Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Learning by Interpreting

Xuting Tang', Abdul Rafae Khan ', Shusen Wang 2, and Jia Xu'*

!Steven Institute of Technology
2Xiaohongshu Inc

{xtang18, akhan4, jxu70} @stevens.edu, shusenwang @xiaohongshu.com

Abstract

This paper introduces a novel way of enhancing
NLP prediction accuracy by incorporating model
interpretation insights. Conventional efforts often
focus on balancing the trade-offs between accu-
racy and interpretability, for instance, sacrificing
model performance to increase the explainability.
Here, we take a unique approach and show that
model interpretation can ultimately help improve
NLP quality. Specifically, we employ our learned
interpretability results using attention mechanisms,
LIME, and SHAP to train our model. We demon-
strate a significant increase in accuracy of up to
+3.4 BLEU points on NMT and up to +4.8 points
on GLUE tasks, verifying our hypothesis that it is
possible to achieve better model learning by incor-
porating model interpretation knowledge.

1 Introduction

Deep Learning (DL) methods dominate the NLP state-of-the-
art. However, their black-box nature hinders our understand-
ing of how the model reaches decisions. Because less in-
formation about the importance of model features and com-
ponents makes it harder to improve model architectures, DL
models are often designed to be more complex (by adding
parameters) and thus require more training data for quality
climbing. Blindly enlarging model sizes on one side causes
higher demands for computational and linguistic resources as
well as a reduction in model accountability, controllability,
and learning generalization.

To address these problems, there has been a plethora of
works providing explainability to DL [Du et al., 20191, such
as attention mechanisms, LIME, and SHAP. Nonetheless,
there are often trade-offs between model performance and
explanation fidelity [Du et al., 2019]. Models with intrinsic
explainability can provide explanations with high fidelity but
often sacrifice prediction accuracy; while analyzing models
with post-hoc methods does not hurt the performance of the
models, the obtained explanations can be limited. Therefore,
one important challenge is to handle the trade-offs between

*Jia Xu is the corresponding author of this paper.

4390

model accuracy and explainability, and we propose our re-
search question from a novel view: Can interpretability re-
sults improve machine learning prediction accuracy? Our
experiments suggest a positive answer, aligning with our goal
of reducing the model deficiency and errors with our method
of adding the explainable knowledge into decision-making.
In contrast to the conventional approach trading off between
model performance and explainability, we show that accuracy
and interpretability goals can be unified and help each other.

Specifically, we introduce the paradigm of “interpretabil-
ity enhanced learning in NLP”” Our approach learns inter-
pretations of the model learning process and adds this in-
terpretability result in the form of additional input features
into the model learning. It seems that when DL knows the
important input features to focus on for each learning step,
the learning task becomes much easier than when DL knows
nothing about the importance of each particular input. Our
intuition is explained further with the following three toy ex-
amples.

Our first example is an analogy to human learning, when
a student first reads a book and highlights the important
phrases and statements. The second time the student rereads
this book, the highlighted parts reinforce the studying. The
second example is the modeling of the XOR function.
XOR(z1, x2) is a nonlinear function that cannot be modeled
correctly with a linear separator. However, if we add another
input feature 1 X x5 to 1 and zo, then XOR (1, 22, 1 X x2)
becomes linear separable and a much simpler function to
learn. In the third example, let us take a new bit represent-
ing the computation of a Neural Network (NN). Our new
input is formed by adding this new bit to our previous in-
put. Information theoretically, this new bit does not interject
any new information, since one can infer it from the NN and
the input. If we choose this function in such a way that you
cannot compute it (such as a halting problem), then in this
specific occasion described, one can never compute this bit.
This means that while the answer exists, there is no way to
compute it. These three examples from different perspectives
showcase why adding extracted features into DL can possibly
help learning and reduce prediction errors.

