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Abstract

Recently deep neural networks have achieved
promising performance for filling large missing
regions in image inpainting tasks. They usual-
ly adopted the standard convolutional architecture
over the corrupted image, where the same convolu-
tion filters try to restore the diverse information on
both existing and missing regions, and meanwhile
ignore the long-distance correlation among the re-
gions. Only relying on the surrounding areas in-
evitably leads to meaningless contents and artifact-
s, such as color discrepancy and blur. To address
these problems, we first propose region-wise con-
volutions to locally deal with the different types of
regions, which can help exactly reconstruct existing
regions and roughly infer the missing ones from ex-
isting regions at the same time. Then, a non-local
operation is introduced to globally model the cor-
relation among different regions, promising visual
consistency between missing and existing region-
s. Finally, we integrate the region-wise convolu-
tions and non-local correlation in a coarse-to-fine
framework to restore semantically reasonable and
visually realistic images. Extensive experiments
on three widely-used datasets for image inpainting
tasks have been conducted, and both qualitative and
quantitative experimental results demonstrate that
the proposed model significantly outperforms the
state-of-the-art approaches, especially for the large
irregular missing regions.

1 Introduction

Image inpainting (i.e., image completion or image hole-
filling), synthesizing visually realistic and semantically plau-
sible contents in missing regions, has attracted great atten-
tions in recent years. It can be widely applied in many tasks
[Barnes et al., 2009a; Newson et al., 2014; Park et al., 2017,
Simakov et al., 2008], such as photo editing, image-based
rendering, computational photography, etc. Till now, there
have been many methods proposed for generating desirable
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(c) Ours
Figure 1: Image inpainting results using EdgeConnect (EC) and our
proposed method on street view image.

(a) Input (b) EC

contents in different ways, including the traditional methods
using handcrafted features and the deep generative models.

Traditional approaches can be roughly divided into two
types: diffusion-based and patch-based. The former methods
propagate background data into missing regions by following
a diffusive process typically modeled using differential opera-
tors [Ballester et al., 2000; Esedoglu and Shen, 2002]. Patch-
based methods [Kwatra et al., 2005; Barnes et al., 2009b] fill
in missing regions with patches from a collection of source
images that maximize the patch similarity. These methods
have good effects in the completion of repeating structured
images. However, they are usually time-consuming and be-
sides they cannot hallucinate semantically plausible contents
for challenging cases where inpainting regions involve com-
plex, non-repetitive structures, e.g., faces, objects, etc.

The significant development of deep neural networks and
generative adversarial networks inspires recent works to for-
mulate inpainting as a conditional image generation prob-
lem. Context Encoders [Pathak e al., 2016] first exploit-
ed GAN:S to restore images, using a channel-wise fully con-
nected layer to propagate information between encoder and
decoder. [lizuka et al., 2017] utilized dilated convolution-
s and employed both global and local discriminators to as-
sess images. [Yu er al., 2018b] adopted a coarse-to-fine
network with attention mechanism to gradually refine the
generated images. To perceptually enhance image quali-
ty, several studies [Yang er al., 2017; Song et al., 2017,
Wang et al., 2018b] attempted to extract features using pre-
trained VGG network to reduce the perceptual loss or style
loss. More recently, [Liu et al., 2018; Yu et al., 2018a;
Nazeri et al., 2019] further concentrated on irregular miss-
ing regions and achieved satisfying performance especially
for the highly structured images.

Despite the encouraging progress in image inpainting,
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Figure 2: The architecture of our proposed coarse-to-fine image inpainting framework.

most existing methods still face the inconsistency problems,
such as distorted structures and blurry textures (see the result
of the very recent method EC [Nazeri et al., 2019] in Figure
1). This phenomenon is much likely due to the inappropriate
convolution operation over the two types of regions, i.e., ex-
isting and missing regions. Intuitively, different feature repre-
sentations should be extracted to characterize different types
of regions, since there is sufficient content information in ex-
isting regions, but none in the missing ones, which need to
be inferred from existing regions. Therefore, directly apply-
ing the same convolution filters to generate semantic contents
inevitably leads to visual artifacts such as color discrepancy,
blur and obvious edge responses surrounding holes. Change-
able mask is proposed in recent works [Liu et al., 2018;
Yu et al., 2018a] to handle the difference. However, rely-
ing on the same filters for different regions, they still fail to
generate favourable results.

