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Abstract

We propose two solutions to outlier detection in
time series based on recurrent autoencoder ensem-
bles. The solutions exploit autoencoders built us-
ing sparsely-connected recurrent neural networks
(S-RNNs). Such networks make it possible to gen-
erate multiple autoencoders with different neural
network connection structures. The two solutions
are ensemble frameworks, specifically an indepen-
dent framework and a shared framework, both of
which combine multiple S-RNN based autoencoders
to enable outlier detection. This ensemble-based
approach aims to reduce the effects of some au-
toencoders being overfitted to outliers, this way im-
proving overall detection quality. Experiments with
two real-world time series data sets, including uni-
variate and multivariate time series, offer insight
into the design properties of the proposed ensem-
ble frameworks and demonstrate that the proposed
frameworks are capable of outperforming both base-
lines and the state-of-the-art methods.

1 Introduction
As part of the ongoing digitalization of societal and industrial
processes, many sensor-equipped devices, such as mobile
phones, GPS navigators, and health care monitors, produce
large volumes of time-ordered observations that form time
series [Hu et al., 2018]. Such time series are produced widely
and are used in many application domains [Chia and Syed,
2014; Yang et al., 2018; Ding et al., 2016], e.g., finance,
biology, transportation, and healthcare. For example, a ten-
electrode electrocardiography (ECG) device monitors the tiny
electrical changes on the skin of a patient over a time period.
Each electrode detects and records changes in the form of a
1-dimensional time series, and the combined records from all
the electrodes form a 10-dimensional time series.

Analyses of time series yield knowledge of the underlying
processes that generate the time series and in turn enable us to
understand those processes [Yang et al., 2013]. In this paper,
we focus on detecting outliers in time series, thus identifying
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observations that differ significantly from the remaining obser-
vations [Aggarwal, 2013]. Such outliers can offer important
insights. For example, outliers in ECG time series may indi-
cate potential heart attacks while the remaining observations
represent normal physical conditions [Chia and Syed, 2014].
Further, we consider outlier detection in an unsupervised set-
ting, where we do not rely on prior labels that indicate outliers.
Rather, we aim at identifying outliers in unlabeled time series.

Most existing methods for outlier detection are based on
similarity search [Yeh et al., 2016] and density-based clus-
tering [Breunig et al., 2000]. Recently, neural network
based autoencoders [Xia et al., 2015; Chen et al., 2017;
Kieu et al., 2018b] are proposed for the detection of out-
liers, achieving competitive accuracy. The idea is to compress
original input data into a compact, hidden representation and
then to reconstruct the input data from the hidden represen-
tation. Since the hidden representation is very compact, it is
only possible to reconstruct representative features from the
input, not the specifics of the input data, including any outliers.
This way, the difference, or reconstruction errors, between the
original data and the reconstructed data indicate how likely it
is that observations in the data are outliers. Next, autoencoder
ensembles are used to further improve the accuracy that can be
achieved when using a single autoencoder that may often over-
fit to the original data [Chen et al., 2017]. However, effective
autoencoder ensembles only exist for non-sequential data, and
applying them to time series data directly gives poor results
(e.g., cf. the RN columns in Table 2 in Section 4.) We aim
at filling this gap by proposing two recurrent neural network
autoencoder ensemble frameworks to enable outlier detection
in time series.

We use recurrent neural network autoencoders since they
have been shown to be effective for time series learning, in-
cluding for outlier detection [Kieu et al., 2018b]. Autoencoder
ensembles rely on the availability of multiple recurrent neu-
ral network autoencoders with different network connection
structures. We propose to use sparsely-connected recurrent
neural networks to achieve such autoencoders. In particu-
lar, we propose two ensemble frameworks, an independent
framework IF and a shared framework SF that incorporate
multiple sparsely-connected RNN autoencoders. Specifically,
IF trains multiple autoencoders independently. In contrast,
motivated by the principles of multi-task learning, SF trains
multiple autoencoders jointly through a shared feature space.
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For both frameworks, we use the median of the reconstruc-
tion errors of multiple autoencoders as the final reconstruction
error that quantifies how likely an observation in a time series
is an outlier. As a result, the two frameworks benefit from the
combination of multiple encoders and decoders.