Now that we have put our previous question in context,
let us describe how we realize our “interpretability enhanced
learning” in the NLP framework. First, we train a baseline
NLP model and extract the interpretability results for each

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

@ Extract attention scores

ST S PSR o 10
I Y4
T Y Y Y3
L Y i Yo
|
Y : Y1
(;;‘\f\ Decoder : . Y 0.0
F B s\ @ X1 T2 T3 T4
(Attention)_/ @Extract words
and positions
with max
10 attention
scores
LILJL L] | Encoder Attention ‘1‘ 1 ‘ B ‘ 3 ‘4‘
[I I positions
Ty Ty T3 T4 Attention 1 1|U1|0 9|1 5T 4|
Input words words T

Figure 1: Extract attention words and positions. Figure shows de-
coder at time step t=0 and t=4.

training sample, for example, we extract the sequence of input
features contributing most to generate each output token in
a sentence. Second, we add these interpretability results as
auxiliary information into the original input features and re-
train the NLP model. Last, we decode the test set to get the
interpretability information and then add it to re-decode for
the final prediction.

We apply three interpretability methods to verify our
paradigm: attention mechanisms, LIME, and SHAP. The de-
tails of implementation vary across NLP tasks. Figure 1 illus-
trates an example of extracting attention model explainable
features for a Neural Machine Translation (NMT) task. After
training a baseline model, we go through every target out-
put token (word/sub-word) for each sample and extract the
attention weights of each input token (x1,--- ,x;, -+ ,Ty) to
generate its output token. Each column indicates the target
token sequence (y1,--- ,¥;, - ,%s) to be generated. After-
ward, we generate an attention word vector by selecting the
input token with the highest attention weight for each output
token. In the end, the attention word vector is concatenated
with the original source sentence and fed into the NLP mod-
els for our model re-training. In the test phase, we run the test
on the baseline model to obtain the attention word vector, add
it to the source sentences, and decode again.

Our experimental results demonstrate a significant im-
provement on several NLP tasks, including +1.4 BLEU points
on WMT DE-EN and up to +3.4 BLEU points on IWSLT’17
FR-EN over baselines of Transformer and ConvS2S in NMT
as well as up to +4.8 points in GLUE tasks.

The major contributions of this work mainly includes:

1. introducing an enhanced learning NLP paradigm by em-
ploying the model interpretability results;

2. extracting interpretability information of attention
mechanisms, LIME, and SHAP and incorporating them
into DL model training;

3. verifying the usefulness of the interpretation methods
with NLP improvements;

4391

4. significantly enhancing NLP quality on NLP tasks.

Below, we will first describe our algorithms and model ar-
chitectures then show experimental results and analysis, and
after that, we overview related work and conclude.

2 Interpretability Models

We consider interpretability as the input words and word
sequences that are important to predict. We apply three
well-known interpretability methods to find these important
words, including a model-based popular intrinsic method us-
ing attention mechanisms [Serrano and Smith, 2019; Gomez
et al., 2021], two model-independent post-hoc methods,
LIME [Ribeiro et al., 2016], and SHAP [Lundberg and Lee,
20171

2.1 Attention Mechanisms

In this paper, we evaluate our approach on two baseline
models: ConvS2S [Gehring et al., 2017] and Transformer
[Vaswani et al., 20171, where we use different attention mech-
anisms and positional embeddings.

ConvS2S. Ateach decoding step j, ConvS2S combines de-
coder hidden state s; and the embedding of previous target
word g; to obtain decoder state summary o; = Ws; +b+g;,
where W is a weight matrix and b is bias. The attention score
of state j and source element ¢ can be computed as

_exp(oj - hy)

aij =7
> exp(o; - hi)
k=1

Transformer. In Transformer, the attention is calculated by
a scaled dot-product of key k; and query g;:

(M

(VK1) (79y;) o
en ’
where dj, is the dimension of k;, and K and @) represents
the key matrix and query matrix, respectively. W& W@ ¢
Rmote Xdk are parameter matrices, and dpoge is the output
dimension of attention and embedding layer. The attention
weight is computed by applying a softmax function over e;;:
€XP €45

Qij = ——— 3)
> expeg;
k=1

€ij =

The transformer encoder and decoder have multiple layers.
Within a layer, there are multiple heads. Each head has its
independently learned queries and keys, which means each
head has different attention. We used the sum of attention of
all heads from the last layer for attention information extrac-
tion.

