would be any exceptions left among the
infinitely many cases left to check.

The question, then, is in what sense we need the primes to be like a random set of
integers; in other words, we need to know what we can prove about the regularities of the
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distribution of the primes. This is one of the main questions of analytic number theory;
progress on it has been very slow and difficult. Thus, the real question is how to use well the
limited information we do have on the distribution of the primes.

1. History and new developments

The history of the conjecture starts properly with Euler and his close friend, Christian Gold-
bach, both of whom lived and worked in Russia at the time of their correspondence – about
a century after Descartes’ isolated statement. Goldbach, a man of many interests, is usually
classed as a serious amateur; he seems to have awakened Euler’s passion for number theory,
which would lead to the beginning of the modern era of the subject [71, Ch. 3, §IV]. In
a letter dated June 7, 1742 – written partly in German, partly in Latin – Goldbach made a
conjectural statement on prime numbers, and Euler rapidly reduced it to the following con-
jecture, which, he said, Goldbach had already posed to him: every positive integer can be
written as the sum of at most three prime numbers.

We would now say “every integer greater than 1”, since we no long consider 1 to be a
prime number. Moreover, the conjecture is nowadays split into two:

• the weak, or ternary, Goldbach conjecture states that every odd integer greater than 5
can be written as the sum of three primes;

• the strong, or binary, Goldbach conjecture states that every even integer greater than 2
can be written as the sum of two primes.

As their names indicate, the strong conjecture implies the weak one (easily: subtract 3 from
your odd number n, then express n− 3 as the sum of two primes).

The strong conjecture remains out of reach. A short while ago – the first complete version
appeared on May 13, 2013 – the present author proved the weak Goldbach conjecture.

Main Theorem. Every odd integer greater than 5 can be written as the sum of three primes.

The proof is contained in the preprints [28], [27], [29]. It builds on the great progress
towards the conjecture made in the early 20th century by Hardy, Littlewood and Vinogradov.
In 1937, Vinogradov proved [67] that the conjecture is true for all odd numbers n larger than
some constant C. (Hardy and Littlewood had shown the same under the assumption of the
Generalized Riemann Hypothesis, which we shall have the chance to discuss later.)

It is clear that a computation can verify the conjecture only for n ≤ c, c a constant:
computations have to be finite. What can make a result coming from analytic number theory
be valid only for n ≥ C?

An analytic proof, generally speaking, gives us more than just existence. In this kind of
problem, it gives us more than the possibility of doing something (here, writing an integer n
as the sum of three primes). It gives us a rigorous estimate for the number of ways in which
this something is possible; that is, it shows us that this number of ways equals

main term + error term, (1.1)

where the main term is a precise quantity f(n), and the error term is something whose
absolute value is at most another precise quantity g(n). If f(n) > g(n), then (1.1) is non-
zero, i.e., we will have shown that the existence of a way to write our number as the sum of
three primes.
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(Since what we truly care about is existence, we are free to weigh different ways of
writing n as the sum of three primes however we wish – that is, we can decide that some
primes “count” twice or thrice as much as others, and that some do not count at all.)

Typically, after much work, we succeed in obtaining (1.1) with f(n) and g(n) such that
f(n) > g(n) asymptotically, that is, for n large enough. To give a highly simplified example:
if, say, f(n) = n2 and g(n) = 100n3/2, then f(n) > g(n) for n > C, where C = 104, and
so the number of ways (1.1) is positive for n > C.

We want a moderate value of C, that is, a C small enough that all cases n ≤ C can be
checked computationally. To ensure this, we must make the error term bound g(n) as small
as possible. This is our main task. A secondary (and sometimes neglected) possibility is
to rig the weights so as to make the main term f(n) larger in comparison to g(n); this can
generally be done only up to a certain point, but is nonetheless very helpful.

As we said, the first unconditional proof that odd numbers n ≥ C can be written as
the sum of three primes is due to Vinogradov. Analytic bounds fall into several categories,
or stages; quite often, successive versions of the same theorem will go through successive
stages.

1. An ineffective result shows that a statement is true for some constant C, but gives
no way to determine what the constant C might be. Vinogradov’s first proof of his
theorem (in [67]) is like this: it shows that there exists a constant C such that every
odd number n > C is the sum of three primes, yet gives us no hope of finding out
what the constant C might be.1 Many proofs of Vinogradov’s result in textbooks are
also of this type.

2. An effective, but not explicit, result shows that a statement is true for some unspecified
constant C in a way that makes it clear that a constant C could in principle be deter-
mined following and reworking the proof with great care. Vinogradov’s later proof
([68], translated in [69]) is of this nature. As Chudakov [8, §IV.2] pointed out, the
improvement on [67] given by Mardzhanishvili [41] already had the effect of making
the result effective.2

3. An explicit result gives a value of C. According to [8, p. 201], the first explicit version
of Vinogradov’s result was given by Borozdkin in his unpublished doctoral disserta-
tion, written under the direction of Vinogradov (1939): C = exp(exp(exp(41.96))).
Such a result is, by definition, also effective. Borodzkin later [2] gave the value
C = ee

16.038

, though he does not seem to have published the proof. The best – that is,
smallest – value of C known before the present work was that of Liu and Wang [40]:
C = 2 · 101346.

4. What we may call an efficient proof gives a reasonable value for C – in our case, a
value small enough that checking all cases up to C is feasible.

How far were we from an efficient proof? That is, what sort of computation could ever
be feasible? The number of picoseconds since the beginning of the universe is less than
1030, whereas the number of protons in the observable universe is currently estimated at

1Here, as is often the case in ineffective results in analytic number theory, the underlying issue is that of Siegel
zeros, which are believed not to exist, but have not been shown not to; the strongest bounds on (i.e., against the
existence of) such zeros are ineffective, and so are all of the many results using such estimates.

2The proof in [41] combined the bounds in [67] with a more careful accounting of the effect of the single possible
Siegel zero within range.
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∼ 1080. This means that even a parallel computer the size of the universe could never
perform a computation requiring 10110 steps, even if it ran for the age of the universe. Thus,
C = 2 · 101346 is too large.

I gave a proof with C = 1029 in May 2013. Since D. Platt and I had verified the
conjecture for all odd numbers up to n ≤ 8.8 · 1030 by computer [31], this established the
conjecture for all odd numbers n.

(In December 2013, C was reduced to 1027 [29]. The verification of the ternary Gold-
bach conjecture up to n ≤ 1027 can be done in a home computer over a weekend. All must be
said: this uses the verification of the binary Goldbach conjecture for n ≤ 4 ·1018 [46], which
itself required computational resources far outside the home-computing range. Checking the
conjecture up to n ≤ 1027 was not even the main computational task that needed to be ac-
complished to establish the Main Theorem – that task was the finite verification of zeros of
L-functions in [48], a general-purpose computation that should be useful elsewhere. We will
discuss the procedure at the end of the article.)

What was the strategy of [27–29]? The basic framework is the one pioneered by Hardy
and Littlewood for a variety of problems – namely, the circle method, which, as we shall see,
is an application of Fourier analysis over Z. (There are other, later routes to Vinogradov’s
result; see [21, 24] and especially the recent work [57], which avoids using anything about
zeros of L-functions inside the critical strip.) Vinogradov’s proof, like much of the later work
on the subject, was based on a detailed analysis of exponential sums, i.e., Fourier transforms
over Z. So is the proof that we will sketch.

At the same time, the distance between 2 · 101346 and 1027 is such that we cannot hope
to get to 1027 (or any other reasonable constant) by fine-tuning previous work. Rather, we
must work from scratch, using the basic outline in Vinogradov’s original proof and other,
initially unrelated, developments in analysis and number theory (notably, the large sieve).
Merely improving constants will not do; we must do qualitatively better than previous work
(by non-constant factors) if we are to have any chance to succeed. It is on these qualitative
improvements that we will focus.

* * *

It is only fair to review some of the progress made between Vinogradov’s time and ours.
Here we will focus on results; later, we will discuss some of the progress made in the tech-
niques of proof. For a fuller account up to 1978, see R. Vaughan’s ICM lecture notes on the
ternary Goldbach problem [65].

In 1933, Schnirelmann proved [56] that every integer n > 1 can be written as the sum of
at most K primes for some unspecified constant K. (This pioneering work is now considered
to be part of the early history of additive combinatorics.) In 1969, Klimov gave an explicit
value for K (namely, K = 6 · 109); he later improved the constant to K = 115 (with G.
Z. Piltay and T. A. Sheptickaja) and K = 55. Later, there were results by Vaughan [63]
(K = 27), Deshouillers [15] (K = 26) and Riesel-Vaughan [54] (K = 19).

