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Abstract
Knowledge Graphs typically suffer from incom-
pleteness. A popular approach to knowledge graph
completion is to infer missing knowledge by multi-
hop reasoning over the information found along
other paths connecting a pair of entities. However,
multi-hop reasoning is still challenging because the
reasoning process usually experiences multiple se-
mantic issue that a relation or an entity has multiple
meanings. In order to deal with the situation, we
propose a novel Hierarchical Reinforcement Learn-
ing framework to learn chains of reasoning from a
Knowledge Graph automatically. Our framework is
inspired by the hierarchical structure through which
a human being handles cognitionally ambiguous
cases. The whole reasoning process is decomposed
into a hierarchy of two-level Reinforcement Learn-
ing policies for encoding historical information and
learning structured action space. As a consequence,
it is more feasible and natural for dealing with the
multiple semantic issue. Experimental results show
that our proposed model achieves substantial im-
provements in ambiguous relation tasks.

1 Introduction
The development of Knowledge Graphs have increasingly
impacted on many downstream AI-related applications, such
as question answering (QA), information retrieval, recom-
mendation systems, etc. However, KGs are highly incom-
plete, which has significantly hindered the capability of KG’s
application [Fang et al., 2020; Ji et al., 2020]. Therefore,
a fundamental problem for knowledge graph reasoning is to
predict the missing knowledge.

Recently, extensive research has emerged on learning low-
dimensional representations of entities and relations for miss-
ing link prediction [Bordes et al., 2013; Wang et al., 2017;
Nickel et al., 2015]. Unfortunately, these approaches are
only suitable for single-hop reasoning. Meanwhile, auto-
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Figure 1: Visualization of TransE embeddings with PCA dimen-
sion reduction. We select two relation a) ‘Award nomee’ and b)
‘Ethninicy people’ from FB15K. A dot denotes a triplet, and it is
depends on the difference vector between tail and head entity, i.e.
r̂ ≈ t − h. The distribution of multiple clusters indicates that a
relation may have multiple unknown semantics.

mated multi-hop reasoning on a large-scale KG is still a
challenging problem due to the presence of diverse and am-
biguous semantics. In other words, multiple semantic issue
where an entity or a relation may have various meanings
hinders the reasoning accuracy in a KG [Xiao et al., 2016;
Kertkeidkachorn and Ichise, 2017]. For instance, the visu-
alization of TransE embedding vectors with PCA dimension
reduction is presented in Figure 1. In Figure 1a, the rela-
tion ‘Award nominee’ has multiple latent semantics includ-
ing ‘Actor-award’, ‘Artist-award’, ‘Organization’, etc. The
non-uniform distribution indicates the presence of the multi-
ple semantic issue. Accordingly, semantic ambiguity is accu-
mulated in chained reasoning process, leading to more severe
performance drop.

On the contrary, a human being can easily deal with this
situation. Joshi et al. [2013] found that structured multi-
ple cognitive sub-processes drive the disambiguation. One
important hallmark of human cognition is that one tends
to process information hierarchically [Purcell and Kiani,
2016], which divides ongoing behavior into discrete tasks
that is comprised of sub-task sequences built of simple ac-
tions. Additionally, recent research [Purcell and Kiani, 2016;
Sarafyazd and Jazayeri, 2019] in neuroscience and cognitive
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science revealed that a human being resolves the ambiguous
information of casual inference by hierarchical reasoning.

Inspired by the above observations, we formulate the
mechanism of hierarchical reasoning process as Hierarchical
Reinforcement Learning (HRL). HRL works on decomposing
the entire problem into sub-problems, i.e, HRL splits each ac-
tion into sub-actions. Some previous works have shown that
not only it tackles the dimensionality curse problem [Barto
and Mahadevan, 2003], but it also successfully models hierar-
chical decision making in robotic systems [Colin et al., 2016].
By learning each sub-action of multi-hop reasoning, the agent
can also learn the latent semantics of a relation through chains
of reasoning. Therefore, the HRL formulation enables train-
ing an agent wtih high expressive policy networks to address
the multiple semantic issue.

More recently, several RL-based KGR models have
emerged as promising approaches to infer paths linking two
entities in a KG [Xiong et al., 2017; Das et al., 2018;
Shen et al., 2018; Das et al., 2018]. However, these ap-
proaches simply model every action in a uniform decision
space. Less consideration has been given to the investigation
of the hierarchical structure of knowledge reasoning process.
In particular, these methods exhibit performance decrease in
the tasks where multiple semantic issue exists.