2.2 Attention with Positional Embeddings

ConvS2S. A separate embedding layer is learned for posi-
tional embeddings. Let us take the absolute positions of input
tokens as p = (p1,- - ,pr), the input representation is com-
puted by taking the sum of word embeddings and positional
embeddings: r = (e1(z1) + €2(p1),...,e1(zr) + €2(pr))s
where €;(-) and ex(-) are learned word embedding function
and positional embedding function, respectively.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Transformer. Instead of
beddings, Transformer uses Sine and Cosine func-
tions of different frequencies for positional embed-
ding calculation: €(,, o) = sin(p;/10000%/dmuwt) and
€(ps21+1) = €08(p;/100002/dmar) where I represents the
indices of each dimension of the positional embedding,
and dyogel 18 the output dimension of attention layer and
embedding layer.

2.3 LIME

In addition to intrinsic interpretability methods like atten-
tion mechanisms, we also apply post-hoc interpretability
methods. Local Interpretable Model-agnostic Explanations
(LIME) [Ribeiro et al., 2016] analyzes input features by gen-
erating local explanations of black-box models to interpret
their behaviors. It approximates the predictions of a black-
box model via local surrogate interpretable models, such as
linear models and decision trees. To explain an instance,
LIME samples nearby observations by drawing nonzero el-
ements of the instance uniformly at random. The sampled
nearby observations and model predictions of these obser-
vations can fit an interpretable model to create an explana-
tion for this instance. In text classification task, for example,
LIME generates an importance score for each word for every
class, and we choose the word with the highest importance
score for the prediction.

24 SHAP

SHapley Additive exPlanations (SHAP) [Lundberg and Lee,
2017] is another black-box interpretability method that uti-
lizes Shapley values derived from game theory. It assigns
Shapley values to each feature for a particular prediction. The
higher the Shapley value a feature gets, the more important
the feature is to the model’s prediction. We also output one
word most important to the prediction.

learning positional em-

3 Extract Explainable Features

Now, we present how to extract the explainable features,
namely important word sequences/words from attentional
model, and LIME/SHAP, respectively, for decision making.

3.1 Attention Words

We extract two types of information from attention mecha-
nism: (1) the source word sequence with the highest attention
score to generate each target word one by one, see Equation
4. We refer to them as “attention words” o; (2) the positions
of the attention words, which we call “attention positions” p.

Figure 1 illustrates an example of extracting token se-
quences with high attention weights. To simplify the notation,
we formalize the method of obtaining a sequence of attention
words a¢ and a sequence of attention positions p as following:

p; =arg max (a;;)
i€l I (4)

Qg :x(Pj),

Wherep = (pla"'7j7"' 7PJ)» a = (ala"' 7ja"' ,Oéj),
and x(p;) is the input token (word or subword) at the p,-th

4392

Method | Example
Source C’est un stylo .
Attention Reference This is a pen .
Attention Words C’est C’est un stylo .
Attention Positions 1,1,2,3,4
LIME/SHAP Input Sequence A great musician

Important Word great

Table 1: Example of extracted attention words/positions using atten-
tion mechanism and important word using LIME/SHAP.

Algorithm 1 Attention Words/Positions Extraction

Input: Pre-trained model (M), source tokens (x =
X1, ,xr), special tokens for start (START) and end (END)
Output: Predicted tokens (§), attention words (), attention
positions (p)
1: train = FALSE
: Initialize start prediction token gy <— START
. Initialize lists ¥, o and p
: h < get M’s encoder hidden states
7j<0
: while 3; #END do
s < get M’s decoder hidden states

Get M’s attention scores {a,;j}f:1 between h and s
9: pj < arg maxi({aij}le)

10: Append p; to p

11: «aj < token at position p; in x

12: Append ¢, to o

13: gj41 < get M’s next predicted token

14: Append §jj41 toy

150 j<+j5+1

16: end while

17: return y, o, p

® N WA WL

position in the input sentence x. This means that each target
word is predicted using the sequence of input words; each
input word has an attention score, and we choose the word
with the highest attention score.