Ramaré showed in 1995 that every even number n > 1 can be written as the sum of at
most 6 primes [51]. In 2012, Tao proved [58] that every odd number n > 1 is the sum of at
most 5 primes.

There have been other avenues of attack towards the strong conjecture. Using ideas close
to those of Vinogradov’s, Chudakov [9, 10], Estermann [19] and van der Corput [62] proved
(independently from each other) that almost every even number (meaning: all elements of a
subset of density 1 in the even numbers) can be written as the sum of two primes. In 1973, J.-
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R. Chen showed [4] that every even number n larger than a constant C can be written as the
sum of a prime number and the product of at most two primes (n = p1+p2 or n = p1+p2p3).
Incidentally, J.-R. Chen himself, together with T.-Z. Wang, was responsible for the best
bounds on C (for ternary Goldbach) before Lui and Wang: C = exp(exp(11.503)) <
4 · 1043000 [6] and C = exp(exp(9.715)) < 6 · 107193 [7].

Matters are different if one assumes the Generalized Riemann Hypothesis (GRH). A
careful analysis [18] of Hardy and Littlewood’s work [23] gives that every odd number n ≥
1.24 · 1050 is the sum of three primes if GRH is true. According to [18], the same statement
with n ≥ 1032 was proven in the unpublished doctoral dissertation of B. Lucke, a student of
E. Landau’s, in 1926. Zinoviev [72] improved this to n ≥ 1020. A computer check ([16];
see also [55]) showed that the conjecture is true for n < 1020, thus completing the proof of
the ternary Goldbach conjecture under the assumption of GRH. What was open until now
was, of course, the problem of giving an unconditional proof.

2. The circle method: Fourier analysis on Z

It is common for a first course on Fourier analysis to focus on functions over the reals sat-
isfying f(x) = f(x + 1), or, what is the same, functions f : R/Z → C. Such a function
(unless it is fairly pathological) has a Fourier series converging to it; this is just the same as
saying that f has a Fourier transform f̂ : Z → C defined by f̂(n) =

∫
R/Z f(α)e(−αn)dα

and satisfying f(α) =
∑

n∈Z f̂(n)e(αn)dα (Fourier inversion theorem).
In number theory, we are especially interested in functions f : Z → C. Then things

are exactly the other way around: provided that f decays reasonably fast as n → ±∞
(or becomes 0 for n large enough), f has a Fourier transform f̂ : R/Z → C defined by
f̂(α) =

∑
n f(n)e(−αn) and satisfying f(n) =

∫
R/Z f̂(α)e(αn). (Highbrow talk: we

already knew that Z is the Fourier dual of R/Z, and so, of course, R/Z is the Fourier dual
of Z.) “Exponential sums” (or “trigonometrical sums”, as in the title of [69]) are sums of the
form

∑
n f(α)e(−αn); the “circle” in “circle method” is just a name for R/Z.

The study of the Fourier transform f̂ is relevant to additive problems in number theory,
i.e., questions on the number of ways of writing n as a sum of k integers of a particular form.
Why? One answer could be that f̂ gives us information about the “randomness” of f ; if f
were the characteristic function of a random set, then f̂(α) would be very small outside a
sharp peak at α = 0. We can also give a more concrete and immediate answer. Recall that,
in general, the Fourier transform of a convolution equals the product of the transforms; over
Z, this means that for the additive convolution

(f ∗ g)(n) =
∑

m1,m2∈Z
m1+m2=n

f(m1)g(m2),

the Fourier transform satisfies the simple rule

f̂ ∗ g(α) = f̂(α) · ĝ(α).

We can see right away from this that (f ∗ g)(n) can be non-zero only if n can be written
as n = m1 + m2 for some m1, m2 such that f(m1) and g(m2) are non-zero. Similarly,
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(f ∗ g ∗ h)(n) can be non-zero only if n can be written as n = m1 + m2 + m3 for some
m1, m2, m3 such that f(m1), f2(m2) and f3(m3) are all non-zero. This suggests that, to
study the ternary Goldbach problem, we define f1, f2, f3 : Z → C so that they take non-zero
values only at the primes.

Hardy and Littlewood defined f1(n) = f2(n) = f3(n) = 0 for n non-prime (and also for
n ≤ 0), and f1(n) = f2(n) = f3(n) = (log n)e−n/x for n prime (where x is a parameter
to be fixed later). Here the factor e−n/x is there to provide “fast decay”, so that everything
converges; as we will see later, Hardy and Littlewood’s choice of e−n/x (rather than some
other function of fast decay) comes across in hindsight as being very clever, though not quite
best-possible. (Their “choice” was, to some extent, not a choice, but an artifact of their
version of the circle method.) The term log n is there for technical reasons – in essence,
it makes sense to put it there because a random integer around n has a chance of about
1/(log n) of being prime.

We can see that (f1 ∗ f2 ∗ f3)(n) ̸= 0 if and only if n can be written as the sum of three
primes. Our task is then to show that (f1 ∗ f2 ∗ f3)(n) (i.e., (f ∗ f ∗ f)(n)) is non-zero
for every n larger than a constant C ∼ 1027. Since the transform of a convolution equals a
product of transforms,

(f1 ∗ f2 ∗ f3)(n) =
∫

R/Z
̂f1 ∗ f2 ∗ f3(α)e(αn)dα =

∫

R/Z
(f̂1f̂2f̂3)(α)e(αn)dα. (2.1)

Our task is thus to show that the integral
∫
R/Z(f̂1f̂2f̂3)(α)e(αn)dα is non-zero.

As it happens, f̂(α) is particularly large when α is close to a rational with small de-
nominator. Moreover, for such α, it turns out we can actually give rather precise estimates
for f̂(α). Define M (called the set of major arcs) to be a union of narrow arcs around the
rationals with small denominator:

M =
⋃

q≤r

⋃

a mod q
(a,q)=1

(
a

q
− 1

qQ
,
a

q
+

1

qQ

)
,

where Q is a constant times x/r, and r will be set later. We can write
∫

R/Z
(f̂1f̂2f̂3)(α)e(αn)dα =

∫

M
(f̂1f̂2f̂3)(α)e(αn)dα+

∫

m
(f̂1f̂2f̂3)(α)e(αn)dα, (2.2)

where m is the complement (R/Z) \M (called minor arcs).
Now, we simply do not know how to give precise estimates for f̂(α) when α is in m.

However, as Vinogradov realized, one can give reasonable upper bounds on |f̂(α)| for α ∈
m. This suggests the following strategy: show that

∫

m
|f̂1(α)||f̂2(α)||f̂3(α)|dα <

∫

M
f̂1(α)f̂2(α)f̂3(α)e(αn)dα. (2.3)

By (2.1) and (2.2), this will imply immediately that (f1 ∗ f2 ∗ f3)(n) > 0, and so we will be
done.
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3. The major arcs M

3.1. What do we really know about L-functions and their zeros? Before we start, let
us give a very brief review of basic analytic number theory (in the sense of, say, [13]). A
Dirichlet character χ : Z → C of modulus q is a character of (Z/qZ)∗ lifted to Z. (In other
words, χ(n) = χ(n + q), χ(ab) = χ(a)χ(b) for all a, b and χ(n) = 0 for (n, q) ̸= 1.) A
Dirichlet L-series is defined by

L(s,χ) =
∞∑

n=1

χ(n)n−s

for ℜ(s) > 1, and by analytic continuation for ℜ(s) ≤ 1. (The Riemann zeta function ζ(s)
is the L-function for the trivial character, i.e., the character χ such that χ(n) = 1 for all n.)
Taking logarithms and then derivatives, we see that

− L′(s,χ)

L(s,χ)
=

∞∑

n=1

Λ(n)n−s, (3.1)

where Λ is the von Mangoldt function (Λ(n) = log p if n is some prime power pα, α ≥ 1,
and Λ(n) = 0 otherwise).

Dirichlet introduced his characters and L-series so as to study primes in arithmetic pro-
gressions. In general, and after some work, (3.1) allows us to restate many sums over the
primes (such as our Fourier transforms f̂(α)) as sums over the zeros of L(s,χ). A non-
trivial zero of L(s,χ) is a zero of L(s,χ) such that 0 < ℜ(s) < 1. (The other zeros are
called trivial because we know where they are, namely, at negative integers and, in some
cases, also on the line ℜ(s) = 0. In order to eliminate all zeros on ℜ(s) = 0 outside s = 0,
it suffices to assume that χ is primitive; a primitive character modulo q is one that is not
induced by (i.e., not the restriction of) any character modulo d|q, d < q.)

