Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Learning with Selective Forgetting

Takashi Shibata, Go Irie, Daiki Ikami and Yu Mitsuzumi
NTT Communication Science Laboratories, NTT Corporation, Japan

{t.shibata, goirie} @ieee.org, {daiki.ikami.ef, yu.mitsuzumi.ae } @hco.ntt.co.jp

Abstract

Lifelong learning aims to train a highly expressive
model for a new task while retaining all knowl-
edge for previous tasks. However, many practical
scenarios do not always require the system to re-
member all of the past knowledge. Instead, ethical
considerations call for selective and proactive for-
getting of undesirable knowledge in order to pre-
vent privacy issues and data leakage. In this paper,
we propose a new framework for lifelong learning,
called Learning with Selective Forgetting, which is
to update a model for the new task with forget-
ting only the selected classes of the previous tasks
while maintaining the rest. The key is to introduce
a class-specific synthetic signal called mnemonic
code. The codes are “watermarked” on all the
training samples of the corresponding classes when
the model is updated for a new task. This en-
ables us to forget arbitrary classes later by only us-
ing the mnemonic codes without using the original
data. Experiments on common benchmark datasets
demonstrate the remarkable superiority of the pro-
posed method over several existing methods.

1 Introduction

Deep learning often suffers from a phenomenon called catas-
trophic forgetting. When a network is updated for a new task,
its performance on previous tasks dramatically degrades. To
mitigate this harmful effect, lifelong learning (or continual
learning) has been explored, in which the network is updated
to adapt to a new task (e.g., a new set of classes and a new in-
stance) without forgetting the results of past learning. Major
methods can be categorized into memory-replay-based [Re-
buffi ef al., 2017; Lopez-Paz and Ranzato, 2017], parameter-
freezing-based [Mallya and Lazebnik, 2018; Mallya et al.,
2018], and regularization-based [Kirkpatrick et al., 2017,
Li and Hoiem, 2017; Zenke et al., 2017; Aljundi et al., 2018]
approaches. Most existing methods have been designed to
learn a highly expressive model for the new task while pre-
serving all of the knowledge for the previous tasks.
Meanwhile, artificial intelligence is currently facing a new
type of problem; as artificial intelligence has become more
practical and connected to our everyday lives, various ethical

989

issues such as privacy protection and data leakage prevention
have become critical topics. This has brought new challenges
to the field, covering learning from encrypted data [Gilad-
Bachrach er al., 2016], preventing learning of unintended in-
formation [Wang et al., 2019], privacy preserving localiza-
tion [Speciale et al., 2019a; Speciale et al., 2019b], just to
name a few. Even lifelong learning cannot avoid this issue ei-
ther. Retaining the complete knowledge of all previous tasks
is a double-edged sword — it possibly leads to the risk of data
leakage and invasion of privacy. Moreover, it is not always
necessary to have the complete knowledge of the previous
tasks so desirable to have a mechanism for forgetting knowl-
edge no longer needed. For example, a face recognition sys-
tem at an office entrance gate would not need to remember
the faces of staff who have transferred to other departments.

These observations motivate us to propose a new lifelong
learning framework called Learning with Selective Forgetting
(LSF), which aims to avoid catastrophic forgetting of previ-
ous tasks while selectively forgetting only specified sets of
past classes. To the best of our knowledge, our study is the
first to introduce the new forgetting problem to lifelong learn-
ing and proposes a solution to it. In this paper, we focus on
task-incremental learning. The challenge is to forget only the
specified classes while preventing catastrophic forgetting for
the rest without using the original data of the previous tasks.
Our method solves this issue by performing a special type of
data augmentation that embeds a class-specific signal, called
mnemonic code, in all the samples of the corresponding class
when updating the model. This makes the class information
tightly linked to the corresponding code, making it possible
to forget arbitrary classes later on simply by discarding the
codes corresponding to the classes. Experiments on common
benchmark datasets demonstrate the remarkable superiority
of our proposed method to existing approaches.

2 Related Work
2.1 Lifelong Learning

We briefly review three mainstream approaches in lifelong
learning, memory-replay-based, parameter-freezing-based,
and regularization-based, and we highlight the contributions
of our work.

Memory-replay: The memory-replay-based approach uses
a set of original samples of previous tasks when updat-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

ing the model for a new task [Chaudhry et al, 2018b;
Rebuffi ef al., 2017; Lopez-Paz and Ranzato, 2017]. Instead
of using the original samples, some methods train deep gen-
erative models to generate pseudo samples [Wu et al., 2018;
Shin et al., 2017]. Several recent papers have proposed al-
gorithms to solve the problem of data imbalance between
the current task and the previous tasks [Zhao er al., 2020;
Wu et al., 2019; Liu et al., 2020].

Parameter-freezing: The basic idea of this approach is to
use different model parameters for each task. Several strate-
gies have been proposed, such as networks switching the
nodes or branches to be used depending on the tasks [Mallya
and Lazebnik, 2018; Mallya et al., 2018] or adding new nodes
or branches every time a new task is learned [Rusu et al.,
2016; Aljundi et al., 2017]. A hybrid version of these ap-
proaches has also been proposed [Hung et al., 2019].

Regularization: This approach leverages the previous tasks’
knowledge implicitly by introducing additional regulariza-
tion terms. This approach can be grouped into data-driven-
based [Li and Hoiem, 2017; Hou et al., 2018; Dhar et al.,
2019] and weight-constrain-based [Kirkpatrick er al., 2017;
Zenke et al., 2017; Aljundi et al., 2018; Chaudhry et al.,
2018a; Lee et al., 2017; Yu et al., 2020]. The former uti-
lizes the knowledge distillation, while the latter introduces a
prior on the model parameters.