To the best of our knowledge, this is the first proposal for
using recurrent neural network autoencoder ensembles for
outlier detection in time series. We make three contributions.
• We propose sparsely-connected recurrent units that en-

able autoencoders with different network structures.
• We propose two ensemble frameworks that combine mul-

tiple autoencoders based on sparsely-connected recurrent
neural networks to advance time series outlier detections.
• We report on experiments using both univariate and mul-

tivariate time series, thus offering evidence of the effec-
tiveness of the proposed ensemble frameworks.

2 Preliminaries
2.1 Time Series
A time series T = 〈s1, s2, . . . , sC〉 is a time-ordered sequence
of vectors. Each vector si = (s

(1)
i , s

(2)
i , . . . , s

(k)
i ) represents

k features of an entity at a specific time point ti, where 1 ≤
i ≤ C. In addition, we have ti < tj when i < j. When k = 1,
the time series is univariate; and when k > 1, the time series
is multivariate.

2.2 Outlier Detection in Time Series
Given a time series T = 〈s1, s2, . . . , sC〉, we aim at com-
puting an outlier score OS(si) for each vector si such that
the higher OS(si) is, the more likely it is that vector si is an
outlier.

Next, we proceed to cover the basics of autoencoders and
autoencoder ensembles in the context of outlier detection.

2.3 Autoencoders
A classic autoencoder is a feedforward fully-connected neural
network, where the number of neurons in the input layer and
the output layer are the same and where there are much fewer
neurons in the hidden layers than in the input and output
layers [Xia et al., 2015]. An autoencoder aims to produce an
output that reconstructs its input with noise removed. Since the
hidden layers consist of much fewer neurons, to reconstruct the
input as closely as possible, the weights in the hidden layers
only capture the most representative features of the original
input data and ignore the detailed specifics of the input data,
such as outliers. In other words, inliers (i.e., normal data)
are much easier to reconstruct than outliers. Based on the
above, the larger the difference between the output (i.e., the
reconstructed input) and the original input, the more likely it
is that the corresponding input data is an outlier [Xia et al.,
2015].

Classic autoencoders based on feedforward neural networks
are often used for non-sequential data. To perform outlier
detection in sequential data such as time series, autoencoders
based on recurrent neural networks are proposed while reusing
the idea that large reconstruction errors indicate outliers [Mal-
hotra et al., 2016; Kieu et al., 2018b].

2.4 Autoencoder Ensembles
Following the principles of ensemble learning, autoencoder
ensembles aim to further improve the accuracy of outlier de-
tection based on autoencoders [Chen et al., 2017]. The main
idea is to build a set of autoencoders and to consider the recon-
struction errors from multiple autoencoders when detecting
outliers. Using a set of classic, fully-connected autoencoders
is not helpful since the network structures are the same across
the different autoencoders. Instead, for each autoencoder, it
is helpful to randomly remove some connections to obtain
a sparsely-connected autoencoder (see Figure 1). Then, an
autoencoder ensemble consists of multiple sparsely-connected
autoencoders with different network structures, which helps
reduce the variances of the overall reconstruction errors [Chen
et al., 2017].

(a) Fully-connected layers (b) Sparsely-connected layers

Figure 1: Fully-connected layers vs. sparsely-connected layers.

However, autoencoder ensembles are only available for non-
sequential data, and these cannot be applied directly to sequen-
tial data such as time series (see a summary in Table 1). We fill
this gap by proposing two autoencoder ensemble frameworks
that are able to perform outlier detection in time series.

Autoencoders Autoencoder
Ensembles

Non-
sequential
data

[Xia et al., 2015;
Luo and Nagarajan,

2018]

[Chen et al., 2017]

Sequential
data

[Malhotra et al., 2016;
Kieu et al., 2018b]

This paper

Table 1: Outlier Detection Using Autoencoders

3 Autoencoder Ensembles For Time Series
We use recurrent neural network (RNN) autoencoders for time
series because RNNs have proven to be effective for time series
modeling and learning. We first discuss how to build sparsely
connected RNNs, and then we propose two different ensemble
frameworks that integrate multiple sparsely connected RNN
autoencoders.

3.1 Sparsely-connected RNNs (S-RNNs)
A sequence-to-sequence model [Sutskever et al., 2014] is
often used as an autoencoder for outlier detection in time
series. Such a model has an encoder and a decoder, as shown
in Figure 2.

