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Abstract
We propose a novel black-box approach for per-
forming adversarial attacks against knowledge
graph embedding models. An adversarial attack is
a small perturbation of the data at training time to
cause model failure at test time. We make use of an
efficient rule learning approach and use abductive
reasoning to identify triples which are logical ex-
planations for a particular prediction. The proposed
attack is then based on the simple idea to suppress
or modify one of the triples in the most confident
explanation. Although our attack scheme is model
independent and only needs access to the training
data, we report results on par with state-of-the-art
white-box attack methods that additionally require
full access to the model architecture, the learned
embeddings, and the loss functions. This is a sur-
prising result which indicates that knowledge graph
embedding models can partly be explained post hoc
with the help of symbolic methods.

1 Introduction
Knowledge graphs commonly suffer from incompleteness
and many different methods have been proposed to complete
the missing information which is defined as knowledge graph
completion (KGC). The currently dominating techniques are
based on the use of sub-symbolic representations and the re-
spective approaches are termed knowledge graph embedding
(KGE) models. A large family of KGE models has been pro-
posed so far, e.g., [Yang et al., 2015; Trouillon et al., 2016;
Dettmers et al., 2018] and much research has been concerned
with improving their performance and multiple aspects of
the learning process [Ruffinelli et al., 2020]. Driven by the
emerging need to provide more interpretability for deep learn-
ing models and latent approaches in general, efforts to under-
stand the causes of certain aspects of model behavior are also
made in the context of KGE models [Rim et al., 2021].

Adversarial attacks in machine learning, on the other hand,
are concerned with decreasing the model’s predictive quality
by corrupting the data. In [Bhardwaj et al., 2021], the au-
thors apply this concept to KGC where an attack is defined
as the modification of a single triple at training time to cause
model failure at test time. While the authors motivate their

work with the importance of identifying vulnerabilities and
studying robustness, the task can also be understood in terms
of interpretability, that is, as finding the triple that is the cause
for a certain prediction. Such a triple (or a set of triples) can
be referred to as an explanation.

Within this work, we propose an approach that is based on
the idea to find a logical explanation for a prediction made by
a KGE model. To find this explanation, we first apply a rule
learning approach to learn a logical theory that describes gen-
eral regularities in the knowledge graph. Then we use an effi-
cient form of abductive reasoning to find the triple that is, to-
gether with the theory, the best explanation for the given pre-
diction. The explanation is used as the triple that we delete or
modify in the context of adversarial attacks. As we measure
the quality of the explanation by its effectiveness in this con-
text, we call it an adversarial explanation. We find that our
method is competitive to state-of-the-art attacks while only
requiring access to the training data.

The most important contributions of the work are summa-
rized in the following. (1) We propose a novel method for
constructing adversarial attacks against KGE by using abduc-
tive reasoning. Contrary to prior work, our method does not
require access to the model architecture, the embeddings, or
the loss function. (2) We propose a revised evaluation proto-
col after identifying interpretation issues in regard to attack
quality in the most recent protocol used in [Bhardwaj et al.,
2021]. (3) We conduct extensive experiments under the new
protocol and present reliable results including our method and
the current state-of-the-art approaches. (4) We demonstrate
that our method does not only identify an influential triple
but also yields a useful symbolic explanation of the underly-
ing statistical regularities.1

2 Preliminaries
2.1 Knowledge Graph Completion
A knowledge graph G is a set of triples G ⊆ E × R × E
where E denotes a set of entities and R denotes a set of rela-
tions. The data structure can also be understood as a directed
graph where each node refers to an entity and each edge is
labeled by a relation. A triple (s, r, o) represents the fact that
the subject s is in r-relation to o. From a logical point of

1Code and resources are available at:
https://web.informatik.uni-mannheim.de/AnyBURL
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view, an entity corresponds to a constant, a relation to a bi-
nary predicate, and a triple in the graph corresponds to an
atomic fact r(s, o) that resulted from grounding the binary
predicate r with the constants s and o.