In this paper, we develop a novel Hierarchical Reinforce-
ment Learning framework, Reasoning Like Human (RLH), to
imitate the thought pattern of human for applying multi-hop
reasoning on knowledge graphs. By emulating hierarchical
decision making, our model enables to learn chains of rea-
soning paths over a KG automatically. To be specific, HRL
decomposes each step of reasoning into a high-level policy
for encoding historical information and a low-level policy for
learning to identify relation clusters. In the high-level policy,
the agent trained by our model allows to encode and transfer
historical information by a Gated recurrent unit (GRU). In the
low-level policy, the agent follows the paradigm of hierarchi-
cal decision making, learning the concepts of relation clus-
ters at different level of granularity. Lastly, we design a joint
training method for effectively optimizing the parameters of
our model. Our contributions are summarized as flows:

• We address the multiple semantic issue where a relation
in knowledge graph has different meanings on multi-hop
knowledge graph reasoning, which is an essential but
rarely studied problem.

• We propose a novel Hierarchical Reinforcement Learn-
ing framework, Reasoning Like Human (RLH), to deal
with the multiple semantic issue. The proposed model
consists of a high-level policy and a low-level policy,
decomposing the macro-actions into simpler sub-tasks,
leading to learn the latent semantics of each relation.

• We conduct extensive experiments on three knowledge
graph completion benchmarks. The results show that
our model achieves competitive performance. Most im-
portantly, our model significantly outperforms other ap-
proaches on the queries suffering from more multiple se-
mantic issue.

2 Related Work
Knowledge Graph Reasoning. Recent developments in
the field of KG have led to a renewed interest in knowl-
edge graph reasoning. From its early days, the focus of
knowledge graph reasoning has been on building systems
based on symbolic logical rules [McCarthy, 1960; Quinlan,
1990]. Rule-based approaches are accurate, but suffer from
poor generalization and huge complexity. Recently, knowl-
edge graph embedding approaches largely superseded them
[Wang et al., 2017]. These methods learn topological connec-
tion information and associate entities and relations into low
dimensional continuous vector spaces [Bordes et al., 2013;
Yih et al., 2011; Dettmers et al., 2018; Ye et al., 2018;
Nickel et al., 2015]. Then, a score function or an decoder
is defined to rank the target query objects with only single
hop reasoning, which is a black-box system that lacks inter-
pretability for users.

Multi-Hop Reasoning. Due to the limitations of inter-
pretability, researchers have recently proposed multi-hop
path-based approaches, such as random walks [Lao et al.,
2011] through a sequence of reasoning chain, further im-
proving performance in knowledge graph completion (KGC)
tasks. Unfortunately, the approaches are still computation-
ally expensive to access the entire graph in memory. Neu-
ral LP [Yang et al., 2017] is proposed to learn logical rules
that can be trained in a end-to-end framework with gradient-
based learning. It introduces a differential rule learning sys-
tem using operators defined in TensorLog [Cohen, 2016]. Al-
though differentiable memory allows end-to-end training, it
costs expensive computation resources due to accessing the
entire memory.

Deep Reinforcement Learning Reasoning. Recently,
deep reinforcement learning has achieved great success in
many artificial intelligence problems [Silver et al., 2016]. RL
shows great potential to model reasoning systems on a KG.
DeepPath [Xiong et al., 2017] is the first RL-based multi-hop
reasoning approach for KGR. Das et al. [2018] further im-
proves DeepPath by 1) avoiding pre-trained information, 2)
encoding historical information using LSTM. Then, Shen et
al. [2018] adopts Monte Carlo Tree Search (MCTS) to deal
with the issue of sparse rewards to improve the efficiency of
RL reasoning. However, the previous multi-hop reasoning
approaches rarely consider the hierarchical structure of action
space.

3 Definitions and Notations
The notation table is shown in Table 1. Then, several key
definitions are given as follows.

Definition 1 (Knowledge Graph). A Knowledge Graph is a
directed graph G = (E ,R, U), where E is a set of entities,
R is a set of relations, and U is a set of edges. e ∈ E is an
entity. r ∈ R is a relation. u ∈ U is an edge (eo, r, et) that
points the head entity h to the tail entity t.