In the encoder, each vector st in time series T is fed into
an RNN unit (shown as a square in Figure 2) to perform the
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Figure 2: A Sequence-to-Sequence RNN Autoencoder

following computation.

h
(E)
t = f(st,h

(E)
t−1) (1)

Here, st is the vector at time step t in the time series and hid-
den state h

(E)
t−1 is the output of the previous RNN unit at time

step t− 1 in the encoder. Next, f(·) is a non-linear function,
ranging from the basic tanh or sigmoid to the more sophis-
ticated Long-Short Term Memory (LSTM) [Hochreiter and
Schmidhuber, 1997] or Gated Recurrent Unit (GRU) [Chung
et al., 2014]. Based on the above, we obtain a hidden state
h
(E)
t of the current RNN unit at time step t, which is then fed

into the next RNN unit at time step t+ 1.
In the decoder, we reconstruct the time series in reverse

order, i.e., T̂ = 〈̂sC , ŝC−1, . . . , ŝ1〉. First, the last hidden state
of the encoder is used as the first hidden state of the decoder.
Based on the previous hidden state of the decoder h(D)

t+1 and
the previous reconstructed vector ŝt+1, we reconstruct the
current vector using Equation 2 and also compute the current
hidden state using Equation 3, where f(·) and g(·) are again
non-linear functions.

ŝt = g(̂st+1,h
(D)
t+1) (2)

h
(D)
t = f (̂st,h

(D)
t+1) (3)

Following the idea from existing autoencoder ensembles
on non-sequential data, we aim to construct multiple autoen-
coders with different network structures. However, randomly
removing connections between RNN units does not work in
this setting because no matter which connection is removed,
the RNN units become disconnected, rendering it impossible
to train the network.

To contend with this challenge, we consider Recurrent Skip
Connection Networks (RSCNs) that employ additional auxil-
iary connections among the RNN units [Wang and Tian, 2016].
In particular, each RNN unit not only considers the previous
hidden state but also considers additional hidden states in the
past. Formally, we have:

ht =
f(st,ht−1) + f ′(st,ht−L)

2
(4)

Here, we consider the previous hidden state ht−1 and the state
of the hidden state L steps earlier. And we often use two
different functions f(·) and f ′(·). Figures 3(a) and (c) show
examples of RSCNs with L = 1 and L = 2.

Next, based on the RSCNs, we randomly remove some
connections between hidden states. Specifically, we introduce
a sparseness weight vector wt = (w

(f)
t , w

(f ′)
t ) to control

which connections should be removed at each time step t,
where w(f)

t ∈ {0, 1} and w(f ′)
t ∈ {0, 1}. And we ensure that

at least one element in wt is not equal to 0, i.e., wt = (0, 1),
wt = (1, 0), or wt = (1, 1).

Based on wt, we generate sparsely-connected RNNs
(S-RNNs), where at each unit, the computation is as defined
in Equation 5.

ht =
f(st,ht−1) · w(f)

t + f ′(st,ht−L) · w(f ′)
t

‖wt‖0
, (5)

where ‖wt‖0 denotes the number of non-zero elements in
vector wt. Figures 3(b) and (d) show examples of S-RNNs
when L = 1 and L = 2.

(a) RSCN, L=1 (b) S-RNN, L=1

(c) RSCN, L=2 (d) S-RNN, L=2

Figure 3: Recurrent Skip Connection Networks vs Sparsely Con-
nected RNNs

S-RNNs differ from RNNs using Dropout [Gal and
Ghahramani, 2016]. The network connections in sparsely-
connected RNNs are fixed throughout the training phase,
whereas RNNs with Dropout randomly remove connections
at every training epoch.

3.2 S-RNN Autoencoder Ensembles
To enable an ensemble, we build a set of S-RNN autoencoders.
We then propose two different frameworks for integrating the
autoencoders into ensembles.

Independent Framework
Figure 4 shows the basic, independent framework of an
S-RNN autoencoder ensemble. The ensemble contains N
S-RNN autoencoders that each consists of an encoder Ei and
a decoder Di, 1 ≤ i ≤ N . Further, each autoencoder has its
distinct sparseness weight vectors.

Each autoencoder in the ensemble is trained independently
by minimizing the objective function Ji that measures the
difference between the input vectors in the original time series
and the reconstructed vectors, defined in Equation 6.

