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Abstract

Recently, contrastive learning has shown great po-
tential in medical image segmentation. Due to the
lack of expert annotations, however, it is challeng-
ing to apply contrastive learning in semi-supervised
scenes. To solve this problem, we propose a
novel uncertainty-guided pixel contrastive learning
method for semi-supervised medical image seg-
mentation. Specifically, we construct an uncer-
tainty map for each unlabeled image and then re-
move the uncertainty region in the uncertainty map
to reduce the possibility of noise sampling. The
uncertainty map is determined by a well-designed
consistency learning mechanism, which generates
comprehensive predictions for unlabeled data by
encouraging consistent network outputs from two
different decoders. In addition, we suggest that the
effective global representations learned by an im-
age encoder should be equivariant to different ge-
ometric transformations. To this end, we construct
an equivariant contrastive loss to strengthen global
representation learning ability of the encoder. Ex-
tensive experiments conducted on popular medical
image benchmarks demonstrate that the proposed
method achieves better segmentation performance
than the state-of-the-art methods.

1 Introduction

Medical image segmentation plays an important role in
computer-aided diagnosis system. Supervised learning meth-
ods based on deep learning have achieved great performance
[Ronneberger et al., 2015; Cao et al., 2021; Li et al., 2021]
relying on a large number of labeled data. However, it is
difficult to obtain large-scale medical image annotations due
to the requirements of professional clinical knowledge and
time consumption on data collection and labeling. Semi-
supervised learning can leverage both labeled data and un-
labeled data, which greatly reduces the dependence on anno-
tations. Semi-supervised learning aims to explore the internal
information of unlabeled data to improve the performance of
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Figure 1: Workflow of uncertainty guidance. We aim to reduce
the possibility of noise sampling by removing uncertainty region in
the uncertainty map so as to ensure the effectiveness of contrastive
learning.

the model. Some popular semi-supervised learning strategies
include self-training using pseudo-labels [Qiao er al., 2018;
Chen et al., 2021al, self-ensembling [Tarvainen and Valpola,
2017; Yu et al., 2019], entropy minimization [Vu et al.,
20191, and consistency regularization [Laine and Aila, 2016;
QOuali et al., 2020]. The above-mentioned methods utilize un-
labeled data during training stage by constructing trusted la-
bels or forcing the prediction consistency when the input data
encounters disturbances. However, these methods make the
classification of each pixel independent, which ignores the
internal correlation between pixels (or features) of images.

In order to strengthen the connection between pixels, some
recent works have applied contrastive learning to segmenta-
tion tasks [Hu et al., 2021]. The methods of contrastive learn-
ing have achieved superior performance in the self-supervised
representation learning of natural images. The core idea of
contrastive learning is that the representations of similar sam-
ples should be alike, and the representations of different kinds
of samples should be different. How to define similar sam-
ples is the key in contrastive learning. Image-level contrastive
learning defines similar samples as different transformations
of the same image, and those from different images are de-
fined as dissimilarity. However, similar pixels are densely dis-
tributed in the segmentation task. So the definition of dissimi-
lar samples is not suitable for pixel-level contrastive learning.
To solve this problem, [Wang et al., 2021] uses segmentation
labels to construct contrast samples for supervised segmen-
tation tasks. For unlabeled data, [Chen et al., 2021b] uses
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the predicted pseudo labels to determine the sample category.
[Zhong et al., 2021] uses the spatial consistency of weakly
enhanced images to construct similar samples, and construct
dissimilar samples by a simple cross-image and pseudo-label
weighting heuristic. In fact, using pseudo-labels to construct
samples is likely to be inconsistent with the actual semantic
categories, which may lead to a noise sampling on contrastive
learning. In addition, pixel contrastive learning only estab-
lishes the association of local pixels, ignoring the learning of
global representation information.

In this paper, our objectives aim to 1) solve the noise sam-
pling problem of contrastive learning using pseudo-labels and
2) strengthen the global representation learning ability of the
encoder. To achieve these goals, we propose a contrastive
learning method based on uncertainty. Fig. 1 shows the core
idea of our method. For unlabeled data, we use the uncer-
tainty map to guide the region of pseudo-labels sampling and
reduce the number of wrong samples. Then the sample con-
trastive loss is calculated to optimize the network and reduce
the uncertainty area of predictions. To obtain a better uncer-
tainty map, we design a consistency learning strategy with
CNN decoder and Transformer decoder, which can obtain ac-
curate predictions from different views using the structural
differences between two decoders. In addition, segmentation
models should have the ability to identify geometric transfor-
mations. Base on this, we define an equivariant contrastive
loss to force the network to learn the identification informa-
tion of geometric transformations by adding a transformation
category prediction in the representation learning stage.

