
Teaching TDD, the Coding Dojo Style

Ramiro Batista da Luz∗, Adolfo Gustavo Serra Seca Neto† and Robinson Vida Noronha‡
∗Systems development department

City Chamber of Curitiba
Barão do Rio Branco St., S/N, Downtown, Curitiba, Paraná, Brazil.

Email: ramiroluz@gmail.com
†Academic Department of Informatics

Federal University of Technology - Paraná
Curitiba, Paraná

Email: adolfo@utfpr.edu.br
‡Academic Department of Electronics

Federal University of Technology - Paraná
Curitiba, Paraná

Email: vida@utfpr.edu.br

Abstract—Coding Dojo is a dynamic and collaborative ac-
tivity inspired in martial arts that follows a discipline in a
cheerful and pleasant environment. Several agile development
techniques are used during the Coding Dojo, such as test driven
development, pair programming and baby steps. This article
presents some Coding Dojo characteristics that help teaching
agile development techniques. Some experienced practitioners
were interviewed to get qualitative information about their
perception of the Coding Dojo practice. An electronic survey
was answered by Coding Dojo participants from several Coding
Dojo groups in Brazil, which provided quantitative data. This
article presents Coding Dojo as a teaching technique to help
developers create software with higher test coverage rates.

Keywords-test driven development; teaching; agile; Coding
Dojo.

I. INTRODUCTION

The word Dojo, translated from the Japanese, means

“place of the way”. It was used originally to designate the

meditation space of Buddhist monks. In this context, it can

be translated as “the place to study life”. Nowadays it is

well known as the place where martial arts are practiced.

Coding Dojo is an activity that has been used by pro-

grammers to practice agile practices, specially test driven

development (TDD) [1], pair programming [2] and baby

steps [1]. In a Coding Dojo session, programmers get

together to learn with each other in a friendly and social

environment.

Coding Dojo was created by Laurent Bossavit and Em-

manuel Gaillot [3] inspired by the idea of Coding Katas,

created by Dave Thomas [4].

We are searching for evidences of Coding Dojo advan-

tages or disadvantages as a tool for teaching test driven

development, when compared to traditional classes. By

traditional classes, we mean theory presentation in lectures

with exercises to be solved individually by the students.

A. How does it work?

To run a Coding Dojo session, the first step is to choose

a programming challenge to be used in the session as a

way to practice programming. There is no need to solve or

finish the challenge during the session. In time-limited turns,

one pair works on the solution, using one computer, doing

small steps in the direction of the solution, using test driven

development and, most important, communicating the idea

to the audience. After the time box ends, the pilot, which

is the developer that is coding, goes back to the audience.

The copilot, which is the developer helping the pilot, starts

coding. And one volunteer from the audience becomes the

copilot. In Figure 1 we show a picture of a Coding Dojo

session in a university conducted by the first author. It is

possible to see the audience, the pilot-copilot pair and the

computer screen projection.

The activity allows the participants to be of any level.

Each turn can have one expert and one beginner in the pair,

so they can learn together.

Figure 1. Coding Dojo Session

1) Agile practices: Test Driven Development, shortened

as TDD, is a set of techniques that “encourages simple

2013 IEEE 13th International Conference on Advanced Learning Technologies

978-0-7695-5009-1/13 $26.00 © 2013 IEEE

DOI 10.1109/ICALT.2013.114

371

2013 IEEE 13th International Conference on Advanced Learning Technologies

978-0-7695-5009-1/13 $26.00 © 2013 IEEE

DOI 10.1109/ICALT.2013.114

371

2013 IEEE 13th International Conference on Advanced Learning Technologies

978-0-7695-5009-1/13 $26.00 © 2013 IEEE

DOI 10.1109/ICALT.2013.114

371

2013 IEEE 13th International Conference on Advanced Learning Technologies

978-0-7695-5009-1/13 $26.00 © 2013 IEEE

DOI 10.1109/ICALT.2013.114

371

designs and test suites that inspire confidence” [5]. There

are two basic rules: write new code only if an automated test

has failed and eliminate duplication. These two rules imply

an order to the tasks of programming, known as the TDD

mantra red-green-refactor. Red - first write a simple test

that fails; green - make the test work quickly; and refactor -

eliminate any duplication created in merely getting the test

to work [5].