The collection of facts expresses our knowledge about a
certain domain. This knowledge is in most cases incomplete.
This means there exists a set of triples G∗ ⊆ E × R × E
with G∗ ∩G = ∅ describing correct but unknown triples and
the field of KGC is concerned with finding these facts. While
it is possible to deduce new relevant knowledge by looking
at external resources, the majority of the proposed methods
focus on the specific problem to use only the data already
encoded in G.

The standard technique to evaluate these methods is based
on the idea to ask for a correct candidate of an incomplete
triple (s, r, ?) or (?, r, o). Possible answers to these queries
form a candidate ranking. The common metrics hits@k or
MRR (mean rank reciprocal) are based on the position of
the correct candidate within the ranking. Datasets are usu-
ally split into training, validation and test sets where evalu-
ation takes place by forming queries as described above for
all the triples in the test set. Commonly, filtered variants of
the evaluation metrics are presented in the experimental re-
sults where the known triples in the data are used to remove
all known other true answers from a candidate ranking. We
will later see that using an appropriate filter technique is, es-
pecially with respect to problem of measuring attack quality,
important to get a realistic impression of the final results.

2.2 Sub-Symbolic and Symbolic KGC
KGE models or sub-symbolic methods represent the enti-
ties and relations of G in a low dimensional vector space.
They are characterised by a scoring function, which out-
puts real-valued confidences for individual facts, and a train-
ing method. A vast amount of research in the KGC do-
main is centered around KGE models and on how to train
their embeddings. The DistMult [Yang et al., 2015] model
defines triple scores by a trilinear dot product and is ex-
tended by ComplEx [Trouillon et al., 2016] towards express-
ing non-symmetric relationships. A number of more compli-
cated specifications exists, for instance the scoring function
of ConvE [Dettmers et al., 2018] is based on convolutions.
An overview over differengt KGE models and their predic-
tive performance can be found in [Rossi et al., 2021].

While latent approaches dominate KGC, the problem can
also be solved with symbolic methods. An example of such
an approach is called AnyBURL [Meilicke et al., 2019], an
anytime algorithm for learning a large set of rules that cover a
substantial portion of the important regularities of the dataset.
Each rule has a confidence, formally defined in [Galárraga et
al., 2013], which is the number of correct predictions divided
by the number of all predictions of the rule.

Once a rule set Φ has been learned, AnyBURL checks for
a given query (s, r, ?) for each rule ϕ ∈ Φ if there is an o
such that a single application of ϕ allows to derive r(s, o).
If this is the case, o appears in the candidate ranking and its
score is defined as the confidence of the respective rule ϕ. If
several rules generate the same candidate, its confidence is,
in the standard setting of AnyBURL, the highest confidence

of the respective rules.

3 Problem Statement
In our definition of an adversarial attack we follow the frame-
work proposed in [Bhardwaj et al., 2021]. The idea of an
attack is to propose a minimal modification of a knowledge
graph, i.e., the training set, with a maximal negative effect on
the score of a correct prediction t = (st, rt, ot) that would be
ranked high without that modification. We call t in the fol-
lowing the target of the attack. There are two different types
of modifications, deleting triples or adding triples. We call the
first scenario an adversarial deletion and the second scenario
an adversarial addition. Throughout the work we also denote
the former the Del setting and the latter the Add setting.

We measure the impact of the attack by comparing the stan-
dard metrics MRR and hits@k before and after the attack. In
particular, we train a model with the original training set and
apply it on the test set. Then we select a small subset from
the test set for which the model achieved a good predictive
performance. This subset is our set of target triples.

As we focus on small perturbations, we restrict the notion
of an attack to the deletion or addition of a single triple, that
is, for each of the target triples we compute a deletion and
an addition triple. Then we remove the deletion set from the
training set (add the addition set to the training set) and train
the model again. We apply the retrained model to the com-
pletion tasks of the target set and measure the degradation of
MRR and hits@k. Note that this approach is based on a batch
mode where an attack of a target triple t might have an impact
on another target triple t′. If we restrict the target sets to be
relatively small, such dependencies will occur rarely or not
at all and can be neglected. Running a single experiment for
each single target triple would be infeasible.

