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Abstract
Federated learning (FL) aims to protect data pri-
vacy by enabling clients to build machine learning
models collaboratively without sharing their pri-
vate data. Recent works demonstrate that informa-
tion exchanged during FL is subject to gradient-
based privacy attacks and, consequently, a va-
riety of privacy-preserving methods have been
adopted to thwart such attacks. However, these
defensive methods either introduce orders of mag-
nitudes more computational and communication
overheads (e.g., with homomorphic encryption)
or incur substantial model performance losses in
terms of prediction accuracy (e.g., with differen-
tial privacy). In this work, we propose FEDCG,
a novel federated learning method that lever-
ages conditional generative adversarial networks
to achieve high-level privacy protection while
still maintaining competitive model performance.
FEDCG decomposes each client’s local network
into a private extractor and a public classifier and
keeps the extractor local to protect privacy. Instead
of exposing extractors, FEDCG shares clients’ gen-
erators with the server for aggregating clients’
shared knowledge aiming to enhance the perfor-
mance of each client’s local networks. Extensive
experiments demonstrate that FEDCG can achieve
competitive model performance compared with FL
baselines, and privacy analysis shows that FEDCG
has a high-level privacy-preserving capability.

1 Introduction
Deep neural networks (DNN) have achieved dramatic success
in many areas, including computer vision, natural language
processing, and recommendation systems. Their success
largely depends upon the availability of a wealthy amount
of training data. In many real-world applications, however,
training data is typically distributed across different organi-
zations, which are unwilling to share their data because of
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privacy and regulation concerns directly. To alleviate these
concerns, federated learning (FL) [McMahan et al., 2017] is
proposed to enable multiple clients to collaboratively build
DNN models without sharing clients’ private data.

However, recent works have empirically demonstrated that
the classic federated averaging method (FedAvg [McMahan
et al., 2017]) and its variants (e.g., FedProx [Li et al., 2020])
are vulnerable to gradient-based privacy attacks such as the
deep leakage from gradients (DLG) [Zhu and Han, 2020],
which is able to reconstruct the original data of clients from
publicly shared gradients and parameters. Varieties of tech-
nologies have been leveraged to further improve the pri-
vacy of FL, the most popular ones are homomorphic en-
cryption (HE) [Gentry and others, 2009] and differential
privacy (DP) [Dwork et al., 2014]. HE provides a high-
level security guarantee by encrypting exchanged information
among clients. Nonetheless, its extremely high computation
and communication cost make it unsuitable to DNN models.
While DP imposes a low complexity on FL, it causes pre-
cision loss and still suffers from data recovery attacks. To
prevent data leakage and still enjoy the benefits of FL, FED-
SPLIT [Gu et al., 2021] combining split learning [Gupta and
Raskar, 2018] and FL proposes to split a client’s network into
private and public models, and protect privacy by hiding pri-
vate model from the server. However, FEDSPLIT experiences
a non-negligible performance drop because the private mod-
els are not engaged in the FL.

In this work, we propose FEDCG, a novel federated learn-
ing method that leverages conditional generative adversarial
networks [Mirza and Osindero, 2014] to achieve high-level
privacy protection resisting DLG attack while still maintain-
ing competitive model performance compared with baseline
FL methods. More specifically, FEDCG decomposes each
client’s local network into a private extractor and a public
classifier, and keeps the extractor local to protect privacy. The
novel part of FEDCG is that FEDCG shares clients’ genera-
tors in the place of extractors with the server for aggregating
clients’ shared knowledge aiming to enhance model perfor-
mance. This strategy has two immediate advantages. First,
the possibility of clients’ data leakage is significantly reduced
because no model that directly contacts with original data
is exposed, as compared to FL methods in which the server
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has full access to clients’ local networks (e.g., FEDAVG and
FEDPROX). Second, the server can aggregate clients’ gener-
ators and classifiers using knowledge distillation [Hinton et
al., 2015] without accessing any public data.

