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Abstract

We introduce a new Thompson sampling-based al-
gorithm, called marginal posterior sampling, for
online slate bandits, that is characterized by three
key ideas. First, it postulates that the slate-level re-
ward is a monotone function of the marginal un-
observed rewards of the base actions selected in
the slates’s slots, but it does not attempt to esti-
mate this function. Second, instead of maintain-
ing a slate-level reward posterior, the algorithm
maintains posterior distributions for the marginal
reward of each slot’s base actions and uses the sam-
ples from these marginal posteriors to select the
next slate. Third, marginal posterior sampling op-
timizes at the slot-level rather than the slate-level,
which makes the approach computationally effi-
cient. Simulation results establish substantial ad-
vantages of marginal posterior sampling over alter-
native Thompson sampling-based approaches that
are widely used in the domain of web services.

1 Introduction

In the traditional multi-armed bandit problem [Lai and Rob-
bins, 1985], an agent is presented with a set of possible ac-
tions. In a sequence of repetitions, first the world generates
a reward for each one of the possible actions, then the agent
chooses an action among the possible ones and observes a
reward. There is partial feedback, meaning that the agent ob-
serves a reward only for the action it chose, not for any other
action it could have chosen. Additionally, the agent is unsure
about the underlying dynamics of the world and therefore is
unsure about which action is best. In this setting, there is
a need to balance the exploration of arms for which there is
limited knowledge in order to improve performance in the fu-
ture against the exploitation of existing knowledge in order to
attain better performance in the present.

Many problems in the domain of web-services, such as e-
commerce and streaming, entail the selection of not only one
but of multiple actions at the same time. Upon the agent’s
choice, a collective reward characterizing the quality of the
entire selection is observed, but the rewards of the individual
actions are not necessarily observed. This paper considers

the slate bandit problem (also referred to as the combinato-
rial bandit problem [Cesa-Bianchi and Lugosi, 2012]), which
is similar to the traditional multi-armed bandit problem, ex-
cept that the agent selects a slate consisting of multiple slots,
each one of which is occupied by an action. The number of
possible slates can be combinatorially large and this is a key
challenge for learning in this setting.

Slate bandits are poised to play an important role in a wide
range of applications. For instance, consider the construction
of the homepage of a streaming service. The streaming ser-
vice sequentially selects homepages to display to users. The
homepage can be viewed as a slate with slots corresponding
to sections (e.g., first row, second row, etc.) and base actions
corresponding to thematically coherent sets of videos (e.g.
comedy, romance, etc.) to be placed in these sections. The
goal is to construct a homepage that maximizes the probabil-
ity of a user playing something from one of the homepage’s
rows. Homepage optimization can be viewed as a slate ban-
dit problem. Similarly, the online optimization of an email
campaign can also be addressed through slate bandits. In an
email campaign, a decision-maker sequentially selects emails
to send to users. Each email consists of several components
(e.g., subject line, text, visuals) and each component has mul-
tiple options (e.g., interrogative, informative or amusing sub-
ject line, level of detail in text, whether or not to include visu-
als in the email). The goal of the decision-maker is to identify
the treatment, i.e., the combination of options for the email
components, that maximizes the probability of a user taking
a desirable action (e.g., making a donation, starting a survey
and so forth).

Thompson sampling [Thompson, 1933] has emerged as an
effective and popular heuristic for balancing exploration and
exploitation in multi-armed bandits [Russo et al., 2018]. To
select an action, Thompson sampling samples a model of the
system from the prevailing posterior distribution and then de-
termines which action maximizes the expected immediate re-
ward according to the sampled model. We propose a new
Thompson sampling-based algorithm, called marginal pos-
terior sampling, for online slate bandits, that is character-
ized by three key ideas. First, it postulates that the slate-
level reward is a non-decreasing function of the marginal un-
observed rewards of the base actions occupying the slate’s
slots. However, it does not attempt to estimate this func-
tion. Second, instead of maintaining a slate-level reward pos-
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terior, the algorithm maintains posterior distributions for the
marginal rewards of each slot’s base actions and uses the sam-
ples from these marginal posteriors to select the next slate.
Third, marginal posterior sampling optimizes at the slot-level
rather than the slate-level, which makes it computationally
very efficient.