To make our results comparable to the methods proposed
and evaluated in [Pezeshkpour et al., 2019; Bhardwaj et al.,
2021] we consider only attacks a = (sa, ra, oa) ∈ G on a
target triple t = (st, rt, ot) such that sa = st or sa = ot or
oa = st or oa = ot. In other words, the attack and target need
to have at least one entity in common.

In an attack scenario one can distinguish between white-
box and black-box methods. To our best knowledge, so far
only white-box methods have been proposed, see for example
[Pezeshkpour et al., 2019; Bhardwaj et al., 2021; Lawrence
et al., 2021]. These methods have full access to the model
that has been learned. This refers to two different aspects: (i)
the embeddings that have been learned are accessible and (ii)
the method that was used to learn these embeddings (e.g., the
scoring and loss functions) is known.

Black-box methods, on the other hand, do not have access
to (i) or (ii). These methods must be based on a generic con-
cept that explains how a triple or a set of triples results into
the prediction of t. Within this work, we propose a black-box
method based on abductive reasoning [Bylander et al., 1991],
which can be characterized as the search for an explanation
for t. When such an explanation, which is a set of triples, has
been found, the removal (or modification) of one of its mem-
bers should suppress the prediction of t or lower its position
in the ranking if there are several explanations.
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4 Related Work

The approach that we propose within this paper is focused
on the intersection of learning representations of KGE mod-
els and rule-based approaches. The combination of symbolic
and KGE models is studied in the literature from different
perspectives. [Guo et al., 2016; Guo et al., 2018] inject rules
as background knowledge into the training of the latent rep-
resentations and [Zhang et al., 2019b] propose an alternat-
ing training scheme. However, these works focus on iden-
tifying or exploiting differences between the approaches to
improve KGC performance whereas the presumption of this
work points towards their similarity. Indeed, a result in [Meil-
icke et al., 2021], who explore an ensemble model, suggests
similarities between the symbolic and sub-symbolic models.
In fact, the authors argue that the KGE models remain within
the language scope of the rule-based approach. This result in-
dicates that it might be possible to explain a prediction made
by a KGE model with the help of a rule-based approach.

Methods tailored towards understanding KGE or deep
learning based models in general are related to adversarial at-
tacks when they focus on searching for influential data points.
For example, [Hanawa et al., 2021] investigate relevance met-
rics for instance-based explanations, i.e., explaining model
predictions by similar training instances, and [Charpiat et al.,
2019] aim to express similarities from the neural network per-
spective. [Koh and Liang, 2017] apply influence functions in
the context of image classification to trace back model pre-
dictions towards individual training images. [Lawrence et
al., 2021] estimate individual influences of knowledge graph
facts by first tracking for every training instance the gradient-
based updates induced to its parameters. The influence of a
triple t′ on a target triple t is then estimated by the difference
of the original score of t and the score calculated in regard to
parameters where the accumulated updates induced by t′ are
subtracted (rolled back).

In the context of adversarial attacks, influential data points
are identified with the motivation to cause the most harm-
ful effect on a particular model prediction by perturbing the
data. [Pezeshkpour et al., 2019] study the robustness of KGE
models by defining adversarial modifications in the context
of KGC queries. The change in the triple score of an attack is
estimated by using a Taylor approximation and the attacking
triples are selected by a parameterized decoder that maps the
maximal change in scores vectors back to entities and rela-
tions in the embedding space. [Zhang et al., 2019a] investi-
gate data poisonous attacks against KGE models by defining
Direct attacks. An embedding shifting vector of a target triple
is defined as the negative gradient of the scoring function and
the attacking triples are selected by calculating a perturbation
benefit score based on this vector for every candidate triple.
The methods proposed in [Bhardwaj et al., 2021] represent
the current state-of-the-art and are used as the main compari-
son in our experimental section. The attack setting is based on
instance attribution methods and the main specifications are
based on selecting the attacking triples by computing simi-
larities to the target triples as in instance-based explanations
[Hanawa et al., 2021]. These similarities are either based on
the embeddings or the gradients of the loss functions with re-