Pair programming is a dialog between two people si-

multaneously programming. This practice intends to keep

each programmer on task, brainstorming refinements to the

system, clarifying ideas, taking initiative when their partner

is stuck and holding each other accountable to the team’s

practices [1].

It is always tempting to make big changes in big steps.

The “Baby steps” practice acknowledges that the overhead of

small steps is much less than when a team wastefully recoils

from aborted big changes [1]. This practice is particularly

used in TDD, which proceeds one test at a time [1].

Coding Dojo has been used by programmers to learn and

to train agile practices, specially test driven development [1],

pair programming [2] and baby steps [1].

A Coding Dojo session needs one projector, one computer,

one white board and comfortable space for the practitioners.

It is not necessary but very appreciated to have some

food after the session, giving the participants a moment to

socialize and relax. In this environment, good conversation

and even some personal projects may start.

II. OBJECTIVE

The objective of this research is to verify the Coding Dojo

activity as a way to teach Test Driven Development to obtain

software with better test coverage rates.

III. STATE OF THE ART

Studies related to agile methods adoption and agile meth-

ods in education are relatively common. In [6], for instance,

a TDD training was created and gave some evidence that

hands-on exercises can be good for teaching TDD.

A comparative case study on the impact of test driven

development compared three projects measuring the effect

of test driven development on software design using object-

oriented metrics, showing that the effect of test driven devel-

opment on program design was not so evident as expected,

but showing that the test coverage was significantly superior

to iterative test-last development [7].

A set of experiments were ran to empirically assess differ-

ent parameters of the test driven development in a university

environment comparing test driven development to a iterative

test-last development process. Preliminary results showed

that test driven development is not substantially different

from test-last development process [8].

A report shared the experience of running a Coding Dojo

at the University of São Paulo, Brazil and at a private

company. The role of a Coding Dojo in the learning process

was discussed, showing how students at different skill levels

can use deliberate practice to improve and share knowledge

with a wider group [9].

According to [10], agile practices such as pair program-

ming or test driven development are best learned when they

are actually performed rather than read about. Mariana Bravo

proposed two methods that might reinforce the learning of

some Agile practices. The first is Coding Dojo and the

second is the use of tools to give automated feedback while

the learner works.

IV. METHODOLOGY

Coding Dojo is an activity that involves people and that

have many subjective aspects so it has to be studied consid-

ering as many details as possible. To achieve this the authors

realized some Coding Dojo sessions and got the feedback of

the participants who reported what they liked and what they

disliked in the session. Those feedbacks helped to create two

surveys, one was answered by graduation students in person

during a Coding Dojo session, the other was sent to Coding

Dojo groups in their discussion lists. Then, the authors

interviewed some experienced Coding Dojo organizers.

A. Students survey

This survey was used as a prototype to know who was

attending to the Coding Dojo sessions at the university,

answered by ten students. Some questions were used to dis-

cover the preferences of the students regarding the preferred

frequency of the Coding Dojo sessions and their preferred

programming language.

B. Electronic Survey

The objective of the electronic survey was to check the

participants perception of the benefits of Coding Dojo as

a technique to learn agile practices, such as Test Driven

Development, Pair Programming and Baby Steps.

The electronic survey (available at http://va.mu/XcTM)

was released and answered by Coding Dojo practitioners

from several regions in Brazil. Using the Likert scale, the

survey asked the opinion about the Coding Dojo practice

and its effects in the learning process of agile practices.

C. Interviews

The teaching and learning process is a human relationship

which is not simple to understand and it is not easy to

measure using only quantitative data. To better understand

the subjective aspects of the Coding Dojo technique, semi-

structured interviews were used to guide the interviewer

and at the same time to allow the respondent to express

his opinion. As said by Steinar Kvale, with qualitative

research interviews you try to understand something from

the subjects point of view and to uncover the meaning of

their experiences [11]. The interviews were recorded using

a video camera.