In summary, our contributions mainly include:

* We propose a novel uncertainty guided contrastive learn-
ing method, which can effectively alleviate noise sam-
pling from pseudo-labels of unlabeled data.

* A consistency learning strategy for heterogeneous de-
coders based on CNN and transformer is designed,
which can obtain reliable prediction results and uncer-
tainty map by consistency training on unlabeled data.

* We define an equivariant contrastive loss for global rep-
resentation learning, which equips the model with dis-
crimination ability to distinguish different geometric
transformations of images.

2 Related Work

2.1 Semi-supervised Medical Image Segmentation

Without the requirement of large-scale labeled data, semi-
supervised learning has attracted much attention in medical
image segmentation. Existing semi-supervised medical im-
age segmentation methods mainly involves in entropy min-
imization, pseudo label self-training, collaborative training
and consistency learning. Entropy minimization [Vu et al.,
2019] suggests that high-quality prediction results should
have a low entropy, and hence it conducts model learn-
ing by minimizing the information entropy of the prediction
probability distribution. Pseudo label self-training [Chen et
al., 2021a] performs class supervised learning by predict-
ing pseudo labels for the unlabeled data. Co-training [Qiao
et al., 2018] assumes that there are multiple decision views
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containing complementary information, and designs differ-
ent classifiers to learn different views to promote segmenta-
tion performance. Consistency learning [Verma et al., 2019;
Laine and Aila, 2016; Tarvainen and Valpola, 2017; Ouali et
al., 2020] makes an assumption that even if an image sample
encounters some disturbances, say input disturbance or model
disturbance, the prediction results from the sample should not
change. Motivated by such intuition, these methods conduct
model training by encouraging consistent prediction of un-
labeled disturbed samples. Inspired by collaborative train-
ing and consistency learning, we propose to characterize the
complementary information of data from different views, us-
ing the structural differences between CNN and transformer,
and apply consistency constraints to train the model.

2.2 Contrastive Learning

In image-level representation learning, contrastive learning
can make full use of unlabeled data to learn effective visual
representation, in which the core idea is to strengthen the dis-
crimination of the learned visual representation by narrowing
similar pairs (positive) and separating dissimilar pairs (neg-
ative) based on some similarity constraints. The key point
of image-level contrastive learning is how to construct con-
trastive samples. A feasible solution is proposed in [He et al.,
2020], which increases the number of contrastive samples by
introducing memory bank and momentum contrast.

Recently, some works [Chaitanya et al., 2020; Wang et al.,
2021; Zhong et al., 2021; Hu et al., 2021] have been proposed
to extend contrastive learning from image-level to pixel-level
for image segmentation. The main idea of pixel-level con-
trastive learning is to construct pixel sample pairs with the
help of segmentation labels. For unlabeled data, sample pairs
are constructed by using pseudo labels or spatial structure.
Nevertheless, these methods may encounter the problem of
noise sampling during the process of constructing sample
pairs. To alleviate this problem, we suggest using prediction
uncertainty to guide sample sampling and reduce the number
of noise samples. In addition, pixel-level contrastive learning
lacks the capture ability of global representation, which urges
us to impose a constraint of prior knowledge in representation
learning for segmentation task.

2.3 Uncertainty Estimation

In semi-supervised learning, uncertainty can be used to evalu-
ate the quality of model predictions for better use of unlabeled
data. The measure methods of estimating uncertainty mainly
include 1) using information entropy of the prediction proba-
bility distribution, 2)using the deviation of multiple predition
results of the same input under different disturbances [Yu er
al., 2019], and 3) calculating the variance of different predic-
tion results of the same input [Zheng and Yang, 2021]. How-
ever, these methods are time-consuming and lack of reliabil-
ity. In our method, we estimate the uncertainty by calculating
the entropy of the average probability distribution obtained
by different predictors to overcome these problems.