spect to the candidate triples.
The aforementioned works propose white-box models

which require access to the KGE architecture, the embed-
dings, and optionally the loss functions when gradients are
computed whereas our method does not rely on any of these.
Please note that this also closely resembles a more realistic
scenario where an attacker might find an entry point into a
system for manipulating the data but is only vaguely informed
about the respective methods and protocols used.

5 Method

We propose a rule-based approach to solve the problem of
computing an adversarial attack without having any access
to the KGE model. It is based on the idea of abductive rea-
soning. Abductive reasoning [Mayer and Pirri, 1993] is con-
cerned with the problem of finding an explanation E for an
observation t given a theory Φ with Φ ̸|= t and Φ ̸|= ¬t such
that Φ ∪ E |= t and Φ ∪ E is consistent. An explanation E
is minimal if for each E ′ ⊂ E we have that Φ ∪ E ′ ̸|= t. We
refer to minimal explanations when mentioning explanations
in the following paragraph.

While abductive reasoning is in general intractable (NP-
hard) as argued in [Bylander et al., 1991], we propose a
method that is incomplete but allows to efficiently compute
a good explanation. In the following we present the required
definitions to employ the idea in settings where rules are as-
sociated with confidences and inference is not performed in a
model-theoretic notion of entailment. To that end, let t be the
target triple, let Φ be a set of rules that describe the regulari-
ties in the given knowledge graph G, and let E ⊆ G be a set of
triples. Finally, let minc(Ψ) refer to the minimal confidence
in a set of rules Ψ ⊆ Φ.

Definition 1 (Best explanation). E is a best explanation with
respect to |= iff there exists a Ψ ⊆ Φ with Ψ ∪ E |= t such
that for any other Ψ′ ⊆ Φ and E ′ ⊆ G with Ψ′ ∪ E ′ |= t we
have that minc(Ψ) ≥ minc(Ψ

′) .

The definition is motivated by the idea that the strength of the
explanation is determined by the weakest rule required to en-
tail the target, however, the best explanation is not necessarily
unique. Furthermore, as mentioned in Section 2.2, the appli-
cation of the rule set Φ performed by AnyBURL is based on
the one-time application of each rule:

Definition 2 (One-step entailment |=1). The triple t is one-
step entailed by Ψ ∪ E , written as Ψ ∪ E |=1 t, iff there
is a rule h ← b in Ψ for which a grounding exists where the
grounded rule body b is in E and the grounded head h is equal
to t.

Contrary to general entailment, multiple or recursive applica-
tions of the same rule are not considered. Nevertheless, from
Definition 2 it follows that Ψ ∪ E |= t if Ψ ∪ E |=1 t for
each E ⊆ G but the opposite direction does not hold.

In the procedure of our approach, we first have to learn a
rule set Φ which has to be computed only once for any attack
related to the same data set. We use AnyBURL and restrict it
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to only learn the following rule types:
h(X,Y )← r(X,Y ) (1)
h(X,Y )← r1(X,Z) ∧ r2(Z, Y ) (2)
h(X, e1) ← r(X, e2), (3)

where h, r, r1, and r2 denote relations, e1 and e2 refer to
entities (constants), and X,Y, Z to variables. Constants and
variables may appear at flipped positions. We only use these
short rules as the considerations in [Meilicke et al., 2021]
indicate that longer paths might not be well represented by
KGE models and are thus not helpful in explaining their be-
havior.