372372372372

V. RESULTS

The results were collected from the surveys and semi-

structured interviews. The first survey was just a pilot study.

This first survey just helped to formulate the questions

for the on-line survey, as the participants had not much

experience with Coding Dojos. The authors published one

article [12] in the Brazilian Symposium of Informatics on

Education. Some of the results are presented as charts in the

Surveys V-A subsection.

A. Surveys

The on-line survey got 64 answers. Figure 2 shows the

distribution of the participants regarding the experience in

Coding Dojo sessions.

Figure 2. Coding Dojo number of sessions

The programming experience in years of the surveys

respondents are shown in Figure 3.

Figure 3. Programming experience in years

The majority of the volunteers agreed that baby steps help

to solve challenges gradually. Only 17% disagreed or are

neutral to the affirmation which can be seen in Figure 4.

The participants believe that writing tests before coding

helps the progress of the activity. In Figure 5, we see that

77% agree or strongly agree with this affirmation.

The participants agree that pair programming helps the

leveling of the attendees (Figure 6).

Figure 4. Baby steps Coding Dojo practitioner’s perception.

Figure 5. Test driven development Coding Dojo practitioner’s perception.

Figure 6. Pair programming Coding Dojo practitioner’s perception.

B. Interviews

The authors recorded interviews with some experienced

Coding Dojo organizers.

1) Elizabeth Leddy: Elizabeth Leddy is a software con-

sultant, member of the Plone1 core developers team and

work as a volunteer at a hacker space, named Noisebridge,

in San Francisco [13], California. There, she teaches web

programming with the Python programming language [14],

HTML and Javascript to people that want to change their

1A free software content management system.

373373373373

careers.

She reported that the Coding Dojo helped to keep a

reasonable pace, depending on the pace of the student that

was using the computer, also the students started interacting

more.

2) Alexandre Freire: Alexandre Freire is a master in

Computer Science from the University of São Paulo (USP).

According to him the advantages of the Coding Dojo are the

repetition, the motivation and the programming languages

diversity, participation and communication, is good to prac-

tical activities. One disadvantage is that it is focused on

practice, so it is not good for theory classes.

3) Daniel Wildt: Daniel Wildt, a respected Brazilian

agilista, has been working with software development for 15

years and worked as university teacher for 7 years. He said

that, after the adoption of Coding Dojo, the students started

to show more interest in the class and the participation grew

considerably.

4) Daniel Cukier: Daniel Cukier is technology direc-

tor at, a marketplace for handcraft professionals. His first

experience with Coding Dojo was at Mathematics and

Statistics Institute of São Paulo University - IME-USP, with

Danilo Sato and Hugo Corbucci. He said that Coding Dojo

helped Locaweb employees to understand what is TDD,

pair programming and the participants noticed that Coding

Dojo is useful to socialize the development and improve the

networking. He reported that the Coding Dojo was used as

a tool for recruiting at Locaweb. At the end he said that the

Coding Dojo stimulate the team work and interaction.

5) Danilo Sato: Danilo Sato is consultant at Thought-

works. When he was at the XP 2007 conference he par-

ticipate of a Coding Dojo Workshop organized by Emilie

Bachè, Backing to Brazil he invited some friends from

the Mathematical and Statistic Institute of the São Paulo

University - IME-USP to try the novelty. Danilo believes that

Coding Dojo is more interactive than lecture classes. He said

that Coding Dojo favors the teaching of pair programming

and TDD.

6) Hugo Corbucci: Hugo Corbucci is a programmer and

consultant, actually he works at Thoughtworks. His first

experience with Coding Dojo was with Danilo Sato when he

organized the first Coding Dojo meeting at the Mathematical

and Statistic Institute of the São Paulo University - IME-

USP. He co-authored one paper accepted at agile.com in

2008 [9]. According to Hugo the Coding Dojo offers a

collaborative environment that favors the participation on

the other side, Coding Dojo isn’t good for situations that the

student need to be alone and silent to reflect about a topic.