3 Methodology

Given a label dataset Dy,
an unlabeled dataset Dy =

{(zs,9:),i = 1,...,N} and
{zj,j = 1,...,M}, where



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Equivariant Contrastive Prediction Probability

Learnin
g / .
Transform .
Category Label Predictor
. . ..... . EnCOder ‘ Feature
0 1 C-1
Geometric Uncertainty Guided Pixel
Transform Contrastive Learning
!_ —
|
" 2 i
Labeled Unlabeled
All data === Labeled data Unlabeled data

. Consistency Learning

Decoder

l 7

Pseudo
Label

Uncertainty
Map

Patch
Embedding 14 sup 14 con
7
CNN
Decoder

Embedding

........... |
..... | ] Guidance @
: 1
1 11

Ground
Truth

Certainty

Embedded Features Label

Memory

Anchor sampling #-» Stop grad @ Mask uncertainty region

Figure 2: Overview of our method. Arrows of different colors represent the processing flows of different data. In particular, for unlabeled
data, the certainty labels are obtained by mask option using pseudo labels and uncertainty maps. For pixel contrastive learning, contrastive
anchors are selected by the certainty labels of unlabeled data and the ground truth of labeled data.

M > N, the images in Dy and Dy firstly go through a
geometric transformation and then feed into an encoder net-
work to extract multi-scale features. After that, these fea-
tures will be sent to the following three branches, including
consistency learning branch, uncertainty-guided contrastive
learning branch, and equivariant contrastive learning branch.
For the consistency learning branch, we propose a heteroge-
neous consistency network to predict the segmentation re-
sults, which is driven by a supervision loss £, and a con-
sistency 108S Lcon. £syup is calculated by ground truth of Dy,
and /., is calculated by prediction consistency of Dy. For
the uncertainty-guided constrastive learning branch, we build
and maintain a memory queue to preserve enough samples for
constrastive learning. The selection of samples in the mem-
ory queue depends on the labels of Dy, and certainty labels of
Dy . For the selected samples, we impose a pixel-level con-
trastive loss . to make the pixels of the same class close to
each other and the pixels of different classes far away from
each other. For the equivariant contrastive learning branch,
we perform geometric transformation category prediction on
all labeled and unlabeled data, and design an equivariant con-
trastive loss /. to force the encoder to be robust to geometric
transformation. For ease of understanding, Fig.2 gives an il-
lustration of the overall architecture and the training process
of our proposed method. In summary, the total objective of
our method is:

{= Zsup + /\tgcon + )\léc + )\2’66 (l)
In this paper, we set A\; = Ay = 0.1 and )\; is a temperature

parameter that increases from 0 to 0.01. The following shows
the above-mentioned three branches in details.

3.1 Consistency Learning Between Decoders

In the consistency learning branch, we design a simple yet ef-
fective network structure to achieve the following two goals:

1) using unlabeled data to promote the learning of segmen-
tation network, and 2) obtaining reliable uncertainty estima-
tion from network outputs. It is demonstrated that using co-
training strategy can obtain better segmentation performance,
of which the core idea is to make different classification pre-
dictions from different views and then regard the differences
of predictions as the measurement criterion of uncertainty es-
timation. Instead of using the same architecture that requires
adding some disturbances for co-training, inspired by [Luo et
al., 2021], we adopt a simple yet effective scheme that takes
advantage of the congenital differences between transformer
decoder and CNN decoder. Specifically, we construct a het-
erogeneous predictor to constrain the two decoders to gener-
ate consistent predictions. And then the entropy of the mean
prediction is used to estimate the uncertainty map.

Patch Embedding and Position Encoding. We choose
two different decoders fi(-) and f§(-) from Swin-UNet
and UNet. Through the encoder, we can obtain a set of
features{f;, = 0,...,3}. Before inputing into f5(-), we
need to reshape the feature f; € R¥:*WixCi into a sequence
of flattened patches z, € R” ?*Ci and embed them into a D-
dimensional space using a learnable linear projection E. To
preserve the spatial information, we add the absolute location
encoding to the embedded patches:

il i2 iP?
PE(z;) = [z, By By s2p ' Bl + Epos (2)
where E € R(P/*C)xD i the patch embedding projection,
and E,,s € RV*P denotes the absolute location encoding.