Given a target t = (st, rt, ot) predicted by a KGE model as
answer to a completion task (st, rt, ?) or (?, rt, ot), we check
for each rule ϕ ∈ Φ if it predicts t by grounding ϕ with re-
spect to the target, that is, we check if the rule body is true
after setting X = st and Y = ot. If the body is true, i.e.,
the respective triples exist in train, we say that the respective
rule fires. For rules of type (1) and (3) the variable binding
results in a completely grounded and unique rule body with
one triple and a simple look-up in the graph suffices to check
if the rule fires. For rules of type (2) we need to check addi-
tionally if there exists a grounding for Z such that b1(st, Z)
and b2(Z, ot) are true in G.

Let ϕ∗ be the rule with highest confidence in the set of rules
that fire. We set E to the triple of the unique body grounding
if ϕ∗ is of type (1) or (3) and we set E randomly to one body
grounding if ϕ∗ is of type (2). Therefore, E is a set of one
or two triples. By following this procedure we construct an
explanation E such that {ϕ∗} ∪ E |=1 t. Due to ϕ∗ ∈ Φ
we have Φ ∪ E |=1 t and due to the correctness of |=1 we
have also Φ ∪ E |= t. The explanation is based on the most
confident rule, therefore, for every other ϕ′ ̸= ϕ∗ ∈ Φ with
alternative explanation E ′ and {ϕ′} ∪ E ′ |=1 t we have that
minc({ϕ∗}) ≥ minc({ϕ′}). It follows that E is the best ex-
planation with respect to |=1. However, it is not guaranteed
to be the best explanation with respect to |= . In that sense
our approach can be understood as an efficient way of com-
puting a good explanation which might not always be the best
explanation.

In the delete setting we simply suppress the explanation
E by deleting the triple in E from the training set or we ran-
domly delete one when E contains two triples. Let (se, re, oe)
denote that triple in the following paragraph.

In the addition setting we add a perturbation of (se, re, oe)
to the training set by applying the following strategy. We
select an entity α by first randomly selecting a triple from
the graph and subsequently selecting the head or tail entity
from this triple with equal probability. From the two possi-
ble perturbations (α, re, oe) or (se, re, α), we choose the one
which is in the neighbourhood of the target triple sharing an
entity with the target. Assume (α, re, oe) is the chosen triple
in the neighbourhood of the target. We then check if there
exists any triple in the training set satisfying (α, re, x) with
x ∈ E where E is the set of all entities. If such a triple exists,
we repeat the whole process otherwise we add (α, re, oe) to
the training set. To summarize, we perturb the true explana-
tion for the target (the deletion triple) to a senseless statement
about one of the entities in the target.

Original No Attack Attack

MRR 1.0 0.756 0.619
h@1 1.0 0.605 0.475

Table 1: The degradation in MRR for ComplEx on FB15k-237 in the
Del setting when only following the existing protocol without actu-
ally performing an attack and without retraining (middle column).

Our general approach is based on the assumption that (1) the
latent representation of a KGE model implicitly encodes the
statistical regularities of the given knowledge graph and (2)
these regularities can be explicitly represented in terms of
symbolic rules. Thus, the rule with the highest confidence
capable of predicting the target also should point to a triple
which is influential for the KGE prediction.

6 Experiments
We present experimental details and results in the following
sections. Moreover, we argue that the existing evaluation pro-
tocol should be revisited by showing that the largest part of
the MRR degradation is caused by the protocol instead of the
attack. Therefore, we propose a new protocol, re-evaluate the
best performing specifications of the related work [Bhardwaj
et al., 2021] and compare them to our approach.

6.1 Experimental Settings
The general structure of our experiments follows the proce-
dure in [Bhardwaj et al., 2021]. A KGE model is trained and
a subset of target triples from the test set for which the model
achieved a high filtered MRR is obtained, the attack is per-
formed by a perturbation of the training data, and in the last
step the model is retrained on the perturbated training data
and an evaluation is performed on the target triples.