The Generalized Riemann Hypothesis for Dirichlet L-functions is the statement that,
for every Dirichlet character χ, every non-trivial zero of L(s,χ) satisfies ℜ(s) = 1/2. Of
course, the Generalized Riemann Hypothesis (GRH) – and the Riemann Hypothesis, which
is the special case of χ trivial – remains unproven. Thus, if we want to prove unconditional
statements, we need to make do with partial results towards GRH. Two kinds of such results
have been proven:

• Zero-free regions. Ever since the late nineteenth century (Hadamard, de la Vallée-
Poussin) we have known that there are hourglass-shaped regions (more precisely, of
the shape c

log t ≤ σ ≤ 1 − c
log t , where c is a constant and where we write s =

σ + it) outside which non-trivial zeros cannot lie. Explicit values for c are known
[35, 36, 42]. There is also the Vinogradov-Korobov region [39, 70], which is broader
asymptotically but narrower in most of the practical range (see [20], however).

• Finite verifications of GRH. It is possible to (ask the computer to) prove small, finite
fragments of GRH, in the sense of verifying that all non-trivial zeros of a given finite
set of L-functions with imaginary part less than some constant H lie on the critical line
ℜ(s) = 1/2. Such verifications go back to Riemann, who checked the first few zeros
of ζ(s). Large-scale, rigorous computer-based verifications are now a possibility.

Most work in the literature follows the first alternative, though [58] did use a finite ver-
ification of RH (i.e., GRH for the trivial character). Unfortunately, zero-free regions seem
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too narrow to be useful for the ternary Goldbach problem. Thus, we are left with the second
alternative.

In coordination with the present work, Platt [48] verified that all zeros s of L-functions
for characters χ with modulus q ≤ 300000 satisfying ℑ(s) ≤ Hq lie on the line ℜ(s) = 1/2,
where

• Hq = 108/q for q odd, and
• Hq = max(108/q, 200 + 7.5 · 107/q) for q even.

This was a medium-large computation, taking a few hundreds of thousands of core-hours on
a parallel computer. It used interval arithmetic for the sake of rigor; we will later discuss
what this means.

The choice to use a finite verification of GRH, rather than zero-free regions, had conse-
quences on the manner in which the major and minor arcs had to be chosen. As we shall
see, such a verification can be used to give very precise bounds on the major arcs, but also
forces us to define them so that they are narrow and their number is constant. To be precise:
the major arcs were defined around rationals a/q with q ≤ r, r = 300000; moreover, as will
become clear, the fact that Hq is finite will force their width to be bounded by c0r/qx, where
c0 is a constant (say c0 = 8).

3.2. Estimates of f̂(α) for α in the major arcs. Recall that we want to estimate sums of
the type f̂(α) =

∑
f(n)e(−αn), where f(n) is something like (log n)η(n/x) for n equal to

a prime, and 0 otherwise; here η : R → C is some function of fast decay, such as Hardy and
Littlewood’s choice, η(t) = e−t. Let us modify this just a little – we will actually estimate

Sη(α, x) =
∑

Λ(n)e(αn)η(n/x), (3.2)

where Λ is the von Mangoldt function (as in (3.1)) . The use of α rather than −α is just a
bow to tradition, as is the use of the letter S (for “sum”); however, the use of Λ(n) rather
than just plain log p does actually simplify matters.

The function η here is sometimes called a smoothing function or simply a smoothing. It
will indeed be helpful for it to be smooth on (0,∞), but, in principle, it need not even be
continuous. (Vinogradov’s work implicitly uses, in effect, the “brutal truncation” 1[0,1](t),
defined to be 1 when t ∈ [0, 1] and 0 otherwise; that would be fine for the minor arcs, but, as
it will become clear, it is a bad idea as far as the major arcs are concerned.)

Assume α is on a major arc, meaning that we can write α = a/q + δ/x for some a/q (q
small) and some δ (with |δ| small). We can write Sη(α, x) as a linear combination

Sη(α, x) =
∑

χ

cχSη,χ

(
δ

x
, x

)
+ tiny error term, (3.3)

where
Sη,χ

(
δ

x
, x

)
=

∑
Λ(n)χ(n)e(δn/x)η(n/x). (3.4)

In (3.3), χ runs over primitive Dirichlet characters of moduli d|q, and cχ is small (|cχ| ≤√
d/φ(q)).

To estimate the sums Sη,χ, we will use L-functions, together with one of the most com-
mon tools of analytic number theory, the Mellin transform. This transform is essentially a
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Laplace transform with a change of variables, and a Laplace transform, in turn, is a Fourier
transform taken on a vertical line in the complex plane. For f of fast enough decay, the
Mellin transform F = Mf of f is given by

F (s) =

∫ ∞

0
f(t)ts

dt

t
;

we can express f in terms of F by the Mellin inversion formula

f(t) =
1

2πi

∫ σ+i∞

σ−i∞
F (s)t−sds

for any σ within an interval. We can thus express e(δt)η(t) in terms of its Mellin transform
Fδ and then use (3.1) to express Sη,χ in terms of Fδ and L′(s,χ)/L(s,χ); shifting the
integral in the Mellin inversion formula to the left, we obtain what is known in analytic
number theory as an explicit formula:

Sη,χ(δ/x, x) = [η̂(−δ)x]−
∑

ρ

Fδ(ρ)x
ρ + tiny error term.

Here the term between brackets appears only for χ trivial. In the sum, ρ goes over all non-
trivial zeros of L(s,χ), and Fδ is the Mellin transform of e(δt)η(t). (The tiny error term
comes from a sum over the trivial zeros of L(s,χ).) We will obtain the estimate we desire if
we manage to show that the sum over ρ is small.

The point is this: if we verify GRH for L(s,χ) up to imaginary part H , i.e., if we check
that all zeroes ρ of L(s,χ) with |ℑ(ρ)| ≤ H satisfy ℜ(ρ) = 1/2, we have |xρ| =

√
x. In

other words, xρ is very small (compared to x). However, for any ρ whose imaginary part
has absolute value greater than H , we know next to nothing about its real part, other than
0 ≤ ℜ(ρ) ≤ 1. (Zero-free regions are notoriously weak for ℑ(ρ) large; we will not use
them.) Hence, our only chance is to make sure that Fδ(ρ) is very small when |ℑ(ρ)| ≥ H .

This has to be true for both δ very small (including the case δ = 0) and for δ not so small
(|δ| up to c0r/q, which can be large because r is a large constant). How can we choose η so
that Fδ(ρ) is very small in both cases for τ = ℑ(ρ) large?

The method of stationary phase is useful as an exploratory tool here. In brief, it suggests
(and can sometimes prove) that the main contribution to the integral

Fδ(t) =

∫ ∞

0
e(δt)η(t)ts

dt

t
(3.5)

can be found where the phase of the integrand has derivative 0. This happens when t =
−τ/2πδ (for sgn(τ) ̸= sgn(δ)); the contribution is then a moderate factor times η(−τ/2πδ).
In other words, if sgn(τ) ̸= sgn(δ) and δ is not too small (|δ| ≥ 8, say), Fδ(σ+ iτ) behaves
like η(−τ/2πδ); if δ is small (|δ| < 8), then Fδ behaves like F0, which is the Mellin
transform Mη of η. Here is our goal, then: the decay of η(t) as |t| → ∞ should be as fast
as possible, and the decay of the transform Mη(σ + iτ) should also be as fast as possible.

This is a classical dilemma, often called the uncertainty principle because it is the math-
ematical fact underlying the physical principle of the same name: you cannot have a function
η that decreases extremely rapidly and whose Fourier transform (or, in this case, its Mellin
transform) also decays extremely rapidly. What does “extremely rapidly” mean here? It
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means (as Hardy himself proved) “faster than any exponential e−Ct”. Thus, Hardy and
Littlewood’s choice η(t) = e−t seems essentially optimal at first sight.

However, it is not optimal. We can choose η so that Mη decreases exponentially (with a
constant C somewhat worse than for η(t) = e−t), but η decreases faster than exponentially.
This is a particularly appealing possibility because it is t/|δ|, and not so much t, that risks
being fairly small. (To be explicit: say we check GRH for characters of modulus q up to
Hq ∼ 50 · c0r/q ≥ 50|δ|. Then we only know that |τ/2πδ| ! 8. So, for η(t) = e−t,
η(−τ/2πδ) may be as large as e−8, which is not negligible. Indeed, since this term will be
multiplied later by other terms, e−8 is simply not small enough. On the other hand, we can
assume that Hq ≥ 200 (say), and so Mη(s) ∼ e−(π/2)|τ | is completely negligible, and will
remain negligible even if we replace π/2 by a somewhat smaller constant.)

