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Abstract
The missing values, appear in most of multivari-
ate time series, prevent advanced analysis of mul-
tivariate time series data. Existing imputation ap-
proaches try to deal with missing values by dele-
tion, statistical imputation, machine learning based
imputation and generative imputation. However,
these methods are either incapable of dealing with
temporal information or multi-stage. This paper
proposes an end-to-end generative model E2GAN
to impute missing values in multivariate time se-
ries. With the help of the discriminative loss
and the squared error loss, E2GAN can impute
the incomplete time series by the nearest gener-
ated complete time series at one stage. Experi-
ments on multiple real-world datasets show that
our model outperforms the baselines on the imputa-
tion accuracy and achieves state-of-the-art classifi-
cation/regression results on the downstream appli-
cations. Additionally, our method also gains bet-
ter time efficiency than multi-stage method on the
training of neural networks.

1 Introduction
Recent advances in sensors and hardwares promote the rapid
emergence of electronic data especially the multivariate time
series data. Examples of multivariate time series appear in
fields like medicine, meteorology, economics and transporta-
tion science [Chatfield, 2016]. Applications of multivari-
ate time series include predicting the health status of pa-
tients [Hyland et al., 2018], weather forecasting [Bright et al.,
2015], stock market analysis [Granger and Newbold, 2014],
adjusting the traffic flow of big cities [Lv et al., 2015], etc.
The analysis of time series can also lead to a deep and thor-
ough understanding of the time series itself.

Nevertheless, missing values in multivariate time series
data poses a challenge for engineers and researchers, due to
the broken of collection sensors, the ill designed collection
process and mistakes made by humans. Taking PhysioNet
challenge 2012 dataset [Silva et al., 2012], a public medical
dataset, as an example, the average missing rate of this mul-
tivariate time series data is above 80%. The missing values
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hinder the advanced analysis of time series [Berglund et al.,
2015].

Traditional missing values processing methods can be sum-
marized into two categories. The first one tries to delete the
observations which are partially missing. Deletion methods
prevent the further analysis in some way [Graham, 2009].
The imputation method that imputes the missing values with
reasonable values is the other type of method to deal with
missing values. State-of-the-art imputation algorithms in-
clude K-Nearest Neighbor (KNN) based imputation [Hudak
et al., 2008], Matrix Factorization based imputation [Acar et
al., 2010] and Recurrent Neural Networks (RNN) based im-
putation [Berglund et al., 2015; Che et al., 2018; Cao et al.,
2018].

Recently, Generative Adversarial Networks (GAN) [Good-
fellow et al., 2014] based methods, which first learn to gen-
erate new samples that follow the distribution of the training
dataset and then impute the missing values, have achieved
state-of-the-art performance. [Luo et al., 2018] proposes a
two-stage time series imputation method. This method first
trains a GAN model. At the second stage, for each sample,
it tries to optimize the “noise” input vector and find the best
matched input vector of the generator so that the generated
sample is most similar to the original one. However, this two-
stage method needs a lot of time to find the best matched input
vector and this vector is not always the best especially when
the initial value of the “noise” is not properly set.

Inspired by [Sabokrou et al., 2018], this paper propose
an end-to-end GAN-based imputation model E2GAN, which
not only simplifies the process of time series imputation but
also generates more reasonable values for the filling of miss-
ing values. E2GAN takes a compressing and reconstructing
strategy to avoid the “noise” optimization stage in [Luo et al.,
2018]. In the generator, we add a random vector to the orig-
inal sample and try to map it into a low-dimensional vector.
Then we reconstruct it from the low-dimensional vector. The
generator seeks to find a network structure that can not only
best compress and reconstruct the multivariate time series but
also fool the discriminator. The proposed method automati-
cally learns internal representations of the time series and try
its best to reconstruct this temporal data. The new architec-
ture also improves the imputation performance by getting a
better feature representation of samples, which contributes to
a better reconstructed samples and improves the imputation
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results.
Finally, we use the reconstructed sample to impute the

missing values. The experiments conducted on two real
datasets show that our method achieves a new state-of-the-art
imputation accuracy and achieves better time efficiency than
the two-stage method.