To have a fair comparison to existing literature, we base the
experiments and the comparison to related work on the pub-
lic implementation of [Bhardwaj et al., 2021] and we inherit
the respective settings. This also holds for the methods devel-
oped in [Zhang et al., 2019a]. In particular, 100 target triples
which had an MRR of 1 in both directions are randomly se-
lected from the test set. We encountered a substantial vari-
ance when running their code several times and therefore we
report averages over 5 runs.

We use the KGE models ComplEx [Trouillon et al., 2016],
DistMult [Yang et al., 2015] and ConvE [Dettmers et al.,
2018] and the same datasets as [Bhardwaj et al., 2021], i.e.,
we use the common benchmarks WN18RR and FB15k-237.
We compare against the best methods proposed in [Bhard-
waj et al., 2021]. That is, we include the feature-based and
gradient-based models in [Bhardwaj et al., 2021] and Direct
attack [Zhang et al., 2019a].

We integrated our own approach into the evaluation frame-
work provided by [Bhardwaj et al., 2021]. We have set the
time available for AnyBURL to learn the rule set to 100 sec-
onds. After that the computation of a single deletion and ad-
dition attack requires around 0.05 seconds. This is slightly
slower than the feature-based methods and faster than the
gradient-based methods in [Bhardwaj et al., 2021]. Further
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C O M P L E X D I S T M U L T C O N V E

Del Add Del Add Del Add
Approach h@1 MRR h@1 MRR h@1 MRR h@1 MRR h@1 MRR h@1 MRR

GC (cos) 0.193 0.273 0.789 0.887 0.152 0.237 0.794 0.894 0.122 0.174 0.854 0.927
GD (dot) 0.222 0.296 0.794 0.892 0.182 0.259 0.797 0.896 0.261 0.302 0.885 0.942
GL (l2) 0.208 0.284 0.803 0.894 0.175 0.250 0.796 0.895 0.129 0.175 0.831 0.931

Cos Metric 0.201 0.282 0.813 0.893 0.165 0.246 0.793 0.894 0.981 0.981 0.993 0.997
Dot Metric 0.915 0.928 0.927 0.958 0.904 0.917 0.928 0.963 0.934 0.937 0.966 0.983
l2 Metric 0.199 0.272 0.788 0.890 0.162 0.243 0.785 0.890 0.937 0.960 0.996 0.998

Direct 0.949 0.958 0.964 0.974 0.965 0.974 0.984 0.989 0.786 0.789 1.0 1.0
Rand 0.880 0.890 0.971 0.982 0.906 0.916 0.994 0.995 0.895 0.901 0.999 0.999
Rerun 0.972 0.981 0.976 0.983 0.988 0.992 0.991 0.993 0.995 0.998 0.998 0.999

Ours 0.197 0.278 0.760 0.874 0.167 0.244 0.757 0.876 0.123 0.175 0.758 0.878

Table 2: Results for WNRR. All results are averages over five runs. Lower is better. The original MRR is 1.0 in all specifications.

details about KGE training and the code for running all ex-
periments can be found in the supplementary material.

6.2 Evaluation Protocol
Unfortunately, the devil is in the detail in regard to ranking
based evaluation metrics involving filtering. We will demon-
strate why the existing evaluation protocol results into mis-
leading numbers and propose a revised version. Let T be the
set of target triples and let A be the set of attacking triples.

The existing protocol in [Bhardwaj et al., 2021] selects T
by searching for a subset of triples from the test set which
achieve a high filtered MRR in both directions. At this point,
the full original train, valid, and test splits are used for fil-
tering which is the standard procedure. The important aspect
is the definition of the filter set after the attack; we focus on
the deletion setting in the following. After selecting A, (1)
A is removed from the filter set and (2) likewise all the test
triples from the original test split which are not contained in
T are removed from the filter set. The impact of the attack
is then measured via the MRR calculated with the adjusted
filter set. Please note that (1) allows for a trivial baseline that
simply searches in the training set for a matching triple that
has a higher score than a target t and adds it to A. As it is
removed from the filter set, by construction, it will be ranked
higher than t eventually degrading the MRR. Furthermore,
(2) decreases the MRR by simply having a smaller filter set
after the attack. These two effects lead to a degradation of the
original MRR without a connection to any attacking scheme.
We demonstrate this in Table 1 where in the middle column
we apply the described protocol without actually performing
an attack, i.e., the model is not retrained on the perturbed data
after selecting A. Most of the degradation effect is caused by
the protocol and not by the attack.