Our method is categorized into the regularization-based ap-
proach. To summarize, the existing algorithms are designed
to retain all the information of the classes for the past tasks.
Unlike these, our contributions of this paper are to propose a
new problem setting of lifelong learning that requires forget-
ting only specified classes and a solution to this problem.

2.2 Machine Unlearning

The concept of Machine Unlearning (MU) was first intro-
duced by Cao et al. [Cao and Yang, 2015]. Its typical defini-
tion is to remove the effect of specified training samples with-
out retraining the whole model so that the resulting model is
indistinguishable from a model trained on a dataset without
those samples. General approaches are to train multiple small
models on separated subsets of the training data to prevent re-
training the whole model [Bourtoule et al., 2019] or to utilize
vestiges of the learning process, i.e., the stored learned model
parameters and their gradients [Wu er al., 2020]. Specialized
methods for some basic learning algorithms such as linear
discriminant analysis [Guo et al., 2020] and k-means [Ginart
et al., 2019] have also been presented. Inspired by differential
privacy [Abadi er al., 2016], Eternal Sunshine of the Spotless
Net [Golatkar er al., 2020] introduced a scrubbing procedure
that removes information from the trained weights of deep
neural networks using the Fisher information matrix. Mixed-
Linear Forgetting [Golatkar et al., 2021] derived a tractable
optimization problem by linearly approximating the amount
of change in weights due to the addition of training data.
Variational Bayesian inference also provides a compelling ap-
proach for MU [Nguyen et al., 2020].

Our work differs from these previous studies in the fol-
lowing two points. First, we focus on lifelong learning. To

990

the best of our knowledge, this is the first work that consid-
ers the forgetting problem in the context of lifelong learning.
Second, we address the problem of class-level forgetting, i.e.,
making a specified set of classes unrecognizable, rather than
sample-level forgetting. This is a practical forgetting problem
that has not yet been thoroughly studied in past MU literature.

3 Learning with Selective Forgetting

Let us begin with an introduction to a standard lifelong learn-
ing setting. Denote by {D1,---Dg, - Dx} a sequence of
datasets, where Dy, = {(x},y%)"*, } is the dataset of the k-th
task. x}, € X is an input and y}, € Y is its class label. While
observing the datasets in a streaming manner, the purpose of
standard lifelong learning is to learn a model fy : X — Y
parameterized by 6 so that it can map a test input x of any
learned tasks to its correct class label .

Now we define our new problem illustrated in Figure 1,
called Learning with Selective Forgetting (LSF). In this prob-
lem, each of the learned classes is assigned to either preser-
vation set or deletion set. Formally,

* Preservation Set C: A set of classes learned in the
past and should be preserved at k-th task.

¢ Deletion Set Cilf: A set of classes still memorized and
should be forgotten at k-th task (the complement of C}").

At the k-th task, we are given the dataset Dy, and the preser-
vation set C{’. We use index k for the new task and p for the
previous tasks.

Definition 1 (LSF Problem). The Learning with Selective
Forgetting (LSF) problem is defined as follows:

* Objective: Learn a model fy : X —). This model fy
should map a test input x to its correct class label y if x
is in the preservation set C'*. Otherwise, f should map
x to a wrong class label y' # y.

* Constraint: No original samples or generative models
for the past tasks are available after the new task begins.

4 Method

We propose a method to solve the LSF problem. An overview
of our method is shown in Fig. 2. Our method uses a multi-
headed network architecture that has one head per task, which
is a common architecture in lifelong learning [Li and Hoiem,
2017, Chaudhry et al., 2018al. We first introduce mnemonic
code, which is the key to solving the LSF problem, and then
we present loss functions for learning our model. Finally, we
empirically analyze the key properties of our method.

4.1 Mnemonic Code

The challenge of the LSF problem is to retain memorizing the
classes listed in the preservation set while forgetting those in
the deletion set without accessing the original dataset. Our
idea aims to associate information of each class with a fairly
simple code, called mnemonic code, and to use only that code
to control whether the class will be retained or forgotten.

We implement this idea as a special type of data augmenta-
tion. An overview of the process is illustrated in the left-hand

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Trai . . . New Task
rain Delete Train Delete Train Train .
Task1 DataD; Task2 DataD, Task3 Taskk " () Learning without New Task LC
Preservation Set Without Forgetting oy 2 1 Forgetting 0, LM
Dl \eletion Se\ \ Input x;: I\lén%monlc
X X X ode &y Augmented L
[} Previous Task (o) S2™PeXk ~ gackbone with R
. : . revious Tasks (e.g., p
Preservation Set Without Forgettm:g ‘/ _______________ Shared Parameters 6, LSF
D 2 Deletion Set\
Fo,;e‘m-,,g X Nat used —> Learning with Previous Tasks
I T— Selective Forgetting Multi-head
—" Mnemonlc for Each Task
Dy X Codel,: Mnemonic
Code §,, .

Figure 1: Problem Setting of Learning with Selective
Forgetting. The goal is to carry out both selective for-
getting and lifelong learning without using the original
data of previous tasks.

Figure 2: Overview of Our Method. We introduce mnemonic code — a class-
specific random signal embedded in each sample of the same class and is trained
to be an anchor of the class. Remembering/forgetting of the class information can
be performed by only using the corresponding code without using the original data

of the past tasks.

side of Fig. 2. When a new task is received, one synthetic
image is generated per class with random pixel values as the
class-specific mnemonic code and embedded in all the sam-
ples of the corresponding class. Formally, let {&;, .} be a set
of mnemonic codes, where £, . is the code for k-th task of
the c-th class. During training for the k-th task, we generate
an augmented sample X}, by embedding the mnemonic code
&k, into the original sample x} of the c-th class such like
mixup [Zhang et al., 2018]:

X = AXg + (1= A)p.c, ey
where A is a uniform random variable in [0, 1]. Besides the
set of the originals {(xk, yi)™}, we also use the augmented
samples {(Z%,yi)"* } to update our model at the k-th task.
Once the updating is done we retain only the codes {¢,, .} for
later tasks to control remembering and forgetting the classes
learned in the past tasks.