Table 1 shows an example of such extraction. For a pair
of tokenized parallel French to English sentences, the source
is “C’est un stylo .”, and the target is “This is a pen .” The
extracted attention positions form the sequence of IDs [1, 1, 2,
3, 4]. If we look for the source tokens corresponding to these
IDs, we get the sequence of attention words “C’est C’est un
stylo .”

Algorithm 1 describes the process of extracting attention
words and positions from a trained model (M). For next
output word ¢;11, the attention network takes as input the
encoder hidden states h and the decoder states s; of previ-
ous predicted word 7; and outputs the attention vector. The
source word with the maximum attention score and its cor-
responding position are extracted. The algorithm outputs the
prediction, attention word and attention position for each tar-
get position.

3.2 LIME and SHAP

We apply LIME and SHAP on text classification tasks. Given
a pre-trained model and an input sequence, LIME and SHAP

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Algorithm 2 Important Words Extraction with LIME/SHAP

Input: Pre-trained model (M), source tokens
(x = 1,29, -+ ,25), LIME/SHAP explainer (&)
Output: predicted label (¢), important word

(w)
1: train = FALSE
2: ¢ < get M’s prediction of x
3: & takes as input M,x and ¢, outputs importance scores
{bi}i[:1 of all tokens on prediction ¢
4: | < arg maxi({bi}le)
W < T;
6: return c, w

b

generate each word’s importance score to the predicted label.
Similar to extracting words with the highest attention scores,
the word with the highest importance score, referred to as
“important word” is extracted for each input sequence, details
are in Algorithm 2. We adopt the implementations of LIME!
and SHAP.?

4 Incorporate Explainable Features

4.1 Combine Word/Word Sequence Interpretation

The explainable features extracted from methods in Section 3
are in the form of word sequences for attention models or
words for LIME and SHAP. We incorporate these features
into our NLP model training and decoding in the following
way. We concatenate the original sentences in training set and
test set with their explainable features. We use the new train-
ing set to fine-tune our model and the new test set to decode
on our fine-tuned model. For the example in Table 1, the con-
catenated input to NLP model is “C’est un stylo . C’est C’est
un stylo .” Figure 2 illustrates examples showing the detail
of our concatenation method for attention model, attention
model with positional embeddings, LIME, and SHAP. The
explainable features are appended to the end of the original
sentence. To add positional embeddings, the previous posi-
tions “[5, 6, 7, 8, 9]” are replaced by attention positions “[1,
1,2,3,4]".

Let us give a translation example to our concept. We trans-
late from “good morning Girls” to German “Guten Morgen
Maedchen”, then x+ o = [good, morning, girls, good (weight
0.9 of good for Gute), morning (weight 0.8 of morning for
Morgen), girls (weight 0.9 of girls for Maedchen)]. Note
that our method should not be confused with data augmen-
tation. The former adds auxiliary information without addi-
tional data, while the latter adds manual labeled or synthetic
training data to learning.

4.2 Training

After constructing the new dataset by combining the explain-
able words with the original sentences, we fine-tune our base-
line models as in Algorithm 3 and Algorithm 4.

Note that we use the deep learning NLP models in two
modes. The train mode is for back-propagation and model

"https://github.com/marcotcr/lime.
*https://github.com/slundberg/shap.

4393

(a) Attention Words

e Lo
*
Word '12/3/4/5 67 89 Word
+

+
Positions Positions
Words T1T2L3T4T1T1T2T3Ts Words

Source words Attention words Target words

(b) Attention Words

+ Positions I |
Word

4 4
Word

Positions‘-I ‘2‘3‘4‘1‘1 ‘2‘3‘4‘ Posi(t)irons

Words \xﬂxg\xg\u\x1\1“1\352\:53\:54\ Words

Source words Attention words Target words

(c) LIME/SHAP Word with @Output class
® max
- contribution
(L1042 to the Fine-tune
(@ Feature p5=--""~ predicted Pretrained
contributionsx‘ class 3% Sequence
3 Classification
L4 Model
(3 Output class
probabilities Pretrained
Sequence
LIME/SHAP Classification
® > Model
Randomly
DInput to LIME/SHAP 4 selected
input words
Input words