Consistency Learning. Given an input image, we can get
two predicted probability distributions p; and p. from two
decoders. For labeled data, we use ground thuth to calculate
the supervision segmentation loss:

gsup = ‘Cseg (Pe,y) + O“Cseg (pt,v) 3)
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1
£seg = i(EC'E + £Dice) €))

where Log, Lpice are the cross-entropy loss and dice loss,
and y is ground truth of labeled data. We use fg(-) as the
main predictor, so « is set to 0.4. In the inference stage, pre-
diction from CNN branch is the final result. For unlabeled
data, consistency loss is calculated as follows:

Econ = Edis (pcapt) (5)

where L4, is a distance measure between two output prob-
ability distributions. In this work, we choose to use mean
squared error (MSE) as a distance measure.

3.2 Uncertainty-Guided Contrastive Learning

Image segmentation task generally involves with cross en-
tropy loss for conducting pixel-level classification. However,
such loss makes the classification of each pixel independent
and hence ignores the relationship between the pixels. To
solve this problem, we design a pixel-level contrastive learn-
ing mechanism that classifies the pixels of the same category
(semantic label) as positive samples, and the pixels of dif-
ferent categories as negative samples. The relationship be-
tween pixels is established by reducing the distance between
positive samples and enlarging the distance between negative
samples in an embedding space. In order to effectively use
unlabeled data for pixel-level contrastive learning, we esti-
mate the uncertainty of unlabeled pixels and the pixels with a
higher certainty are selected as anchor points for contrastive
learning.

Mask Uncertainty Region. We choose the predictive en-
tropy as the metric to approximate the uncertainty. Specifi-
cally, we first calculate the average probability distribution of
the prediction results p = (p. + p¢)/2, and then calculate the
entropy for the probability distribution of each pixel in the
channel dimension. It can be summarized as:

u=—Ypelog(pe +e) 6)

where € is a very small constant to avoid singularity. We be-
lieve that the prediction with large entropy is uncertain in cat-
egory. When calculating the pseudo labels, those uncertainty
predictions are removed as a non-sampling region, and then
the determined pseudo labels are obtained:

yp = Argmazx(p)ju<pu @)

where H is a threshold to mask the uncertain labels, and v,
is the final certainty pseudo label.

Anchor Sampling. We use the labels of labeled images and
the certainty pseudo labels of unlabeled images as the basis
for the use of contrastive samples. Because the original im-
age resolution is too large, the cost of contrastive learning in
the original image size is expensive and the prototype vec-
tors of pixels contain less semantic information. Therefore,
we use contrastive learning in the feature space with low res-
olution. Firstly, the features extracted from the encoder will
be embedded into the D-dimensional space, where each D-
dimensional feature vector represents the prototype vector of
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the pixel. Then, the labels are downsampled to the same reso-
lution, the category is specified for each prototype vector, and
the vector in the uncertainty region is not sampled. We adopt
the strategy of random sampling with a fixed number of sam-
ples for each category. If the number of samples from same
category is small, we will sample anchors from other cate-
gories. The number of contrastive negative samples greatly
affects the performance of contrastive learning, but a large
number of negative samples will produce a lot of overhead. A
better solution is to use a fixed size external storage to store
the sampled samples and update the storage content with the
training. In our method, we set up a memory queue to store
the collected samples. In each iteration, the randomly se-
lected samples are used as anchors to calculate the contrastive
loss, and then they are updated to the memory queue.

Pixel Contrastive Loss. The prototype vectors and their
category of pixels are saved in the sample queue. We use the
popular InfoNCE [van den Oord ef al., 2018] loss function to
calculate the contrastive loss. In each iteration, we randomly
sample M anchors and calculate the contrastive loss for each
anchor. Then average the loss of all anchors as the overall
contrastive loss. The specific calculation is as follows:

. 1 ecos(vi,v:')/-r
== 2 log—is .
|Pi| wrer, ecos(vi,v)/T + Zvi_eN,- ecos(viv; ) /T
3
1
=17 ;/82 9)

where P; and IN; denote prototype vector’s collections of the
positive and negative samples for pixel i. v; is the prototype
vector of pixel 4, vj' is a positive prototype vector, v; is an
negative vector and 7 is a temperature hyper-parameter.

3.3 Equivariant Contrastive Loss

For conducting contrastive learning, some previous work con-
structs positive samples by different transformations of the
same image. However, some transformations do not accord
with the prior knowledge of segmentation tasks[Dangovski et
al., 2021], such as geometric transformation. In this paper, we
suggest that the effective feature representations required by
segmentation task should be equivariant (or discriminative) to
different geometric transformations.