Ji =
C∑
t=1

‖st − ŝ
(Di)
t ‖22, (6)

where ŝ
(Di)
t denotes the reconstructed vector at time step t

from decoder Di, and ‖ · ‖2 is the L2-norm of a vector.
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Figure 4: Independent Framework

Shared Framework
The basic framework trains different autoencoders indepen-
dently, meaning that different autoencoders do not interact
during the training phase. However, since all autoencoders
try to reconstruct the same, original time series, it is relevant
to enable interactions among the autoencoders. Motivated
by the principles of multi-task learning [Long et al., 2017;
Cirstea et al., 2018; Kieu et al., 2018a], we propose a shared
framework that incorporates interactions among different au-
toencoders. More specifically, given N tasks where each task
reconstructs the original time series, we let the N tasks inter-
act through a shared layer. The shared framework is shown in
Figure 5.

Figure 5: Shared Framework

The shared framework, shown in Figure 5, uses a shared
layer, denoted as h(E)

C , to concatenate the linear combinations

(using linear weight matrices W(Ei)) of all the last hidden
states of all the encoders. Formally, we have:

h
(E)
C = concatenate(h

(E1)
C ·W(E1), . . . ,h

(EN )
C ·W(EN ))

Each decoder Di employs the concatenated hidden states
h
(E)
C as the initial hidden state when reconstructing time se-

ries T̂ (i) = 〈ŝ(i)C , . . . , ŝ
(i)
2 , ŝ

(i)
1 〉. In the shared framework, all

autoencoders are trained jointly by minimizing the objective
function J that sums up the reconstruction errors of all au-
toencoders and an L1 regularization term on the shared hidden
state:

J =
N∑
i=1

Ji + λ‖h(E)
C ‖1 (7)

=
N∑
i=1

C∑
t=1

‖st − ŝ
(Di)
t ‖22 + λ‖h(E)

C ‖1 (8)

Here, λ is a weight that controls the importance of the
L1 regularization ‖h(E)

C ‖1. The L1 regularization has the
effect of making the shared hidden state h

(E)
C sparse. This

avoids cases where some encoders overfit to the original time
series and helps make the decoders robust and less affected
by outliers. Hence, when autoencoders meet outliers, the
difference between original time series and reconstructed time
series is more pronounced.

3.3 Ensemble Outlier Scoring
Following the principles of autoencoder ensembles for non-
sequential data [Chen et al., 2017], we calculate the outlier
score of each vector in a time series when using the ensem-
ble frameworks. Recall that we have N autoencoders that
reconstruct the original time series T = 〈s1, s2, . . . , sC〉.
Thus, we obtain N reconstructed time series T̂ (i) =

〈ŝ(i)C , . . . , ŝ
(i)
2 , ŝ

(i)
1 〉, where 1 ≤ i ≤ N . For each vector sk

in the original time series T , we compute N reconstruction
errors {‖sk− ŝ(1)k ‖22, ‖sk− ŝ

(2)
k ‖22, . . . , ‖sk− ŝ

(N)
k ‖22}. We use

the median of the N errors as the final outlier score of vector
sk: OS(sk) = median(‖sk− ŝ

(1)
k ‖22, ‖sk− ŝ

(2)
k ‖22, . . . , ‖sk−

ŝ
(N)
k ‖22). Using median instead of mean reduces the influence

of the reconstruction errors from the autoencoders that overfit
to the original time series.

4 Experiments
4.1 Experimental Setup
Data Sets
We use two real-world time series repositories, the univariate
time series repository Numenta Anomaly Benchmark (NAB)∗
and the multivariate time series repository Electrocardiography
(ECG)†. NAB comprises six sets of time series from different
domains, where each set has ca. 10 univariate time series and
each time series contains from 5,000 to 20,000 observations.
∗https://github.com/numenta/NAB
†http://www.cs.ucr.edu/ eamonn/discords/ECG data.zip/
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ECG comprises seven 3-dimensional time series from seven
patients, where each time series has 3,750 to 5,400 observa-
tions. For both repositories, ground truth labels of outlier
observations are available. However, consistent with the unsu-
pervised setting, we do not use these labels for training, but
only use them for evaluating accuracy.