The main contributions of this work are:

• To the best of our knowledge, this work is the first
attempt to integrate cGAN into FL aiming to protect
clients’ data privacy while enabling clients to have com-
petitive model performance.

• Extensive experiments demonstrate that FEDCG can
achieve competitive performance and provide privacy
analysis to prove that FEDCG is superior in privacy pro-
tection compared with baseline FL methods.

2 Related Work
2.1 Federated Learning
Federated learning (FL) is a distributed machine learning
paradigm that enables clients (devices or organizations) to
train a machine learning model collaboratively without ex-
posing clients’ data. The concept of FL was first proposed
by [McMahan et al., 2017]. Further, many serious challenges
emerge with the development of FL. Particularly, the ”naked”
FL methods without any privacy protection mechanism are
proven to be vulnerable to data recovery attacks such as deep
leakage [Zhu and Han, 2020] and model inversion [Fredrik-
son et al., 2015]. Therefore, a wealth of technologies have
been proposed to improve the privacy of FL. The most pop-
ular ones are homomorphic encryption (HE) and differen-
tial privacy (DP). However, HE is extremely computation-
ally expensive, while DP suffers from non-negligible preci-
sion loss. Another school of FL [Gupta and Raskar, 2018;
Gu et al., 2021] tries to strike a balance between privacy and
efficiency by splitting a neural network into private and public
models and sharing only the public one.

2.2 DLG in Federated Learning
Federated learning is proposed to protect data privacy by
keeping private data localized and sharing only model gra-
dients or parameters. However, recent research on Deep
Leakage from Gradients (DLG) demonstrates [Zhu and Han,
2020] that shared gradients can actually leak private train-
ing data. Particularly, DLG can achieve pixel-wise level data
recovery without any assistance information. The follow-up
work [Geiping et al., 2020] further extends DLG to more re-
alistic settings where gradients are averaged over several it-
erations or several images and shows that users’ privacy is
not protected in these settings. GRNN [Ren et al., 2021]
improves DLG by recovering fake data and labels through
a generative model instead of regressing them directly from
random initialization.

2.3 GAN In Federated Learning
Recent research works that utilize GAN in the FL setting fo-
cus mainly on two lines of works: One is leveraging GAN to
perform data recovery attacks. [Hitaj et al., 2017] assumes
a malicious client that utilizes the shared model as the dis-
criminator to train the generator in a GAN. Then, the trained

generator is used to mimic the training samples of the vic-
tim client. Another is to train high-quality GAN across dis-
tributed data sources under privacy, efficiency, or heterogene-
ity constraints. MD-GAN [Hardy et al., 2019] proposes a
system that the server hosts the generator while each client
hosts a discriminator. The discriminators communicate with
each other in a peer-to-peer fashion for improving compu-
tational efficiency. FedGAN [Rasouli et al., 2020] trains a
GAN across Non-IID data sources in a communication effi-
cient way, but it may produce biased data.

3 Proposed Method
3.1 Problem Formulation
In this work, we consider typical federated learning (FL) set-
ting that includes a central server and N clients holding pri-
vate datasets {X1,X2, ...,Xn}. These private datasets share
the same feature space but have different sample spaces.

Each client i has a classification network parameterized by
θEi,Ci

:= [θEi
; θCi

] consists of a feature extractor Ei : Xi →
Rd parameterized by θEi

, and a classifier Ci : Rd → Rc pa-
rameterized by θCi

, where d is the feature dimension and c is
the number of classes. For protecting privacy and maintaining
competitive performance, each client is provided with a con-
ditional GAN (cGAN) consisting of a generator Gi : Z →
Rd parameterized by θGi , and a discriminator Di : Rd → I
parameterized by θDi

, where Z is the Gaussian distribution
and I indicates a single scalar in the range of [0, 1]. The
training procedure of the cGAN is performed locally aiming
to train the generator Gi to approximate the extractor Ei such
that Gi(z, y) captures the distribution of features extracted by
Ei(x|y).