In the new protocol, we maintain filtering in general as
it prevents model punishing when true candidates are ranked
better than the current query candidates. Therefore, in the
deletion setting we do not modify the filter set after training
the original model which keeps the MRR on its original value
when no attack is performed in contrast to Table 1. In the ad-
dition setting, we follow the same procedure but we addition-

ally augment the filter set with the triples in A. This is impor-
tant as otherwise models would be rewarded with overfitting
the data in A, ranking these triples higher than the triples in
T which would lead to a misleading MRR degradation during
test time.

6.3 Results
Table 2 and 3 show the results for WN18RR and FB15k-237,
respectively.2 The best (second best) results are marked in
bold (underlined). The first (second) part of the tables refers
to the gradient (feature)-based similarity metrics in [Bhard-
waj et al., 2021]. The third part contains Direct attack [Zhang
et al., 2019a], as well as a baseline which randomly removes
a triple from the neighbourhood of the target (Rand), and a
baseline that simply retrains the model without performing
an attack (Rerun).

None of the previous state-of-the-art attacks is clearly dom-
inant and when results are averaged over 5 runs and the re-
vised protocol is used, the differences between approaches
are smaller than reported in previous work. Our proposed
method generates in 17 from 24 settings at least the second
best result without having access to the respective model ar-
chitecture, embeddings, or the loss functions. We achieve
the strongest result for ConvE on WN18RR where the MRR
degradation is 7.3 (4.9) percentage points (PP) higher for
Hits@1 (MRR) compared to the second strongest method in
the Add setting. On the other hand, we achieve the weak-
est results for ConvE on FB15k-237 where the reported MRR
degradation is 2.9 PP lower than the best performing method.
Overall, our results are competitive to recent state-of-the-art.

Please also note the absolute results in both tables and in
particular the comparisons to the Rerun baseline. Although
this baseline achieves a weaker degradation than the attacks
in all cases, the differences are marginal in some settings on
the FB15k-237 dataset (Table 3). Contrary to previous work,

2The codebase of [Bhardwaj et al., 2021] contains an implemen-
tation for the GR method [Lawrence et al., 2021] which we exclude
in the final paper version in accordance with the GR authors who
pointed us towards potential mistakes in that implementation.
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C O M P L E X D I S T M U L T C O N V E

Del Add Del Add Del Add
Approach h@1 MRR h@1 MRR h@1 MRR h@1 MRR h@1 MRR h@1 MRR

GC (cos) 0.734 0.814 0.776 0.853 0.74 0.823 0.781 0.856 0.720 0.784 0.716 0.805
GD (dot) 0.739 0.818 0.776 0.849 0.74 0.817 0.776 0.848 0.750 0.802 0.703 0.793
GL (l2) 0.758 0.835 0.785 0.854 0.759 0.835 0.773 0.849 0.743 0.786 0.715 0.806

Cos Metric 0.747 0.829 0.789 0.859 0.730 0.828 0.764 0.845 0.768 0.789 0.714 0.804
Dot Metric 0.806 0.871 0.787 0.864 0.778 0.856 0.813 0.874 0.745 0.825 0.723 0.812
l2 Metric 0.739 0.825 0.772 0.845 0.743 0.827 0.738 0.828 0.682 0.777 0.719 0.808

Direct 0.738 0.822 0.793 0.859 0.754 0.833 0.782 0.853 0.753 0.806 0.679 0.779
Rand 0.810 0.873 0.806 0.863 0.796 0.869 0.800 0.870 0.755 0.818 0.695 0.788
Rerun 0.773 0.853 0.800 0.865 0.795 0.865 0.795 0.870 0.762 0.821 0.739 0.820