Based on the above, we consider adding the equivariant
contrastive loss to the representation learning of the segmen-
tation model to learn the global information. Specifically,
we define the segmentation model as encoder-decoder form:
f(xi) = fy(fo(x;)). For an image x;, when it passes through
some geometric transformation G(-), the corresponding seg-
mentation result will also change, that is:

f(G(z;)) = G(f(2)) (10)
Then, we can deduce:
fo(G(4)) # fo(z:) an

Therefore, we can explicitly strengthen the learning of this
geometric transformation information in fy(-). We add a clas-
sification predictor py(-) to predict the discrimination results
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Method _ACDC|x, |65 ACDC|x,|-136 _ISIC|x =01 _ISIC)x,—1s1
Dice[%)] | Jaccard][%] | Dice[%] [ Jaccard[%)] | Dice[%] | Jaccard[%] | Dice][%)] | Jaccard[%]

- 65.32 51.12 82.09 70.79 67.02 53.49 68.91 56.69
MT 74.20 60.53 85.75 75.69 69.87 57.19 70.64 58.63
UA-MT 74.24 60.68 83.56 72.94 69.33 56.20 75.67 63.42
EM 76.70 63.40 83.39 72.23 66.11 51.89 71.10 58.54
DCT 73.28 60.16 82.76 71.40 70.09 57.13 75.98 63.68
CCT 74.39 61.28 83.94 72.68 69.53 56.94 73.42 62.13
CPS 74.76 61.40 85.06 74.67 71.87 57.35 78.09 65.74
Ours 80.05 67.66 88.11 79.15 72.67 57.85 79.48 67.25

Table 1: The comparison of different mothods on ACDC dataset and ISIC dataset on different semi-supervised settings. The first row

represents the baseline results of supervised training only using labeled data. | X 1| represents the number of labeled images.

leon Lo 3uP gpsevdo g | Dice[%)] Jaccard[%)]
82.09 70.79
v 84.34 73.56
v 85.06 74.76
v v 86.05 76.21
v v 86.50 76.73
v vV v 87.09 77.61
v v v | 88.11 79.15

Table 2: Quantitative results of ablation study on ACDC dataset.

of geometric transformation. Our equivariant contrastive loss
function is as follows:
=
le=5 ZO Lop(ps(fo(G'(@) ) (12)
where the geometric transformation G*(-) represents the four-
fold rotation in this paper, so C' = 4.

4 Experiments

4.1 Experimental Setup

Datasets and Metircs. We validate the proposed method
on two public datasets:

* ACDC dataset [Bernard et al., 2018] contains 200 an-
notated short-axis cardiac MR-cine images from 100 pa-
tients. We divide the dataset in a ratio of 7:3 to obtain the
training set and verification set. According to different
semi-supervised experiment settings, 136 images from 7
patients and 68 images from 3 patients in the training set
are labeled respectively. See SSL4MIS' for details.

» ISIC dataset [Codella et al., 2018] includes 2594 der-

moscopy images, and we use 1815 images for training

and 779 images for validation. In training set, 5% (91)

and 10% (181) images are labeled for different semi-
supervised experiment settings.

All images in both datasets are resized to 224 x 224 to meet

the input requirements of the proposed method. We use stan-

dard data augmentation to enlarge training set, including ran-

dom cropping, random rotating, random flipping and color

"https://github.com/HiLab-git/SSL4AMIS
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. Metrics
Feature | Resolution Dice[%] | Jaccard[%]
Conv; 56 X 56 87.15 77.64
Conuvg 28 x 28 88.11 78.95
Conwvs 14 x 14 87.63 78.46
Conwvy Tx7 86.67 76.32

Table 3: The comparison results of pixel contrastive learning on the
features of different resolutions using the proposed method.

jittering. In our method, the category of transformation will
be recorded to calculate the £.. In order to evaluate the per-
formance of our method, we select Dice Coefficient (denoted
as Dice) and Jaccard Index (denoted as Jaccard) as evaluation
metrics.

Implementation Details. For fair comparisons, all the
methods used in the experiments choose UNet as the bench-
mark architecture for image segmentation. We use ResNet-50
to replace the encoder part of UNet and initialize its param-
eters with the weights pre-trained on ImageNet. We adopt
SGD as an optimizer with a weight decay of 0.0005 and a mo-
mentum of 0.9. The initial learning rate is set to 0.01, which
will reduce to 0.001 by polynomial scheduler strategy during
training. We implement the methods using PyTorch library
and train them on a NVIDIA RTX 2080Ti GPU. The batch
size is set to 16, where 8 images are labeled. All methods
perform 6000 iterations during training.