In this paper, to generate desirable contents for missing re-
gions, we treat the different types of regions using different
convolution filters. Existing regions contain sufficient infor-
mation and thus can be reconstructed based on themselves,
while the missing ones without any information have to be
inferred from the existing regions. Therefore, we develop
region-wise convolution operations, i.e., self-reconstruction
and restoring from the existing regions, to separately deal
with existing and missing regions. The region-wise convolu-
tions help infer the missing semantic contents, but inevitably
cause the inconsistent appearance due to the ignorance of the
correlation between existing and missing regions. We further
propose a non-local operation to model the correlation among
regions, thus generate more meaningful contents to connect
them naturally. Then, we introduce a two stage coarse-to-fine
image inpainting framework with a ¢; reconstruction loss, a
correlation loss and the popular style loss.

The framework produces natural, semantic contents for
missing regions by incorporating region-wise convolutions
and the non-local operation at the coarse stage, and further
outputs the restored image by eliminating the visually un-
pleasant artifacts at the fine stage. Figure 2 shows the ar-
chitecture of our whole framework. Extensive experiments
on various datasets such as faces (CelebA-HQ [Karras et al.,

3124

2017]), street views (Paris StreetView [Doersch et al., 2012])
and natural scenes (Places2 [Zhou et al., 2018]) demonstrate
that our proposed method can significantly outperform other
state-of-the-art approaches in image inpainting.

2 The Approach

In this section, we elaborate the details of our coarse-to-fine
image inpainting framework with encoder-decoder architec-
ture. We will first introduce the whole framework consisting
of two stages which respectively learns the missing regions at
the coarse stage and further refines the whole image at the fine
stage. Then, we will present our region-wise convolutions
and the non-local operation. Finally, the whole formulation
and optimization strategies will be provided.

2.1 The Coarse-to-fine Framework

The state-of-the-art image inpainting solutions often ignore
either the difference or the correlation between the existing
and missing regions. To simultaneously address both issues,
we adopt a two-stage coarse-to-fine framework based on the
encoder-decoder architecture. At the coarse stage, the frame-
work first infers the semantic contents from the existing re-
gions using region-wise convolution filters, rather than the
identical ones. Then, it further enhances the quality of the
composited image using the non-local operation, which takes
the correlation between different regions into consideration.
At the fine stage, the two different regions are considered to-
gether using a style loss over the whole image, which per-
ceptually enhances the image quality. With the two-stage
progressive generation, the framework will make the restored
images more realistic and perceptually consistent.

As shown in Figure 2, the framework takes the incomplete
image ig and a binary mask M as input, and attempts to
restore the complete image close to ground truth image I,
where M indicates the missing regions (the mask value is 0
for missing pixels and 1 for elsewhere), ig =I,®Mand ©
denotes dot product. To accomplish this goal, network E;, Eo
serve as encoders in two stages respectively to extract seman-
tic features from corresponding input images. A decoder G
composing of the proposed region-wised convolutional layer-
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s is employed after encoder E; to restore the semantic con-
tents for different regions, and generates the predicted image

Ig) =G (El(ig)> at the coarse stage. After feeding the

composited image I = I,+ Ig)l) ®(1—M) from the coarse
stage to encoder E5, another decoder D at the second stage

further synthesizes the refined image I,(,Q) =D (E2 (L(:l))).
Based on the encoder-decoder architectures, we finally have
the visually and semantically realistic inpainting result 19) =
ig + II(JQ) ® (1 — M) close to the ground truth image I,.

2.2 Inferring Region-wise Contents

For image inpainting tasks, the input images are composed
of both existing regions with valid pixels and missing regions
(masked regions) with invalid pixels in mask to be synthe-
sized. Only relying on the same convolution filters, we can
hardly restore the semantic features over different regions,
which in practice usually leads to the visual artifacts such
as color discrepancy, blur and obvious edge responses sur-
rounding the missing regions. Motivated by this observation,
we first propose region-wise convolutions in the decoder net-
work G at the coarse stage, and thus the decoder can separate-
ly generate the corresponding contents for different regions
using different convolution filters.

