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Abstract
Region based knowledge graph embeddings rep-
resent relations as geometric regions. This has
the advantage that the rules which are captured by
the model are made explicit, making it straight-
forward to incorporate prior knowledge and to in-
spect learned models. Unfortunately, existing ap-
proaches are severely restricted in their ability to
model relational composition, and hence also their
ability to model rules, thus failing to deliver on
the main promise of region based models. With
the aim of addressing these limitations, we inves-
tigate regions which are composed of axis-aligned
octagons. Such octagons are particularly easy to
work with, as intersections and compositions can
be straightforwardly computed, while they are still
sufficiently expressive to model arbitrary knowl-
edge graphs. Among others, we also show that our
octagon embeddings can properly capture a non-
trivial class of rule bases. Finally, we show that our
model achieves competitive experimental results.

1 Introduction
Knowledge graphs, i.e. sets of (entity, relation, entity) triples,
have become one of the most popular frameworks for knowl-
edge representation, with applications ranging from search
[Reinanda et al., 2020] and recommendation [Guo et al.,
2022] to natural language processing [Schneider et al., 2022]
and computer vision [Marino et al., 2017]. Their popularity
has spurred an extensive line of work dedicated to represen-
tation learning on knowledge graphs. Most works in this area
focus on the paradigm of knowledge graph embedding [Bor-
des et al., 2011], aiming to learn a vector representation e
for each entity e and a scoring function sr for each relation
r such that sr(e, f) reflects the likelihood that (e, r, f) is a
valid triple, i.e. that entity e is in relation r with entity f .

Knowledge graph embeddings are intended to capture se-
mantic regularities, making it possible to predict plausible
triples that were missing from the original knowledge graph.
Consider, for instance, the seminal TransE model [Bordes
et al., 2013], which uses scoring functions of the form
sr(e, f) = −d(e + r, f), where r ∈ Rn is an embedding
of the relation r, e, f ∈ Rn are entity embeddings of the

same dimension and d is a distance metric. Note that sr(e, f)
achieves its maximal value of 0 iff e + r = f . We can thus
say that the embedding fully supports the triple (e, r, f) when
sr(e, f) = 0. If r1 + r2 = r3 we have that sr1(e, f) = 0 and
sr2(f ,g) = 0 together imply sr3(e,g) = 0. In this sense, we
can say that the embedding captures the following rule:

r1(X,Y ) ∧ r2(Y,Z) → r3(X,Z) (1)

This correspondence between knowledge graph embeddings
and symbolic rules is appealing. For instance, if we already
know that (1) is valid, we can impose r1 + r2 = r3 when
learning the embedding. We can also use this correspondence
to inspect which semantic dependencies a learned embedding
is capturing. Unfortunately, TransE has some inherent lim-
itations, which mean that certain knowledge graphs cannot
be faithfully captured [Wang et al., 2018]. This has been ad-
dressed in more recent models such as ComplEx [Trouillon et
al., 2017], ConvE [Dettmers et al., 2018] and TuckER [Bal-
azevic et al., 2019], to name just a few, but while these models
often perform better on the task of link prediction, the con-
nection between their parameters and the captured semantic
dependencies is considerably more opaque.

Region based knowledge graph embedding models
[Gutiérrez-Basulto and Schockaert, 2018; Abboud et al.,
2020; Pavlovic and Sallinger, 2023] aim to get the best of both
worlds, increasing the expressivity of TransE while main-
taining an explicit correspondence between model parameters
and semantic dependencies. They represent each relation r as
a geometric region Xr ⊆ R2n. We say that a triple (e, r, f)
is captured by the embedding if e ⊕ f ∈ Xr, where ⊕ de-
notes vector concatenation. To characterise semantic depen-
dencies, we can then exploit the fact that the intersection, sub-
sumption and composition of relations can be naturally mod-
elled in terms of their embeddings Xr. For instance, we say
that the embedding captures the rule r1(X,Y )∧r2(X,Y ) →
r3(X,Y ) iff Xr1 ∩ Xr2 ⊆ Xr3 . To model rules of the form
(1), we can characterise relational composition as follows:

Xr ⋄Xs = {e⊕ g | ∃f ∈ Rn . e⊕ f ∈ Xr ∧ f ⊕ g ∈ Xs}
(2)

We then say that (1) is captured iff Xr1 ⋄Xr2 ⊆ Xr3 . Rules
of the form (1), which are sometimes referred to as closed
path rules, play an important role in link prediction [Meil-
icke et al., 2019]. When designing a region based model, it is
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thus important that the composition of regions can be straight-
forwardly characterised. However, existing approaches are
severely limited in this respect. For instance, BoxE [Ab-
boud et al., 2020] cannot model relational composition at all,
while ExpressivE [Pavlovic and Sallinger, 2023] uses paral-
lelograms, which are not closed under composition.