Definition 2 (Knowledge Graph Reasoning). Given a query
among three cases (h, r, ?), (?, r, t), (h, ?, t), Knowledge
Graph Reasoning aims to predict the missing element of ?

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1927



Symbol Meaning Symbol Meaning
E Entity set e Entity
R Relation set r Relation
e0 Source entity et Target entity
G KG U Edge set
S State set s State
A Action set a Action
R Reward γ Reward factor
π High-level policy θ Parameters
τ High-level trajectory ht History vector
ε Low-level trajectory µ Low-level policy
φ Transition function Φ The set of φ
c Sub-action σ Sigmoid function

We denote a vector using a bold letter, e.g. e corresponding to e

Table 1: Annotation table

through a k-hop reasoning path e1
r1−→ e2

r2−→ · · · rk−→
ek+1.

Example: Given (Trump, isPresident,?), a possible 2-hop
reasoning path is Trump WorkAt−→ WhiteHouse

LocatedIn−→
the US.

Definition 3 (Markov Decision Process). A Markov decision
process is a 4-tuple (S,A, Pa, Ra). Here S is a finite set of
states,A is a finite set of actions (alternatively,As is the finite
set of actions available from state s), Pa(s, s′) = Pr(st+1 =
s′|st = s, at = a) is the probability that action a in state s
at time t will lead to state s′ at time t + 1, Ra(s, s′) is the
immediate reward (or expected immediate reward) received
after transitioning from state s to state s′, due to the action a.

Remark: The RL is formulated as a MDP. At each stage
in the sequence stages, the agent observes an environment‘s
state s, contained in a finite set S, and executes an action a
selected from a finite, non-empty set, As, of admissible ac-
tions. The agent receives an immediate reward having ex-
pected value R(s, a), and the state transition probabilities
P (s′|s, a).

Definition 4 (Hierarchical Reinforcement Learning). Hierar-
chical Reinforcement Learning is formulated as a semi-MDP
(S,A, Pa, Ra,Φ), where Pa(s, s′) = Pr(st+1 = s′|st =

s, at = a)
∏K−1
i=1 Pr(φi+1|Φi). Φ is a transition function

space to describe K stages transiting inside the action a.
Each φ is a sub-action of a. All of φ are relevant each other.

Remark: HRL involves discrete-time and countable sub-
actions inside each action [Barto and Mahadevan, 2003].
HRL delegates the optimization of the total problem to sim-
pler sub-problems, in which knowledge can be transferred
across problems and in which component solutions can be
recombined to solve larger and more complicated problems.

4 Methodology
4.1 Overview of RLH
A schematic overview of our proposed approach is presented
in Figure 2. For each query, the agent trained by our RL-
based reasoning approach predicts a reasoning path from the
source entity to the target entity. It observes the current state
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Figure 2: Schematic illustration of RLH.

and decides to move to the next entity that has the highest ex-
pectation of reaching the target entity via our well-designed
hierarchical policies. The agent alternates between such ob-
servation and movement until it reaches the target entity or the
maximum length. The agent’s trajectory is a reasoning chain
that has an attractive property that explains how the query re-
sult is obtained from the inference system.

To apply the hierarchical cognition mechanism, we pro-
pose a hierarchical policy framework Φ = {φ1, φ2, · · · , φk}
for RL-based reasoning. The right box of Figure 2 schemat-
ically shows a 3-layers hierarchical strategy. For each inter-
action, the agent observes an action space A, then it selects
the most promising sub-action through Φ from hypernymy
concepts to hyponymy concepts. In a knowledge graph en-
vironment, the structure of the action space is generally a hi-
erarchical structure. As a result, the complex action space is
hierarchically decomposed into sub-tasks like a search tree.
Hence the multiple semantics of the relation is also decom-
posed into more specific representation. The details about the
hierarchical policy are in Section 4.2 and 4.3.