Existing Solutions
We compare the proposed independent and shared ensemble
frameworks (IF and SF) with seven competing solutions–(1)
Local Outlier Factor (LOF) [Breunig et al., 2000], a well-
known density-based outlier detection method; (2) One-class
Support Vector Machines (SVM) [Manevitz and Yousef, 2001],
a kernel-based method, (3) Isolation Forest (ISF) [Liu et
al., 2008], which is a randomized clustering forest, (4) Ma-
trix Profile I (MP) [Yeh et al., 2016], which is the state-of-
the-art similarity-based outlier detection method, (5) Rand-
Net (RN) [Chen et al., 2017], which uses the state-of-the-
art feedforward autoencoder ensembles for non-sequential
data, (6) Convolutional Neural Networks based Autoencoder
(CNN) [Kieu et al., 2018b], which treats time series as im-
ages and employ a CNN autoencoder to reconstruct the image,
and (7) an LSTM based Autoencoder(LSTM) [Malhotra et al.,
2016], which is the state-of-the-art deep learning outlier detec-
tion method for time series. In addition, we replace the LSTM
units in method LSTMwith RSCN units [Wang and Tian, 2016]
to study the effect of using a single RSCN autoencoder (RSCN)
versus the use of multiple S-RNN autoencoders in IF and SF.
Methods LOF, SVM, and ISF were originally proposed for
non-sequential data but can also be applied to sequential data
with competitive accuracy [Aggarwal, 2013]. This is why we
include them in the experiments.

Implementation Details
All algorithms are implemented in Python 3.5. Methods
IF and SF and the deep learning methods, i.e., CNN, LSTM,
and RSCN, are implemented using TensorFlow 1.4.0,
while the remaining methods, i.e., LOF, SVM, ISF, and MP
are implemented using Scikit-learn 1.19. The source
code is available at https://github.com/tungk/OED.
Experiments are performed on a Linux workstation with dual
12-core Xeon E5 CPUs, 64 GB RAM, and 2 K40M GPUs.

Hyperparameters Settings
For all deep learning based methods, we use
Adadelta [Zeiler, 2012] as the optimizer, and we set
their learning rates to 10−3. For the proposed ensemble
frameworks, we use an LSTM unit and tanh as the functions
f and f ′ in Equation 5; we set the number of hidden LSTM
units to 8; we set the default number of autoencoders N to
40, and we also study the effect of varying N from 10 to 40;
and we set λ to 0.005. We randomly vary the skip connection
jump step size L from 1 to 10, and we randomly choose the
sparse weight vector wt. For MP, we set the pattern size to 10.
For RN and all the other baselines, we follow the settings used
by [Chen et al., 2017] and [Kieu et al., 2018b], respectively.

Evaluation Metrics
A typical approach to decide which vectors in a time series
are outliers is to set a threshold and to consider the vectors

whose outlier scores exceed the threshold as outliers. However,
setting the threshold is non-trivial and often requires human
experts or prior knowledge. Instead, following the evaluation
metrics used for evaluating autoencoder ensembles on non-
sequential data [Chen et al., 2017], we employ two metrics
that consider all possible thresholds—Area Under the Curve
of Precision-Recall (PR-AUC) [Sammut and Webb, 2017] and
Area Under the Curve of Receiver Operating Characteristic
(ROC-AUC) [Sammut and Webb, 2017]. In other words, the
two metrics do not depend on a specific threshold. Rather, they
reflect the full trade-off among true positives, true negatives,
false positives, and false negatives. Higher PR-AUC and ROC-
AUC values indicate higher accuracy.

4.2 Experimental Results
Overall Accuracy
We report PR-AUC and ROC-AUC for all methods in Table 2.
First, the deep learning based methods and the non-deep learn-
ing methods show similar results w.r.t. PR-AUC. However,
the deep learning based methods perform better when using
ROC-AUC in most cases. This indicates that the deep learning
based methods have lower false positive rates and higher true
negative rates, which is highly desired for outlier detection.
Second, SF and IF outperform RN, indicating that S-RNN
autoencoder ensembles are better suited for sequential data
than are feedforward autoencoder ensembles. Third, the two
proposed ensemble methods most often outperform the indi-
vidual methods. In particular, IF and SF outperform the other
methods in most cases on both univariate and multivariate
time series. Specifically, IF performs the best in 4 out of 13
cases, and SF is best in 6 out of 13 cases for both evaluation
metrics, indicating that the proposed ensemble frameworks
are capable of improving effectiveness and robustness. Fourth,
SF performs better than IF on average—when considering
average PR-AUC and ROC-AUC, SF is best and IF is often
second best on both univariate and multivariate time series.
This indicates that multi-task learning can be applied in an
ensemble framework to further enhance accuracy.