To address these concerns, our aim in this paper is to de-
velop a region based model which is as simple as possible,
while (i) still being expressive enough to capture arbitrary
knowledge graphs and (ii) using regions which are closed un-
der intersection and composition. Based on these desiderata,
we arrive at a model which relies on axis-aligned octagons
(with all angles fixed at 45 degrees). We show that despite
their simplicity, the proposed octagon embeddings are suf-
ficiently expressive to properly capture a large class of rule
bases. This is an important property, among others because
it means that we can inject prior knowledge, in the form of
a given rule base, without unintended consequences. Our re-
sult is considerably more general than what is possible with
BoxE, which is not able to capture any closed path rules, and
more general than what is known about ExpressivE. More-
over, because compositions and intersections of octagons can
be straightforwardly computed, octagon embeddings are con-
siderably more practical than existing alternatives. While our
main focus is on better understanding the expressivity of re-
gion based models, we have also empirically evaluated the
proposed octagon embeddings. We found octagons to achieve
results close to the current state-of-the-art. This demonstrates
that learning octagon embeddings is a promising strategy, es-
pecially in contexts where both knowledge graphs and rules
need to be modelled.1

2 Preliminaries
Let E and R be sets of entities and relations respectively. We
consider knowledge graph embeddings in which each entity
e ∈ E is represented by a vector e ∈ Rn and each relation
r ∈ R is represented by a region Xr ⊆ R2n. We refer to
such representations as region-based knowledge graph em-
beddings. We say that a triple (e, r, f) is captured or sup-
ported by a given embedding if e ⊕ f ⊆ Xr. This notion of
support allows us to unambiguously associate a knowledge
graph with a given geometric embedding, which in turn al-
lows us to study the expressivity of knowledge graph embed-
ding models. In practice, we typically use regions with soft
boundaries. This makes learning easier and it is better aligned
with the fact that link prediction is typically treated as a rank-
ing problem rather than a classification problem. We will re-
turn to the issue of learning regions with soft boundaries in
Section 5.
Coordinate-wise region embeddings. Region based em-
beddings were first studied from a theoretical point of view
in [Gutiérrez-Basulto and Schockaert, 2018]. Their setting
allowed relations to be represented by arbitrary convex poly-
topes. Using such regions is not feasible in practice, however,
as they require exponentially many parameters. A natural so-
lution is to use regions Xr which can be described using n

1An extended version of this paper with supplementary materials
can be found at https://arxiv.org/abs/2401.16270.

Figure 1: Basic region based embeddings: TransE bands (left) and
hexagons (right).

Figure 2: Region-based embeddings with octagons.

two-dimensional regions Xi
r:

Xr = {(x1,..., xn, y1,..., yn) | ∀i ∈ {1,..., n}.(xi, yi) ∈ Xi
r}
(3)

We call such region based embeddings coordinate-wise. For
example, we can view TransE as a coordinate-wise region
based embedding model, where

Xi
r = {(x, y) |u−

i ≤ y − x ≤ u+
i } (4)

In this case, the two-dimensional regions correspond to
unbounded bands, as illustrated in Figure 1. ExpressivE
[Pavlovic and Sallinger, 2023] is also a coordinate-wise
model, where the regions Xi

r are parallelograms. An impor-
tant drawback of parallelograms is that they are not closed
under composition: if Xi

r1 and Xi
r2 are parallelograms, then

it may be that Xi
r1 ⋄X

i
r2 is not a parallelogram, with ⋄ defined

as in (2). Similarly, parallelograms are not closed under inter-
section. To address these limitations, we can consider some
alternatives. Starting from the TransE bands defined in (4), a
natural generalisation is to add domain and range constraints,
i.e. to use hexagonal regions of the following form, as also
illustrated in Figure 1:

Xi
r = {(x, y) |u−

i ≤ y − x ≤ u+
i , (5)

x−
i ≤ x ≤ x+

i , y
−
i ≤ y ≤ y+i }

Unfortunately, as we will see in Section 4, such hexagons
are not sufficiently expressive to capture arbitrary knowledge
graphs. As a minimal extension, we consider octagons of the
following form, as illustrated in Figure 2:

Xi
r = {(x, y) |u−

i ≤ y − x ≤ u+
i , v

−
i ≤ x+ y ≤ v+i , (6)
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x−
i ≤ x ≤ x+

i , y
−
i ≤ y ≤ y+i }

Throughout the paper, we will refer to regions of the form (6)
as octagons. However, note that some of these regions are
degenerate, having in fact fewer than eight vertices.
Cross-coordinate region embeddings. Some region based
models go beyond coordinate-wise embeddings. We will re-
fer to them as cross-coordinate models. For instance, BoxE
[Abboud et al., 2020] uses regions of the following form:

Xr = {(x1, . . . , x2n, y1, . . . , y2n) | (7)

∀i ∈ {1, . . . , n} . (xi, yn+i)∈Ai
r ∧ (xn+i, yi)∈Bi

r}

An advantage of cross-coordinate models is that they can
rely on simpler two-dimensional regions. For instance, the
regions Ai

r and Bi
r in the BoxE model essentially corre-

spond to TransE bands. While a coordinate-wise model with
TransE bands is not sufficiently expressive to capture arbi-
trary knowledge graphs, by using cross-coordinate compar-
isons, BoxE can circumvent this limitation.
Capturing rules. The main promise of region based mod-
els is that the spatial configuration of the regions reveals the
semantic dependencies that are captured. Let us first consider
a closed-path rule of the following form:

r1(X1, X2) ∧ . . . ∧ rk(Xk, Xk+1) → r(X1, Xk+1) (8)

Such a rule can be encoded using relational composition and
set inclusion, as follows:

r1 ◦ . . . ◦ rk ⊆ r

Accordingly, we say that a region based embedding captures
this rule iff the following inclusion holds:

Xr1 ⋄ . . . ⋄Xrk ⊆ Xr

Other types of rules can be modelled in a similar way. For
instance, a rule such as r1(X,Y ) ∧ r2(X,Y ) → r(X,Y ) is
captured by a region based embedding if Xr1 ∩Xr2 ⊆ Xr.