The intuition behind this procedure is as follows. By train-
ing with such augmented data, the samples of the same class
are aggregated around the corresponding mnemonic code in
the feature space. We therefore can control whether or not
to maintain the feature distribution around the code locally
depending on whether or not to use the code later at updat-
ing the model for a new incoming task, leading it possible to
remember or forget arbitrary classes by only using the cor-
responding codes but without using the original samples (we
will show later analytic results in Sec. 4.3). This idea is in-
spired by a human learning technique called “mnemonics”
that aids in memory retention by associating different types
of information (e.g., images and words), hence the name.

Implementation of Mnemonic Code: We use random color
patterns to generate our mnemonic code as shown in Fig. 2.
Specifically, we assign a random color to each grid of an im-
age of the same size as the original sample. Other types of
codes are possible; however, we argue several strengths of
using such a random code: i) the random pattern can be gen-
erated easily, ii) the patterns are i.i.d. for each class and each
task, and iii) unlike existing memory-based-approaches that
uses (a part of) the original samples, the pattern itself does
not directly represent any information of the raw data, which

991

is suitable for privacy protection and data leakage prevention
purposes. Interestingly, as we will show later in Sec. 5.3,
the performance of our random code is comparable to that of
a content-based code, i.e., an average image of the original
samples within the same class, which emphasizes the advan-
tages of our version. One limitation so far is that our code
has been customized for image data, but the idea itself can
be readily extended to other data types, which will be a com-
pelling future research direction.

4.2 Loss Function

We train the model with our mnemonic codes. As shown in
Fig. 2, the total loss function £ for training consists of four
terms: classification loss £, mnemonic loss £,;, selective
forgetting loss Lgr, and regularization term Lg. The first
two are for learning a new task and the last two are for main-
taining the previous tasks.

new task previous tasks

—_—— ——
L=Lc+Ly+ Lsr+ LR .
Below we detail each of them one-by-one.

2
Classification Loss L£: The classification loss for the k-th

new task is given as
1 i
= Ny 27: U Uk

where Ny is the number of the training samples in the k-th
task, /(x, y) is a loss function for the input x and its class label
y. A typical choice would be softmax cross entropy (CE)
or additive margin softmax (AMS) loss [Wang et al., 2018a;
Wang et al., 2018b]. We use AMS for [(x, y), as we found it
is better than CE.

3)

Mnemonic Loss £;,: In addition to the classification loss
that uses the original samples Dy = {(xi,yi)l* }, we
also use another loss using the augmented samples with our
mnemonic codes Dy = {(X},yi)1*,} for tying each code to
the corresponding class. The loss functlon is given by

»CM:F

1 ci i
Zl(xkvyk)‘
k5

4)

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Deletion Set?f Preservation Set C§ Deletion Set?ﬁ Preservation Set C§

Deletion Set C_g Preservation Set C Deletion Set C_i Preservation Set Cy

Taskl Task2 Task3 | Taskl Task2 Task3 Taskl Task2 Task3 _| Taskl Task2 Task3 _ Taskl Task2 Task3 | Taskl Task2 Task3 Taskl Task2 Task3 | Taskl Task2 Task3 _
1.0 - <[10 Ll 1.0 ; v 1.0 SN ",
0.8 1 0.8 { 0.8 " 0.8 i I
80.6 80.6 80.6 0.6
<0.4 <04 <04 <04
0.2 1 1 0.2 0.2 i 0.2 i
0.0 — 0.0 0.0 0.0
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Epochs Epochs Epochs Epochs Epochs Epochs Epochs Epochs
: ‘ ‘& ‘ [3 g %
ERd o = 4 .
&) Al &

End of Taskl End of Task2 End of Task3
(#tepoch=30) (#epoch=60) (t#epoch=90)

(b) EWC

End of Taskl End of 'I:askZ End of Task3
(#tepoch=30) (#epoch=60) (t#epoch=90)

(a) Vanilla

End of Taskl End of Task2 End of Task3
(#epoch=30) (#epoch=60) (#epoch=90)

(d) Oursg

End of Taskl End of Task2 End of Task3
(#epoch=30) (#epoch=60) (#epoch=90)

(c) EWC*

Figure 3: Analysis. The accuracy of each task for each epoch (top) and t-SNE plots of the features obtained from the last layer of the
backbone network at the end of each task (bottom) are shown. Each color in the t-SNE plot represents the following categories (best viewed
in color). Orange: Belongs to the preservation set throughout all three tasks. Blue: Changes from the preservation set to the deletion set after
completing task 1. Green: Learns as a new task, i.e., the preservation set, in task 2, then change to the deletion set in task 3.

We use AMS for I(-,

Selective Forgetting Loss Lgr: The aim of this loss func-
tion is to keep remember only the classes in the preservation
set and to forget the others in the deletion set. This can be
achieved by training with only the mnemonic codes corre-
sponding to the classes in the preservation set and discarding
the other codes. For convenience, let us denote by 5;; the

mnemonic code used to generate 5(; (i.e., the code for the
class of x;). The loss function is

ESF—'YSFZ Zl b Yp)s

where IN,, is the number of training samples at the p-th task,
and ygp is a balancing weight. I(-,-) is the AMS function.
Note that this loss function does not use any of the original
samples. By ignoring the codes of the classes in the deletion
set, these classes will experience catastrophic forgetting. This
allows us to achieve the selective forgetting for the previous
tasks without using any of the original samples.