As illustrated in Figure 1, the workflow of FEDCG goes
as follows: in each FL communication round, each client i
uploads its Gi and Ci to the server once the local training
is completed while keeps the Ei and Di local to strengthen
privacy protection. Then, the server applies knowledge dis-
tillation to build a global generator Gg and a global classifier
Cg . Next, clients download Gg and Cg to replace their corre-
sponding local models and start the next training iteration.

In our FEDCG, clients collaboratively train the global gen-
erator and classifier with the help of the central server, while

Figure 1: Overview of FEDCG.
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each client leverages the global generator and global classi-
fier to build a personalized local classification network that
can perform well on its local test dataset. We will elaborate
on this in the following two sections.

3.2 Two-stage Client Update
The client’s local training procedure involves two stages:
classification network update and generative network update.
Figure 2 illustrates the two stages while Algorithm 1 de-
scribes the detailed procedure.

In the classification network update stage (Algo 1, lines 3-
9), each client i optimizes its extractor θEi

and classifier θCi

by minimizing the classification loss:

Lcls = Ex,y∼Xi
Ω
(
Ci(Ei(x|y; θEi

); θCi
), y

)
, (1)

where Ω is cross-entropy function. In addition, client i also
wants to integrate the shared knowledge embedded in the
global generator (aggregated in the previous round) into its
local extractor. To this end, it freezes the global generator
θGg and optimizes its local extractor θEi by minimizing the
mean-square-error loss as follows:

Ldist = Ex,y∼Xi
Ez∼Z ||Ei(x|y; θEi

)−Gg(z, y; θGg
)||2.

(2)
Then, we have the task loss Ltask, which is the combina-

tion of Lcls and Ldist, and is formalized by:

Ltask = Lcls + γ Ldist, (3)

where the γ is a non-negative hyperparameter that adjusts the
balance between the two loss terms. In this work, γ gradually
increases from 0 to 1 as the global generator becomes more
accurate in producing feature representations during training.

In the generative network update stage (Algo 1, lines 10-
18), each client i wants to approximate its local generator’s
output to the feature representations extracted by its local ex-
tractor. To this end, it freezes the parameters θEi

of extrac-
tor Ei and conducts a cGAN training procedure to train the
generator. More specifically, it samples a mini-batch of train-
ing data (x, y) and feeds x to the Ei to obtain the ”ground-
truth” feature representations h. Then, it randomly generates
Gaussian noises z with the same batch size and feeds (z, y)
to generator Gi to generate estimated feature representations
ĥ. Next, it feeds h and ĥ to discriminator Di to calculate
discriminator loss Ldisc and generator loss Lgen according to

Figure 2: Two-stage client update. (a) Classification network up-
date. (b) Generative network update.

Algorithm 1 Two-stage Client Update

Input: clients’ datasets {Xi}ni=1; clients’ extrac-
tors, classifiers, generators and discriminators:
{Ei(·; θEi

), Ci(·; θCi
), Gi(·; θGi

), Di(·; θDi
)}ni=1;

global generator {Gg(·; θGg
) and global classifier

Cg(·; θCg
}); learning rate η1, η2; local training epoch T

1: Clients receive θGg
and θCg

from the server.
2: for each client i = 1, ..., N in parallel do
3: θCi

← θCg
;

4: for t ∈ {1, ..., T} do
5: for all x, y ∈ Xi do
6: sample z from N(0, 1)
7: θEi,Ci ← θEi,Ci − η1∇θEi,Ci

Ltask(x, y, z)
8: end for
9: end for

10: θGi
← θGg

;
11: for t ∈ {1, ..., T} do
12: for all x, y ∈ Xi do
13: sample z from N(0, 1)
14: θDi ← θDi − η2∇θDi

Ldisc(x, y, z)

15: θGi
← θGi

− η2∇θGi
Lgen(y, z)

16: end for
17: end for
18: end for each
19: Client i sends θGi

and θCi
to server.

(4), and alternatively minimize the two losses to optimize the
generator θGi

and discriminator θDi
.