To illustrate how rules can be captured by region based em-
beddings, first consider a coordinate-wise model with TransE
bands, i.e. regions of the form (4). We have that Xr1 ⋄ . . . ⋄
Xrk ⊆ Xr holds iff

∑k
i=1 u

−
ri ≥ u−

r and
∑k

i=1 u
+
ri ≤ u+

r .
This means that every rule of the form (8) can be satisfied.
However, the model is not sensitive to the order in which
the relations in the body appear. For instance, whenever
r1(X,Y )∧r2(Y,Z) → r(X,Z) is satisfied, we also have that
r2(X,Y )∧ r1(Y,Z) → r(X,Z) is satisfied, which is clearly
undesirable. Coordinate-wise models with TransE bands are
thus not sufficiently expressive to properly capture rules.

Now consider a cross-coordinate model such as BoxE, us-
ing regions of the form (7). It holds that (x1, . . . , x2n, z1, . . . ,
z2n) ∈ Xr1 ⋄Xr2 iff there are y1, . . . , y2n ∈ R such that for
every i ∈ {1, . . . , n} we have:

(xi, yn+i) ∈ Ai
r1 (xn+i, yi) ∈ Bi

r1

(yi, zn+i) ∈ Ai
r2 (yn+i, zi) ∈ Bi

r2

This is the case iff for every i ∈ {1, . . . , n} we have:

(xi, zi) ∈ Ai
r1 ⋄B

i
r2 (xn+i, zn+i) ∈ Bi

r1 ⋄A
i
r2

While Xr1 ⋄ Xr2 constrains the pairs (xi, zi) and
(xn+i, zn+i), any region Xr3 rather constrains the pairs
(xi, zn+i) and (xn+i, zi). It is thus not possible to have
Xr1 ⋄ Xr2 ⊆ Xx3 , unless in trivial cases where Xr1 = ∅,
Xr2 = ∅, or (if infinite bounds are allowed) Xr3 = R4n.
In all these trivial cases, the embedding also captures other
rules, e.g. if Xr1 = ∅ then all rules of the form r1(X,Y ) ∧
r4(Y,Z) → r5(X,Z) are also satisfied.

ExpressivE is able to capture rules of the form (8), while
avoiding unintended consequences [Pavlovic and Sallinger,
2023]. However, in practice we are typically interested in
capturing sets of such rules, and it is unclear under which
conditions this is possible with ExpressivE. Another draw-
back of ExpressivE is that compositions and intersections of
regions are difficult to compute, which, among others, makes
checking whether a given rule is satisfied computationally ex-
pensive. Moreover, it is not clear how injecting rules into the
learning process can then be done in a practical way.

3 Modelling Relations with Octagons
In this paper, we focus on coordinate-wise models where the
two-dimensional regions are octagons. Let us write Xr =
[Or

1, . . . , O
r
n] to denote that relation r is defined using the

octagons Or
1, . . . , O

r
n, in the sense that (x1, . . . , xn, y1, . . . ,

yn) ∈ Xr iff (xi, yi) ∈ Or
i for each i ∈ {1, . . . , n}. Clearly,

if Xr = [Or
1, . . . , O

r
n] and Xs = [Os

1, . . . , O
s
n] then we have

Xr∩Xs = [Or
1∩Os

1, . . . , O
r
n∩Os

n] and Xr ⋄Xs = [Or
1 ⋄Os

1,
. . . , Or

n ⋄ Os
n]. To study how properties such as reflexivity,

symmetry and transitivity can be satisfied in octagon embed-
dings, it is thus sufficient to study these properties for indi-
vidual octagons, which is what we focus on in this section.

Parameterisation. Let us write Octa(x−
i , x

+
i , y

−
i , y

+
i , u

−
i ,

u+
i , v

−
i , v

+
i ) to denote the octagon defined in (6). Note

that the eight parameters are not independent. For instance,
we have that Octa(x−, x+, y−, y+, u−, u+, v−, v+) =
Octa(x−, x+, y−, y+, u−, u+,max(v−, x− + y−), v+). In-
deed, if x ≥ x− and y ≥ y−, we also have x+y ≥ x−+y−,
meaning that the bound x + y ≥ v− can be strengthened
to x + y ≥ max(x− + y−, v−). We call the parameters
(x−, x+, y−, y+, u−, u+, v−, v+) normalised if they cannot
be strengthened, i.e. if increasing any of the lower bounds or
decreasing any of the upper bounds always leads to a different
octagon. As the following proposition reveals, we can easily
normalise any set of parameters.2