Effect of N
We study the effect of the number of autoencoders N in the
two ensemble frameworks. In particular, we varyN among 10,
20, 30, and 40. Figures 6 and 7 report PR-AUC and ROC-AUC,
respectively. Due to the space limitation, we only report results
on 4 NAB datasets and 5 ECG datasets. As N increases, both
ensemble frameworks achieve better results, i.e., higher PR-
AUC and higher ROC-AUC scores. This suggests that having
more autoencoders with different structures in an ensemble
yields better accuracy.

IF vs. SF
Finally, we study the difference between IF and SF. In all
previous experiments, IF and SF use randomly generated
S-RNNs, meaning that the S-RNNs used in IF and SF may
have different structures. In the final set of experiments, we
make sure that both IF and SF use the same set of S-RNNs.
We first generate 40 S-RNNs based autoencoders and then
build IF and SF on top of the 40 autoencoders. Due to the
space limitation, we only report the results on the remaining 2
NAB datasets and 2 ECG datasets.
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PR-AUC ROC-AUC
Data Set SVM LOF ISF MP RN CNN LSTM RSCN IF SF SVM LOF ISF MP RN CNN LSTM RSCN IF SF

N
A

B
,U

ni
va

ri
at

e Cloudwatch 0.908 0.904 0.909 0.892 0.886 0.889 0.886 0.895 0.885 0.912 0.566 0.516 0.559 0.563 0.569 0.632 0.662 0.634 0.675 0.667
Anomaly 0.902 0.902 0.911 0.894 0.902 0.926 0.904 0.915 0.912 0.917 0.551 0.522 0.627 0.613 0.629 0.657 0.753 0.755 0.761 0.777
Traffic 0.908 0.905 0.914 0.913 0.895 0.919 0.859 0.865 0.922 0.914 0.551 0.584 0.566 0.548 0.568 0.608 0.625 0.667 0.645 0.689
Tweets 0.904 0.902 0.911 0.901 0.898 0.907 0.876 0.893 0.915 0.907 0.538 0.527 0.557 0.533 0.564 0.571 0.554 0.599 0.608 0.653
AdExchange 0.898 0.897 0.902 0.897 0.891 0.881 0.882 0.893 0.893 0.903 0.551 0.513 0.539 0.567 0.565 0.602 0.574 0.603 0.691 0.646
KnownCause 0.929 0.905 0.915 0.893 0.889 0.891 0.872 0.916 0.916 0.987 0.639 0.517 0.657 0.584 0.612 0.613 0.642 0.609 0.638 0.621
Average 0.908 0.903 0.910 0.898 0.894 0.902 0.880 0.896 0.907 0.923 0.566 0.530 0.584 0.568 0.585 0.614 0.635 0.645 0.670 0.676

E
C

G
,M

ul
tiv

ar
ia

te

chf01 0.912 0.923 0.886 0.866 0.943 0.967 0.904 0.971 0.961 0.958 0.629 0.521 0.508 0.815 0.628 0.714 0.646 0.702 0.681 0.689
chf13 0.977 0.964 0.975 0.936 0.941 0.944 0.938 0.966 0.963 0.967 0.618 0.577 0.658 0.644 0.661 0.642 0.581 0.562 0.823 0.803
ltstdb240 0.984 0.963 0.991 0.906 0.932 0.980 0.947 0.973 0.987 0.995 0.678 0.530 0.798 0.875 0.727 0.747 0.651 0.587 0.753 0.879
ltstdb43 0.982 0.959 0.980 0.964 0.962 0.974 0.956 0.966 0.982 0.985 0.617 0.531 0.612 0.512 0.558 0.561 0.589 0.581 0.709 0.717
mitdb180 0.953 0.969 0.944 0.958 0.955 0.985 0.974 0.973 0.988 0.980 0.720 0.539 0.694 0.654 0.673 0.670 0.610 0.580 0.678 0.694
stdb308 0.879 0.955 0.897 0.902 0.911 0.978 0.977 0.981 0.983 0.987 0.821 0.546 0.722 0.820 0.786 0.639 0.735 0.842 0.856 0.838
xmitdb108 0.949 0.934 0.901 0.888 0.949 0.963 0.862 0.845 0.964 0.957 0.516 0.539 0.653 0.728 0.603 0.796 0.816 0.813 0.785 0.822
Average 0.948 0.952 0.939 0.917 0.942 0.970 0.937 0.954 0.975 0.976 0.657 0.540 0.664 0.721 0.662 0.681 0.661 0.667 0.755 0.777