Specifically, let W, W be the weights of the region-wise
convolution filters for existing and missing regions respec-
tively, and b, b correspond to the biases. x is the feature for
the current convolution (sliding) window belonging to the w-
hole feature map X. Then, the region-wise convolutions at
every location can be formulated as follows:

< — W 'x + b,
n WTerB,

xeXoOM

x e X o (1-M) M

This means that for different types of regions, different con-
volution filters will be learnt for feature representation.

In practice, we can accomplish region-wise convolutions
by proportionally resizing the mask as feature maps down-
sampled through the convolution layers. In this way, we can
ensure that different regions can be easily distinguished ac-
cording to the resized mask by channels, and thus the in-
formation in different regions can be transmitted consistently
across layers. The convolution filters for existing regions try
to reconstruct themselves, while those for missing ones focus
on inferring the semantic contents from existing parts.

2.3 Modelling Non-local Correlation

After the region-wise convolutions, the framework generates
a coarse predicted image, where missing regions are almost
recovered with semantically meaningful contents. However,
the predicted image is still far beyond the visually realistic
appearance. This is mainly because the convolution opera-
tions are skilled in processing local neighborhoods whereas
fail to model the correlation between distant positions.

To address this problem and improve the visual quality of
the recovered image, a non-local operation is adopted follow-
ing prior studies [Wang et al., 2018a]. It computes the re-
sponse at a position as a weighted sum of the features at all
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positions in the input feature map, and thus can capture long-
distance correlation between patches inside an image. Note
that the traditional way to accomplish the non-local opera-
tion relies on the simple matrix multiplication and is usually
adopted in feed-forward process to obtain more information
for specific tasks. However, the computation will be quite
memory-consuming for large feature maps, which is not ap-
plicable in our generative models where the smallest feature
map created by G is 128 x 128.

In this paper, we accomplish the non-local operation using
the simple outer product between different positions, rather

than the non-local block. Formally, given an image Igl),

\11(12”) denotes the ¢ X h x w feature map computed by
feature extraction method W. In practice, in order to index
an output position in space dimension easily, we reshape the
feature map to the size of ¢ x n, where n = h x w. Corre-
spondingly, U*(I,) is the i-th column in the reshaped feature
map ¥(I,), where i = 1,...,n, of length c. Then, a pairwise
function f;; can be defined as a non-local operation, which
generates a n X n gram matrix evaluating the correlation be-
tween position ¢ and j:

. T,
o) = (v'a?)) (val)). @
Once we have the non-local correlation, we can bring it in-

to the inpainting framework by introducing a correlation loss
based on the gram matrix.

2.4 The Formulation

To guide the learning of the two stage encoder-decoder net-
work, we introduce the following loss functions.

Reconstruction Loss

We employ ¢; reconstruction loss to promise the predicted
images at the two stages, including both the existing regions
and the missing ones, consistent with the ground truth at the
pixel level:

£ =| 12 -1,

i -, + : ®

The reconstruction loss is useful for region-wise convolution
filters to learn to generate meaningful contents for different
regions especially at the first stage.

Correlation Loss

The reconstruction loss treats all pixels independently with-
out consideration of their correlation, while in our observa-
tion the relationship among distant local patches plays a crit-
ical role in keeping the semantic and visual consistency be-
tween the generated missing regions and the existing ones.
Therefore, we further introduce a correlation loss that can

help to determine the expected non-local operation. Namely,

)

for image Igl , the correlation loss is defined based on f;; (-):

L zai)
%)

where o denotes the normalization factor by position. The
correlation loss forces the model to generate images with se-
mantic details much more close to the realistic image. Here,
different from the prior work of PConv, we only consider the
non-local correlation for the composited image.