-) as the classification loss.

®

Regularization Term L£r: The regularization term is of-
ten introduced to prevent catastrophic forgetting. In this
work, we consider using three existing regularization terms,
namely, Learning without Forgetting (LwF) [Li and Hoiem,
20171, Elastic Weight Consolidation (EWC) [Kirkpatrick et
al., 2017], and Memory Aware Synapses (MAS) [Aljundi et
al., 2018]. LwF and EWC are originally designed to retain all
classes, while we only need to memorize the classes included
in the preservation set for our LWS problem. Thus, we make
the following minor modifications to adapt LwF and EWC to
our problem. The modified versions are distinguished from
their original versions by “*”, for example LwF*.

- LwF* [Li and Hoiem, 2017]: The regularization term
of LwF* is defined as L1 wp- = ,VZ’LECP y, D log g, (),
where 7y is the weight for the term, and ¢ is the index of the
class label. We change the summation to only be taken over
the preservation set, i.e., j € CY¥. y/ and ¢/, are the modified
versions of recorded and current probabilities as in [Li and
Hoiem, 2017]1'.

"The modified versions of recorded and current probabilities, i.e.,

992

- EWC* [Kirkpatrick ef al., 2017]: The regularization term
of EWC* is Lewc- = 3., , Fap(0q — q,p)%, where v
is the weight for the regularization term, F , is the diagonal
component of the Fisher matrix for the p-th previous task cor-
responding to the g-th parameter éqyp. We change the Fisher
matrix to be evaluated only for the classes corresponding to
the preservation set”.

- MAS [Aljundi et al., 2018]: The regularization £ g for MAS
is given by Latas = 3 3, Qqp(0g — 0q.p)?, where v is the
regularization strength, €2, , is the constraint strength, i.e.,
the importance parameter, for the p-th previous task for the
g-th parameter, which is estimated by the sensitivity of the
squared [norm of the function output to their changes.

Beyond the cases of using each of these individually as our
regularization term Lp, we can also consider combinations
of them. Specifically, we test the following two versions of
combinations for our method in the experiments.

Lr
Lr

which we denote Oursg and Ours,,, respectively.

4.3 Analysis

In our preliminary analysis, we demonstrate that our
mnemonic code can forget only the specified classes in the
deletion set while maintaining the rest.

Setting: We use Permuted MNIST [Kirkpatrick et al., 20171,
which is an artificial dataset often used for lifelong learning
benchmarks. We prepare three tasks with different permu-
tations; ten digit classes for each task (30 classes total). In
this analysis, we always set three classes {07, “1”, 2"} at
each task as the deletion set and the other seven classes as the

Yo and g, are given by yo' = (o) /32 cop (o))" and
Al g

3t = @Y e
for the distillation knowledge We set I = 2 as in the original
paper [Li and Hoiem, 2017]. The summation is only taken over the
preservation set, i.e., j € CF.

*In the case of multiple tasks, EWC requires storing the Fisher
matrix for each task independently and performing regularization on
all of them together [Chaudhry et al., 2018a].

(6)
)

Liwr+ + LEwWCr,
Lrwr= + Lymas,

(5, U YT where T is a hyperparameter

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

preservation set, so whenever a new task comes, only {“0”,
“17, 2"} from the past tasks need to be forgotten, and the rest
are required to be retained.

We compare four methods: 1) Vanilla, which only uses
the classification loss L, 2) EWC, 3) EWC*, and 4) Oursg.
The standard two-conv-two-FC CNN is used for all methods?>.

Results: Figure 3 shows the accuracy vs. epoch plots (top)
and t-SNE visualization results (bottom), where the features
on the final layer of the shared backbone at the end of each
task are visualized. The two accuracy plots show the per-
formance for the deletion set (left) and the preservation set
(right). In contrast to the others, we can see that Ours cor-
rectly reduces the accuracy of the past three classes to be for-
gotten and also maintains the accuracy of the seven classes to
be retained. Vanilla forgets everything of the past and EWC
remembers all. EWC*, which has been modified to apply
regularization only to classes that should be preserved, tends
to manage the task correctly, but is still inadequate. This
proves that straightforward modifications of existing meth-
ods are not satisfactory and supports the unique effectiveness
of our mnemonic code. Another important observation is that
the mnemonic code is only embedded in the training images,
which leads to a gap between the training and test images,
however, this has no significant negative impact on the final
classification accuracy.

The t-SNE plots also show that only Ours could keep the
samples of the classes to be remembered agglomerated in
the feature space and quickly scattered those to be forgotten,
which is the desirable behavior for the problem. This implies
that our random mnemonic code, despite its simplicity, is able
to tightly link the samples of each class to the corresponding
code in the feature space, and as a result, can control remem-
bering/forgetting of the classes individually.

5 Experiments

5.1 Setting

Datasets: We use three widely used benchmark datasets for
lifelong learning, i.e., CIFAR-100, CUB200-2011 [Wah et
al., 2011], and Stanford Cars [Krause ef al., 2013]. CUB-
200-2011 has 200 classes with 5,994 training images and
5,794 test images. CIFAR-100 contains 50,000 training im-
ages and 1,0000 test images overall. Stanford Cars comprises
196 cars of 8,144 images for training and 8,041 for testing.
Unless otherwise noted, as the analysis in Sec. 4.3, the first
30% of classes for each task belongs to the deletion set, while
the other classes belong to the preservation set.