In summary, the main contributions of this paper are as fol-
lows: (1) We propose a novel end-to-end generative adversar-
ial network that simplifies the process of time series imputa-
tion, i.e., reduces the training time. (2) The noised compress-
ing and reconstructing strategy makes sure that the imputed
values more reasonable than [Luo et al., 2018]’s. (3) Experi-
ments on multiple real-world datasets show that the proposed
method achieves new state-of-the-art imputation accuracy.

2 Related Works
There is a lot of literatures on the processing and imputation
of missing values. Due to the limited space, we only describe
a few closely related ones. Deletion method, who simply
deletes the partly missed observations, prevents the further
analysis of dataset due to the deleted information [Graham,
2009]. Statistical imputation tries to fill missing values by
mean value [Kantardzic, 2011], last observed value [Amiri
and Jensen, 2016] and mode value [Purwar and Singh, 2015].
Many previous works show that machine learning based im-
putation methods are useful for data imputation or time se-
ries imputation. Multivariate Imputation by Chained Equa-
tions (MICE) [White et al., 2011] fills the missing values
by using iterative regression model. MICE imputes each
incomplete variable by a separate model. ARIMA [Box
et al., 2015], ARFIMA [Galbraith and Zinde-Walsh, 2001]
and SARIMA [Hamzaçebi, 2008] are representative auto-
regressive methods that can be used to predict and impute
missing values. K-Nearest Neighbor (KNN) [Hudak et al.,
2008] algorithm uses the mean value of k nearest neighbors
to fill missing values. Matrix Factorization [Acar et al., 2010]
algorithm factorizes the incomplete dataset into low-rank ma-
trices and adopts the product of these two matrices to impute
the missing values.

There are also some recurrent neural networks based im-
putation methods. [Berglund et al., 2015] have proposed two
probabilistic interpretations of bidirectional recurrent neural
networks that can be used to reconstruct missing samples ef-
ficiently. [Che et al., 2018] have proposed GRUD, which im-
putes missing values of clinical dataset with a smooth fasion.
GRUD takes the advantage of last observed value and mean
value to represent missing patterns of incomplete time series.
BRITS [Cao et al., 2018] is a novel neural network method
that directly learns the missing values in a bidirectional recur-
rent dynamical system, without any specific assumption.

Recently, Generative Adversarial Networks (GAN) [Good-
fellow et al., 2014], which seeks to generate new samples
that obey the distribution of training dataset, has been used
to impute missing values. The generated samples, which are
designed to fill the missing values, significantly boost the im-
putation accuracy. GAIN [Yoon et al., 2018], a GAN-based
imputation method, uses a hint vector that is conditioned on
what we actually observed to impute missing values. GAIN
has made tremendous advances in data imputation. However,

the main drawback of GAIN is the weak ability to impute
time series. [Luo et al., 2018] have proposed a two-stage
GAN based time series imputation method. This method first
train a GAN model that can produce new sample from a in-
put vector. In the second stage, this method tries to find a
“best” matched input “noise” vector of the generator so that
the generated sample is most similar to the original one. This
two-stage training strategy needs a lot of time to train and the
“best” matched vector is not always the best at some point.

3 Problem Formulation
A d-dimensional multivariate time series x, observed at
t=(t0, . . . , tn−1), is denoted by x=(x0, . . . , xn−1) ∈ Rd×n,
where t is the observing timestamp, and xt is the tth obser-
vation. The locations of the missing values is of great impor-
tance. We record the locations of missing values and the time
lags of two adjacent values.

Suppose that m∈ Rd×n is a mask matrix that takes values
in {0, 1}. m means whether the values of x exist or not, for
example, if xji exists, mj

i=1, otherwise, 0. The purpose of
multivariate time series imputation is to impute the missing
values in x as accurate as possible.

The following part is an intuitive explanation of a 3-
dimensional multivariate time series x and its corresponding
m.

x =

[
1 6 / 9
/ / 7 2 · · ·
9 / / 79

]
,m =

[
1 1 0 1
0 0 1 1 · · ·
1 0 0 1

]
,

t = (0, 2, 5, 10, . . .) .