2 Related Work

Multiple prior works have considered the slate bandit prob-
lem with semi-bandit feedback — where the rewards of all
slate’s actions are revealed to the agent — and have devel-
oped online slate bandit algorithms [Lagrée et al., 2016;
Li et al., 2016; Wang et al., 2017] or off-policy evalua-
tion estimators for slate policies [Li er al., 2018]. In sev-
eral works that assume semi-bandit feedback, the optimiza-
tion is performed at the slate level, either iterating over the
entire slate space or assuming that the agent has access to
an e-approximation oracle (¢ < 1) that, given value esti-
mates for each slot-action pair, outputs the slate that has es-
timated value at least e times the estimated value of the es-
timated optimal slate [Chen er al., 2013; Qin et al., 2014;
Li ef al., 2016]. The work of [Agrawal et al., 2017] deals
with a similar problem in which slates are assortments, the
user can select a single item from the assortment and the re-
ward of each item in the assortment is revealed. Similar to our
approach, in [Agrawal et al., 2017] separate marginal distri-
butions are maintained for the base actions, and a technique is
described for updating the marginals by repeatedly showing
the same slate until a negative response is received. Our ap-
proach can be regarded as a constrained assortment problem
where each slot can only accept base actions from the action
space of that slot, and the learner receives feedback on sets of
base actions instead of a single action. An interesting ques-
tion is whether the same technique of [Agrawal ef al., 2017]
can be employed for more general combinatorial bandit prob-
lems, like the one we study here.

The most important difference between these works and
ours is the fact that we only assume observation of the slate-
level reward and the rewards of slate’s base actions do not
need to be observed. Moreover, we avoid optimization over
the entire slate space — which can be potentially huge — and
the need of an approximation oracle by optimizing at the slot-
level rather than the slate-level.

Our assumption that the slate-level reward can be repre-
sented via a non-decreasing link function of the marginal un-
observed rewards of the slate’s base actions plays the same
role as the additivity assumption of [Kale et al., 2010] in
the online semi-bandit problem and of [Swaminathan et al.,
2017] in the offline evaluation of policies with slate-level
feedback. However, the non-decreasing link function as-
sumption we make is significantly weaker than the additive
link function assumption common in the literature.

The slate bandit problem can be viewed as a bandit with
arms with covariates, where the covariates of an arm (slate)
is the concatenation of the one-hot encodings of each slot’s
base action. Two popular methods of addressing slate ban-
dit problems in practice are linear bandits [Li et al., 2010;
Agrawal and Goyal, 2013] and generalized linear bandits
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(particularly logistic) [Chapelle and Li, 2011; Li et al., 2017]
which postulate that the reward of an arm can be modeled as a
linear or a generalized linear function of its features with un-
known parameters. These algorithms use regularized linear
or logistic regression to form an upper confidence bound or a
posterior (exact or approximate) on the unknown parameters.
Subsequently, the upper confidence bound or the posterior is
used to balance exploration vs. exploitation when deciding
the next arm. Although these methods are wide-spread in
solving slate bandit problems in web-services, ranging from
search to news recommendations to advertising, there are cer-
tain drawbacks. First, they attempt to maintain a posterior
or an upper confidence bound at the slate level by making a
functional form assumptions that in practice may be misspec-
ified and may impede learning performance [Dimakopoulou
et al., 2019]. Second, the choice of the slate requires opti-
mization over the entire slate space, which can be potentially
intractable.

Marginal posterior sampling is designed to address both
these issues. In a range of experiments we demonstrate that
marginal posterior sampling has significantly better perfor-
mance in terms of cumulative reward compared to general-
ized linear bandits, improving up to 30%. At the same time,
marginal posterior sampling can make a slate decision up to
70 times faster than generalized linear bandits.