Implementation Details: We used ResNet-18 [He er al.,
2016] for the classification model. The final layer was
changed to the multi-head architecture as shown in Fig. 2.
We trained the network for 200 epochs for each task. Mini-
batch sizes were set to 128 for new tasks and 32 for past tasks

3The detailed configuration of the CNN is: Conv(3,32) -
Conv(3,64) - MaxPool(2) - Dropout(0.25) - Linear(9216,120)
- Dropout(0.5) - Linear(120,10), where Conv(k,c) denotes a
convolution-ReLU layer with the kernel size £ X k and output
channel ¢, Maxpool(2) denotes max pooling with stride 2, and
Dropout(p) denotes dropout with probability p.

993

in CIFAR-100, and 32 for new tasks and 8 for previous tasks
in CUB-200-2011 and Stanford Cars. The weight decay was
5.0 x 10~4. We used SGD for optimization. We employed a
standard data augmentation strategy: random crop, horizon-
tal flip, and rotation. In this experiment, we used Xavier’s
initialization.

Baselines: We compared our proposed method with LwF [Li
and Hoiem, 2017], EWC [Kirkpatrick et al, 2017],
and MAS [Aljundi er al., 2018], which are the popular
regularization-based lifelong learning methods. In the follow-
ing experiments, vy for LwWF/LwF*, EWC/EWC*, and MAS
are set to 5, 100, and 5, respectively. The weight parameter
for the selective forgetting loss ysr is set to 10. We compare
the above methods, including their combinations. To sum up,
the specific methods compared are as follows:

- Vanilla: Trained using only the classification loss L¢,
- LwF: [Li and Hoiem, 20171,

- LwF*: Modified version of LWF,

- EWC: [Kirkpatrick et al., 20171,

- EWC*: Modified version of EWC,

- EWC*+LwF*: Combination of EWC* and LwF*

- MAS: [Aljundi et al., 2018]

- MAS+LwF*: Combination of MAS and LwF*

- Oursg: Our method with EWC* and LwF*

- Ours);: Our method with MAS and LwF*

Evaluation Metric: In our LSF problem setting, the goal is
to forget the deletion set and preserve the preservation set.
There is no suitable evaluation metric for evaluating the per-
formance on this setting, because it contains a new criterion,
selective forgetting. We introduce a new evaluation metric .S,
called Learning with Selective Forgetting Measure (LSFM).

LSFM is calculated as the harmonic mean of the two stan-
dard evaluation measures for lifelong learning [Chaudhry et
al., 2018b]: the average accuracy Ay, for the preservation set
and the forgetting measure F}, for the deletion set, i.e.,

_2~Ak-Fk

Sp= ——i——. 8
T A+ Ry ®

The average accuracy Ay is evaluated for the preservation set
after the model has been trained up untill the k-th task. The
specific definition is given by Ay = % 2112:1 ay,p, where ay, ,
is the accuracy for the p-th task after the training for the k-th
task is completed. Ay is evaluated only for the preservation
set. Similarly, the forgetting measure F}, is computed for the
deletion set after completing the k-th task. This is given by
Fr, =1 Z’;Zl [P, where f' = maxe1...p ai,p — ajp, which
represents the largest gap (decrease) from the past to the cur-
rent accuracy for the p-th task. This is evaluated only for the
deletion set*. The ranges of Ay and F}, are both [0, 1].

We report the averages of Sy, Ay and Fj, over k after the
last task has been completed, which are denoted by S, A, and
F, respectively.

“In the first task (i.e., the number of previous tasks is zero), no
class belongs to the deletion set, so F}, and S, are not defined.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

LSFM S Average Accuracy A;, Forgetting Measure F, LSFM S| Avel Accuracy A;, Forgetting Measure F) LSFM § Average Accuracy A;, Forgetting Measure F,
N T s A 10 A o i KP4 ¥ 10 ko oo Ak e k

1.0
0.5% 0.5 z 0.5’% 0.5’&3 0.5[:: 0.5@4 0.5 ; 0.5 : 0.5’5*3

*—o—g—0
o oe° o . e o bt ol o Lome—a—e oLe—=—2 ob—— o P,
1234 12345 1234 1234 12345 1234 1 2 3 1234 1 2 3
Num. of prev. tasks Num. of tasks Num. of prev. tasks Num. of prev. tasks Num. of tasks Num. of prev. tasks Num. of prev. tasks Num. of tasks Num. of prev. tasks
@ Vanilla @ LwF @ LwF* @ EWC © EWC* @ EWC*HwF* 4 Ours, @ Vanilla @ LwF @ LwF* @ EWC © EWC* @ EWC*+lwF* @ Ours, @ Vanilla @ LwF @ LwF* @ EWC © EWC* @ EWC*+lwF* @ Ours,
(a) Results on CIFAR-100 (b) Results on CUB-200-2011 (c) Results on Stanford Cars

Figure 4: Per-Task Performance. The left, center, and right figures show the LSFM Sy, average accuracy Ay, for the preservation set, and
forgetting measure F}, for the deletion set at the end of each task, respectively. Higher is better for each.

CIFAR-100 CUB-200-2011 Stanford Cars

Task:S, # Class:20 | # Task:5, # Class:40 | # Task:4, # Class:49 tain satisfactory performance in terms of Ay, Vanilla, EWC,

| St @AnED | St ALFD | St @Ar DY and EWC* suffer from catastrophic forgetting, showing a de-

Venilla ?%2 ((379526579“'6672)) ‘g%g (3619'7074";'5943)) 498‘9134 ((‘;1;)1%558'2162)) crease in accuracy with each new task added. These three
LwF*|68.24 (8132,58.79) [44.54 (68.27,33.05) |53.70 (88.22,38.60) methods look better in F}, than the other baselines, however,