Proposition 1. Consider the following set of parameters:

x−
1 =max(x−, v− − y+, y− − u+, 0.5 · (v− − u+))

x+
1 =min(x+, v+ − y−, y+ − u−, 0.5 · (v+ − u−))

y−1 =max(y−, u− + x−, v− − x+, 0.5 · (u− + v−))

y+1 =min(y+, u+ + x+, v+ − x−, 0.5 · (u+ + v+))

u−
1 =max(u−, y− − x+, v− − 2x+, 2y− − v+)

u+
1 =min(u+, y+ − x−, v+ − 2x−, 2y+ − v−)

v−1 =max(v−, x− + y−, u− + 2x−, 2y− − u+)

2All proofs can be found in the supplementary materials.
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Figure 3: Example of an octagon encoding a transitive relation.

v+1 =min(v+, x+ + y+, u+ + 2x+, 2y+ − u−)

Then Octa(x−, x+, y−, y+, u−, u+, v−, v+) = Octa(x−
1 ,

x+
1 , y

−
1 , y

+
1 , u

−
1 , u

+
1 , v

−
1 , v

+
1 ). Furthermore, if we have x−

1 >
x+
1 , y−1 > y+1 , u−

1 > u+
1 or v−1 > v+1 then Octa(x−, x+, y−,

y+, u−, u+, v−, v+) = ∅. Otherwise, the set of parameters
(x−

1 , x
+
1 , y

−
1 , y

+
1 , u

−
1 , u

+
1 , v

−
1 , v

+
1 ) is normalised.

Capturing relational properties. As we saw in the previ-
ous section, two operations are of particular importance for
capturing rules: intersection and composition. The intersec-
tion of Octa(x−

1 , x
+
1 , y

−
1 , y

+
1 , u

−
1 , u

+
1 , v

−
1 , v

+
1 ) and Octa(x−

2 ,
x+
2 , y

−
2 , y

+
2 , u

−
2 , u

+
2 , v

−
2 , v

+
2 ) is the following octagon:

Octa(max(x−
1 , x

−
2 ),min(x+

1 , x
+
2 ),max(y−1 , y

−
2 ),

min(y+1 , y
+
2 ),max(u−

1 , u
−
2 ),min(u+

1 u
+
2 ),

max(v−1 , v
−
2 ),min(v+1 , v

+
2 ))

Octagons are also closed under composition, as the following
proposition reveals.
Proposition 2. Let O1 = Octa(x−

1 , x
+
1 , y

−
1 , y

+
1 , u

−
1 , u

+
1 ,

v−1 , v
+
1 ) and O2 = Octa(x−

2 , x
+
2 , y

−
2 , y

+
2 , u

−
2 , u

+
2 , v

−
2 , v

+
2 )

be non-empty octagons with normalised parameters. Then
O1 ⋄O2 = Octa(x−

3 , x
+
3 , y

−
3 , y

+
3 , u

−
3 , u

+
3 , v

−
3 , v

+
3 ), where:

x−
3 = max(x−

1 , x
−
2 − u+

1 , v
−
1 − x+

2 )

x+
3 = min(x+

1 , x
+
2 − u−

1 , v
+
1 − x−

2 )

y−3 = max(y−2 , u
−
2 + y−1 , v

−
2 − y+1 )

y+3 = min(y+2 , u
+
2 + y+1 , v

+
2 − y−1 )

u−
3 = max(y−2 − x+

1 , u
−
2 + u−

1 , v
−
2 − v+1 )

u+
3 = min(y+2 − x−

1 , u
+
2 + u+

1 , v
+
2 − v−1 )

v−3 = max(x−
1 + y−2 , u

−
2 + v−1 , v

−
2 − u+

1 )

v+3 = min(x+
1 + y+2 , u

+
2 + v+1 , v

+
2 − u−

1 )

The inverse of a relation can also be straightforwardly char-
acterised. Let us define the inverse of an octagon O =
Octa(x−, x+, y−, y+, u−, u+, v−, v+) as:

Oinv = Octa(y−, y+, x−, x+,−u+,−u−, v−, v+) (9)

Then clearly we have (x, y) ∈ O iff (y, x) ∈ Oinv, hence
the relation encoded by Oinv is indeed the inverse of the re-
lation encoded by O. It also follows that O is symmetric if
the following conditions are satisfied: x− = y−, x+ = y+

and u− = −u+. Similarly, assuming the parameters are nor-
malised, the relation captured by the octagon O is reflexive
over its domain [x−, x+], i.e. ∀x ∈ [x−, x+] . (x, x) ∈ O, iff
the following conditions are satisfied:

• u− ≤ 0 ≤ u+;
• v− ≤ 2x− ≤ 2x+ ≤ v+.

From the definition of composition, it straightforwardly fol-
lows that a non-empty octagon with normalised coordinates
is transitive, i.e. satisfies O ⋄O ⊆ O, iff the following condi-
tions are satisfied:

• u− ≤ max(y− − x+, 2u−, v− − v+);
• u+ ≥ min(y+ − x−, 2u+, v+ − v−);
• v− ≤ max(x− + y−, u− + v−, v− − u+);
• v+ ≥ min(x+ + y+, u+ + v+, v+ − u−).