Figure 2: (a) Combine attention Words only. (b) Combine attention
words & attention positions. (c¢) Combine important words from
LIME/SHAP.

parameter updating, and the test mode does not do back-
propagation or update but decodes the inputs. The extraction
process of attention information or important words is con-
ducted in the test mode, where there is no parameter update
and the target sentences or labels are not used. There are two
reasons to extract in the test mode: (1) the pre-trained model
should not be updated during extraction; (2) we do not have
target sentences or labels for test data, and the training mode
requires targets. Therefore, the extraction processes should
all be done in test mode for training, validation, and test data.
The decoding is performed in two steps. The first step is in
the test mode to extract the attention information or important
words, and the second step is in the training mode because we
need to fine-tune the model with the concatenated inputs and
update its parameters.

4.3 Bootstrapping

Since incorporating extracted attention information can aid
the training of a pre-trained model, after fine-tuning the
model with attention information, we can obtain a model with
better performance. We can further extract attention infor-
mation from the better model, and fine-tune the better model
with the newly extracted attention information. This training

https://github.com/marcotcr/lime
https://github.com/slundberg/shap

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Algorithm 3 Train NMT with Attention Information
Input:

Pre-trained model (M), source tokens (x =
x1,--+ ,xy), target tokens (y = y1,...,Ys), attention words
(¢ =y, ,ay), attention positions (p = p1,--- ,pJ)
Output: Fine-tuned model (M)
x’ « concatenate x and « as [x1, - , &, 1, , Q]
1 < “whether to combine attention positions”
if ;) then

p/ — [1727 aIap17p25"' apJ]
else

p’ — [17 2,
end if
Fine-tune M with x’, p’, y as usual
return M

,[,...’]+J]

VR AU R

Algorithm 4 Train GLUE Model with Attention/Importance
Information

Input: Pre-trained model (M), input tokens (x =
x1,-+-,x1), label (y), attention word («), important word
(w)

Output: Fine-tuned model (M)

n < “whether to combine attention word”
if 1) then

x’ « concatenate x and v as [z1,- - , 27, Q]
else

x' < concatenate x and w as [z1, -+ ,Z7, W]
end if
Fine-tune M with x’, y as usual
return M

A A o e

strategy is referred to as bootstrapping with attention.

5 NLP Applications

We evaluate our approach on a common NLP task, Neural
Machine Translation (NMT), and GLUE, a standard bench-
mark with various NLP tasks.

5.1 Machine Translation

Datasets and Pre-processing. We conduct our experiments
on the large-scale WMT 2014 dataset in the German-English
news domain and the medium scale IWSLT 2017 dataset in
the French-English TEDTalk domain. The raw datasets con-
tain about 4.5 million and 25.2 thousand pairs of sentences,
respectively. For pre-processing, we use Moses [Koehn et al.,
2007] tokenizer, filter out the sentences with source and tar-
get length ratio greater than 1.5, and apply Moses truecaser.
Then, we apply Byte-Pair-Encoding (BPE) [Sennrich et al.,
2015] using 32K merge operations for the WMT data and
16K operations for the IWSLT data. Table 2 shows the cor-
pus statistics before and after pre-processing and BPE.

Model training and parameter settings. We train our
model using Fairseq toolkit [Ott et al., 2019] for ConvS2S
and the Transformer. The hyper-parameters for training the
ConvS2S network include: the encoder and decoder embed-
ding dimensions as 768, the learning rate as 0.25, the gradi-
ent clip norm as 0.1, the dropout ratio as 0.2, the max tokens

4394

WMT’14 DE-EN IWSLT’17 FR-EN

Sents. Raw 4.5M 25.2K
Pre-processed 3.9M 23.6K
DE EN FR EN
Before R.W. 98M 102M 5.3M 4.9M
BPE Vocab | 1.5M 684K 8.3K 6.2K
After R.W. 118M 112M 5.9M 5.4M
BPE Vocab | 35K 33K 13K 11K

Table 2: Number of Sentences in WMT 2014 News (DE-EN) and
IWSLT 2017 TEDTalk (FR-EN) datasets. Vocabulary statistics in
WMT 2014 News (DE-EN) and IWSLT 2017 TEDTalk (FR-EN)
datasets before and after Byte-pair encoding. R.W. is the number of
running words and Vocab is the vocabulary size.