EWC 4857 (36.5471242) |41.36 (3297,55.47) |48.74 (47.7249.80) they forget all the classes whether they are in the preservation
EWCH N 67,64 (31204756) | 1342 (92001 62) 5279 (6309 SeLor the deletion set, which is not desirable behavior. Con-
MAS |47.46 (34.89.74.17) | 45.07 (34.87,63.71) |48.80 (44.66.53.80) versely, LwWF remembers all the classes, and thus has high Ay,
MAS+LwF* | 66.35 (81.83,55.79) |47.49 (69.69,36.02) |50.57 (89.01,35.32) but sacrifices Fj. Second, even a combination of the exist-

Oursys | 73.21 (72.61,73.83) | 57.97 (63.07,53.63) |72.24 (84.57,63.04)

Oursg |79.60 (75.33,84.37) | 61.41 (65.99,57.43) |73.70 (85.98,64.49) mg methods, namely EWC"+LwF » cannot yleld satlsfactory

performance. This indicates that a straightforward idea to ap-
Table 1: Results on CIFAR-100, CUB-200-2011, and Stanford ~ Ply the strong regularization terms only to the preservation

Cars. Bold and underline indicate the best and second best methods, ~ set is not sufficient to maintain adequate performance. These
respectively. observations emphasize the difficulty of maintaining both Ay
and F}, together. Unlike these methods, Oursg shows con-
Task:2, # Class:50 | # Task:5, # Class:20 | # Task: 10, # Class: 10 51stenFly high accuracy in bO.th Ay and Fy,. Thls proves the
St ANLFED | St ALFD | St (AT FD effectiveness of our mnemonic code and learning strategy in

Vanilla| 55.87 (55.21,56.55) [51.79 (39.66,74.62) |37.88 (25.41,74.41) overcoming the new problem.

LwF| 9.02 (74.69,4.80) |17.23 (79.05,9.67) |22.50 (80.74,13.07)
LwF*|54.64 (76.44,42.52) |68.24 (81.32,58.79) |63.62 (82.29,51.85)

EWC |58.58 (56.73,60.55) |48.57 (36.54,72.42) |34.91 (23.07,71.70) Results for Varying Number of Tasks/Classes: Table 2

EWC*[57.17 (56.25,58.13) |49.61 (36.58,77.08) |36.90 (23.68.83.52) shows the results on CIFAR-100 under the various numbers
EWC*+LwF*|53.51 (77.11,40.98) [67.64 (81.20,57.96) [69.17 (74.11, 64.85) of tasks/classes. Ours is the best in S in all the cases. We
MAS |55.44 (54.42,56.49) |47.46 (34.89,74.17) |35.26 (23.25,72.96) :
MAS+LwF* | 56.54 (76.85,44.72) |66.35 (81.83,55.79) |70.83 (74.63,67.41) also evaluated the performance of the.methods when the ratio
Oursy; | 70.08 (74.80.6584) |73.21 (72.61.73.83) | 7163 (68.56.75.00) of the number of classes in the deletion set to that of all the
Oursp | 74.02 (74.93,73.14) |79.60 (75.33.84.37) | 76.01 (67.93,86.26) classes, 74, is varied in the range from 0.1 to 0.9. From the

results shown in Table 3, S of our two methods are higher
than those of the other methods for all the ratios. These re-
sults show the strong robustness of the proposed method to
the various settings.

Table 2: Results on CIFAR-100 for Varying Number of
Tasks/Classes. Bold and underline indicate the best and second best
methods, respectively.

. 5.3 Sensitivity Analysis

5.2 Comparative Results o

We analyze the sensitivity of the performance to the hyper-
Overall Results: Table 1 shows the comparative results of all ~ Parameters, including the weight for the selective forgetting
the methods. We can clearly see that Oursy is the best and 1088 L5 and the mnemonic loss Ly;. We also evaluate the
Ours)y is the second best among all the methods in Sp. No ~ performance with different types of mnemonic codes.
other method that is better in terms of both A and F'. This
is mainly due to the advantage of our mnemonic codes; as
we verified in our preliminary analysis, the codes enable ac-
curate control over whether each class should be retained or
forgotten on a class-by-class basis.

Effectiveness of Lgp: Figure 5 shows the performance for
various ysr in Eq. (5). First, as ysr is decreased, the per-
formance decreases. This suggests that Lgr has a significant
contribution to improving the performance. For larger vsr,
the performance is high and stable, indicating that tuning of

Per-Task Results: To visualize the performance changes the the value is not severe.

. . 5
over the tasks, we show .S, Ak and Fy, at each taskin Fig. 4°. Effectiveness of £,: We compared the performance of the
We can see that Ours g consistently achleve§ the best S on all proposed method with and without the mnemonic loss £ ;.
the datasets. We can draw several observations from the re- The results are shown in the left side of Table 4. It clearly

sults. First, any single existing method (like LwF, EWC, and shows that the loss £y significantly improves the perfor-
MAS) cannot work well. While most of the methods main- mance, demonstrating the effectiveness of £ .

>Due to space limitations, we report only the results of Vanilla, =~ Mnemonic Code Choice: We evaluated the effectiveness of
EWC, LWF, EWC*, LWF*, and Oursg in this figure. our choice for the mnemonic code, i.e., the random pattern

994

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Tder = 0.9

St ANFD

69.23 (68.00,70.50)
13.51 (81.79,7.36)
71.91 (88.50,60.56)
(66.79,67.33)
(66.46,69.36)
(89.18,65.42)
(68.36,67.97)
(88.75,68.37)
(87.46,76.24)
(86.57,80.97)

Tdet = 0.5
St ANLFED
52.58 (40.97,73.40)
(79.97,8.25)
(83.30,54.02)
(36.37,71.85)
(40.78,75.57)
(83.85,60.17)
(40.72,71.35)
(82.02,62.95)
(79.45,80.32)
(81.80,84.57)

rger = 0.1
St ANFD
46.20 (31.63,85.62)
16.13 (77.80,9.00)
70.31 (79.14,63.25)
(30.43,80.25)
(29.17,83.12)
(78.72,58.37)
(30.55,89.25)
(77.43,56.25)
(76.99,78.62)
(75.87,92.75)

Vanilla

LwF

LwF*

EWC

EWC*
EWC*+LwF*
MAS
MAS+LwF*
Ours s
Oursg

Table 3: Results on CIFAR-100 for Various Ratio r;.; of Deletion
Set.. Bold and underline indicate the best and second best methods,
respectively.