We define a matrix δ ∈ Rd×n that records the time lag
between current value and last observed value. The following
part shows the calculation and a calculated example of the δ.

δjti =


0, i == 0

ti − ti−1, mj
ti−1

== 1 & i > 0

δjti−1
+ ti − ti−1, mj

ti−1
== 0 & i > 0

. (1)

δ =

[
0 2 3 8
0 2 5 5 · · ·
0 2 5 10

]
.

4 Approach
In this part, we show the details of the proposed method. A
Generative Adversarial Network (GAN) [Goodfellow et al.,
2014] is composed by a Generator (G) and a Discriminator
(D), whose goal, respectively, is to map low-dimensional vec-
tors (random noise) to high-dimensional samples and distin-
guish between the fake data and the real data. They are jointly
trained by adopting a min-max game. The ultimate aim of the
GAN is to produce new samples that obey the distribution of
the training dataset, by the adversarial training of the genera-
tor and discriminator. However, the original GAN can rarely
get out of the mode collapse problem. Recently, [Arjovsky
et al., 2017] have proposed the Wasserstein GAN (WGAN),
which can improve the learning stability and get away from
the problem of mode collapse. The formulations of WGAN
is a little different from the original one:
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LG = Ez∼Pg [−D(G(z))] , (2)

LD = Ez∼Pg [D(G(z))]− Ex∼Pr [D(x)] . (3)

In our generator, we take advantage of auto-encoder and
recurrent cell. We compress the input incomplete time series
x into a low-dimensional vector z with the help of recurrent
neural network. Then we use this vector to reconstruct a com-
plete time series x′ to fool the discriminator. Meanwhile, we
also force the x′ as close as possible to x by using a squared
error loss function. The discriminator of our method attempts
to distinguish actual incomplete time series x and the fake but
complete sample x′ through the adoption of recursive neural
network.

Discriminator

P(real)

Gradient 
feedback

Incomplete Time Series 

Incomplete Time 
Series x 

z

Generated Complete 
Time Series x'

Figure 1: The structure of the proposed method. The generator is a
denoising auto-encoder which is mainly composed by the GRUI cell.
The discriminator is another encoder that produces truth probability.

4.1 GRU Cell for Imputation
In the previous subsection, we have mentioned the map-
ping from high-dimensional incomplete time series to low-
dimensional vector with the help of recurrent neural network.
In this subsection, we will show the structure of this recur-
rent neural network that can not only compress the incom-
plete time series x but also reconstruct complete time series
x′ from a low-dimensional vector z.

We have adopted the GRUI (GRU for Imputation), pro-
posed in [Luo et al., 2018], to process the incomplete time
series. The GRUI is inspired by the GRUD proposed by [Che
et al., 2018]. Nevertheless, the GRUI is more simple than
the GRUD. The time lag of two adjacent existent values is
not always fixed due to the missing values. These irregular
time lags should be made good use of. It’s intuitive to decay
the historical influence of the past observations if the current
value is missed for a long time. The main idea of GRUI is to
introduce a time decay vector β to decrease the memory of
GRU cell. The following are the update functions of GRUI.

βti = 1/emax(0,Wβδti+bβ) ,h′ti−1
= βti � hti−1 , (4)

µti = σ(Wµ

[
h′ti−1

,xti

]
+ bµ) , (5)

rti = σ(Wr

[
h′ti−1

,xti

]
+ br) , (6)

h̃ti = tanh(Wh̃

[
rti � h′ti−1

,xti

]
+ bh̃) , (7)

hti = (1− µti)� ht′i−1
+ µti � h̃ti , (8)

where δ is the time lag matrix introduced in the “Problem
Formulation” part, and Wβ , Wh̃, Wr, Wµ, bβ , bµ, br, bh̃
are training parameters. The formulation of β guarantees that
with the increase of time lags δ, the value of β decreases. The
smaller the δ, the bigger the β. This formulation also make
sure that β ∈ (0,1]. The GRUI is not the research focus of
this paper, nevertheless, we can process the incomplete time
series successfully by using the GRUI.