Ours 0.735 0.817 0.781 0.856 0.734 0.822 0.763 0.843 0.684 0.775 0.708 0.799

Table 3: Results for FB15k-237. All results are averages over five runs. Lower is better. The original MRR is 1.0 in all specifications.

we therefore conclude in this work that the efficacy of the
attack schemes is to a substantial part overshadowed by the
effect of re-training the models for this dataset. Remarkably,
this changes when looking at the WN18RR results (Table 2).
For instance, in the Del setting the Rerun baseline achieves
no degradation whereas the best attack schemes lead to MRR
values of around 0.12-0.2. This means that attack efficacy and
KGE robustness is highly dataset specific. We will use our
approach in the next section to provide an explanation why
the attacks have more influence on the WN18RR dataset.

6.4 Understanding the Explanation
In the following, we present two representative examples
from the FB15k-237 dataset and one from WN18RR. While
related work commonly interprets the attacking/influential
triple as a standalone explanation for the prediction (here the
target), a more complete view is provided when also regard-
ing the underlying theory as described in Section 5. In par-
ticular, we show the target ti, the explanation Ei, and the rule
ϕ∗
i with its confidence in brackets that led to the explanation.

(E1) t1: nationality(Sawashiro, Japan)
E1: born(Sawashiro, Tokyo), located(Tokyo, Japan)
ϕ∗
1: nationality(X, Y)← born(X,Z)∧ located(Z,Y) [0.76]

(E2) t2: nutrient(Cheese, Carbohydrate)
E2: nutrient(Milk, Carbohydrate)
ϕ∗
2: nutrient(Cheese, X)← nutrient(Milk, X) [0.86]

(E3) t3: relatedForm(breakable, break)
E3: relatedForm(break, breakable)
ϕ∗
3: relatedForm(X, Y)← relatedForm(Y, X) [0.92]

All explanations listed above are plausible explanations for
the targets, however, they might require us to perform an ad-
ditional abstraction step, for instance applying our external
knowledge about the connection of Milk and Cheese. Incor-
porating the rule that led to the explanation provides a more
complete and transparent view by helping us to understand
the explanation. Moreover, in complex domains, e.g. the
biomedical field, we might rely on the rules to support or ex-
tend our background knowledge.

The examples also help us to understand why attacks are
less influential on the FB15k-237 dataset and we will provide
an explicit explanation in the following.

Consider example (E1). In the case of Miyuki Sawashiro
there is also a triple which expresses that she is a Japanese
voice actor and one that expresses that she lives in Tokyo.
For both relations there are rules that allow the prediction
of the nationality. This means that the perturbation or re-
moval of the attacking triple will probably not be sufficient
as other relevant evidence for her nationality remains in the
data. We found these alternative explanations by performing
several deletion attacks in succession, while suppressing the
deleted triples of previous attacks. In FB15k-237 we could
find many examples where the target triples were backed by
multiple strong evidences.

Example (E3), on the other hand, is a typical example for
the targets of WN18RR. For the relation derivationalRelated-
Form there exist triples in the test set for which a correct pre-
diction can be trivially derived from the inverse triple. Fortu-
nately, the application of our approach helped us to discover
this phenomenon. Due to the evaluation protocol, which uses
only those triples as targets where the correct candidate is
ranked on #1 in both directions, many triples in the target set
can be explained by ϕ∗

3.

7 Conclusion
We presented a black-box method for adversarial attacks
against KGE models by using a special form of abductive rea-
soning. Experimental results showed that we achieve results
on par with current state-of-the-art. Our method produces an
explanation which is based on a human understandable rule
reflecting a regularity in the dataset. This is a clear advan-
tage over other methods. Our approach is applicable to any
KGE model out-of-the-box while the best performing attacks
in prior work have specifically been designed for the mod-
els ComplEx, ConveE, TransE and DistMult. For future re-
search, we plan to extend the experimental setting to more
sophisticated KGC architectures.
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