0.8 0.8

@ LSFM §
0.7 ’ 0.7 @ Average Accuracy A
@ ForgettingMeasure F
0.6 0.6
0 10 20 30 0 10 20 30
VsF YsF

Figure 5: Performance Sensitivity to ysr. Left: LSFM (black
line), Right: Average accuracy (red line) and Forgetting measure
(blue line).

| ST (ANLFED
wlo L |66.16 (56.71,79.39)
w/ Lar | 74.02 (74.93,73.14)

| St ANFED
Mean [74.91 (73.20, 76.71)
Random | 74.02 (74.93,73.14)

Table 4: Effectiveness of Mnemonic Loss £, and Mnemonic
Code. Left: Effectiveness of the mnemonic loss, Right: Perfor-
mance with different mnemonic code types.

code, by comparing it with the average code which is the av-
erage image of each class. The right side of Table 4 shows the
results. We can see that the performance of these two methods
is highly comparable. As we discuss in Sec. 4.1, the random
code has several advantages compared with the average code.
The results further emphasizes the merit of using the random
code for lifelong learning with selective forgetting.

6 Conclusion

We opened up a new framework for lifelong learning called
Learning with Selective Forgetting (LSF), which allows a
model to continuously learn from new tasks while selectively
forgetting undesirable class information. Our key contribu-
tion was the proposal of a simple and effective idea called
mnemonic code. The code is a class-specific random signal
embedded in each sample of the same class, which makes it
possible to control the remembering and forgetting of the ar-
bitrary class without using the original samples. Thorough
experiments proved that our method could achieve signifi-
cantly better performance than existing methods on this new
problem. We believe that this paper will bring a new and
practical direction of lifelong learning to the community and
give the first baseline for the new problem.

References

[Abadi et al., 2016] Martin Abadi, Andy Chu, Ian Goodfel-
low, H Brendan McMabhan, Ilya Mironov, Kunal Talwar,

995

and Li Zhang. Deep learning with differential privacy. In
Proc. CCS, pages 308-318, 2016.

[Aljundi et al., 2017] Rahaf Aljundi, Punarjay Chakravarty,
and Tinne Tuytelaars. Expert gate: Lifelong learning with
a network of experts. In Proc. CVPR, pages 3366-3375,
2017.

[Aljundi ef al., 2018] Rahaf Aljundi, Francesca Babiloni,
Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-
laars. Memory aware synapses: Learning what (not) to
forget. In Proc. ECCV, pages 139-154, 2018.

[Bourtoule et al., 2019] Lucas Bourtoule, Varun Chan-
drasekaran, Christopher A Choquette-Choo, Hengrui
Jia, Adelin Travers, Baiwu Zhang, David Lie, and
Nicolas Papernot. Machine unlearning. arXiv preprint
arXiv:1912.03817, 2019.

[Cao and Yang, 2015] Yinzhi Cao and Junfeng Yang. To-
wards making systems forget with machine unlearning. In
Proc. S&P, pages 463—480, 2015.

[Chaudhry et al., 2018a] Arslan Chaudhry, Puneet K Doka-
nia, Thalaiyasingam Ajanthan, and Philip HS Torr. Rie-
mannian walk for incremental learning: Understanding
forgetting and intransigence. In Proc. ECCV, pages 532—
547, 2018.

[Chaudhry et al., 2018b] Arslan Chaudhry, Marc’Aurelio
Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Ef-
ficient lifelong learning with a-gem. In Proc. ICLR, 2018.

[Dhar et al., 2019] Prithviraj Dhar, Rajat Vikram Singh,
Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa.
Learning without memorizing. In Proc. CVPR, pages
5138-5146, 2019.

[Gilad-Bachrach et al., 2016] Ran Gilad-Bachrach, Nathan
Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and
John Wernsing. Cryptonets: Applying neural networks
to encrypted data with high throughput and accuracy. In
Proc. ICML, pages 201-210, 2016.

[Ginart et al., 2019] A Ginart, M Guan, G Valiant, and J Zou.
Making ai forget you: Data deletion in machine learning.
In Proc. NeurIPS, 2019.

[Golatkar et al., 2020] Aditya Golatkar, Alessandro Achille,
and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proc. CVPR,
pages 9304-9312, 2020.

[Golatkar et al., 2021] Aditya Golatkar, Alessandro Achille,
Avinash Ravichandran, Marzia Polito, and Stefano Soatto.
Mixed-privacy forgetting in deep networks. In Proc.
CVPR, 2021.

[Guo et al., 2020] Chuan Guo, Tom Goldstein, Awni Han-
nun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. In Proc. ICML, pages
3832-3842, 2020.

[He er al., 2016] K. He, X. Zhang, S. Ren, and J. Sun. Deep
residual learning for image recognition. In Proc. CVPR,
2016.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

[Hou et al., 2018] Saihui Hou, Xinyu Pan, Chen
Change Loy, Zilei Wang, and Dahua Lin. Lifelong
learning via progressive distillation and retrospection. In
Proc. ECCV, pages 437-452, 2018.

[Hung et al., 2019] Ching-Yi Hung, Cheng-Hao Tu, Cheng-
En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song
Chen. Compacting, picking and growing for unforgetting
continual learning. In Proc. NeurIPS, pages 13669-13679,
2019.