4.2 Quantitative Comparison

Compared Methods. We compare our method with some
recent semi-supervised segmentation methods including:
Meat-Teacher (MT) [Tarvainen and Valpola, 20171, Entropy
Minimization (EM) [Vu er al., 2019], Uncertainty-Aware
Mean Teacher (UA-MT) [Yu et al., 2019], Deep Co-training
(DCT) [Qiao er al., 2018], Cross-Consistency Training (CCT)
[Ouali et al., 2020] and Cross Pseudo Supervision (CPS)
[Chen et al., 2021al. For all comparison methods, we adopt
the official hyper-parameter settings.

Main Results. Table 1 shows our quantitative comparative
experimental results on ACDC and ISIC datasets. The first
row represents the performance of the baseline model trained
with labeled data only. Compared with the baseline model,
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(b) CPS (¢) Our Method

Image & GT

Figure 3: Visual comparison of the segmentation results produced
by different methods on ACDC dataset. The proposed method pre-
dicts the best results.

our method can effectively use unlabeled data to achieve
great performance. In different datasets and different semi-
supervised settings, our proposed method obviously outper-
forms the comparison methods. Especially, when only 68 la-
beled images are used in ACDC dataset, our method improves
Dice by more than 3% compared with the other methods.

Visual Comparisons. Fig.3 shows some visual compar-
isons between different methods when using 136 labeled im-
ages on ACDC dataset. We chose two methods MT and CPS
which performed better in the experiment for comparison.
Compared with MT and CPS, our method has better predic-
tion results and less false predictions.

4.3 Ablation Study

Table 2 shows the results of ablation experiments of our
method on ACDC dataset with 136 labeled images. We
choose the UNet model that only uses labeled data for su-
pervised training as the baseline (first row), and gradually in-
crease the proposed components to prove their effectiveness.
Besides, we further add two additional comparison settings,
including 1) using only labeled data for contrastive learn-
ing (¢5"?) and 2) using pseudo labels for contrastive learn-
ing (#P*¢"1°) to demonstrate the effectiveness of our proposed
uncertainty-guided contrastive learning method. The experi-
mental results show that each part of our proposed method
has a positive impact. The introduction of contrastive learn-
ing effectively establishes the relationship between pixels and
improves the performance of the model. Compared with the
pseudo label scheme, the proposed method makes full use of
unlabeled data and hence brings significant performance im-
provements (Dice increases by about 1%).

Contrast on Different Feature Scales. The resolution of
different features has an important impact on the selection of
contrastive learning samples. To find an appropriate feature
scale, we explore the effect of different scales for contrastive
learning on the ACDC dataset. Table 3 shows the results of
contrastive learning under four different feature scales. As we
can see, the performance of contrastive learning under low
resolution (C'onwvy) is poor, which might be caused by the se-
mantic inconsistency from label downsampling. The higher
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Figure 4: Visualization results of the pixel features obtained by dif-
ferent methods on ACDC dataset. The dimension of pixel features

is reduced by t-SNE algorithm. Colors represent pixel categories.

resolution feature (C'onvy) also brings performance degrada-
tion. The potential reason is that the high-resolution pixel
vectors contain less semantic information. Therefore, we be-
lieve that using middle-level features for contrastive learning
can bring better segmentation performance.

Visualization of Features. In Fig.4, we use t-SNE algo-
rithm to reduce the dimension of pixel features for visualiza-
tion. From left to right, they are the results of training without
contrastive learning, contrastive learning using pseudo labels
and the proposed method. Compared with the first one, the
proposed method can equip the pixel representations with bet-
ter intra-class compactness and inter-class separability, which
indicates the effectiveness of contrastive learning for segmen-
tation task. Compared with the second one, our method has
better aggregation results, the potential reason of which is that
our method can reduce the possibility of noise sampling.

5 Conclusion

We propose an uncertainty-guided pixel contrastive learn-
ing method for semi-supervised medical image segmentation,
which uses uncertainty to solve the noise sampling problem
of unlabeled data in pixel contrastive learning. To estimate
uncertainty, a heterogeneous consistency learning strategy
is elaborately designed based on the decoders of CNN and
Transformer. In addition, we construct an equivariant con-
trastive loss to strengthen the global representation learning
ability of our model. Extensive experiments demonstrate that
our method can achieve the state-of-the-art performance.
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