We can also show the following.
Proposition 3. Let O = Octa(x−, x+, y−, y+, u−, u+, v−,
v+) and assume that these parameters are normalised. It
holds that O ⋄ O = O iff one of the following conditions
is satisfied:

• O = ∅;
• O = [x−, x+]× [y−, y+] with x+ ≥ y− and x− ≤ y+;
• O = {(x, x) |x ∈ [x−, x+]};
• u− = 0, u+ > 0, v− < v+, v− − x+ ≤ x−, x+ ≤
v+ − x−, v− − y+ ≤ y−, y+ ≤ v+ − y− and u+ =
min(y+ − x−, v+ − v−);

• u− < 0, u+ = 0, v− < v+, v− − x+ ≤ x−, x+ ≤
v+ − x−, v− − y+ ≤ y−, y+ ≤ v+ − y− and u− =
max(y− − x+, v− − v+).

Figure 3 shows an octagon which satisfies the conditions
from the fourth case. If we compose an octagon with itself a
sufficient number of times, we always end up with one of the
octagon types from Proposition 3. In particular, let us define
O(m) as O(m−1) ⋄O for m ≥ 2 and O(1) = O. We then have
the following result.
Proposition 4. If v− < v+ then there exists some m ≥ 1
such that O(m) ⋄O = O(m).

4 Expressivity of Octagon Embeddings
We now study the ability of octagon embeddings to capture
knowledge graphs and rules. We will denote a given knowl-
edge graph embedding as γ. Such an embedding represents
each entity e ∈ E as the vector γ(e) ∈ Rn and each relation
r ∈ R as the region γ(r) ⊆ R2n. We say that γ is an octagon
embedding if it is a coordinate-wise model in which γ(r) is
defined in terms of octagons, for each r ∈ R.
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4.1 Capturing Knowledge Graphs
With each region based embedding γ we can associate the
knowledge graph Gγ = {(e, r, f) | γ(e) ⊕ γ(f) ∈ γ(r)}. An
important question is whether a given region based embed-
ding model is capable of modelling any knowledge graph,
i.e. whether for any knowledge graph G ⊆ E × R × E
there exists an embedding γ such that G = Gγ . When us-
ing coordinate-wise embeddings with TransE bands, this is
not possible [Wang et al., 2018; Kazemi and Poole, 2018]. In
fact, for a coordinate-wise model with hexagons of the form
(5) this is still not possible as the following proposition re-
veals.
Proposition 5. Let Xr be a hexagon region of the form (5)
and let e, f ∈ Rn. If e ⊕ f ∈ Xr and f ⊕ e ∈ Xr then we
also have e⊕ e ∈ Xr.

From this proposition, it follows that the hexagon model
cannot correctly capture a knowledge graph containing the
triples (e, r, f) and (f, r, e) but not (e, r, e). However, if we
use octagons instead of hexagons, we can correctly capture
any knowledge graph.
Proposition 6. Let G ⊆ E × R × E be a knowledge graph.
There exists an octagon embedding γ such that G = Gγ .

4.2 Capturing Rules
We now analyse which sets of rules can be correctly captured
by octagon embeddings. Previous work [Abboud et al., 2020]
has focused in particular on the following types of rules3:

Symmetry: r(X,Y ) → r(Y,X) (10)
Asymmetry: r(X,Y ) → ¬r(Y,X) (11)
Inversion: r1(X,Y ) → r2(Y,X) (12)
Hierarchy: r1(X,Y ) → r2(X,Z) (13)
Intersection: r1(X,Y ) ∧ r2(X,Y ) → r3(X,Y ) (14)
Mutual exclusion: r1(X,Y ) ∧ r2(X,Y ) → ⊥ (15)
Composition: r1(X,Y ) ∧ r2(Y,Z) → r3(X,Z) (16)

Let us define the inverse region X inv
r as follows:

X inv
r ={(x1, ..., xn, y1, ..., yn) | (y1, ..., yn, x1, ..., xn) ∈ Xr}

Note that when Xr = [O1, . . . , On] then X inv
r = [Oinv

1 ,
. . . , Oinv

n ] with Oinv
i as defined in (9). Each of the afore-

mentioned rule types can be straightforwardly modelled us-
ing regions. In particular, we say that a region based em-
bedding γ captures or satisfies (10) iff γ(r) ⊆ γ(r)inv; (11)
iff γ(r) ∩ γ(r)inv = ∅; (12) iff γ(r1) ⊆ γ(r2)

inv; (13) iff
γ(r1) ⊆ γ(r2); (14) iff γ(r1) ∩ γ(r2) ⊆ γ(r3); (15) iff
γ(r1) ∩ γ(r2) = ∅; and (16) iff γ(r1) ⋄ γ(r2) ⊆ γ(r3). For
a set of rules K and a rule ρ, we write K |= ρ to denote that
ρ is entailed by K in the usual sense. We also write γ |= ρ to
denote that the embedding γ captures the rule ρ.