4.2 High Level Policy for Encoding History
Information

Reinforcement Learning train an agent to learn from the in-
teractions with the environment derived from a KG through
sequential exploration and exploitation. In a KG, RL is for-
malized with the quartuple (S,A,P, R), whose elements are
elaborated below.
States. The state si at step i is defined as a tuple
(ei−1, ri, ei, et), where ei ∈ E is the current entity, ei−1 is the
last entity, ri denotes the relation between ei and ei−1, and et
is the target entity. si ∈ S, where the state space S consists of
all valid combination in E ×R×E ×E . Given a pair (eo, et),
the starting state is represented as (′ST′, ′ST′, e0, et), where
a start state indicator ‘ST’ was added to indicate the initial
state of the agent. The final state is (et−1, rt, et, et). Each
state captures the agent’s position in the KG. After taking ac-
tion, the agent will move to the next state.
Actions. The action space Asi for the state si =
(ei, ri+1, ei+1, et) is the set of outgoing edges of the current
entity ei in the KG, where Asi = {(r, e)|(ei, r, e) ∈ G, e /∈
{eo, e1, · · · , et}}. Beginning with the source entity eo, the
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Datasets |E| |R| Triplets Tasks

FB15K-237 14505 237 310116 20
NELL995 75942 200 154231 12
WN18RR 40903 18 141422 10

Table 2: Datasets

agent uses the policy network to predict the most promising
path, and it then extends its path at each step until it reaches
the target entity et.

Transition. The transition P is the state transition proba-
bility used to identify the probability distribution of the next
state, which is defined as a map function:P : S×A → S . The
policy network encodes the current state to output a probabil-
ity distribution P(si+1|si, ai), where ai ∈ Asi . In our RL
framework, the transition strategy involves selecting the ac-
tion with maximum probability in Asi .
Policy. We design a high-level policy network µ(s,A) =
P (a|s; θ) based on deep learning to model the RL agent
in a continuous space, where θ is the neural network pa-
rameter. Considering that the agent needs to do sequen-
tial decision making, we introduce a history vector ht to
keep historical information in order to better guide the agent.
Given a trajectory τ at step t, the history vector is deter-
mined by the last history ht−1 and the last state st−1, where
st−1 = [et−1; rt−1; et], while e, r ∈ Rd, µ is the low-level
policy,

ht = GRU(ht−1, st−1). (1)

a ∼ π(at|st−1) = softmax(Wπc). (2)

where c is the output sub-action (relation cluster) of the low-
level policy and c is its vector representation. Wπ is an array
of |R| matrices.

Rewards. Given a pair (eo, et), if the agent reaches the tar-
get entity, i.e., ei = et, the agent’s trajectory is labeled as
a successful finding. The reward for each hop is defined as
follows:

RH(τi) =

{
1 · γi, êt = et
0, otherwise

, (3)

4.3 Low Level Policy for Structured Action Space
The low-level policy Φ decomposes the complex action space
As into structured sub-actions. The transition of these sub-
actions also follows a MDP. The relations in KGs can make
up relation clusters. We can build a hierarchical relation clus-
ters by means of hierarchical-clustering relation embeddings.
In this way, all states of the low-level RL are organized as a
search tree. Thus the latent multiple semantics for each rela-
tion is well-expressed.

Actions. We first perform TransE 1 on a given data set and
obtain the embeddings. Then, the k-means algorithm is ap-
plied to these embeddings for initializing relation clusters
C1, C2, C3, · · · , Cn, where j-th sub-action cij ∈ Ci. In this
way, we enable to build hierarchical sets of relation clusters.

1https://github.com/thunlp/OpenKE

State. The low-level state sl is a set containing the current
valid sub-actions. For a trajectory ε, the starting state is the
As. If successful, the final state is {at+1}, otherwise ∅.
Policy. When the agent observes the sub-action space under
the state sli, it launches the current sub-task,

c ∼ µ(ct|ct−1, ht, st−1)

= Softmax(ReLU(σ(Ws[ht; st−1])[sli]WcCi)),
(4)

where ct is the next sub-action.
Reward. For a trajectory ε, a reward is obtained when the
final state contains the correct action anext,

RL(ε) =

{
1, anext ∈ sl
0, otherwise

, (5)

4.4 Optimization and Training
In this section, we discuss how to optimize our framework.

The objective function of the low-level policy network is to
maximize the expectation of accumulated rewards of hierar-
chical decisions,

JL(θL) = Eε∼pθL (ε)[RL(ε)], (6)

where ε denotes an M -length trajectory generated from the
underlying distribution pθL(ε) of the low-level policy µ,
while R(ε) is the reward function for ε. The objective func-
tion of the high-level policy under the low-level policy is,

JH(θH) = EθL,τ∼pθH (τ)[RH(τ)], (7)

where τ denotes an N -length trajectory generated from the
underlying distribution pθH (τ). Similarly, RH(τ) is the re-
ward function for τ .