4.2 Generator Network Architecture

δ

Multivariate Time Series x (red × 
flag means the missing value)

z
δ'

Complete Multivariate Time Series x'

η+

Figure 2: The generator is an auto-encoder whose input is a noised
incomplete time series and the output is a complete time series. By
the squared error loss and the discriminative loss, we can get a gen-
erated sample x′ that is not only most similar to original one but
also belonging to the distribution of training dataset.

The generator of proposed method is shown at Figure 2.
Since the auto-encoder is designed to reconstruct target sam-
ples, we choose it to generate complete time series x′. Dif-
ferent from traditional auto-encoder, we add a random noise
η which is sampled from a standard distribution N (0, 0.01)
to the original sample. We use a similar idea just like the
denoising auto-encoder, that is, compress and reconstruct the
original samples from the destroyed samples. The main idea
of denoising auto-encoder [Vincent et al., 2008] is to drop out
original samples and reconstruct the complete samples. How-
ever, the way to destroy original samples of our method is to
add some noise rather than drop out some values of the input
samples. The original samples is naturally missed, it is not a
good idea to drop out the already missed samples especially
the missing rates of some datasets are very high. For the nat-
urally incomplete dataset, we just add some noise to the input
samples and train an denoising auto-encoder.

G(x+ η) = x′ . (9)

Since the purpose of the generator is to produce new sample
x′ that is most similar to x, we add a squared error loss to
the loss function of the generator. The loss function of the
generator is a lot different from the one of traditional WGAN:

LG = λ||x�m−G(x+ η)�m||2 −D(x′) , (10)

where λ is a hyper-parameter that controls the weight of the
discriminative loss and the squared error loss. In this way, x′

can be used to impute the missing values of x.
Figure 2 is a visual explanation of the generator network.

To implement the generator network, we first feed the GRUI
cell with the incomplete time series x and its time lags matrix
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δ. We use zero value to replace the missing values of x at
the input stage of GRUI. After a recurrent processing of the
input time series, the last hidden state of the recurrent neural
network will flow to a fully connected layer. The output of
this fully connected layer is the compressed low-dimensional
vector z.

Next, we take z as the initial input of another fully con-
nected layer. Then we use this output as the very first input
of another GRUI layer. The current output of this GRUI layer
will be fed into the next iteration of the same GRUI layer. At
the final stage, we combine all the outputs of this GRUI layer
as the generated sample x′.

4.3 Discriminator Network Architecture
The network structure of discriminator is a decoder. In other
words, the discriminator is also made up of a GRUI layer
and a fully connected layer. The task of the discriminator
is to distinguish between fake sample x′ and true sample x.
The output of the discriminator is a probability that indicates
the degree of authenticity. We try to find a set of parameters
that can produce a high probability when we feed true sample
x, and produce a low probability when we feed fake sample
x′. Therefore, the loss function of the discriminator can be
designed as following shows.

LD = −D(x) +D(x′) . (11)

We feed incomplete time series x or complete time series
x′, with their corresponding δ, into the discriminator. With
the help of GRUI, the time series can be successfully han-
dled. The last hidden state of GRUI layer is fed into one fully
connected layer that outputs the probability of being true. In
order to enhance the generator, we update k times for gener-
ator and 1 time for discriminator at one iteration.

4.4 Imputation
In this paper, for every incomplete time series x, we try to
map it into a low-dimensional vector z and reconstruct a com-
plete time series x′ from z, so that the fake time series x′ is
most close to the original one. We use the corresponding val-
ues of x′ to fill in the missing values of x. The imputation
formula can be summarized as follows.

ximputed = x�m+ (1−m)� x′ . (12)

5 Experiments
In this section, the proposed method is evaluated on two real-
world datasets. The experimental results are analyzed and
compared in details.

5.1 Datasets and Baseline Methods
We use two real-world datasets including a medical dataset
and a meteorologic dataset for the evaluation of the proposed
method.