3Asymmetry rule was called anti-symmetry in [Abboud et al.,
2020]. We use the former to avoid any confusion with the stan-
dard notion of anti-symmetric relations. Furthermore, [Abboud et
al., 2020] defined inversion as r1(X,Y ) ≡ r2(Y,X). We consider
inversion as a rule, since the equivalence can be straightforwardly
recovered by two inversion rules.

We are interested in analysing whether a given region
based embedding model can capture a set of rules K, with-
out capturing any other rules, i.e. such that for any rule ρ it
holds that γ |= ρ iff K |= ρ. Whether this is possible in
general depends on the kinds of rules which K is permitted
to contain. We first show a negative result. We call a region
based embedding γ convex if γ(r) is convex for every r ∈ R.
Proposition 7. There exists a consistent set of hierarchy, in-
tersection and mutual exclusion rules K such that every con-
vex embedding of the form (3) or (7) which satisfies K also
satisfies some hierarchy rule which is not entailed by K.

We can show the same result when only hierarchy, inter-
section and asymmetry rules are permitted. Note that Propo-
sition 7 also applies to BoxE, and thus contradicts the claim
from [Abboud et al., 2020] that BoxE can capture arbitrary
consistent sets of symmetry, asymmetry, inversion, hierarchy,
intersection and mutual exclusion rules. The underlying is-
sue relates to the fact that the considered embeddings are de-
fined from two-dimensional regions, and when these regions
are convex, Helly’s theorem imposes restrictions on when in-
tersections of such regions can be disjoint. Furthermore, note
that [Abboud et al., 2020] did not consider composition rules,
as such rules cannot be captured by BoxE. When we omit
asymmetry, mutual exclusion and composition rules, we can
capture any rule base, as the following result shows.
Proposition 8. Let K be a set of symmetry, inversion, hier-
archy and intersection rules. There exists a coordinate-wise
octagon embedding γ which satisfies K, and which only sat-
isfies those symmetry, inversion, hierarchy and intersection
rules which are entailed by K, and which does not satisfy any
asymmetry, mutual exclusion and composition rules.

Let us now shift our focus to composition rules. First, we
have the following negative result, showing that octagon em-
beddings cannot capture arbitrary sets of composition rules.
Proposition 9. Let K = {r1(X,Y ) ∧ r1(Y,Z) →
r2(X,Z), r2(X,Y ) ∧ r2(Y, Z) → r3(X,Z)}. It holds that
every octagon embedding γ which satisfies K also satisfies
some composition rule which is not entailed by K.

The underlying issue relates to composition rules where
the same relation appears more than once. If we exclude such
cases, we can correctly embed sets of composition rules.
Definition 1. An extended composition rule over a set of re-
lations R is an expression of the form:

r1(X1, X2) ∧ . . . ∧ rk(Xk, Xk+1) → rk+1(X1, Xk+1)

where k ≥ 1 and r1, . . . , rk+1 ∈ R. Such a rule is called
regular if we have ri ̸= rj for i ̸= j.

Regular composition rules generalise the hierarchy and
composition rules from [Abboud et al., 2020], noting that the
latter work also required the three relations appearing in com-
position rules to be distinct.
Proposition 10. Let K be a set of regular composition rules.
Assume that any extended composition rule entailed by K is
either a trivial rule of the form r ⊆ r or a regular rule. There
exists an octagon embedding γ which satisfies K, and which
only satisfies those extended composition rules which are en-
tailed by K.
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This result is significant given the importance of com-
position rules for link prediction [Meilicke et al., 2019],
among others. Moreover, a similar result was not yet
shown in previous work on region based embeddings, to
the best of our knowledge. At the same time, however,
the result is limited by the fact that only regular rules
are considered and no inverse relations. Knowledge graph
completion often relies (explicitly or implicitly) on rules
such as playsForTeam(X,Y ) ∧ playsForTeam−1(Y, Z) ∧
playsSport(Z,U) → playsSport(X,U). Our analysis sug-
gests that capturing sets of such rules would require an oc-
tagon model with cross-coordinate comparisons, which we
leave as a topic for future work.

5 Learning Octagon Embeddings
In our theoretical analysis, determining whether a triple
(e, r, f) is supported by an embedding was based on a dis-
crete criterion: either e⊕ f lies in Xr or it does not. In prac-
tice, however, we need to learn regions with fuzzy bound-
aries, given that link prediction is typically treated as a rank-
ing problem, rather than a classification problem. Continuous
representations are typically also easier to learn than discrete
structures. Let us consider a region Xr = [Or

1, . . . , O
r
n],

where Or
i = Octa(x−

i , x
+
i , , y

−
i , y

+
i , , u

−
i , u

+
i , , v

−
i , v

+
i , ).