Fii (@) = fi;(1y)

; “

1
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Style Loss

Although non-local correlation loss is capable of capturing
long distance dependencies, enhancing the restoration of de-
tails, it still fails to avoid visual artifacts in unstable gener-
ative models. Therefore, we append a style loss to produce
clean results and further refine the images perceptually as a
whole at the second stage. The style loss is widely used in
image inpainting and style transfer tasks meanwhile poses as
an effective tool to combat “checkerboard” artifacts [Sajjadi

et al., 2017]. After projecting image IEZ) into a higher level
feature space using a pre-trained VGG, we could obtain the
feature map <I>,,(IZ(,2)) of the p-th layer with size ¢, X hy, X wp,

and thus the style loss is formulated as follows:

L= 300, | (202)) " (2,02)) ~ (@,(1,))7 (2,(1,))

1

(%)
where J,, denotes the normalization factor for the p-th select-
ed layer by channel. The style loss focuses on the relationship
between different channels to transfer the style for the com-
posited image at the second stage.

Overall Loss
The overall loss £ combines the reconstruction, correlation
and styles loss functions:

£ = ‘C'r + )\lL"c + )\2165- (6)

In our coarse-to-fine framework, the reconstruction loss
works in both stages to guarantee the pixel-wise consisten-
cy between the predicted images and the ground truth. To
capture the relationship among different regions and gener-
ate detailed contents at the first stage, the correlation loss is
adopted to guide the training of the network E; and G. Fi-
nally, at the second stage, the style loss helps perceptually
enhance the image quality by considering the whole image.

2.5 Implementation and Training

In practice, we exploit the widely-adopted pre-trained VGG
network to extract features for the calculation of correlation
loss as well as style loss. For the computation of correlation
loss, only feature maps extracted by pool2 are adopted due to
the weak semantic representation capability of pooll and the
blur caused by pool3 and pool4. In order to calculate the style
loss, we use the output of pooll, pool2, and pool3 together.
In another word, ¥(-) = ®,(-) when p = 2.

We also adopt skip links, which as [Liu et al, 2018]
claimed, may propagate the noises for most inpainting archi-
tectures. However, we find skip links will not suffer the nega-
tive effect in our framework due to region-wise convolutions
and thus enable the detailed output from existing regions.

The entire training procedure follows the standard forward
and backward optimization paradigm. In the forward step,
given a ground truth image I,, we first sample an irregular
binary mask M and subsequently generate the incomplete
image ig. The inpaiting framework takes the concatenation
of ig and M as the input, and outputs the predicted image

Ig,l) and I](gz) respectively in the coarse and fine stages. In the
backward step, according to the three types of losses over the
predicted and composited images, we can simply update the
network parameters using the backward propagation.
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| Mask | GLCIC CA PConv EC Ours
PSNR* 0-10% 26.71 36.13 3041 3032 4252
10-20% | 2097 2297 2693 2692 29.52
20-30% | 1822 2026 2480 2491 2677
30-40% | 16.31 18.47 23.14 2337 24.87
40-50% | 14.88 1709 2171 2206  23.34
50-60% | 13.80 16.01 2041 2091 22.04
a0~ | 0-10% 23.55 17.40 1894 18.82 4.85
10-20% | 4032 3250 2449 2408  10.22
20-30% | 59.26 4776 3048 29.62 1591
30-40% | 80.33 63.63 3725 3574 2215
40-50% | 102.67 8036 4523 4267  29.08
50-60% | 124.63 97.11 5477 5044 36.58
€073 | 0-10% 3.06 2.20 1.14 117 0.46
10-20% 9.54 6.90 2.50 2.53 1.55
20-30% | 17.40 11.92 4.04 4.00 2.77
30-40% | 2657 17.34 5.85 5.66 4.19
40-50% | 36.60 23.25 8.07 7.58 5.85
50-60% | 46.71 29.34 10.77 9.79 7.78
SSIM* 0-10% 0.902 0.965 0.924 0925  0.982
10-20% | 0.806 0.888 0.880  0.881  0.942
20-30% | 0.708 0.811 0.834 0836  0.901
30-40% | 0.609 0730 0784 0788  0.856
40-50% | 0513 0.647 0728 0736  0.807
50-60% | 0.427 0.566  0.667 0680  0.755
FID' 0-10% 8.21 1.26 1.75 1.38 0.02
10-20% | 34.48 8.73 2.10 1.80 0.11
20-30% | 62.74 2035 2.88 2.69 0.31
30-40% | 90.94 36.53 431 4.36 0.68
40-50% | 117.23 57.60 6.97 7.38 1.38
50-60% | 140.53 81.66 1210 1252 2.66
Perceptual’ | 0-10% | 18339 8158 12864 12698  36.11
10-20% | 363.68 22077  193.84 19250  109.42
20-30% | 546.10 34893 25847 25598  178.49
30-40% | 729.94 47110 32636  321.03  247.02
40-50% | 906.89  587.90  401.07  389.19  316.61
50-60% | 106277 113234 48531 45995  385.93