• PhysioNet Challenge 2012 dataset (PhysioNet). The
PhysioNet dataset, a public 80.67% missing medical
dataset provided by [Silva et al., 2012], is made up of
records from 4000 ICU stays. Every ICU stay is a 48
hours multivariate incomplete time series that includes

42 features. The focus of the PhysioNet dataset is to de-
velop methods that can predict in-hospital mortality well
(classification task). 554 (13.85%) patients died in hos-
pital, i.e., with positive label. The area under ROC curve
(AUC) score is used for evaluating the performance of
proposed method because of the non-balanced dataset.
It is impossible to directly calculate the imputation ac-
curacy since we can not get the complete dataset. We
impute this dataset by different imputation methods and
then use these imputed datasets to train same type of
classifiers. Finally, the mortality prediction results cal-
culated by these classifiers are used to indirectly deter-
mine the performance of different imputation methods.
• KDD CUP 2018 Dataset (KDD).1 The KDD dataset

(15% missing) is a public meteorologic dataset that
comes from the KDD CUP Challenge 2018. The KDD
dataset contains air quality and weather data which is
hourly collected between 2017/1/30 to 2018/1/30. There
are two tasks that conducted on this dataset. 1) Imputa-
tion task. We randomly drop out p percent of all time
series, where p ∈ {10, 20, . . . , 80}. Then we impute
these time series and calculate the imputation accuracy
by the mean squared error (MSE) between original val-
ues and imputed values. 2) Downstream task. We ran-
domly drop out 50 percent of all time series. Then we
use different methods to impute them and get different
imputed datasets. We use these datasets to train same
type of regression models that predict the mean air qual-
ity of the next 6 hours. Finally, we get the imputation
accuracy indirectly by the performances of this down-
stream task.

The baseline models are:
• Statistical imputation methods: We simply replace the

missing values with zero value, mean value and last ob-
served value.
• Matrix Factorization (MF) imputation [Acar et al.,

2010]: MF method is used to factorise the incomplete
matrix into low-rank matrices and fill the missing val-
ues.
• KNN [Hudak et al., 2008]: The missing values are re-

placed by using the k nearest neighbor samples.
• MICE [White et al., 2011]: Multivariate Imputation by

Chained Equations (MICE) fills the missing values by
using iterative regression model.
• GRUD [Che et al., 2018]: GRUD can be used to impute

missing values. We use it as one of the baselines.
• GAN-2-stage [Luo et al., 2018]: This method uses a

GAN based two-stage method to impute missing values.
We call this method as “GAN-2-stage”.
• GAIN [Yoon et al., 2018]: GAIN is another GAN based

imputation method that uses a hint vector to impute the
missing values.

• BRITS [Cao et al., 2018]: This method is one of the
state-of-the-art methods that uses bidirectional recurrent
network to impute time series.

1KDD CUP. Available on: http://www.kdd.org/kdd2018/, 2018.
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5.2 Implementation Details
We use ADAM algorithm to train networks. The hidden units
number of all GRUI cells are 64. The dimension of low-
dimensional vector z is also 64. The dropout rates of our ex-
periments are always fixed with 0.5. We adopt the batch nor-
malization technology on the GRUI layers. All input datasets
are normalized with zero mean and unit variance. For all the
experiments, we select 10% of dataset as validation set and
another 10% as test set. Before the training of GAN, the gen-
erator is pre-trained for epochs with a mean squared error loss
for fitting the next value in the training datasets.

5.3 Performance Comparison for Time series
Imputation

Table 1 is the imputation results on KDD dataset by using
proposed method and baseline methods which include statis-
tical imputation, KNN imputation, MF imputation, MICE im-
putation, BRITS and GAN based imputation (GAN-2-stages
and GAIN). The first column of Table 1 is missing rate which
indicates how many percent values are dropped, and other
columns are mean squared error. Our parameters for the KDD
dataset are: epoch is 15, batch size is 16, learning rate is
0.005, pretrain epoch is 10, λ is 2. We can see that, in all
cases, the GAN based methods gain the best imputation ac-
curacies. The proposed method is one of the best methods
and wins others methods in most cases. Furthermore, the
proposed method gains huge advantage in time efficiency, we
will show it at the latter part of this paper.