ConvS2S Transformer
DE-EN EN-DE DE-EN
Baseline Attn W Baseline Attn W Baseline Attn W

29.0 30.4 24.4 25.0 29.7 311

Table 3: Translation results in BLEU[%] on WMT’ 14 News. Base-
line is the pre-trained model, model fine-tuned with attention words
is denoted as “Attn W,

in a batch as 4000, the optimizer as NAG. For Transformer,
we set the embedding dimension as 768, the learning rate as
5x 1074, the warmup updates as 4000, the dropout as 0.3, the
weight decay as 1 x 10—, the max tokens in a batch as 5000,
the Adam optimizer [Kingma and Ba, 2014] betas as 0.9 and
0.98. Both models use early stopping with a patience of 5 and
the max number of epochs is 50. The training is performed
on 4 Nvidia Titan V GPUs. For the TEDTalk task, we reduce
the encoder and decoder dimension to 256 for ConvS2S and
512 for Transformer. Other hyper-parameters are the same
as for the news task. The decoding beam size is 5 for NMT.
We evaluate using Sacrebleu [Post, 2018] with the tokenizer
parameter set to “13a”.

Results. As shown in Table 3, on WMT 2014 DE-EN, af-
ter fine-tuning the baseline ConvS2S model using attention
words (Figure 2), the fine-tuned model (Attn W) achieves an
improvement of +1.4 BLEU points over the baseline (Base-
line) model. Similarly, on the same language direction, the
Transformer baseline fine-tuned with attention words also
achieve +1.4 BLEU points improvement. On IWSLT 2017
FR-EN, as shown in Table 4, fine-tuning baseline ConvS2S
model with attention words achieves a +2.8 BLEU points
improvement; fine-tuning the pre-trained Transformer model
with attention words achieves an improvement of +3.4 BLEU
points. We evaluate fine-tuning on attention words with and
without attention positions on IWSLT’17 FR-EN task (Fig-
ure 2). The results are shown in Table 4. We observe a slight
improvement when using attention position information (Attn
W + Attn P). We also apply bootstrapping (Attn W Bootstrap)
with a max bootstrapping iteration of 20. The training reaches
its best validation BLEU score at iteration 10, and its cor-
responding test BLEU score is +0.4 higher than fine-tuning
with one iteration. So bootstrapping explainable feature ex-
traction and training brings slight improvement.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Model Method IWSLT’17 FR-EN
Baseline 30.5

Attn W 33.3

ConvS2S Attn W + Attn P 33.5
Attn W Bootstrap 33.7

T f Baseline 32.9
TansIormer A vn w 36.3

Table 4: Translation results in BLEU[%] on IWSLT’17 FR-EN.
“Attn W + Attn P” is fine-tuning with the combination of atten-
tion words and attention positions, “Attn W Bootstrap” is fine-tuning
with attention words in a bootstrapping manner.

QQP CoLA STS-B RTE

Baseline 88.8 514 82.6 65.8
Attn W 88.9 52.1 83.1 68.1
SHAPW 88.8 56.2 84.9 68.0
LIMEW 89.1 54.3 84.4 67.5

Table 5: Results on GLUE Benchmark. Baseline: BERT-base fine-
tuned on the corresponding dataset. “Attn W”: model fine-tuned
with attention words. “LIME W”/“SHAP W” : model fine-tuned
with important words extracted by LIME/SHAP. The evaluation uses
Matthews correlation coefficient for CoLA, Spearman correlations
for STS-B, and accuracy for RTE and QQP.