We shall take η(t) = e−t2/2 (that is, the Gaussian). This is not the only possible choice,
but it is in some sense natural. It is easy to show that the Mellin transform Fδ for η(t) =

e−t2/2 is a multiple of what is called a parabolic cylinder function U(a, z) with imaginary
values for z. There are plenty of estimates on parabolic cylinder functions in the literature
– but mostly for a and z real, in part because that is one of the cases occuring most often in
applications. There are some asymptotic expansions and estimates for U(a, z), a, z, general,
due to Olver (see, e.g., [47]), but unfortunately they come without fully explicit error terms
for a and z within our range of interest. (The same holds for [59].)

In the end, using the saddle-point method, I derived bounds for the Mellin transform Fδ

of η(t)e(δt) with η(t) = e−t2/2: for s = σ+ iτ with σ ∈ [0, 1] and |τ | ≥ max(100, 4π2|δ|),

|Fδ(s)|+ |Fδ(1− s)| ≤ 4.226 ·
{
e−0.1065( τ

πδ )
2

if |τ | < 3
2 (πδ)

2,
e−0.1598|τ | if |τ | ≥ 3

2 (πδ)
2.

(3.6)

Similar bounds hold for σ in other ranges, thus giving us (similar) estimates for the Mellin
transform Fδ for η(t) = tke−t2/2 and σ in the critical range [0, 1].

A moment’s thought shows that we can also use (3.6) to deal with the Mellin transform
of η(t)e(δt) for any function of the form η(t) = e−t2/2g(t) (or, more generally, η(t) =

tke−t2/2g(t)), where g(t) is any band-limited function. By a band-limited function, we could
mean a function whose Fourier transform is compactly supported; while that is a plausible
choice, it turns out to be better to work with functions that are band-limited with respect to
the Mellin transform – in the sense of being of the form

g(t) =

∫ R

−R
h(r)t−irdr,

where h : R → C is supported on a compact interval [−R,R], with R not too large (say
R = 200).

After deriving an explicit formula general enough to work with all the weights η(t) we
have discussed, and once we consider the input provided by Platt’s finite verification of GRH
up to Hq , we obtain simple bounds for different weights. For η(t) = e−t2/2, x ≥ 108, χ a
primitive character of modulus q ≤ r = 300000, and any δ ∈ R with |δ| ≤ 4r/q, we obtain

Sη,χ

(
δ

x
, x

)
= Iq=1 · η̂(−δ)x+ E · x, (3.7)
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where Iq=1 = 1 if q = 1, Iq=1 = 0 if q ̸= 1, and

|E| ≤ 5.281 · 10−22 +
1√
x

(
650400
√
q

+ 112

)
. (3.8)

Here η̂ stands for the Fourier transform from R to R normalized as follows:

η̂(t) =

∫ ∞

−∞
e(−xt)η(x)dx

Thus, η̂(−δ) is just
√
2πe−2π2δ2 (self-duality of the Gaussian).

This is one of the main results of [27]. Similar bounds are also proven there for η(t) =
t2e−t2/2, as well as for a weight of type η(t) = te−t2/2g(t), where g(t) is a band-limited
function, and also for a weight η defined by a multiplicative convolution. The conditions on
q (q ≤ r = 300000) and δ are what we expected from the outset.

Thus concludes our treatment of the major arcs. This is arguably the easiest part of the
proof; it was actually what I left for the end, as I was fairly confident it would work out.

4. The minor arcs m

4.1. Qualitative goals and main ideas. What kind of bounds do we need? What is there
in the literature?

We wish to obtain upper bounds on |Sη(α, x)| for some weight η and any α ∈ R/Z not
very close to a rational with small denominator. Every α is close to some rational a/q; what
we are looking for is a bound on |Sη(α, x)| that decreases rapidly when q increases.

Moreover, we want our bound to decrease rapidly when δ increases, where α=a/q+δ/x.
In fact, the main terms in our bound will be decreasing functions of max(1, |δ|/8) · q. (Let
us write δ0 = max(2, |δ|/4) from now on.) This will allow our bound to be good enough
outside narrow major arcs, which will get narrower and narrower as q increases – that is,
precisely the kind of major arcs we were presupposing in our major-arc bounds.

It would be possible to work with narrow major arcs that become narrower as q increases
simply by allowing q to be very large (close to x), and assigning each angle to the fraction
closest to it. This is the common procedure. However, this makes matters more difficult, in
that we would have to minimize at the same time the factors in front of terms x/q, x/√q,
etc., and those in front of terms q, √qx, and so on. (These terms are being compared to the
trivial bound x.) Instead, we choose to strive for a direct dependence on δ throughout; this
will allow us to cap q at a much lower level, thus making terms such as q and √

qx negligible.
How good must our bounds be? Since the major-arc bounds are valid only for q ≤

r = 300000 and |δ| ≤ 4r/q, we cannot afford even a single factor of log x (or any other
function tending to ∞ as x → ∞) in front of terms such as x/

√
q|δ0|: a factor like that

would make the term larger than the trivial bound x for q|δ0| equal to a constant (r, say)
and x very large. Apparently, there was no such “log-free bound” with explicit constants
in the literature, even though such bounds were considered to be in principle feasible, and
even though previous work ([5, 11, 12, 58]) had gradually decreased the number of factors
of log x. (In limited ranges for q, there were log-free bounds without explicit constants; see
[11, 53]. The estimate in [69, Thm. 2a, 2b] was almost log-free, but not quite. There were
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also bounds [3, 37] that used L-functions, and thus were not really useful in a truly minor-arc
regime.)

It also seemed clear that a main bound proportional to (log q)2x/
√
q (as in [58]) was too

large. At the same time, it was not really necessary to reach a bound of the best possible
form that could be found through Vinogradov’s basic approach, namely

|Sη(α, x)| ≤ C
x
√
q

φ(q)
. (4.1)

Such a bound had been proven by Ramaré [53] for q in a limited range and C non-explicit;
later, in [50] Ramaré broadened the range to q ≤ x1/48 and gave an explicit value for C,
namely, C = 13000. Such a bound is a notable achievement, but, unfortunately, it is not
useful for our purposes. Rather, we will aim at a bound whose main term is bounded by
a constant around 1 times x(log δ0q)/

√
δ0φ(q); this is slightly worse asymptotically than

(4.1), but it is much better in the delicate range of δ0q ∼ 300000.

* * *

We see that we have several tasks. One of them is the removal of logarithms: we cannot
afford a single factor of log x, and, in practice, we can afford at most one factor of log q.
Removing logarithms will be possible in part because of the use of efficient techniques (the
large sieve for sequences with prime support) but also because we will be able to find can-
cellation at several places in sums coming from a combinatorial identity (namely, Vaughan’s
identity). The task of finding cancellation efficiently (that is, with good constants) is partic-
ularly delicate. Bounding a sum such as

∑
n µ(n) efficiently is harder than estimating a sum

such as
∑

n Λ(n) equally well, even though we are used to thinking of these problems as
equivalent.

We have said that our bounds will improve as |δ| increases. This dependence on δ will
be secured in different ways at different places. Sometimes δ will appear as an argument, as
in η̂(−δ); for η piecewise continuous with η′ ∈ L1, we know that |η̂(t)| → 0 as |t| → ∞.
Sometimes we will obtain a dependence on δ by using several different rational approxima-
tions to the same α ∈ R. Lastly, we will obtain a good dependence on δ in bilinear sums by
supplying a scattered input to a large sieve.

If there is a main moral to the argument, it lies in the close relation between the circle
method and the large sieve. The circle method rests on the estimation of an integral involving
a Fourier transform f̂ : R/Z → C; as we will later see, this leads naturally to estimating
the ℓ2-norm of f̂ on subsets (namely, unions of arcs) of the circle R/Z. The large sieve
can be seen as an approximate discrete version of Plancherel’s identity, which states that
|f̂ |2 = |f |2.

Both in this section and in §5, we shall use the large sieve in part so as to use the fact
that some of the functions we work with have prime support, i.e., are non-zero only on prime
numbers. There are ways to use prime support to improve the output of the large sieve. In
§5, these techniques will be refined and then translated to the context of the circle method,
where f has (essentially) prime support and |f̂ |2 must be integrated over unions of arcs. The
main point is that the large sieve is not being used as a black box; rather, we can adapt ideas
from (say) the large-sieve context and apply them to the circle method.