Ldisc = Ex,y∼Xi
Ez∼Z

[
log (1−Di(Ei(x|y; θEi

); θDi
))

+ logDi(Gi(z, y; θGi); θDi)
]
,

Lgen = Ex,y∼XiEz∼Z log (1−Di(Gi(z, y; θGi); θDi)).
(4)

Once the local training is completed, each client i sends its
generator θGi

and classifier θCi
to the server for aggregation.

Figure 3: Server aggregation. The server generates Gaussian noise
z and class label y as the inputs of clients’ {Gi}ni=1 and global Gg ,
and it optimizes θCg and θCg by minimizing the KL divergence be-
tween the distribution ensembled from {Ci}ni=1 and the one out-
putted from Cg .
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Algorithm 2 Server Aggregation

Input: size of data set |Xi|ni=1; clients’ generators and
classifiers {Gi(·; θGi), Ci(·; θCi)}

n
i=1 ; learning rate η3;

training iteration T , sample batch size B.
1: Server receives {θGi

}ni=1 and {θCi
}ni=1 from all clients.

2: {θGg , θCg} =
∑n

i=1
|Xi|∑n
i=1 |Xi|{θGi , θCi}

3: for t ∈ {1, ..., T} do
4: Sample (z, y), where z ∼ N(0, 1) and y ∼ U(0, c).
5: {θGg

, θCg
} ← {θGg

, θCg
} − η3∇θGg,Cg

LKL(y, z)
6: end for
7: Server sends θGg

and θCg
to all clients.

3.3 Server Aggregation
The server utilizes knowledge distillation (KD) [Lin et al.,
2020] to perform the aggregation. One major advantage of
FEDCG over existing KD methods in FL is that FEDCG does
not require the server to access any public data in order to
perform distillation.

Figure 3 illustrates the server aggregation while Algorithm
2 describes the detailed procedure. When the server re-
ceives generators {Gi}ni=1 and classifiers {Ci}ni=1 uploaded
by clients, it initializes parameters of the global generator θGg

and global classifier θCg
by weighted averaging {θGi

}ni=1 and
{θCi
}ni=1. For distillation (Algo 2, lines 3-6), the server first

generates a mini-batch of training data (z, y), where labels y
are sampled from uniform distribution U(0, c) and noises z
are sampled from Gaussian distribution N(0, 1). Then, ac-
cording to (5) the server feeds (z, y) to all generators and cal-
culates class probability distributions Pc(y, z) and Ps(y, z),
the former is ensembled from clients’ classifiers while the lat-
ter is from the global classifier. Next, the server optimizes the
global classifier θCg and generator θGg by minimizing the KL
divergence between two distributions, according to (6).

Pc(y, z) = σ
( n∑
i=1

|Xi|∑n
i=1 |Xi|

Ci(Gi(y, z; θGi
); θCi

)
)
,

Ps(y, z) = σ
(
Cg(Gg(y, z; θGg

); θCg
)
)
,

(5)

LKL = Ey∼UEz∼ZKL(Pc(y, z),Ps(y, z)). (6)

where | · | denotes the size of data set, KL indicates Kull-
back–Leibler divergence and σ is the softmax function. Once
the server aggregation is completed, the server dispatches the
global generator θGg

and global classifier θCg
to all clients.

3.4 Privacy Analysis
In the literature, there are a variety of data recovery methods,
among which DLG [Zhu and Han, 2020] is able to achieve
exact pixel-wise level data revealing. In this work, we con-
sider the semi-honest scenario where the server follows the
FL protocol but utilizes DLG to recover original data from
a victim client. The sizes of private data can be sent to the
server as hyperparameters as assumed in the conventional FL.
We evaluate the privacy-preserving capability of FEDCG by
comparing the quality of image data recovered in FEDCG,

FEDAVG and FEDSPLIT. (7) shows the DLG lossLdlg for the
semi-honest server recovering the real data of victim client i.