[Kirkpatrick ef al., 2017] James Kirkpatrick, Razvan Pas-
canu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago
Ramalho, Agnieszka Grabska-Barwinska, et al. Over-
coming catastrophic forgetting in neural networks. PNAS,
114(13):3521-3526, 2017.

[Krause et al., 2013] Jonathan Krause, Michael Stark, Jia
Deng, and Li Fei-Fei. 3d object representations for fine-
grained categorization. In Proc. ICCVW, pages 554561,
2013.

[Lee et al., 2017] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun
Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching.
In Proc. NeurlIPS, pages 4652-4662, 2017.

[Li and Hoiem, 2017] Zhizhong Li and Derek Hoiem.
Learning without forgetting. TPAMI, 40(12):2935-2947,
2017.

[Liu et al., 2020] Yaoyao Liu, Yuting Su, An-An Liu, Bernt
Schiele, and Qianru Sun. Mnemonics training: Multi-class
incremental learning without forgetting. In Proc. CVPR,
page 12254, 2020.

[Lopez-Paz and Ranzato, 2017] David Lopez-Paz and
Marc’ Aurelio Ranzato. Gradient episodic memory for
continual learning. In Proc. NeurlPS, pages 6467-6476,
2017.

[Mallya and Lazebnik, 2018] Arun Mallya and Svetlana
Lazebnik. Packnet: Adding multiple tasks to a single net-
work by iterative pruning. In Proc. CVPR, pages 7765—
7773, 2018.

[Mallya er al., 2018] Arun Mallya, Dillon Davis, and Svet-
lana Lazebnik. Piggyback: Adapting a single network
to multiple tasks by learning to mask weights. In Proc.
ECCYV, pages 67-82, 2018.

[Nguyen et al., 2020] Quoc Phong Nguyen, Bryan
Kian Hsiang Low, and Patrick Jaillet. Variational bayesian
unlearning. In Proc. NeurIPS, pages 16025—-16036, 2020.

[Rebuffi er al., 2017] Sylvestre-Alvise Rebuffi, Alexander
Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proc.
CVPR, pages 2001-2010, 2017.

[Rusu ef al., 2016] Andrei A Rusu, Neil C Rabinowitz,
Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Had-

sell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

996

[Shin ef al., 2017] Hanul Shin, Jung Kwon Lee, Jaehong
Kim, and Jiwon Kim. Continual learning with deep gener-
ative replay. In Proc. NeurIPS, pages 2990-2999, 2017.

[Speciale et al., 2019a] Pablo Speciale, Johannes L Schon-
berger, Sing Bing Kang, Sudipta N Sinha, and Marc Polle-
feys. Privacy preserving image-based localization. In
Proc. CVPR, pages 5493-5503, 2019.

[Speciale et al., 2019b] Pablo Speciale, Johannes L Schon-
berger, Sudipta N Sinha, and Marc Pollefeys. Privacy pre-
serving image queries for camera localization. In Proc.
ICCV, pages 14861496, 2019.

[Wah et al., 2011] C. Wah, S. Branson, P. Welinder, P. Per-
ona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical report, 2011.

[Wang et al., 2018a] Feng Wang, Jian Cheng, Weiyang Liu,
and Haijun Liu. Additive margin softmax for face veri-
fication. IEEFE Signal Processing Letters, 25(7):926-930,
2018.

[Wang er al., 2018b] Hao Wang, Yitong Wang, Zheng Zhou,
Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and
Wei Liu. Cosface: Large margin cosine loss for deep face
recognition. In Proc. CVPR, pages 5265-5274, 2018.

[Wang et al., 2019] Tianlu Wang, Jieyu Zhao, Mark Yatskar,
Kai-Wei Chang, and Vicente Ordonez. Balanced datasets
are not enough: Estimating and mitigating gender bias in
deep image representations. In Proc. ICCV, pages 5310-
5319, 2019.

[Wu et al., 2018] Chenshen Wu, Luis Herranz, Xialei Liu,
Joost van de Weijer, Bogdan Raducanu, et al. Memory
replay gans: Learning to generate new categories without
forgetting. In Proc. NeurIPS, pages 5962-5972, 2018.

[Wu et al., 2019] Yue Wu, Yinpeng Chen, Lijuan Wang,
Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu.
Large scale incremental learning. In Proc. CVPR, pages
374-382, 2019.

[Wu er al., 2020] Yinjun Wu, Edgar Dobriban, and Susan
Davidson. Deltagrad: Rapid retraining of machine learn-
ing models. In Proc. ICML, pages 10355-10366, 2020.

[Yu et al., 2020] Lu Yu, Bartlomiej Twardowski, Xialei Liu,
Luis Herranz, Kai Wang, Yongmei Cheng, Shangling Jui,
and Joost van de Weijer. Semantic drift compensation for
class-incremental learning. In Proc. CVPR, pages 6982—
6991, 2020.

[Zenke et al., 2017] Friedemann Zenke, Ben Poole, and
Surya Ganguli. Continual learning through synaptic in-
telligence. In Proc. ICML, pages 3987-3995, 2017.

[Zhang ef al., 2018] Hongyi Zhang, Moustapha Cisse,
Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. In Proc. ICLR, 2018.

[Zhao et al., 2020] Bowen Zhao, Xi Xiao, Guojun Gan, Bin
Zhang, and Shu-Tao Xia. Maintaining discrimination and
fairness in class incremental learning. In Proc. CVPR,
pages 13208-13217, 2020.

	Introduction
	Related Work
	Lifelong Learning
	Machine Unlearning

	Learning with Selective Forgetting
	Method
	Mnemonic Code
	Loss Function
	Analysis

	Experiments
	Setting
	Comparative Results
	Sensitivity Analysis

	Conclusion