Table 1: Quantitative comparisons among different methods on
Place2, in terms of different evaluation metrics. T means lower is
better, while * means higher is better.

3 Experiments

In this section, we will evaluate our proposed method visually
and quantitatively over several common datasets in image in-
painting compared to state-of-the-art methods. More results
could be found in the supplementary material'.

3.1 Datasets and Protocols

We employ the widely-used datasets in prior studies, in-
cluding CelebA-HQ [Karras et al., 20171, Places2 [Zhou
et al., 2018], and Paris StreetView [Doersch et al., 2012].
CelebA-HQ contains 30k high-resolution face images, and
we adopt the same partition as [Yu et al., 2018b] did. The
Places2 dataset includes 8,097,967 training images with di-
verse scenes. The Paris StreetView contains 14,900 training
images and 100 test images. For both datasets, we adopt the
original train, test, and validate splits.

We compare our method with four state-of-the-art model-
s, namely, Globally and locally Consistent Image Completion
(GLCIC) [lizuka et al., 2017], Contextual Attention (CA) [Yu
et al., 2018b], Partial Convolution (PConv) [Liu et al., 2018]
and EdgeConnect (EC) [Nazeri et al., 2019]. Among those

"https://drive.google.com/file/d/1i00cZ0fwg VeaRrhTLCuk-rvb
CekkMVmv/view ?usp=sharing
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Figure 4: Object removal results (column (c)) using our model: re-
moving beard, watermark and kid from origin images (column (a))
according to the input mask (column (b)).

(b) Input (c) Output

models, GLCIC and CA are initially designed for regular
missing regions, while PConv, EC and ours focus on irreg-
ular holes. Besides, the training of GLCIC and CA heavily
relies on local discriminators assuming availability of the lo-
cal bounding boxes of the holes, which would not make sense
under our experimental setting. Therefore, we directly ap-
ply their released pre-trained models for the two methods in
our experiments. For EC, we use their pre-trained models on
Paris dataset and Places2, and train the model on celebA-HQ
with the released codes. As to PConv, since there is no pub-
lished codes, we borrow the implementation on githubz, and
retrain the model following the authors’ advice.

*https://github.com/MathiasGruber/PConv-Keras
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(d) PConv

(e) EC

(f) Ours

Figure 3: Qualitative comparisons between different methods on Place2, Paris StreetView and CelebA-HQ datasets

(&) GT

For our method, we basically develop the model based
on the architecture of CA, discarding its contextual attention
module but adding the region-wise convolutions. Input im-
ages are resized to 256 x 256, and the proportion of irregular
missing regions varies from O to 40% in the training process.
We empirically choose the hyper-parameters A\; = 1075,
A2 = 1073, and the initial learning rate 10~4. Using the
Adam optimizer, on CelebA-HQ and Paris StreetView we
train the model with a batch size of 8 for 20 epochs, and on
Places2 we train it with a batch size of 48.

3.2 Qualitative Results

Figure 3 shows the inpainting results of different method-
s on several examples from Places2, Paris StreetView and
CelebA-HQ respectively, where “GT” stands for the ground
truth images. All the reported results are the direct outputs
from trained models without using any post-processing. Note
that images in Places2 contain too many semantic contents
and thus cannot be clearly shown in small size. So in the first
row of Figure 3, we mark the specific regions using the yellow
rectangles. From the figure, we can see that GLCIC and CA
bring strong distortions in the inpaiting images, while PConv
can recover the semantic information for the missing irreg-
ular regions in most cases, but still faces obvious deviations
from the ground truth. EC performs well when small miss-
ing regions occur (e.g., 0 - 30%, see more results in the sup-
plementary material), but also fails to infer the correct edge
information for large holes. Among all the methods, it can
be seen that our model can restore images with more natural
contents in the missing regions, which look more consistent
with existing regions and much closer to the ground truth.