Lastly, there are the benefits of a continuous η. Hardy and Littlewood already used a
continuous η; this was abandoned by Vinogradov, presumably for the sake of simplicity.
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The idea that smooth weights η can be superior to sharp truncations is now commonplace.
As we shall see, using a continuous η is helpful in the minor-arcs regime, but not as crucial
there as for the major arcs. We will not use a smooth η; we will prove our estimates for any
continuous η that is piecewise C1, and then, towards the end, we will choose to use the same
weight η = η2 as in [58], in part because it has compact support, and in part for the sake of
comparison. The moral here is not quite the common dictum “always smooth”, but rather
that different kinds of smoothing can be appropriate for different tasks; in the end, we will
show how to coordinate different smoothing functions η.

4.2. Combinatorial identities. Generally, since Vinogradov, a treatment of the minor arcs
starts with a combinatorial identity expressing Λ(n) (or the characteristic function of the
primes) as a sum of two or more convolutions. (In this section, by a convolution f ∗ g, we
will mean the Dirichlet convolution (f ∗ g)(n) =

∑
d|n f(d)g(n/d), i.e., the multiplicative

convolution on the semigroup of positive integers.)
In some sense, the archetypical identity is

Λ = µ ∗ log,

but it will not usually do: the contribution of µ(d) log(n/d) with d close to n is too difficult
to estimate precisely. There are alternatives: for example, there is Selberg’s identity

Λ(n) log n = µ ∗ log2 −Λ ∗ Λ, (4.2)

or the generalization of this to Λ(n)(log n)k = µ∗logk+1 − . . . (Bomberi-Selberg). Another
useful (and very simple) identity was that used by Daboussi’s [12].

The proof of Vinogradov’s three-prime result was simplified substantially in [64] by the
introduction of Vaughan’s identity:

Λ(n) = µ≤U ∗ log−Λ≤V ∗ µ≤U ∗ 1 + 1 ∗ µ>U ∗ Λ>V + Λ≤V , (4.3)

where we are using the notation

f≤W =

{
f(n) if n ≤ W ,
0 if n > W ,

f>W =

{
0 if n ≤ W ,
f(n) if n > W .

Of the resulting sums (
∑

n(µ≤U ∗ log)(n)e(αn)η(n/x), etc.), the first three are said to be
of type I, type I (again) and type II; the last sum,

∑
n≤V Λ(n), is negligible.

One of the advantages of Vaughan’s identity is its flexibility: we can set U and V to
whatever values we wish. Its main disadvantage is that it is not “log-free”, in that it seems to
impose the loss of two factors of log x: if we sum each side of (4.3) from 1 to x, we obtain∑

n≤x Λ(n) ∼ x on the left side, whereas, if we bound the sum on the right side without
the use of cancellation, we obtain a bound of x(log x)2. Of course, we will obtain some
cancellation from the phase e(αn), but that is not enough.

As was pointed out in [58], it is possible to get a factor of (log q)2 instead of a factor of
(log x)2 in the type II sums by setting U and V appropriately. A factor of (log q)2 is still
too large in practice, and there are also the factors of log x in type I sums. Vinogradov had
already managed to get an essentially log-free result (by a rather difficult procedure) in [69,
Ch. IX]. The result in [11] is log-free. Unfortunately, the explicit result in [12] – the study
of which encouraged me at the beginning of the project – is not. For a while, I worked with
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the Bombieri-Selberg identity with k = 2. Ramaré obtained a log-free bound in [53] using
the Diamond-Steinig identity, which is related to Bombieri-Selberg.

In the end, I decided to use Vaughan’s identity. This posed a challenge: to obtain can-
cellation in Vaughan’s identity at every possible step, beyond the cancellation given by the
phase e(αn). It is clear that the presence of the Möbius function µ should give, in principle,
some cancellation; we will show how to use it to obtain as much cancellation as we need.

4.3. Type I sums. There are two type I sums, namely,
∑

m≤U

µ(m)
∑

n

(log n)e(αmn)η
(mn

x

)
(4.4)

and ∑

v≤V

Λ(v)
∑

u≤U

µ(u)
∑

n

e(αvun)η
(vun

x

)
. (4.5)

In either case, α = a/q + δ/x, where q is larger than a constant r and |δ/x| ≤ 1/qQ0 for
some Q0 > max(q,

√
x). For the purposes of this exposition, we will set it as our task to

estimate the slightly simpler sum
∑

m≤D

µ(m)
∑

n

e(αmn)η
(mn

x

)
, (4.6)

where D can be U or UV or something else less than x.
Why can we consider this simpler sum without omitting anything essential? It is clear

that (4.4) is of the same kind as (4.6). The inner double sum in (4.5) is just (4.6) with
αv instead of α; this enables us to estimate (4.5) by means of (4.6) for q small, i.e., the
more delicate case. If q is not small, then the approximation αv ∼ av/q may not be accurate
enough. In that case, we collapse the two outer sums in (4.5) into a sum

∑
n(Λ≤V ∗µ≤U )(n),

and treat all of (4.5) much as we will treat (4.6); since q is not small, we can afford to bound
(Λ≤V ∗ µ≤U )(n) trivially (by log n) in the less sensitive terms.

Let us first outline Vinogradov’s procedure for bounding type I sums. Just by summing
a geometric series, we get

∣∣∣
∑

n≤N e(αn)
∣∣∣ ≤ min(N, c/{α}), where c is a constant and {α}

is the distance from α to the nearest integer. Vinogradov splits the outer sum in (4.6) into
sums of length q. When m runs on an interval of length q, the angle am/q runs through all
fractions of the form b/q; due to the error δ/x, αm could be close to 0 for two values of n,
but otherwise {αm} takes values bounded below by 1/q, 2/q, etc. Thus

∣∣∣∣∣∣

∑

y<m≤y+q

µ(m)
∑

n≤N

e(αmn)

∣∣∣∣∣∣
≤

∑

y<m≤y+q

∣∣∣∣∣∣

∑

n≤N

e(αmn)

∣∣∣∣∣∣
≤ 2N

m
+ 2cq log eq (4.7)

for any y ≥ 0.
There are several ways to improve this. One is simply to estimate the inner sum more

precisely; this was already done in [12]. One can also define a smoothing function η, as in
(4.6); it is easy to get

∣∣∣∣∣∣

∑

n≤N

e(αn)η
(n
x

)
∣∣∣∣∣∣
≤ min

(
x|η|1 +

|η′|1
2

,
|η′|1

2| sin(πα)| ,
|η̂′′|∞

4x(sinπα)2

)
.
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Except for the third term, this is as in [58]. We could also choose carefully which bound
to use for each m; surprisingly, this gives an improvement – in fact, an important one, for
m large. However, we still get a term proportional to N/m as in (4.7), and this contributes
about (x log x)/q to the sum (4.6), thus giving us an estimate that is not log-free.

What we have to do, naturally, is to take out the terms with q|m for m small. We obtain
a log-free bound for the sum over the terms with m ≤ M = min(D,Q/2) with q ! m, since
αm is then never too close to 0. For m ≤ M divisible by q, we can estimate the inner sum
in (4.6) by the Poisson summation formula; writing m = aq, we get a main term

xµ(q)

q
· η̂(−δ) ·

∑

a≤M/q

(a,q)=1

µ(a)

a
, (4.8)

where (a, q) stands for the greatest common divisor of a and q. It is clear that we have to
get cancellation over µ here. There is an elegant elementary argument [22] showing that the
absolute value of the sum in (4.8) is at most 1. We need to gain one more log, however. This
was done by Ramaré [49].

What shall we do for m > Q/2? We can always give a bound

∑

y<m≤y+q

min

(
A,

C

| sinπαn|2

)
≤ 3A+

4q

π

√
AC (4.9)

for y arbitrary; since AC will be of constant size, (4q/π)
√
AC is pleasant enough, but the

contribution of 3A ∼ 3|η|1x/y seems lethal (it adds a multiple of (x log x)/q to the total) and
at first sight unavoidable: the values of m for which αm is close to 0 no longer correspond
to the congruence class m ≡ 0 mod q, and thus cannot be taken out.

The solution is to switch approximations. (The idea of using different approximations
to the same α is neither new nor recent in the general context of the circle method: see [66,
§2.8, Ex. 2]. What may be new is its use to clear a hurdle in type I sums.) What does this
mean? If α were exactly, or almost exactly, a/q, then there would be no other very good
approximations in a reasonable range. However, note that we can define Q = ⌊x/|δq|⌋ for
α = a/q + δ/x, and still have |α − a/q| ≤ 1/qQ. If δ is very small, Q will be larger than
2D, and there will be no terms with Q/2 < m ≤ D to worry about.