3 Problem Formulation

We formulate the problem of an online slate bandit as follows.
Aslate s = (s1,..., s¢) consists of base actions s;, where a
position j € {1,...,¢} is called a slot. There are ¢ slots in
the slate. The action of slot j comes from an action space .A;
with cardinality |A;| = m,; and we define m = max; m;.

A slate s can be represented by a binary feature vector xg €
{0,1}*™, whose components are indexed by pairs (j,a) of
slots and possible base actions in them. The entry at position
(4,a) is equal to 1 if the slate s has action «a at slot j, i.e., if
s; = a. The space of possible slates is S = A; x --- x Ay,

Given a slate s, a reward r € {0, 1} is drawn from a dis-
tribution D(r|s). The expected reward for a given slate is
referred to as the slate value and is denoted as: V(s) =
E,op(rfs)[7]

In the example of a streaming service’s homepage opti-
mization, there are ¢ positions in the homepage which cor-
respond to the slots of the slate. The action space of each slot
is the same m sets of videos (m > ¢), which correspond to
the base actions of the slate. If no repetitions are allowed in
the positions of the homepage, the number of valid slates is
|S| = (mL_!Z)I and this problem is equivalent to ranking. The
reward of slate s is whether the user played a video from one
of the ¢ positions when presented with homepage s.

In the example of optimizing an email campaign, there are
¢ components in an email (e.g., subject line, text, visuals)
which correspond to the slots of the slate. The action space of
each slot is different (e.g., interrogative, informative or amus-
ing subject line, level of detail in the text, whether or not to
include visuals). The set of all possible emails is the cartesian

product S = Ay x --- X Agand |S| = H§:1 Aj. The reward
of slate s is whether the recipient clicked on email s.
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Algorithm 1 Slate Bandit as K-Armed Bernoulli Bandit

Algorithm 2 Slate Bandit as Generalized Linear Bandit

Require: Initial a(s) and 5(s) for all s € S (default value: 1)
1: fort=1,...,T do
2 for each slate s € S do

3: Sample 0(s) ~ Beta (a(s), 5(s))
4: end for .

5: Select slate s; = argmax 0(s)

6: Observe reward r; ~ D(r|s;)

7: if 1, = 1 then

8: Q(St) = a(st) +1

9: else
10: Blst) = B(s) +1
11: end if
12: end for

The decision-maker sequentially chooses slates (s:)en
from the slate space S and observes the corresponding reward
(r¢)ten. The rewards observed by the agent in different time
periods are independent, conditioned on the chosen slates.
Denote as s* € argmax,s V(s) the optimal slate. The goal
of the agent is to minimize the expected regret over a horizon
T, E[Regret(T)] = Zthl [V(s*) — V(s¢)] which measures
the cumulative difference between the reward earned by an
algorithm that always chooses the optimal slate and the ac-
tual accumulated reward up to time 7T'.

4 Algorithms

First, we discuss the straight-forward adaptation of the K-
armed Bernoulli bandit — which is one of the simplest multi-
armed bandit algorithms — and of the generalized linear ban-
dit with covariates — which is widely used in web services
applications — to the slate bandit problem. Subsequently, we
present our proposed approach, marginal posterior sampling
for slate bandits. We focus on slate bandit algorithms for
slates with binary rewards, but the proposed approach can be
readily extended to real number rewards, e.g., by using Gaus-
sian rather than Beta posteriors.

4.1 Baselines

K-Armed Bernoulli Bandit

One straightforward approach is to model the slate bandit as
a K-armed Bernoulli bandit with independent arms, where
each slate corresponds to an arm, i.e. K = |S|. In this for-
mulation, the reward of arm s follows a Bernoulli distribu-
tion with mean 6(s). It is standard to model the mean reward
of arm s using a Beta distribution with parameters a(s) and
B(s), since it is the conjugate distribution of the binomial dis-
tribution. At every time ¢, the agent draws a mean reward
6(s) ~ Beta («(s), 3(s)) for each slate s € S and plays slate
s; = argmax, 0(s). Algorithm 1 presents the approach.