Then, we use policy gradient methods [Sutton et al., 2000]
with the REINFORCE algorithm [Williams, 1992] to opti-
mize both high-level and low-level policies. With the like-
lihood ratio trick, the gradient for the policies yields:

∂JL(θL)

∂θL
≈ 1

K

K∑
j=1

[
M∑

τj ,i=1

∂

∂θL
log µ(aji |s

j
i−1, a

j
i−1)]. (8)

Algorithm 1 Training Procedure

1: Initialize θH , θL
2: Pre-train the low-level policy µ
3: for 1→ episode do
4: Generate a trajectory τ
5: Initialize state vector h0 ← 0
6: for i← 1 to |τ | do
7: Calculate hi ← GRU(hi−1, si−1)
8: Generate a trajectory ε
9: for j ← 1 to |ε| do

10: Obtain reward RL(εj)

11: ∇JL ← − ∂
∂θL

log µ(cji |s
j
i−1, c

j
i−1,hi)

12: Obtain reward RL(τi)

13: ∇JH ← − ∂
∂θH

log π(aji |s
j
i−1, a

j
i−1, θL,hi)γ

i

14: Update θL,θL using ∇JL,∇JH
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Data Metric TransE ComplEX ConvE NeuralLP MINRVA RLH

NELL995
Hit@1 0.514 0.614 0.672 - 0.663 0.692
Hit@3 0.678 0.784 0.808 - 0.773 0.768
Hit@10 0.751 0.815 0.864 - 0.831 0.873
MRR 0.456 0.652 0.747 - 0.725 0.723

FB15K-237
Hit@1 0.248 0.318 0.313 0.166 0.217 0.342
Hit@3 0.401 0.415 0.447 0.248 0.329 0.457
Hit@10 0.450 0.542 0.601 0.348 0.456 0.648
MRR 0.361 0.374 0.410 0.227 0.293 0.460

WN18RR
Hit@1 0.289 0.319 0.402 0.376 0.413 0.453
Hit@3 0.475 0.459 0.453 0.468 0.456 0.483
Hit@10 0.560 0.462 0.519 0.657 0.513 0.516
MRR 0.359 0.428 0.438 0.463 0.448 0.481

Table 3: Link Prediction on three KGC benchmarks.

Tasks TransE PRA DeepPath MINERVA M-Walk RLH
AthletePlaysForTeam 62.7 54.7 72.1 82.7 84.7 86.9
AthletePlaysInLeague 77.3 84.1 92.7 95.2 97.8 94.6
AthleteHomeStadium 71.8 85.9 84.6 92.8 91.9 93.4

AthletePlaysSport 87.6 47.4 91.7 98.6 98.3 97.4
TeamPlaySports 76.1 79.1 69.6 87.5 88.4 89.1

OrgHeadquaterCity 62.0 79.0 79.0 94.5 95.0 93.6
BornLocation 67.7 81.1 69.9 82.7 84.2 87.3

PersonLeadsOrg 75.1 68.1 75.5 83.0 81.2 81.4
OrgHiredPerson 71.9 66.8 79.0 83.0 88.8 89.5

· · ·
Overall 72.3 71.8 78.41 88.4 90.0 90.2
adjoins 68.4 41.8 69.1 71.8 64.8 79.1
contains 56.7 32.5 39.8 41.5 53.8 68.4

personNationality 44.2 42.1 52.8 62.1 59.1 61.9
musicianOrigin 38.2 18.5 23.7 23.8 33.8 46.7

capitalOf 42.5 25.8 43.8 48.9 44.0 53.6
filmWritten 56.1 32.1 36.5 59.1 57.2 72.5
filmLanguag 61.5 45.1 52.5 58.9 62.3 68.2
filmDirector 41.5 32.8 45.6 38.9 31.8 48.3
· · ·

Overall 45.3 31.5 39.8 42.3 43.8 59.2

Table 4: The MAP scores on NELL995 and FB15K-237.

∂JH(θH)

∂θH
≈ 1

K

K∑
j=1

[

N∑
τj ,i=1

∂

∂θH
log π(aji |s

j
i−1, a

j
i−1, θL)γi].

where π and µ are respectively the high-level policy and the
low-level policy.