5.2 GLUE Benchmark

Datasets. In addition to the NMT task, we evaluate our ap-
proach on QQP, CoL A, STS-B and RTE of the widely used
GLUE Benchmark [Wang e al., 2018].

Model training and parameter settings. For each GLUE
task, we first fine-tune the Huggingface [Wolf er al., 2020]
BERT-base [Devlin et al., 2019] cased model . The hyper-
parameters for fine-tuning are as following: the encoder di-
mension is 768, the number of epochs is 3, the learning rate
is 5 x 1075, the dropout rate is 0.1, and the Adam optimizer
betas is 0.9 & 0.999. After the fine-tuning, we use three dif-
ferent methods (i.e. attention, LIME and SHAP) to extract
attention/important words. For attention mechanism, we only
extract the word with the highest attention score with respect
to the special classification token “[CLS]”. Each of the ex-
tracted words is combined with the corresponding original
input (see Figure 2) and the system is fine-tuned once more
using the best learning rate on the validation set. The train-
ing time with and without our methods are about the same.
Our methods need additional time to extract features, where
LIME/SHAP feature extraction is more time-consuming than
attention feature extraction.

Results. Table 5 shows the GLUE task results. Incor-
porating attention words into fine-tuning achieves up to
+2.3 BLEU points and incorporating important words of
LIME/SHAP achieves up to +4.8 points over the baseline.
Our experiments demonstrate that incorporating interpretabil-
ity results can significantly enhances the model quality.

4395

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Randomness

Figure 3: Decrease in performance when adding more random noise
to attention words. BLEU scores for IWSLT 2017 FR-EN test data.

5.3 Ablation Test

To understand how the quality of our explainable features
impacts the accuracy improvement, we conduct an ablation
study. Figure 3 depicts the NMT BLEU score by adding dif-
ferent percentages of random noise into the explainable fea-
tures incorporated. Specifically, to add r% of randomness,
7% of the attention words of each sentence are uniformly
randomly sampled from the source sentence words. The red
curve draws the accuracy of the French-English IWSLT’17
ConvS2S model. We observe that by adding noise into the
explainable features, we decrease their quality, thus reducing
the BLEU score’s improvement over the baseline. Therefore,
our ablation analysis indicates that high-quality interpretation
of the NLP model helps more on NLP prediction accuracy.

6 Related Work

There have been many works in interpretable deep learn-
ing, such as [Murdoch et al., 2019; Li et al., 2021]. There
are many works evaluating the interpretability methods such
as [Li et al., 2020; Jacovi and Goldberg, 2020]. To our knowl-
edge, we are the first to apply the interpretability results using
attention to improve the NLP task accuracy.

There are also work in adding input features into NLP sys-
tems, such as adding linguistic features such as [Sennrich and
Haddow, 2016] in NMT. None of them used the interpretation
results from the same system as features to enhance NMT
or NLP in general. The gain of linguistic or BERT features
comes from the knowledge extracted from another applica-
tion, while the accuracy improvement by our approach is to
simplify the learning.

7 Conclusion

We show that incorporating interpretability results into deep
learning models can effectively reduce learning difficulties,
thus enhancing NLP accuracy and generalization. We demon-
strate significant accuracy gain on NMT and GLUE. Our in-
troduced paradigm is novel and can be applied with a set
of interpretability methods independent of the learning task,
serving as a framework that facilitates more possibilities in
integrating quality- and explainability-driven research work.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Acknowledgments

We appreciate the National Science Foundation (NSF) Award
No. 1747728 to fund this research. We are also thankful for
the support of the Google Cloud Research Program.

References

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understand-
ing. In Proceedings of NAACL-HLT, pages 41714186,
Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics.

[Du et al., 2019] Mengnan Du, Ninghao Liu, and Xia Hu.
Techniques for interpretable machine learning. Commu-
nications of the ACM, 63(1):68-77, 2019.

[Gehring et al., 2017] Jonas Gehring, Michael Auli, David
Grangier, Denis Yarats, and Yann N Dauphin. Con-
volutional sequence to sequence learning. In Interna-

tional Conference on Machine Learning, pages 1243—
1252. PMLR, 2017.