Ldlg = ||∇θLcls(xi)−∇θLcls(x̃)||2, (7)

where xi is the real data of victim client i while x̃ is the vari-
able to be trained to approximate xi by minimizing DLG
loss Ldlg , which is the distance between ∇θLcls(xi) and
∇θLcls(x̃). The former is observed gradients of Lcls (see
(1)) w.r.t. model parameters θ for the real data xi, while the
latter is estimated gradients for x̃. For FEDAVG, the server
knows the full network of client i, thus θ := θEi,Ci

. While
for FEDSPLIT, the server only knows the classifier, and thus
θ := θCi

. Although subsequent research works on DLG gen-
erally employs cosine similarity as the loss function, the im-
age reconstruction quality of MSE is more satisfactory for
LeNet networks [Geiping et al., 2020].

Similar to FEDSPLIT, FEDCG hides private extractors
from the server for protecting privacy. Nonetheless, FEDCG
shares clients’ generators with the server for aggregating
shared knowledge. Thus, FEDCG has auxiliary informa-
tion on extractors’ output distribution estimated by genera-
tors. We define the DLG loss for FEDCG as follows:

Ldlg
FEDCG = ||∇θCi

Lcls(xi)−∇θCi
Lcls(x̃)||2 + α

∑
c

(||mean(Ẽ(x̃)c)− µc||2 + ||var(Ẽ(x̃)c)− σc||2),
(8)

where Ẽ is the estimated extractor whose parameters are not
known by the server, and thus it is randomly initialized. The
second optimization term of Ldlg

FEDCG aligns the statistical in-
formation of features between the estimated extractor Ẽ of
the server and the shared generator of victim client Gi. µc

and σc are the mean and standard deviation on each channel
c of features generated by Gi. We will quantitatively mea-
sure privacy-preserving capabilities of FEDAVG, FEDSPLIT
and FEDCG according to (7) and (8) in the next section.

4 Experiments
In this section, we compare the performance of our pro-
posed FEDCG against FL baselines and evaluate the privacy-
preserving capability of FEDCG.

4.1 Experiment Settings
Model Architecture
LeNet5 [LeCun et al., 1998] is used as the backbone network
for image classification tasks in FL system. The first 2 con-
volutional layers of LeNet are regarded as private extractor,
while the latter 3 fully connected layers are regarded as pub-
lic classifier. Our CGAN architecture is a modified version of
DCGAN [Radford et al., 2015], in which the size and stride
of convolution kernels are adjusted to match the output di-
mensions of the extractor and generator.

Datasets
We evaluate model performance of clients on 5 image
datasets: FMNIST, CIFAR10, Digit5 [Peng et al., 2019],
Office-Caltech10 [Gong et al., 2012], and DomainNet [Peng
et al., 2019]. MNIST and CIFAR10 simulate the IID setting
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IID non-IID
Method FMNIST (4) CIFAR10 (4) CIFAR10 (8) Digit5 (4) Office (4) Domainnet (5)
LOCAL 79.66±0.55 40.90±0.92 40.65±0.84 83.09±0.42 60.61±0.78 48.33±0.27
FEDAVG 82.97±0.67 47.23±0.25 49.61±0.65 83.73±0.55 62.76±0.76 49.11±0.47
FEDPROX 83.61±0.64 49.19±0.89 50.76±0.26 83.92±0.85 62.99±1.07 49.32±0.53
FEDDF 83.20±0.57 47.88±0.62 50.43±0.49 84.48±0.28 * 49.21±0.42
FEDSPLIT 81.95±0.43 44.67±0.64 46.00±0.78 82.96±0.42 62.71±0.88 48.61±0.49
FEDGEN 81.66±0.46 44.98±0.49 45.57±0.59 82.55±0.65 62.70±1.05 47.86±0.64
FEDCG (ours) 83.81±0.28 47.52±0.68 49.15±0.48 84.82±0.40 67.34±0.83 49.90±0.18

Table 1: Comparison of FEDCG with baselines in terms of top-1 test accuracy. Results reported in bold are the best performance. * indicates
no results is measured. The number in the parentheses indicates the number of clients.