The training process is shown in Algorithm 1. In order to
improve the training stability of our model, we adopt some
tricks for our models. 1) We first pre-train the low-level pol-
icy network by fixing the high-level policy. Then, these two
networks are jointly trained. 2)We add regularized terms into
the policy networks for controlling the over-fitting, and λ is
regularization. We employ ADAM [Kingma and Ba, 2014]
to optimize the policy network. The parameters are updated
every κ episodes.

5 Experiments Settings
Datasets. We conducted experiments on three datasets: 1)
NELL995 released by [Xiong et al., 2017] is generated from
the 995-th dump of Never Ending Language Learning [Carl-
son et al., 2010]. 2) FB15K-237, a subset of FB15K where
inverse relations are removed is a knowledge base where all
entities are present in Wikilinks database. 3) WN18RR is a
subset of Wordnet, which provides semantic knowledge of
words. Details about these datasets are shown in Table 2.

For evaluating the performance of KGR, our experiments
are mainly based on two applications:

• Relation Link Prediction. Given a query (h, ?, t), rela-
tion prediction is to predict the relation between the head

entity h and the tail entity t. First, we remove all links
of the ground-truth relation r in the KG. Then the agent
tries to infer and walk through the KG to reach the target
entity. By collecting the path between entity pairs, we
feed the path features into path ranking algorithm (PRA)
[Lao et al., 2011], which trains a per-relation classifier
to predict the existence of the ground-truth relation r in
the way of binary classification. In this way, the test set
containing positive and negative query pairs is evaluated,
then we report the mean average precision (MAP) scores
for each task.

• Entity Link Prediction. Given a query (h, r, ?) or
(?, r, t), we produce a ranking of the entities by car-
rying out knowledge graph reasoning, and we then do
a beam search with a beam width of 50 and rank enti-
ties by the probability of the trajectory reaching the cor-
rect entity. In this way, Hit@1,3,10 and mean recipro-
cal rank (MRR) are calculated from the ranking process,
which are standard metrics for knowledge grah comple-
tion tasks [Bordes et al., 2013].

Baselines. We compared some popular knowledge graph
completion approaches, TransE [Bordes et al., 2013], Com-
plEX [Yih et al., 2011], ConvE [Dettmers et al., 2018], and
some multi-hop reasoning methods, PRA [Lao et al., 2011],
NeuralLP [Yang et al., 2017], DeepPath [Xiong et al., 2017],
MINERVA [Das et al., 2018].

Hyper-parameter Settings. In the training stage, the key
hyper-parameter settings are as follows. The maximum
length of the high-level policy lH is fixed to 4. The maximum
length of the low-level policy lL is fixed to 2. The reward fac-
tor γ is 1.2, and the batch size κ is 100. the vector dimension
d is 100. The clustering number for i-th relation cluster is
2i − 1. The regularization λ is 0.005. The network architec-
ture parameters is optimized by grid-search in the valid set.

6 Results and Discussion
6.1 Link Prediction
Entity Link Prediction. In this task, we conduct link pre-
diction experimental based on the entity prediction met-
ric on three standard datasets, NELL995, FB15K-237, and
WN18RR. Note that NeuralLP does not scale to NELL995,
therefore the results are not included. The MAP results are
shown in Table 3.

On NELL995 and WN18RR, our model demonstrates
competitive results compared to other approaches. Mean-
while, our model significantly outperforms other baselines
on FB15K-237, which obviously differs from NELL995 and
WN18RR. We further analyzed the type structure of relations
on FB15K-237. Then we observed that the query number
of 1-to-M is larger than the M-to-1, where respectively 54%
compared to 26% on FB15K-237[Bordes et al., 2013]. It
indicates that FB15K-237 has many multiple-semantic rela-
tions. Accordingly, multi-hop reasoning methods (PRA, Neu-
raLP, MINERVA) present worse performance than single-hop
reasoning (TransE, ComplEX, ConvE) on FB15K-237. The
results reveal that the search process of multi-hop reasoning
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ID Query 1:(Texas,?,Oklahoma)→(Texas,adjoins,Oklahoma) Prediction
MINERVA

1 Texas
country−→ United States of America

country−1

−→ Oklahoma X

2 Texas
country−→ United States of America

country−1

−→ Louisiana
adjoin−1

−→ Oklahoma X

3 Texas
adjoins−→ Louisiana

country−→ United States of America
country−1

−→ Arkansas ×
RLH

4 Texas
country−→ United States of America contains−→ Oklahoma X

5 Texas
first level−→ United States of America contains−→ Oklahoma X

6 Texas
country−→ United States of America contains−→ University of Oklahoma

state province region−→ Oklahoma X
Query 2:(Ingrid Bergman,languages,?)→ (Ingrid Bergman,languages, German)
MINERVA