Miss
-ing Last Mean KNN MF MICE GAIN GAN-2

-stage E2GAN

10% .614 .374 .465 .382 .468 .378 .355 .334(5.9%)
20% .701 .578 .604 .598 .573 .557 .532 .523(1.7%)
30% .812 .686 .640 .633 .662 .635 .599 .606(−1.2%)
40% .808 .681 .685 .676 .678 .664 .652 .650(0.3%)
50% .788 .747 .723 .710 .727 .693 .653 .657(−0.6%)
60% .807 .801 .750 .722 .740 .732 .714 .709(0.7%)
70% .885 .835 .783 .782 .825 .772 .751 .747(0.5%)
80% .933 .827 .824 .791 .919 .798 .776 .763(1.7%)

Table 1: The MSE (the smaller, the better) results of the E2GAN
and other imputation methods on the KDD dataset. In most cases,
the E2GAN owns the best imputation accuracy.

5.4 Performance Comparison for Downstream
Applications

Since we can not always get the complete dataset, it is impos-
sible to directly compare the imputation accuracies. We use
the performances of downstream applications to indirectly
measure imputation accuracies. The downstream applications
mainly contain two type of tasks which include the classifica-
tion task that uses the PhysioNet dataset, and the regression
task which uses the 50% discarded KDD dataset.

For the classification task which uses the PhysioNet
dataset, we first impute this dataset with different compara-
tive imputation methods. Then we use these datasets to train
the same type of classifiers including logistic regression clas-
sifier, SVM (with RBF, Linear, Poly and Sigmoid kernels)
classifiers, random forest classifier and RNN classifier. The

0.2

0.3

0.4

0.5

0.6

0.7

MF KNN GAIN Mean Last MICE GAN−
2−stage Ours

M
SE

Decision Tree Linear Regression Random Forest RNN

Figure 3: The MSE of air quality prediction results by different re-
gression models trained on datasets that are imputed by different
methods. The smaller the MSE, the better the results.

RNN classifier is made up of a simple GRU layer and a fully
connected layer. The parameters of PhysioNet are: epoch is
10, learning rate is 0.005, λ is 50, pretrain epoch is 5. Ta-
ble 2 is the AUC scores of the classification task that uses
the PhysioNet dataset. We can see that, the classifiers trained
on the dataset that imputed by our proposed method always
gain the best AUC scores. This phenomenon has shown the
success of proposed method. We can also summarize that,
the new state-of-the-art mortality prediction result (0.8724)
on the PhysioNet dataset is achieved by using our method
while the old one is 0.8603.

We also compare the mortality prediction results with other
methods that do not impute missing values and directly clas-
sify the patients. Table 3 shows the detail results. It is obvious
that simple RNN model trained on imputed dataset gains the
best AUC score.

For the downstream task of 50% missed KDD dataset, we
first impute it by using baseline models and proposed method.
Then we take advantage of these datasets to train same tpye
of regression models to predict the mean air quality of next
6 hours. We adopt the effects of these downstream applica-
tions, i.e., MSE, to indirectly measure the imputation accura-
cies. Figure 3 provides the detail results. We can see that, the
regression models trained on the dataset that were imputed by
the proposed method, achieve the best performance.

5.5 Discussions

Time Efficiency
We investigate the time efficiency of proposed method. The
size of dataset and number of epochs are the most influ-
ential factors of time efficiency. It is difficult to compare
the time efficiency of neural networks, especially the gen-
erative adversarial networks, because of different parameter
settings. We try to compare our method with another GAN
based time series imputation method. We fix the hardware,
epoch, and some others parameters, and then compare the ex-
ecution time of GAN-2-stages and our method. For the Phy-
sioNet dataset, our method takes 204±5 seconds to reach the
best AUC score, while the GAN-2-stages takes 2650±10 sec-
onds. For the KDD dataset, our method costs 105±3 seconds
and GAN-2-stages costs 1805±8 seconds. The main reason
of this phenomenon is the drop of optimizing input “noise”
vector of the generator. In other words, the proposed method
only need to train a GAN model and directly impute missing
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Method Zero Mean Last MF KNN MICE GAIN GAN-2-stage E2GAN