Let us write x− = (x−
1 , . . . , x

−
n ) and similar for x+, y−,

y+, u−, u+, v− and v+. Octagon embeddings impose the
following four constraints on an entity pair (e, f):

x− ≤ e ≤ x+ y− ≤ f ≤ y+

u− ≤ f − e ≤ u+ v− ≤ e+ f ≤ v+

We will refer to the regions defined by these four constraints
as bands. We can straightforwardly use the sigmoid func-
tion σ to convert the constraints into soft scores. For the u-
constraint we can use the following “distance” to the u-band:

distu(e, r, f) = σ
(
|(f − e)− uc| − uw

)
(17)

where we write uc = (u++u−)/2 and uw = (u+−u−)/2.
The functions distx, disty and distv are defined analogously.
Note that e⊕ f ∈ Xr iff distx(e, r, f) ≥ 0.5, disty(e, r, f) ≥
0.5, distu(e, r, f) ≥ 0.5 and distv(e, r, f) ≥ 0.5. Further-
more note that BoxE and ExpressivE also convert interval
constraints into soft scores. However, rather than using scores
of the form (17), these models use a piecewise linear function
of the distance to the centre of the interval. Although a differ-
ent slope is used for points inside and outside the interval, we
may question to what extent the resulting embeddings still de-
fine regions. While the regions defined by scoring functions
of the form (17) also have fuzzy boundaries, this “fuzziness”
is mostly limited to the immediate vicinity of the boundary.

We also consider a variant of the distance function (17)
which uses learnable attention weights uatt, as follows:

dist′u(e, r, f) = uatt ⊙ distu(e, r, f) (18)

where we write ⊙ for component-wise multiplication.
Weighted variants of distx, disty and distv are defined anal-
ogously. The attention weights intuitively allow the model to
“forget” certain constraints, e.g. by focusing only (or primar-
ily) on the u band in some coordinates.

FB15k-237 WN18RR

H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR

TransE 22.3 37.2 53.1 33.2 01.3 40.1 52.9 22.3
BoxE 23.8 37.4 53.8 33.7 40.0 47.2 54.1 45.1
ExpressivE 24.3 36.6 51.2 33.3 46.4 52.2 59.7 50.8

u 23.1 37.3 53.2 33.2 01.6 39.9 51.5 22.0
ux 23.3 37.1 52.5 33.1 01.9 39.0 51.6 21.8
uxy 23.2 37.2 53.1 33.2 01.8 40.8 52.8 22.8
uv∗ 24.1 36.9 52.8 33.6 43.6 48.5 52.9 46.9
uvxy∗ 24.1 36.7 51.7 33.2 43.6 49.2 56.1 47.9

Table 1: Link prediction performances of region based embedding
models. Configurations with ∗ use the variant with attention weights.

As in BoxE and ExpressivE, coordinate-wise scores are ag-
gregated to a scalar by taking their negated norm. We define
dist(e, r, f) = distx(e, r, f)⊕ disty(e, r, f)⊕ distu(e, r, f)⊕
distv(e, r, f) and score triples as follows (and similar for the
weighted variant):

s(e, r, f) = −∥ dist(e, r, f) ∥p (19)

In the above expression, p is a hyperparameter. Learning oc-
curs by minimizing the following margin loss function with
self-adversarial negative sampling [Sun et al., 2019]:

− log
(
σ(λ− s(e, r, f))

)
−

|N |∑
i=1

αi log
(
σ(s(ei, r, fi)− λ)

)
where α = softmax(s(e1, r, f1) ⊕ . . . ⊕ s(en, r, fn), the
margin λ is a hyperparameter, and N = {(e1, r, f1), . . . ,
(en, r, fn)} is a set of randomly sampled negative examples.

6 Experimental Results
We consider several variants of our model. The full model
is denoted by uvxy, whereas ux refers to a model in which
distv and disty are not used, and similar for the other variants.
For uv and uvxy, we have used the variant with attention
weights (18). For the other configurations, attention weights
were not used, as they were found to make little difference4.
Note that our u model is almost identical to TransE, except
that an explicit width parameter is used, while uv can be seen
as a variant of ExpressivE without learnable scale factors.

Table 1 compares the performance of our model with
TransE [Bordes et al., 2013], BoxE [Abboud et al., 2020]
and ExpressivE [Pavlovic and Sallinger, 2023] for link pre-
diction, using the two most common benchmarks [Toutanova
and Chen, 2015; Dettmers et al., 2018]. As usual, perfor-
mance is measured using Hits@k and Mean Reciprocal Rank
(MRR). All results are for 1000-dimensional embeddings for
FB15k-237 and 500-dimensional embeddings for WN18RR,
following BoxE and ExpressivE’s experimental setup. Other
hyperparameters are specified in the supplementary materials.

The performance of u is almost identical to TransE, which
suggests that the addition of an explicit width parameter plays

4An analysis of the impact of attention weights can be found in
the supplementary materials.
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Figure 4: Distribution of scale factors in 40-dimensional ExpressivE
embeddings for FB15k-237 (left) and WN18RR (right).

no significant role. Adding the x, y and v constraints does not
bring any benefits on FB15k-237. On WN18RR, however, in-
troducing the v constraint has a big impact on H@1, which
goes from less than 1% for u, ux and uxy to more than 40%
for uv and uvxy. This result is in line with Proposition 5,
which states that hexagons cannot capture relations that are
both symmetric and irreflexive: for most WN18RR relations,
models without v constraints incorrectly rank (e, r, e) triples
first5. Including the x and y constraints also improves per-
formances in the case of WN18RR. Introducing attention
weights, as in (18), has a significant positive effect on the
overall performance on WN18RR but not for FB15k-237. As
Table 1 shows, uvxy outperforms BoxE on all metrics. Fur-
ther analysis can be found in the supplementary materials.