He cited some agile practices most indicated to teach with

Coding Dojo as pair programming, unit tests, TDD after the

learning of unit tests, and incremental development.

7) Mauricio Aniche: Mauricio Aniche works as con-

sultant and instructor at Caelum, a training company. His

Coding Dojo experience started at the Mathematical and

Statistics Institute of São Paulo University - IME-USP.

According to Mauricio, Coding Dojo is a tool that improve

the participants socialization. He said that Coding Dojo can’t

substitute lecture classes but it is good to be used combined

with lectures. For him Coding Dojo is specially indicated to

teach pair programming, TDD and design practices as well

to teach how to use continuous integration tools enforcing

the continuous integration discipline. He believe that Coding

Dojo can be used to teach programming at universities or

training centers.

8) Roberto Rodrigues: Roberto Rodrigues is graduating

at the School of Arts, Science and Humanity of São Paulo

University - EACH-USP, works on the Center of Compe-

tency on Free Software of São Paulo University - CCSL-

USP. He is a researcher of usability and agile methodologies.

Started with Coding Dojos at the Mathematics Institute

of Technology of São Paulo University - IME-USP. He

highlighted the collaborative aspect of Coding Dojo. He

told that Coding Dojo favors the practical learning. Roberto

told that one disadvantage of Coding Dojo is it’s focus

on practice, easily losing some concept, so it is necessary

to do some effort to compensate this gap. The Coding

Dojo is specially indicated to teach agile practices that

require discipline of are repetitive such as TDD, continuous

integration and review, said Roberto.

VI. RESULTS ANALYSES

The survey was answered by 64 participants and Figure 2

shows that the majority (64%) of the answers came from

people that were in less than ten Coding Dojo sessions.

Taking this into account, all the results here have to be

interpreted with care. Regarding Baby Steps, the survey

indicates that it is a practice that helps gradual solutions and

simplifies the process of finding a solution to a problem, as

summarized in Figure 4. The results of the survey show that

the use of test driven development in a Coding Dojo session

helps the progress of the activity and that the Coding Dojo

helps to learn test driven development, as shown in Figure

5. Pair programming helps the leveling of the group and it is

good for the Coding Dojo session (Figure 6). These results

give us evidences that the Coding Dojo activity is a good

way to teach practical agile techniques.

A. Coding Dojo advantages to teach TDD

Test driven development, as many programming activities,

need to be exercised. It is better to learn it by practicing.

Coding Dojo is an activity focused on practice as pointed out

by the experts we interviewed. Some of its characteristics

can enforce the learning of TDD. The participation of

students make them be an integral part of the teaching ex-

perience. They have to code and explain their code and they

review code by other students. Coding Dojo also has some

characteristics of problem-based learning (PBL), which is an

instructional method where relevant problems are introduced

374374374374

at the beginning of the instruction cycle and are used to

provide context and motivation for the learning that follows

[15]. These characteristics together make Coding Dojo an

interactive way to teach TDD, changing the way people learn

how to program.

VII. CONCLUSION

At this moment it is possible to notice that the Coding

Dojo is a dynamic activity which favors the participation

and collaboration in an inclusive learning environment where

students are able to participate in the teaching process

showed by papers like [16] and [9]. Coding Dojo is very

focused on practice, so it is indicated to repetitive and

disciplined tasks as TDD, pair programming and continuous

integration.

ACKNOWLEDGMENT

The authors would like to thank Danilo Sato, Hugo

Corbucci, Daniel Wildt, Daniel Cuckier, Alexandre Freire,

Roberto Leite de Moraes Rodrigues, Mauricio Aniche and

Elizabeth Leddy for the interviews and all the survey par-

ticipants which helped this research.

rbl

December 29, 2012

REFERENCES

[1] K. Beck and C. Andres, Extreme programming explained:
embrace change (2nd edition). Addison-Wesley Professional,
2004.