What happens if δ is not very small? We know that, for any Q′, there is an approximation
a′/q′ to α with |α − a′/q′| ≤ 1/q′Q′ and q′ ≤ Q′. However, for Q′ > Q, we know that
a′/q′ cannot equal a/q: by the definition of Q, the approximation a/q is not good enough,
i.e., |α−a/q| ≤ 1/qQ′ does not hold. Since a/q ̸= a′/q′, we see that |a/q−a′/q′| ≥ 1/qq′,
and, if we take Q′ ≥ (1 + ϵ)Q, this implies that q′ is relatively large (q′ ≥ (ϵ/(1 + ϵ))Q).

Thus, for m > Q/2, the solution is to apply (4.9) with a′/q′ instead of a/q. The con-
tribution of A fades into insignificance: for the first sum over a range y < m ≤ y + q′,
y ≥ Q/2, it contributes at most x/(Q/2), and all the other contributions of A sum up to at
most a constant times (x log x)/q′.

Proceeding in this way, we obtain a total bound for (4.6) whose main terms are propor-
tional to

1

φ(q)

x

log x
q

min

(
1,

1

δ2

)
,

2

π

√
|η̂′′|∞ ·D and q logmax

(
D

q
, q

)
, (4.10)
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with good, explicit constants. The first term – usually the largest one – is precisely what
we needed: it is proportional to (1/φ(q))x/ log x for q small, and decreases rapidly as |δ|
increases.

4.4. Type II, or bilinear, sums. We must now bound

S =
∑

m

(1 ∗ µ>U )(m)
∑

n>V

Λ(n)e(αmn)η(mn/x).

At this point it is convenient to assume that η is the Mellin convolution of two functions. The
multiplicative or Mellin convolution on R+ is defined by

(η0 ∗M η1)(t) =

∫ ∞

0
η0(r)η1

(
t

r

)
dr

r
.

Tao [58] takes η = η2 = η1∗Mη1, where η1 is a brutal truncation, viz., the function taking the
value 2 on [1/2, 1] and 0 elsewhere. We take the same η2, in part for comparison purposes,
and in part because this will allow us to use off-the-shelf estimates on the large sieve. (Brutal
truncations are rarely optimal in principle, but, as they are very common, results for them
have been carefully optimized in the literature.) Clearly

S =

∫ X/U

V

∑

m

⎛

⎜⎜⎝
∑

d>U
d|m

µ(d)

⎞

⎟⎟⎠ η1

(
m

x/W

)
·
∑

n≥V

Λ(n)e(αmn)η1
( n

W

) dW

W
. (4.11)

By Cauchy-Schwarz, the integrand is at most
√
S1(U,W )S2(V,W ), where

S1(U,W ) =
∑

x
2W <m≤ x

W

∣∣∣∣∣∣∣∣

∑

d>U
d|m

µ(d)

∣∣∣∣∣∣∣∣

2

,

S2(V,W ) =
∑

x
2W ≤m≤ x

W

∣∣∣∣∣∣∣

∑

max(V,W2 )≤n≤W

Λ(n)e(αmn)

∣∣∣∣∣∣∣

2

.

(4.12)

We must bound S1(U,W ) by a constant times x/W . We are able to do this – with a
good constant. (A careless bound would have given a multiple of (x/U) log3(x/U), which
is much too large.) First, we reduce S1(U,W ) to an expression involving an integral of

∑

r1≤x

∑

r2≤x
(r1,r2)=1

µ(r1)µ(r2)

σ(r1)σ(r2)
. (4.13)

We can bound (4.13) by the use of bounds on
∑

n≤t µ(n)/n, combined with the estimation
of infinite products by means of approximations to ζ(s) for s → 1+. After some additional
manipulations, we obtain a bound for S1(U,W ) whose main term is at most (3/π2)(x/W )
for each W , and closer to 0.22482x/W on average over W .
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(This is as good a point as any to say that, throughout, we can use a trick in [58] that
allows us to work with odd values of integer variables throughout, instead of letting m or n
range over all integers. Here, for instance, if m and n are restricted to be odd, we obtain a
bound of (2/π2)(x/W ) for individual W , and 0.15107x/W on average over W .)

Let us now bound S2(V,W ). This is traditionally done by Linnik’s dispersion method.
However, it should be clear that the thing to do nowadays is to use a large sieve, and, more
specifically, a large sieve for primes. In order to take advantage of prime support, we use
Montgomery’s inequality ([33, 43]; see the expositions in [44, pp. 27–29] and [34, §7.4])
combined with Montgomery and Vaughan’s large sieve with weights [45, (1.6)], following
the general procedure in [45, (1.6)]. We obtain a bound of the form

logW

log W
2q

(
x

4φ(q)
+

qW

φ(q)

)
W

2
(4.14)

on S2(V,W ), where, of course, we can also choose not to gain a factor of logW/2q if q is
close to or greater than W .

It remains to see how to gain a factor of |δ| in the major arcs, and more specifically in
S2(V,W ). To explain this, let us step back and take a look at what the large sieve is. Given
a civilized function f : Z → C, Plancherel’s identity tells us that

∫

R/Z

∣∣∣f̂ (α)
∣∣∣
2
dα =

∑

n

|f(n)|2.

The large sieve can be seen as an approximate, or statistical, version of this: for a “sample”
of points α1,α2, . . . ,αk satisfying |αi − αj | ≥ β for i ̸= j, it tells us that

∑

1≤j≤k

∣∣∣f̂ (αj)
∣∣∣
2
≤ (X + β−1)

∑

n

|f(n)|2, (4.15)

assuming that f is supported on an interval of length X .
Now consider α1 = α,α2 = 2α,α3 = 3α . . . . If α = a/q, then the angles α1, . . . ,αq

are well-separated, i.e., they satisfy |αi − αj | ≥ 1/q, and so we can apply (4.15) with
β = 1/q. However, αq+1 = α1. Thus, if we have an outer sum of length L > q – in (4.12),
we have an outer sum of length L = x/2W – we need to split it into ⌈L/q⌉ blocks of length
q, and so the total bound given by (4.15) is ⌈L/q⌉(X + q)

∑
n |f(n)|2. Indeed, this is what

gives us (4.14), which is fine, but we want to do better for |δ| larger than a constant.
Suppose, then, that α = a/q+δ/x, where |δ| > 8, say. Then the angles α1 and αq+1 are

not identical: |α1 − αq+1| ≤ q|δ|/x. We also see that αq+1 is at a distance at least q|δ|/x
from α2,α3, . . .αq , provided that q|δ|/x < 1/q. We can go on with αq+2,αq+3, . . . , and
stop only once there is overlap, i.e., only once we reach αm such that m|δ|/x ≥ 1/q. We
then give all the angles α1, . . . ,αm – which are separated by at least q|δ|/x from each other
– to the large sieve at the same time. We do this ⌈L/m⌉ ≤ ⌈L/(x/|δ|q)⌉ times, and obtain
a total bound of ⌈L/(x/|δ|q)⌉(X + x/|δ|q)

∑
n |f(n)|2, which, for L = x/2W , X = W/2,

gives us about (
x

4Q

W

2
+

x

4

)
logW

provided that L ≥ x/|δ|q and, as usual, |α − a/q| ≤ 1/qQ. This is very small compared to
the trivial bound ! xW/8.
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What happens if L < x/|δq|? Then there is never any overlap: we consider all angles αi,
and give them all together to the large sieve. The total bound is (W 2/4+ xW/2|δ|q) logW.
If L = x/2W is smaller than, say, x/3|δq|, then we see clearly that there are non-intersecting
swarms of αi around the rationals a/q. We can thus save a factor of log (or rather (φ(q)/q) log
(W/|δq|)) by applying Montgomery’s inequality, which operates by strewing displacements
of the given angles (or, here, the swarms) around the circle to the extent possible while
keeping everything well-separated. In this way, we obtain a bound of the form

logW

log W
|δ|q

(
x

|δ|φ(q) +
q

φ(q)

W

2

)
W

2
.

Compare this to (4.14); we have gained a factor of |δ|/4, and so we use this estimate when
|δ| > 4. (In [28], the criterion is |δ| > 8, but, since there we have 2α = a/q+ δ/x, the value
of δ there is twice what it is here; this is a consequence of working with sums over the odd
integers, as in [58].)