Octagon embeddings slightly underperform ExpressivE in
most cases. We may wonder whether this reflects the inher-
ent limitations of using fixed angles. In fact, when inspecting
the scale factors in learned ExpressivE embedddings, we no-
ticed that most are close to −1, 0 or 1 (see Figure 4). In other
words, most of the learned parallelograms are diamonds (uv),
bands (u, v, x, y) or squares (xy), all of which can be repre-
sented in our octagon model. This suggests that the underper-
formance of the octagon model is rather the result of overpa-
rameterisation. On the one hand, we have shown theoretically
that all four constraints are needed to capture semantic depen-
dencies, and this is also confirmed by our empirical results
on WN18RR. On the other hand, not all constraints might be
needed for all coordinates. The use of attention weights was
inspired by this view, but the weights themselves of course
also introduce further parameters.

7 Related Work
Knowledge graph embeddings have generally been classified
in three broad categories: linear models, tensor decomposi-
tion models and neural models [Hogan et al., 2021]. Lin-
ear models use a distance to score triples, after applying a
linear transformation to entity or relation embeddings, e.g.
a translation [Bordes et al., 2013] or rotation [Sun et al.,
2019]. Region based models can essentially be viewed un-
der the same umbrella, where the idea of computing dis-
tances between points is generalised to evaluating relation-
ships between points and regions. Tensor decomposition

5This result still holds without attention weights: on WN18RR,
uvxy achieves a H@1 of 39.6, H@3 of 45.9, H@10 of 50.7 and
MRR of 43.8 without trainable attention weights.

models, such as ComplEx [Trouillon et al., 2017; Lacroix et
al., 2018], TuckER [Balazevic et al., 2019] and QuatE [Zhang
et al., 2019], view knowledge graphs as a three-dimensional
tensor, which can be factorised into (low-rank) entity and
relation embeddings. While these models tend to perform
well, they often come with a significantly higher computa-
tional cost. Another important limitation is that they are far
less interpretable in terms of how they capture semantic de-
pendencies between relations. Tensor decomposition mod-
els also have important theoretical limitations when it comes
to capturing rules [Gutiérrez-Basulto and Schockaert, 2018].
Neural models, including ConvE [Dettmers et al., 2018] and
graph neural network based approaches [Zhu et al., 2021], are
even less interpretable than tensor decomposition models.

Knowledge graph embeddings have been combined with
rules in various ways. For instance, it has been proposed
to incorporate learned rules [Guo et al., 2018] or hard on-
tological constraints [Abboud et al., 2020] when learning
knowledge graph embeddings. Conversely, learned embed-
dings have been exploited for implementing an efficient rule
mining system [Omran et al., 2018]. The ability of models
to capture rules has also been evaluated indirectly, for in-
stance by analysing their inductive generalisation capabilities
[Trouillon et al., 2019] or their ability to capture intersections
and compositions of relations for evaluating complex queries
[Arakelyan et al., 2021; Wang et al., 2023].

Region based approaches are closely related to ontology
embeddings. In particular, several models have recently been
introduced for the Description Logic EL++, which features
subsumption and composition of relations, as well as union
and intersection of concepts. Concepts are typically embed-
ded as hyperballs [Mondal et al., 2021] or hypercubes [Xiong
et al., 2022]. The Box2EL model [Jackermeier et al., 2023]
also represents relations as regions, based on BoxE, which
was found to improve performance. Given the limitations of
BoxE on modeling composition, an evaluation of more ex-
pressive region based models is likely to yield even better re-
sults, although such an evaluation is yet to be performed.

8 Conclusions

The study of region based knowledge graph embedding es-
sentially aims to identify the simplest models that are capable
of capturing particular types of reasoning patterns. Despite
the extensive work on knowledge graph embedding, there are
still surprisingly many open questions on this front. Octagons
where shown to be capable of capturing arbitrary knowledge
graphs, while a simpler model based on hexagons is not. Oc-
tagons also have the desired property of being closed under
intersection and composition, which is not the case for closely
related models such as BoxE and ExpressivE. We have fur-
thermore shown that the octagon model is capable of mod-
elling (particular) sets of composition rules, which is an im-
portant property that was not yet shown for existing region
based models. Our empirical results show that octagon em-
beddings slightly underperform ExpressivE and further work
is needed to better understand whether this performance gap
can be closed by changing how the octagons are learned.
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Gayo, Roberto Navigli, Sebastian Neumaier, Axel-
Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid,
Anisa Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen
Staab, and Antoine Zimmermann. Knowledge Graphs.
Synthesis Lectures on Data, Semantics, and Knowledge.
Morgan & Claypool Publishers, 2021.

[Jackermeier et al., 2023] Mathias Jackermeier, Jiaoyan
Chen, and Ian Horrocks. Box2EL: Concept and role
box embeddings for the description logic EL++. CoRR,
abs/2301.11118, 2023.

[Kazemi and Poole, 2018] Seyed Mehran Kazemi and David
Poole. Simple embedding for link prediction in knowl-
edge graphs. In Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December
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