[2] L. Williams and R. Kessler, Pair Programming Illuminated.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2002.

[3] L. Bossavit and E. Gaillot, “The coder’s dojo - a different way
to teach and learn programming,” in Extreme programming
and agile processes in software engineering, ser. Lecture
Notes in Computer Science, H. Baumeister, M. Marchesi,
and M. Holcombe, Eds. Springer Berlin / Heidelberg, 2005,
vol. 3556, pp. 1156–1158, 10.1007/11499053 54. [Online].
Available: http://dx.doi.org/10.1007/11499053 54

[4] Dave Thomas, “CodeKata: code kata,”
http://codekata.pragprog.com/2007/01/code kata backg.html,
28 Jan. 2007. [Online]. Available:
http://codekata.pragprog.com/2007/01/code kata backg.html

[5] K. Beck, Test driven development: by example. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[6] B. Vodde and L. Koskela, “Learning test-driven development
by counting lines,” IEEE Softw., vol. 24, pp. 74–79, 2007.

[7] M. Siniaalto and P. Abrahamsson, “A comparative case
study on the impact of test-driven development on program
design and test coverage,” in Proceedings of the first
international symposium on empirical software engineering
and measurement, ser. ESEM ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 275–284. [Online].
Available: http://dx.doi.org/10.1109/ESEM.2007.2

[8] M. Pancur, M. Ciglaric, M. Trampus, and T. Vidmar,
“Towards empirical evaluation of test-driven development in
a university environment,” in The IEEE region 8 EUROCON
2003. computer as a tool., vol. 2. Ljubljana, Slovenia:
IEEE, 2003, pp. 83–86. [Online]. Available: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1248153

[9] D. T. Sato, H. Corbucci, and M. V. Bravo, “Coding dojo: an
environment for learning and sharing agile practices,” AGILE
Conference, vol. 0, pp. 459–464, 2008.

[10] M. Bravo and A. Goldman, “Reinforcing the learning of
agile practices using coding Dojos,” in Agile processes
in software engineering and extreme programming, ser.
Lecture Notes in Business Information Processing, A. Sillitti,
A. Martin, X. Wang, E. Whitworth, W. Aalst, J. Mylopoulos,
N. M. Sadeh, M. J. Shaw, and C. Szyperski, Eds.
Springer Berlin Heidelberg, 2010, vol. 48, pp. 379–
380, 10.1007/978-3-642-13054-0 41. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-13054-0 41

[11] S. Kvale, Interviews: an introduction to qualitative research
interviewing. Sage Publications, 1996. [Online]. Available:
http://books.google.com.br/books?id=tJPZAAAAMAAJ

[12] R. Luz and A. Neto, “Usando Dojos de Programacao para
o Ensino de Desenvolvimento Dirigido por Testes,” Anais do
Simpósio Brasileiro de Informática na Educação. ISSN 2316-
6533., Nov. 2012.

[13] E. Leddy, “San francisco - HackerspaceWiki,”
http://hackerspaces.org/wiki/San Francisco, 2007. [Online].
Available: http://hackerspaces.org/wiki/San Francisco

[14] ——, “PyClass - python classes using coding dojo,”
https://www.noisebridge.net/wiki/PyClass, 2009. [Online].
Available: https://www.noisebridge.net/wiki/PyClass

[15] M. Prince, “Does active learning work? A review of the
research,” JOURNAL OF ENGINEERING EDUCATION,
vol. 93, no. 3, Jul. 2004. [Online]. Available: http:
//www.konferenslund.se/pp/TAPPS Prince.pdf

[16] L. Bossavit and E. Gaillot, “The coder’s dojo – a
different way to teach and learn programming,” in Extreme
programming and agile processes in software engineering,
ser. Lecture Notes in Computer Science, D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.
Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,
B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, H. Baumeister, M. Marchesi, and M. Holcombe,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, vol. 3556, pp. 290–291. [Online]. Available: http:
//www.springerlink.com/index/10.1007/11499053 54

375375375375