[Gomez et al., 2021] Tristan Gomez, Suiyi Ling, Thomas
Fréour, and Harold Mouchere. Improve the inter-
pretability of attention: A fast, accurate, and inter-
pretable high-resolution attention model. arXiv preprint
arXiv:2106.02566, 2021.

[Jacovi and Goldberg, 2020] Alon Jacovi and Yoav Gold-
berg. Towards faithfully interpretable nlp systems: How
should we define and evaluate faithfulness? arXiv preprint
arXiv:2004.03685, 2020.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Koehn et al., 2007] Philipp Koehn, Hieu Hoang, Alexandra
Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. Moses: Open source toolkit for sta-
tistical machine translation. In Proceedings of the 45th
annual meeting of the association for computational lin-
guistics companion volume proceedings of the demo and
poster sessions, pages 177-180, 2007.

[Li et al., 2020] Jierui Li, Lemao Liu, Huayang Li, Guanlin
Li, Guoping Huang, and Shuming Shi. Evaluating ex-
planation methods for neural machine translation. arXiv
preprint arXiv:2005.01672, 2020.

[Li er al., 2021] Xuhong Li, Haoyi Xiong, Xingjian Li, Xu-
anyu Wu, Xiao Zhang, Ji Liu, Jiang Bian, and Dejing
Dou. Interpretable deep learning: Interpretation, inter-

pretability, trustworthiness, and beyond. arXiv preprint
arXiv:2103.10689, 2021.

[Lundberg and Lee, 2017] Scott M Lundberg and Su-In Lee.
A unified approach to interpreting model predictions. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 4765—
4774. Curran Associates, Inc., 2017.

4396

[Murdoch et al., 20191 W James Murdoch, Chandan Singh,
Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Definitions,
methods, and applications in interpretable machine learn-

ing. Proceedings of the National Academy of Sciences,
116(44):22071-22080, 2019.

[Ott et al., 2019] Myle Ott, Sergey Edunov, Alexei Baevski,
Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for se-
quence modeling. In Proceedings of NAACL-HLT 2019:
Demonstrations, 2019.

[Post, 2018] Matt Post. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on Ma-
chine Translation: Research Papers, pages 186-191, Bel-
gium, Brussels, October 2018. Association for Computa-
tional Linguistics.

[Ribeiro et al., 2016] Marco Tulio Ribeiro, Sameer Singh,
and Carlos Guestrin. ” why should i trust you?” explain-
ing the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD international conference on knowl-
edge discovery and data mining, pages 1135-1144, 2016.

[Sennrich and Haddow, 2016] Rico Sennrich and Barry Had-
dow. Linguistic input features improve neural machine
translation. arXiv preprint arXiv:1606.02892, 2016.

[Sennrich et al., 2015] Rico Sennrich, Barry Haddow, and
Alexandra Birch. Neural machine translation of rare words
with subword units. arXiv preprint arXiv:1508.07909,
2015.

[Serrano and Smith, 2019] Sofia Serrano and Noah A
Smith. Is attention interpretable? arXiv preprint
arXiv:1906.03731, 2019.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you

need. In Advances in neural information processing sys-
tems, pages 5998-6008, 2017.

[Wang er al., 2018] Alex Wang, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and Samuel R Bow-
man. Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

[Wolf et al., 2020] Thomas Wolf, Lysandre Debut, Victor
Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. Transformers: State-of-
the-art natural language processing. In Proceedings of
EMNLP: System Demonstrations, pages 38—45, Online,
October 2020. Association for Computational Linguistics.

	Introduction
	Interpretability Models
	Attention Mechanisms
	Attention with Positional Embeddings
	LIME
	SHAP

	Extract Explainable Features
	Attention Words
	LIME and SHAP

	Incorporate Explainable Features
	Combine Word/Word Sequence Interpretation
	Training
	Bootstrapping

	NLP Applications
	Machine Translation
	GLUE Benchmark
	Ablation Test

	Related Work
	Conclusion