(a) FMNIST (b) CIFAR10

(c) Digit5 (d) Office (e) DomainNet

Figure 4: Accuracy gains achieved by FEDAVG, FEDPROX, FEDDF, FEDSPLIT, and FEDCG (red) over LOCAL of each client on all 5
datasets. The vertical axis is the performance difference in terms of accuracy (%). A positive (negative) gain means FL methods achieves
better (worse) than the LOCAL model.

(independent identically distributed). While Digit5, Office-
Caltech10, and DomainNet comprise data from multiple do-
mains, and thus they naturally form the Non-IID setting.
Digit5 is a collection of 5 benchmarks for digit recogni-
tion, namely MNIST, Synthetic Digits, MNIST-M, SVHN, and
USPS. Office-Caltech10 contains 10 Office Supplies from 4
domains: Amazon, DSLR, Webcam, and Caltech. DomainNet
comprises of 6 domains: Painting, Clipart, Infograph, Quick-
draw, Real and Sketch.

Baselines
We chose 5 FL baselines from two categories of FL methods.
The first category includes FEDAVG [McMahan et al., 2017],
FEDPROX [Li et al., 2020] and FEDDF [Lin et al., 2020], in

which clients share their full networks with the server. The
second one includes FEDSPLIT [Gu et al., 2021] and FED-
GEN [Zhu et al., 2021], in which clients share only their pub-
lic classifiers. FEDAVG is the most widely used FL method.
FEDPROX introduces a proximal term in the local objective
to regularize the local model training. FEDDF utilizes knowl-
edge distillation to aggregate local models on the server lever-
aging unlabeled public data. FEDSPLIT shares only the pub-
lic classifier of the local network to protect privacy. FEDGEN
employs knowledge distillation to train a global generator,
which in turn helps clients train their local networks. In this
work, we implement FEDGEN based on FEDSPLIT, in which
only the public classifiers of local networks are shared. We
also consider the client’s local network trained solely based
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Dataset Metric FEDAVG FEDAVG (0.001) FEDAVG (0.1) FEDSPLIT FEDCG

CIFAR10 Accuracy(%) 47.23±0.43 37.47±1.19 35.43±0.62 44.67±0.64 47.52±0.68
PSNR(dB) 24.14±0.22 20.30±0.27 6.81±0.11 6.23±0.02 8.99±0.05

DIGIT Accuracy(%) 83.73±0.55 68.55±1.45 64.34±1.47 82.96±0.42 84.82±0.40
PSNR(dB) 26.82±0.33 20.20±0.89 6.32±0.07 5.47±0.12 7.85±0.11

OFFICE Accuracy(%) 62.76±0.76 40.58±2.02 32.72±0.71 62.71±0.88 67.34±0.83
PSNR(dB) 23.14±0.24 18.78±0.08 6.38±0.07 5.61±0.10 7.57±0.11

Table 2: Comparison of FEDAVG, FEDSPLIT and FEDCG in terms of model performance and privacy-preserving capability. The numerical
number in the parentheses indicates the noise level σ2.

on local data as a baseline and denote it as LOCAL.

Configurations
We perform 100 global communication rounds and 20 local
epochs with a batch size of 16. All experiments use the Adam
optimizer with a learning rate of 3e-4 and a weight decay of
1e-4. For FEDPROX, we tried proximal term factor in the
range of {0.001, 0.01, 0.1, 1} and picked the best one. FED-
GEN, FEDDF and FEDCG perform 2000 iterations in the
server for model fusion with a batch size of 16.

We consider each domain as a client for Digit5, Office-
Caltech10 and DomainNet except that MNIST and Painting
are held out as distillation data for FEDDF. We consider 4-
and 8-client scenarios for CIFAR10 and consider a 4-client
scenario for FMNIST. For FMNIST, CIFAR10, and Digit5,
we randomly sample 2000 images for each client as the local
training set. For Office-Caltech10 and DomainNet, 50% of
the original data of each domain is used as the local training
set. We use validation and test datasets on clients to report
the best test accuracy over 5 different random seeds. We also
leverage diversity loss from [Mao et al., 2019] to improve the
stability of the generator.