* * *

We have succeeded in eliminating all factors of log we came across. The only factor of
log that remains is log x/UV , coming from the integral

∫ x/U
V dW/W . Thus, we want UV

to be close to x, but we cannot let it be too close, since we also have a term proportional to
D = UV in (4.10), and we need to keep it substantially smaller than x. We set U and V so
that UV is x/

√
qmax(4, |δ|) or thereabouts.

In the end, after some work, we obtain the main result in [28]. We recall that Sη(α, x) =∑
n Λ(n)e(αn)η(n/x) and η2 = η1 ∗M η1 = 4 · 1[1/2,1] ∗ 1[1/2,1].

Theorem 4.1. Let x ≥ x0, x0 = 2.16 · 1020. Let 2α = a/q + δ/x, q ≤ Q, gcd(a, q) = 1,
|δ/x| ≤ 1/qQ, where Q = (3/4)x2/3. If q ≤ x1/3/6, then

|Sη(α, x)| ≤
Rx,δ0q log δ0q + 0.5√

δ0φ(q)
· x+

2.5x√
δ0q

+
2x

δ0q
· Lx,δ0,q + 3.2x5/6, (4.16)

where δ0 = max(2, |δ|/4),

Rx,t = 0.27125 log

(
1 +

log 4t

2 log 9x1/3

2.004t

)
+ 0.41415

Lx,δ,q =
log δ

7
4 q

13
4 + 80

9

φ(q)/q
+ log q

80
9 δ

16
9 +

111

5
.

(4.17)

If q > x1/3/6, then

|Sη(α, x)| ≤ 0.2727x5/6(log x)3/2 + 1218x2/3 log x.

The factor Rx,t is small in practice; for typical “difficult” values of x and δ0x, it is less
than 1. The crucial things to notice in (4.16) are that there is no factor of log x, and that, in
the main term, there is only one factor of log δ0q. The fact that δ0 helps us as it grows is
precisely what enables us to take major arcs that get narrower and narrower as q grows.
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5. Integrals over the major and minor arcs

So far, we have sketched (§3) how to estimate Sη(α, x) for α in the major arcs and η based
on the Gaussian e−t2/2, and also (§4) how to bound |Sη(α, x)| for α in the minor arcs and
η = η2, where η2 = 4 · 1[1/2,1] ∗M 1[1/2,1]. We now must show how to use such information
to estimate integrals such as the ones in (2.3).

We will use two smoothing functions η+, η∗; in the notation of (2.2), we set f1 = f2 =
Λ(n)η+(n/x), f3 = Λ(n)η∗(n/x), and so we must give a lower bound for

∫

M
(Sη+(α, x))

2Sη∗(α, x)e(−αn)dα (5.1)

and an upper bound for
∫

m

∣∣Sη+(α, x)
∣∣2 Sη∗(α, x)e(−αn)dα (5.2)

so that we can verify (2.3).
The traditional approach to (5.2) is to bound
∫

m
(Sη+(α, x))

2Sη∗(α, x)e(−αn)dα ≤
∫

m

∣∣Sη+(α, x)
∣∣2 dα ·max

α∈m
η̂∗(α)

≤
∑

n

Λ(n)2η2+

(n
x

)
·max
α∈m

Sη∗(α, x).
(5.3)

Since the sum over n is of the order of x log x, this is not log-free, and so cannot be good
enough; we will later see how to do better. Still, this gets the main shape right: our bound
on (5.2) will be proportional to |η+|22|η∗|1. Moreover, we see that η∗ has to be such that we
know how to bound |Sη∗(α, x)| for α ∈ m, while our choice of η+ is more or less free, at
least as far as the minor arcs are concerned.

What about the major arcs? In order to do anything on them, we will have to be able to
estimate both η+(α) and η∗(α) for α ∈ M. Once we do this, we will obtain that the main
term of (5.1) is an infinite product (independent of the smoothing functions), times x2, times

∫ ∞

0

∫ ∞

0
η+(t1)η+(t2)η∗

(n
x
− (t1 + t2)

)
dt1dt2. (5.4)

In other words, we want to maximize (or nearly maximize) the expression on the right of
(5.4) divided by |η+|22|η∗|1.

One way to do this is to let η∗ be concentrated on a small interval [0, ϵ). Then the right
side of (5.4) is approximately

|η∗|1 ·
∫ ∞

0
η+(t)η+

(n
x
− t

)
dt. (5.5)

To maximize this, we should make sure that η+(t) ∼ η+(n/x − t). We set x ∼ n/2, and
see that we should define η+ so that it is supported on [0, 2] and symmetric around t = 1, or
nearly so; this will maximize the ratio of (5.5) to |η+|22|η∗|1.

We should do this while making sure that we will know how to estimate Sη+(α, x)
for α ∈ M. We know how to estimate Sη(α, x) very precisely for functions of the form
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η(t) = g(t)e−t2/2, η(t) = g(t)te−t2/2, etc., where g(t) is band-limited. We will work with
a function η+ of that form, chosen so as to be very close (in ℓ2 norm) to a function η◦ that is
in fact supported on [0, 2] and symmetric around t = 1.

We choose

η◦(t) =

{
t2(2− t)3e−(t−1)2/2 if t ∈ [0, 2],
0 if t ̸∈ [0, 2].

This function is obviously symmetric (η◦(t) = η◦(2−t)) and vanishes to high order at t = 0,
besides being supported on [0, 2].

We set η+(t) = hR(t)te−t2/2, where hR(t) is an approximation to the function

h(t) =

{
t2(2− t)3et−

1
2 if t ∈ [0, 2]

0 if t ̸∈ [0, 2].

We just let hR(t) be the inverse Mellin transform of the truncation of Mh to an interval
[−iR, iR], or, what is the same,

hR(t) =

∫ ∞

0
h(ty−1)FR(y)

dy

y
,

where FR(t) = sin(R log y)/(π log y) (the Dirichlet kernel with a change of variables);
since the Mellin transform of te−t2/2 is regular at s = 0, the Mellin transform Mη+ will
be holomorphic in a neighborhood of {s : 0 ≤ ℜ(s) ≤ 1}, even though the truncation of
Mh to [−iR, iR] is brutal. Set R = 200, say. By the fast decay of Mh(it) and the fact that
the Mellin transform M is an isometry, |(hR(t) − h(t))/t|2 is very small, and hence so is
|η+ − η◦|2, as we desired.

But what about the requirement that we be able to estimate Sη∗(α, x) for both α ∈ m
and α ∈ M?

Generally speaking, if we know how to estimate Sη1(α, x) for some α ∈ R/Z and we
also know how to estimate Sη2(α, x) for all other α ∈ R/Z, where η1 and η2 are two
smoothing functions, then we know how to estimate Sη3(α, x) for all α ∈ R/Z, where
η3 = η1 ∗M η2, or, more generally, η∗(t) = (η1 ∗M η2)(κt), κ > 0 a constant. This is a
simple exercise in exchanging the order of integration and summation:

Sη∗(α, x) =
∑

n

Λ(n)e(αn)(η1 ∗M η2)
(
κ
n

x

)

=

∫ ∞

0

∑

n

Λ(n)e(αn)η1(κr)η2
( n

rx

) dr

r
=

∫ ∞

0
η1(κr)Sη2(rx)

dr

r
,

and similarly with η1 and η2 switched.
Now that we have chosen our smoothing weights η+ and η∗, we have to estimate the

major-arc integral (5.1) and the minor-arc integral (5.2). What follows can actually be done
for general η+ and η∗; we could have left our particular choice of η+ and η∗ for the end.

Estimating the major-arc integral (5.1) may sound like an easy task, since we have rather
precise estimates for Sη(α, x) (η = η+, η∗) when α is on the major arcs; we could just
replace Sη(α, x) in (5.1) by the approximation given by (3.3) and (3.7). It is, however, more
efficient to express (5.1) as the sum of the contribution of the trivial character (a sum of
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integrals of (η̂(−δ)x)3, where η̂(−δ)x comes from (3.7)), plus a term of the form

(maximum of
√
q · E(q) for q ≤ r) ·

∫

M

∣∣Sη+(α, x)
∣∣2 dα,

where E(q) = E is as in (3.8), plus two other terms of the same form. As usual, the major
arcs M are the arcs around rationals a/q with q ≤ r. We will soon discuss how to bound
the integral of

∣∣Sη+(α, x)
∣∣2 over arcs around rationals a/q with q ≤ s, s arbitrary. Here,

however, it is best to estimate the integral over M using the estimate on Sη+(α, x) from (3.3)
and (3.7); we obtain a great deal of cancellation, with the effect that, for χ non-trivial, the
error term in (3.8) appears only when it gets squared, and thus becomes negligible.