Unwanted object removal is one of the most useful appli-
cations of image inpainting. Therefore, we also study the per-
formance of our method in this task, and show several exam-
ples in Figure 4. It is obvious that the inpainting images seem
very natural and harmonious, even the unwanted objects ap-
pear with complex shapes and backgrounds.
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Figure 5: The effect of different components in our model: (a) the input incomplete images, (b) results using standard convolutions instead
of our region-wise convolutions, (c) results of model trained without our correlation loss L., (d) results of model trained with L., L at the
same stage, (e) results of the coarse stage, (f) results of our full coarse-to-fine model, and (g) the ground truth images.

3.3 Quantitative Results

Following [Nazeri er al., 2019], we investigate the perfor-
mance of different methods using the following quantitative
metrics: 1) ¢; error, 2) {5 error, 3) peak signal-to-noise ratio
(PSNR), and 4) structure similarity index (SSIM). These met-
rics assume pixel-wise independence, and can help to com-
pare the visual appearance of different inpainting images. But
in practice, they may assign favorable scores to perceptually
inaccurate results. Recent works [Xu et al., 2018] have shown
that metrics based on deep features are closer to those based
on human perception. Therefore, we also adopt another two
metrics including Frechet Inception Dsitance (FID) [Xu et al.,
2018] and perceptual error [Johnson et al., 2016] on deep fea-
tures to evaluate the performance at the semantic level.

Table 1 lists the results of all methods on the largest dataset
Place2 in terms of different metrics, with respect to differen-
t mask sizes. First, we can observe that as the missing area
gradually increases, all the methods perform worse in terms
of all metrics. But compared to others, our method obtains the
best performance in all cases, and its performance decreases
much more slowly when the mask size enlarges. This means
that our method can work stably and robustly, especially for
input images with large missing regions. Besides, in terms
of FID and Perceputal error, our method obviously achieves
much more significant improvement over the state-of-the-art
methods like PConv and EC, which indicates that the pro-
posed framework can pursue more semantically meaningful
contents for missing regions. What’s more, in terms of P-
SNR, /¢y and /5 errors, the superior performance over other
methods proves that our method enjoys strong capability of
generating more detailed contents for better visual quality.

3.4 Ablation Study

As aforementioned, our method mainly gains from region-
wise convolutions and the non-local correlation. Thus, we
study the effects of different parts in the image inpainting.
Figure 5 respectively shows the inpainting results obtained by
our framework, and the framework using standard convolu-
tion filters instead of region-wise ones, removing correlation
loss, using L., L at the same stage, or only adopting coarse
stage. From the results, we can see that without region-wise

convolutional layers, the framework can hardly infer the con-
sistent information with existing regions. Furthermore, with-
out considering the non-local correlation, the framework re-
stores the missing regions only according to the surrounding
areas. Moreover, using L., L at the same stage will cause ar-
tifacts and cannot restore semantic contents. Besides, we can
see that though the coarse stage can restore the semantic in-
formation, its outputs still contain strange artifacts. With the
help of both region-wise convolutions and non-local correla-
tion, our framework enjoys strong power to generate visually
and semantically close images to the ground truth.

4 Conclusion

We propose a two-stage coarse-to-fine generative image in-
paiting framework, which integrates region-wise convolu-
tions and the non-local operation to deal with the differ-
ences and correlation between existing and missing regions.
Region-wise convolutions reconstruct existing regions while
infer missing regions from existing ones. The non-local op-
eration promises missing regions to own visual consistency
with existing regions, e.g., color, texture and edge. We show
that our proposed method is able to restore meaningful con-
tents for missing regions and connect existing and missing re-
gions naturally and thus significantly improves inpainting re-
sults. Furthermore, we demonstrate that our inpainting frame-
work can edit face, clear watermarks, remove unwanted ob-
jects in practical applications. Extensive experiments on var-
ious datasets such as faces, paris streets and natural scenes
demonstrate that our proposed method can significantly out-
perform other state-of-the-art approaches in image inpainting.
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