4.2 Experiment Results
Performance Evaluation
We evaluate FEDCG’s performance by first comparing its
averaged clients’ accuracy with those of 6 baselines on 5
datasets for both IID and non-IID settings. Table 1 shows
that FEDCG achieves the best accuracy in 4 out of 6 scenar-
ios, demonstrating its competitive performance. Specifically,
FEDCG achieves the best accuracy in all 3 non-IID scenarios.
In particular, it outperforms the-next-best-performing FED-
PROX by 4.35% on Office. In IID scenarios, FEDAVG, FED-
PROX and FEDDF have an edge in that they aggregate full lo-
cal networks while there is no negative transfer effect caused
by data heterogeneity. As a result, they perform better than
FEDCG overall, on CIFAR10 particularly. However, they are
vulnerable to DLG attacks, discussed in the next section.

Because the goal of FEDCG is to improve the performance
of each client’s personalized local network validating on lo-
cal test data, we further compare the accuracy gains between
FEDCG and 5 FL baselines over the LOCAL. In IID sce-
narios, all FL methods outperform LOCAL on all clients by
large margins, as shown in Figures 4(a) and 4(b). Particu-
larly, FEDCG performs best on FMNIST(4) while FEDPROX
performs best on CIFAR10(8). In non-IID scenarios, while
no FL method can beat LOCAL on every client across all 3

non-IID datasets, FEDCG achieves the best result such that
it outperforms LOCAL on 12 out of 13 clients, as shown in
Figure 4(c), 4(d) and 4(e). FEDAVG, FEDPROX and FEDDF
are not excel in non-IID scenarios as they are in IID scenar-
ios because the average-based global model may be far from
client’s local optima [Li et al., 2021]. Besides, the distilla-
tion dataset leveraged by FEDDF is from a different domain
than those of clients, which may have negative impacts on the
performance of aggregated global model.

Privacy Evaluation
We calculate Peak Signal-to-Noise Ratio (PSNR) to measure
the similarity between original images and images recovered
from DLG. PSNR is an objective standard for image evalu-
ation, and it is defined as the logarithm of the ratio of the
squared maximum value of RGB image fluctuation over MSE
between two images. The higher the PSNR score, the higher
the similarity between the two images. We also apply dif-
ferential privacy (DP) to FEDAVG by adding Gaussian noises
to shared gradients. We experiment with two noise levels,
σ2 = 0.1 and σ2 = 0.001.

Table 2 compares FEDCG with FEDSPLIT and FEDAVG
in terms of model performance measured by accuracy and
privacy-preserving capability measured by PSNR between
the ground-truth image and the recovered one using DLG.
Compared to FEDAVG and FEDSPLIT, FEDCG achieves
competitive accuracies for all three datasets. However, FE-
DAVG has much higher risk of leaking data information (high
PSNR value). Although the data privacy could be better pro-
tected by introducing DP to FEDAVG, there is a significant
drop (over 20%) in the model performance. On the other
hand, FEDSPLIT and FEDCG effectively protect the data pri-
vacy (low PSNR value). While achieving similar privacy pro-
tection level, FEDCG demonstrates better model accuracies
than those of FEDSPLIT for all three datasets by at least 2%.

5 Conclusion
We propose FEDCG, a novel federated learning method that
leverages conditional GAN to protect data privacy while
maintaining competitive model performance. FEDCG de-
composes each client’s local network into a private extrac-
tor and a public classifier, and keeps the extractor local to
protect privacy. It shares clients’ generators with the server
to aggregate shared knowledge aiming to enhance the per-
formance of clients’ local networks. Experiments show that
FEDCG has a high-level privacy-preserving capability and
can achieve competitive model performance.
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