The contribution of the trivial character has an easy approximation, thanks to the fast
decay of η̂◦. We obtain that the major-arc integral (5.1) equals a main term C0Cη◦,η∗x

2,
where

C0 =
∏

p|n

(
1− 1

(p− 1)2

)
·
∏

p!n

(
1 +

1

(p− 1)3

)
,

Cη◦,η∗ =

∫ ∞

0

∫ ∞

0
η◦(t1)η◦(t2)η∗

(n
x
− (t1 + t2)

)
dt1dt2,

plus several small error terms. We have already chosen η◦, η∗ and x so as to (nearly) maxi-
mize Cη◦,η∗ .

It is time to bound the minor-arc integral (5.2). As we said in §5, we must do better than
the usual bound (5.3). Since our minor-arc bound (4.16) on |Sη(α, x)|, α ∼ a/q, decreases
as q increases, it makes sense to use partial summation together with bounds on

∫

ms

|Sη+(α, x)|2 =

∫

Ms

|Sη+(α, x)|2dα−
∫

M
|Sη+(α, x)|2dα,

where ms denotes the arcs around a/q, r < q ≤ s, and Ms denotes the arcs around all a/q,
q ≤ s. We already know how to estimate the integral on M. How do we bound the integral
on Ms?

In order to do better than the trivial bound
∫
Ms

≤
∫
R/Z, we will need to use the fact that

the series (3.2) defining Sη+(α, x) is essentially supported on prime numbers. Bounding the
integral on Ms is closely related to the problem of bounding

∑

q≤s

∑

a mod q
(a,q)=1

∣∣∣∣∣∣

∑

n≤x

ane(a/q)

∣∣∣∣∣∣

2

(5.6)

efficiently for s considerably smaller than
√
x and an supported on the primes

√
x < p ≤ x.

This is a classical problem in the study of the large sieve. The usual bound on (5.6) (by, for
instance, Montgomery’s inequality) has a gain of a factor of 2eγ(log s)/(log x/s2) relative
to the bound of (x + s2)

∑
n |an|2 that one would get from the large sieve without using

prime support. Heath-Brown proceeded similarly to bound
∫

Ms

|Sη+(α, x)|2dα ! 2eγ log s

log x/s2

∫

R/Z
|Sη+(α, x)|2dα. (5.7)
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This already gives us the gain of C(log s)/ log x that we absolutely need, but the constant
C is suboptimal; the factor in the right side of (5.7) should really be (log s)/ log x, i.e., C
should be 1. We cannot reasonably hope to do better than 2(log s)/ log x in the minor arcs
due to what is known as the parity problem in sieve theory. As it turns out, Ramaré [52]
had given general bounds on the large sieve that were clearly conducive to better bounds on
(5.6), though they involved a ratio that was not easy to bound in general.

I used several careful estimations (including [51, Lem. 3.4]) to reduce the problem of
bounding this ratio to a finite number of cases, which I then checked by rigorous compu-
tation. This approach gave a bound on (5.6) with a factor of size close to 2(log s)/ log x.
(This solves the large-sieve problem for s ≤ x0.3; it would still be worthwhile to give a
computation-free proof for all s ≤ x1/2−ϵ, ϵ > 0.) It was then easy to give an analogous
bound for the integral over Ms, namely,

∫

Ms

|Sη+(α, x)|2dα ! 2 log s

log x

∫

R/Z
|Sη+(α, x)|2dα,

where ! can easily be made precise by replacing log s by log s+1.36 and log x by log x+c,
where c is a small constant. Without this improvement, the main theorem would still have
been proved, but the required computation time would have been multiplied by a factor of
considerably more than e3γ = 5.6499 . . . .

What remained then was just to compare the estimates on (5.1) and (5.2) and check that
(5.2) is smaller for n ≥ 1027. This final step was just bookkeeping. As we already discussed,
a check for n < 1027 is easy. Thus ends the proof of the main theorem.

6. Some remarks on computations

There were two main computational tasks: verifying the ternary conjecture for all n ≤ C,
and checking the Generalized Riemann Hypothesis for modulus q ≤ r up to a certain height.

The first task was not very demanding. Platt and I verified in [31] that every odd integer
5 < n ≤ 8.8 · 1030 can be written as the sum of three primes. (In the end, only a check for
5 < n ≤ 1027 was needed.) We proceeded as follows. Oliveira e Silva, Herzog and Pardi
[46]) had already checked that the binary Goldbach conjecture is true up to 4 · 1018. Given
that, all we had to do was to construct a “prime ladder”, that is, a list of primes from 3 up
to 8.8 · 1030 such that the difference between any two consecutive primes in the list is at
least 4 and at most 4 · 1018. (This is a known strategy: see [55].) Then, for any odd integer
5 < n ≤ 8.8·1030, there is a prime p in the list such that 4 ≤ n−p ≤ 4·1018+2. (Choose the
largest p < n in the ladder, or, if n minus that prime is 2, choose the prime immediately under
that.) By [46] (and the fact that 4 · 1018+2 equals p+ q, where p = 2000000000000001301
and q = 1999999999999998701 are both prime), we can write n − p = p1 + p2 for some
primes p1, p2, and so n = p+ p1 + p2.

Building a prime ladder involves only integer arithmetic, that is, computer manipulation
of integers, rather than of real numbers. Integers are something that computers can handle
rapidly and reliably. We look for primes for our ladder only among a special set of integers
whose primality can be tested deterministically quite quickly (Proth numbers: k · 2m + 1,
k < 2m). Thus, we can build a prime ladder by a rigorous, deterministic algorithm that can
be (and was) parallelized trivially.
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The second computation is more demanding. It consists in verifying that, for every L-
function L(s,χ) with χ of conductor q ≤ r = 300000 (for q even) or q ≤ r/2 (for q odd),
all zeroes of L(s,χ) such that |ℑ(s)| ≤ Hq = 108/q (for q odd) and |ℑ(s)| ≤ Hq =
max(108/q, 200 + 7.5 · 107/q (for q even) lie on the critical line. This was entirely Platt’s
work; my sole contribution was to request computer time. In fact, he went up to conductor
q ≤ 200000 (or twice that for q even); he had already gone up to conductor 100000 in his
PhD thesis. The verification took, in total, about 400000 core-hours (i.e., the total number
of processor cores used times the number of hours they ran equals 400000; nowadays, a
top-of-the-line processor typically has eight cores). In the end, since I used only q ≤ 150000
(or twice that for q even), the number of hours actually needed was closer to 160000; since
I could have made do with q ≤ 120000 (at the cost of increasing C to 1029 or 1030), it is
likely, in retrospect, that only about 80000 core-hours were needed.

Checking zeros of L-functions computationally goes back to Riemann (who did it by
hand for the special case of the Riemann zeta function). It is also one of the things that were
tried on digital computers in their early days (by Turing [61], for instance; see the exposition
in [1]). One of the main issues to be careful about arises whenever one manipulates real
numbers via a computer: generally speaking, a computer cannot store an irrational number,
and so one cannot say: “computer, give me the sine of that number” and expect a precise re-
sult. What one should do is to say: “computer, I am giving you an interval I = [a/2k, b/2k];
give me an interval I ′ = [c/2ℓ, d/2ℓ], preferably very short, such that sin(I) ⊂ I ′”. This
is called interval arithmetic; it is arguably the easiest way to do floating-point computations
rigorously.

Processors do not do this natively, and if interval arithmetic is implemented purely on
software, computations can be slowed down by a factor of about 100. Fortunately, there are
ways of running interval-arithmetic computations partly on hardware, partly on software.
Platt has his own library, but there are others online (e.g. PROFIL/BIAS [38]).

Lastly, there were several relatively minor computations embedded in [27–29]. A typical
computation was a rigorous version of a “proof by graph” (“the maximum of a function f
is clearly less than 4 because I can see it on the screen”). There is a standard way to do
this (see, e.g., [60, §5.2]); essentially, the bisection method combines naturally with interval
arithmetic. Yet another computation (and not a very small one) was that involved in verifying
a large-sieve inequality in an intermediate range (as we discussed in §5).

It may be interesting to note that one of the inequalities used to estimate (4.13) was
proven with the help of automatic quantifier elimination [32]. Proving this inequality was
a very minor task, both computationally and mathematically; in all likelihood, it is feasi-
ble to give a human-generated proof. Still, it is nice to know from first-hand experience
that computers can nowadays (pretend to) do something other than just perform numerical
computations – and that this is true even in current mathematical practice.
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