SVM

Poly 0.7378 0.6774 0.7709 0.3226 0.6773 0.6773 0.7605 0.7725 0.7892(2.2%)
Linear 0.6436 0.6582 0.6672 0.6583 0.6582 0.6584 0.7185 0.7185 0.7464(3.9%)

Sigmoid 0.5285 0.7887 0.7452 0.7886 0.7885 0.7890 0.7967 0.7921 0.8070(1.3%)
RBF 0.5000 0.8043 0.8213 0.8045 0.8044 0.8043 0.8178 0.8157 0.8201(−1.4%)

/ RF 0.6937 0.6906 0.7443 0.7074 0.7003 0.6882 0.7302 0.7546 0.7998(5.7%)

/ LR 0.6586 0.6620 0.6701 0.6846 0.6120 0.6113 0.7122 0.7012 0.7677(9.4%)

/ RNN 0.7659 0.8423 0.8362 0.8495 0.8534 0.8521 0.8431 0.8603 0.8724(1.4%)

Table 2: The AUC score of mortality prediction by different classification models trained on datasets that are imputed by different methods.

Model Result

GRUD [Che et al., 2018] 0.8424
Regularized

Logistic Regression [Johnson et al., 2014] 0.848

Bayesian Ensemble Model [Johnson et al., 2012] 0.8602
Two Stage GAN model [Luo et al., 2018] 0.8603

Bidirectional Recurrent Model [Cao et al., 2018] 0.8502
E2GAN & Simple RNN Model 0.8724(1.4%)

Table 3: The AUC score of the mortality prediction task on the Phy-
sioNet dataset. The simple RNN model that uses the dataset imputed
by our method achieves the highest AUC score.

values. This end-to-end imputation method saves a lot of time
compared to the two stages imputation method.

Influence of Dimensions

We also investigate the influence of dimensions as shown in
Figure 4. The red lines are performance and the blue lines are
time. The performances of downstream applications improve
with the increasing of dimensions. However, there are some
peaks at the performance lines. This indicates that some di-
mensions are more or less influential than others. And this
phenomenon can be used to judge the importance of fea-
tures if we draw a more detailed figure. The blue lines show
how long the imputation will take with different dimensional
datasets. We can conclude that the execution time grows with
the raise of dimension. Besides, it is obvious that the growth
of execution time is linear. It proves the proposed method’s
superiority of time efficiency in some way.
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Figure 4: The influence of dimensions in mortality prediction task
and air quality prediction task.

Method/Missing 10% 20% 30% 40% 50% 60% 70% 80%

E2GAN .334 .523 .606 .650 .657 .709 .747 .763
E2GAN-no-D .393 .552 .650 .696 .727 .771 .781 .823
E2GAN-no-noise .378 .547 .644 .714 .747 .772 .788 .824

Table 4: The ablation study of discriminator and noise vector η.

Ablation Study
We have evaluated the effects of the discriminator and the
noise vector η. Table 4 shows the results on the KDD dataset
(measured by MSE). The first row is the missing rate. The
second row shows results ofE2GAN, and the third row shows
results of E2GAN with no discriminator. The last row shows
results ofE2GAN with no noise vector η. As we can observe,
the discriminator and the noise vector η are both helpful. The
imputation accuracy decreases 8.35% without the discrimina-
tor and 8.5% without the noise vector η in average.

6 Conclusion
We propose a novel end-to-end model E2GAN for the im-
putation of missing values in multivariate time series by tak-
ing advantage of the generative adversarial networks. Auto-
encoder and GRUI are used to generate new complete sam-
ple that is most close to the original incomplete one with
the help of discriminative loss and squared error loss. Thus,
we can impute the missing values with this generated new
complete sample within a short training time. Various ex-
periments with real-world datasets show that the proposed
method boosts the imputation accuracy and achieves better
classification/regression results on the downstream applica-
tions. With the help of our proposed method, we also get a
new state-of-the-art mortality prediction result.
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