Table 2: Overall Accuracy

(a) Cloudwatch (b) Anomaly (c) Tweets

(d) KnownCause (e) chf13 (f) lstdb240

(g) lstdb43 (h) stdb308 (i) xmit108

Figure 6: Effect of N , PR-AUC

(a) PR-AUC (b) ROC-AUC

Figure 8: IF vs. SF with the Same Set of Autoencoders

(a) Cloudwatch (b) Anomaly (c) Tweets

(d) KnownCause (e) chf13 (f) lstdb240

(g) lstdb43 (h) stdb308 (i) xmit108

Figure 7: Effect of N , ROC-AUC

(a) PR-AUC (b) ROC-AUC

Figure 9: Effect of L, PR-AUC and ROC-AUC
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Figure 8 shows that SF outperforms IF when both frame-
work have the same set of autoencoders. This suggests that
learning multiple autoencoders in a shared multi-task manner
is indeed helpful. However, a disadvantage of SF is its high
memory consumption that occurs because it is necessary to
train many autoencoders together: the shared layer needs to
combine the last states of all autoencoders before proceeding
to the decoding phase. In contrast, we can train different au-
toencoders in IF in parallel and then calculate outlier scores
at the end.

Effect of L
We study the effect of varying L when producing recurrent
skip connection networks. We only report results on SF since
IF yields similar results. We vary L among 1, 2, 5, 10, and
20. Figures 9(a) and (b) show PR-AUC and ROC-AUC, re-
spectively. We only report results on the remaining 2 NAB
datasets and 2 ECG datasets. We observe that from L = 1
to L = 10, L does not affect the accuracy significantly, indi-
cating that the ensemble frameworks are insensitive to small
jump steps. When L = 20, the accuracy starts to decrease,
suggesting that (1) important temporal information was lost
when combining large jump steps with sparse connections and
that (2) the model was forced to employ obsolete historical
information that adversely affects the accuracy.

5 Related Work
Outlier Detection using Autoencoders
Deep learning based outlier detection methods have been ap-
plied widely in many domains, e.g., computer vision [Zhao et
al., 2017], network analysis [Luo and Nagarajan, 2018], and
robotics [Park et al., 2016]. Autoencoders are at the core of
these methods. In addition, studies exist that modify classic
autoencoders to achieve denoising autoencoders [Tagawa et
al., 2014] and variational autoencoders [Liao et al., 2018].
Our study falls into the category of outlier detection in
time series using deep learning, where the fundamental
problems are to learn a representation of the time series
in a smaller vector space and to reconstruct the original
time series from that vector space [Malhotra et al., 2016;
Kieu et al., 2018b]. However, existing studies are limited to a
single recurrent neural network autoencoder. In contrast, we
propose two novel ensemble frameworks that exploit multiple
recurrent neural network autoencoders for outlier detection in
time series. The experimental results provide evidence that the
ensemble frameworks are effective and are capable of outper-
forming existing methods that use only a single autoencoder.

Deep Ensemble Models
Ensemble models with deep learning have been applied
to different supervised learning tasks, including classifica-
tion [Akhtar et al., 2017] and regression [Lee et al., 2017].
Two popular approaches are bagging, where multiple models
are trained with the same structure using randomly drawn sub-
sets of training data [Guo et al., 2015], and stacking, where
multiple models are trained with different structures using the
entire training data [Deng and Platt, 2014]. However, only a
few deep ensembles exist for unsupervised learning, specif-
ically for outlier detection [Aggarwal and Sathe, 2017]. An

ensemble outlier detection method is proposed [Chen et al.,
2017] that works only for non-sequential data. This paper is
the first to propose autoencoder ensembles for unsupervised
outlier detection in time series. The proposed ensembles adopt
the stacking approach.

6 Conclusion and Outlook
We propose two autoencoder ensemble frameworks based
on sparsely-connected recurrent neural networks for unsuper-
vised outlier detection in time series. One of the frameworks
trains multiple autoencoders independently while the other
framework trains multiple autoencoders jointly in a multi-task
learning fashion. Experimental studies show that the proposed
autoencoder ensembles are effective and outperform baselines
and state-of-the-art methods.

In future work, it is of interest to study different autoencoder
structures, e.g., denoising autoencoders [Vincent et al., 2008]
and the use of advanced deep neural network structures, e.g.,
embedding [Chen et al., 2016] and attention [Luong et al.,
2015], to further improve accuracy.
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