7 Ingrid Bergman
film−→Casablanca

language−→ German X

8 Ingrid Bergman
film−→Gaslight

film−1−→ Joseph Cotten
film−→Citizen Kane ×

9 Ingrid Bergman award−→ Academy Award for Best Actress award
−1

−→ Piper Laurie
nominated for−→ Frasier ×

RLH
10 Ingrid Bergman

film−→SportsLeague mlb
MurderontheOrientExpress−→ SportsTeam chicago cubs

language−→ German X

11 Ingrid Bergman
film−→Casablanca

language−→ German X

12 Ingrid Bergman award−→ Academy Award for Best Supporting Actress
nominatedfor−→ Roman Holiday

language−→ German X

Table 5: Reasoning path cases on the two queries: (Texas,?,Oklahoma), (Ingrid Bergman,languages,?).

methods is prone to be stuck in the local nodes with high-
degree centrality, resulting in a fail to reach the correct entity.

Comparing to MINERVA, our approach has superior per-
formance, indicating that the hierarchical cognition mecha-
nism can handle multiple semantic issues.

Relation Link Prediction. In this experiment, we perform
relation prediction for two datasets, NELL995, FB15K-237.
The results of MAP are reported in Table 4. As the results
show for NELL995, despite of failing to achieve all improve-
ments on each task, our approach performs better on the rela-
tions with multiple semantics. For instance, ‘OrgHirePerson’,
‘agentBelongToOrg’, ‘WorksFor’, ‘PersonLeadOrg’. Simi-
larly to entity prediction experiments, our model outperforms
other baselines in most tasks on FB15K-237.

In summary, link prediction results demonstrate that our
model succeeds multi-hop reasoning on KGs with competi-
tive performance, therefore providing interpretable reasoning
path to users, and it is also favorable to handle the multiple
semantic issues.

6.2 Reasoning Path Case Study
To investigate the property of reasoning paths, we present the
reasoning paths found by the approaches (MINERVA, RLH)
for two typical queries on FB15K-237. Table 5 shows the
top-three frequency paths found by MINERVA and RLH.
For the two queries, our approach all achieves the correct
target entity, but MINERVA gets 4/6 hits. Note that MIN-
ERVA adds the inverse relation of each edge, i.e., for an edge
(e1, r, e2) ∈ U , the edge (e2, r

−1, e1) to the graph. Con-
sequently, the agent trained by MINERVA has the ability to
reversely infer the reasoning paths. However, we observe that
this operation significantly suppresses the reasoning process
when the intermediate entities or relations are key nodes with
high degree centrality, such as ‘United States of America’,
‘country’ and ‘film’ in Table 5. Once the agent is at this kind
of nodes, the large action space hinders the decision of the
policy. As a result, we observe a high-frequency occurrence

of relations with high-degree centrality in path 1-3, 7-9. Con-
trastively, our model learns reasoning chains with wider con-
cepts. For instance, ‘country’, ‘first level’, and ‘state province
region’ are all in the multiple meanings of ‘sub-part of’. In
brief, the reasoning cases reveal that our model can learn the
structural semantics of actions to identify both specific ac-
tions and sub-actions, therefore achieves improvement.

7 Conclusions
In this paper, we study multiple semantic issue where an
entity or relation has multiple meanings during multi-hop
knowledge graph reasoning. In order to address the problem,
we consider the way that a human being handles ambigu-
ous situations as a promising solution. We therefore design
a HRL framework with a hierarchical decision making mech-
anism. The mechanism is implemented by a hierarchy of the
high-level policy and the low-level policy. The high-level pol-
icy learns historical information. Meanwhile, the low-level
policy is responsible for learning sub-actions as well as di-
viding each entire action space into a smaller action space.
As a result, the multiple semantics of each relation can also
be learned. In this way, our proposed approach can deal with
multiple semantic issue in the multi-hop reasoning tasks. Ex-
perimental results show our model demonstrates competitive
performance compared with existing knowledge graph com-
pletion methods. In particular, our approach achieves signifi-
cant improvements on the tasks with multiple semantic issue.
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