One issue with this approach is that it considers the slates
as independent, when in fact they are not. For instance,
emails with the same subject line or text are likely to have
similarities in their success probabilities. A reward observa-
tion for slate s’ could be used to augment the agent’s knowl-
edge of aslate s # s, when there is overlap in the base actions
of some of slates’ s and s’ slots, i.e., if there is a slot subset
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Require: Parameters of weight prior pt, and 3¢
1: Draw weight sample w ~ N (g, Xo)
2. fort=1,...,Tdo
3: for each slate s € S do
: Compute 6(s) =
end for A
Select slate s, = argmax, 6(s)

4 1
5
6:
7: Observe reward r; ~ D(r|s;)
8.
9

10:

14exp(—Ww )

Update weight posterior parameters g, and 3,
: Draw a new weight sample w ~ N (p;, 34)
end for

J C{1,...,0} such that s; = s} for each j € J. Casting
the slate bandit as a K-armed Bernoulli bandit with indepen-
dent arms misses the opportunity to learn across slates, be-
cause the beliefs of a slate’s s reward are updated only based
on observations of slate s and not based on observations of
different but overlapping slates. Hence, learning is deceler-
ated, particularly when there is a large number of slates.

Another issue is that when deciding which slate to send,
this algorithm sweeps the entire slate space, which can be
computationally inefficient.

Slate Bandit as Generalized Linear Bandit

Linear bandits [Li et al., 2010; Agrawal and Goyal, 2013] and
generalized linear bandits (particularly logistic) [Chapelle
and Li, 2011; Li et al., 2017] are widely used in web ser-
vices from news recommendation to advertising to search.
Generalized linear bandits (logistic regression in particular)
have demonstrated stronger performance than linear bandits
in many applications where rewards are binary.

In this section, we model the slate bandit problem as a gen-
eralized linear bandit, as in [Chapelle and Li, 2011]. As men-
tioned in Section 3, a slate s can be represented by a binary
feature vector x; € {0, 1}*™ whose entry at position (j, a) is
equal to 1 if s; = a.

The agent models the expected reward of slate s; as a
logistic function of x,, with unknown weights w & REm,
0(st) = P(ry = 1|xs,) = o(W'x,,) where o ()
is the sigmoid function.

The posterior distribution on the weights is approximated
by a multivariate Gaussian distribution updated via the
Laplace approximation. Specifically, the agent starts with a
multivariate Gaussian prior over w with mean g, = 0 € R‘™
and covariance matrix X = \-Iy,,, where I, is the £m x{m
identity matrix and A is a regularization parameter. The log-
posterior of w at time ¢ is

= 1+exp(—z)

1 _
log(IP(W]xs, 7)) o _5(“’_ /’Ltfl)TEt—ll(w_ K1)+
+relog (o(w'xy,)) + (1 —7¢)log (1 —a(w'xy,))

The posterior mean of w is the maximum a posteriori estimate
B, = Wuap = argmaxy log(P(w|X,r)) and the posterior
covariance matrix of wis ;' = B + o(WyapXs, ) (1 —
o (WyapXs, ) )Xs, Xy . To choose the next slate, the agent draws
a weight sample w ~ N(p,, 3;) and forms an estimate of
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the expected reward A(s) = o(W'x,) of each slate s € S
based on this weight sample. Then, the agent plays slate s; =

argmax, 0(s). Algorithm 2 outlines the approach.

4.2 Marginal Posterior Sampling for Slate Bandits

We propose a new Thompson-sampling based algorithm for
slate bandits, called marginal posterior sampling. There are
three key ideas behind our approach:

1. The slate-level reward is assumed to be a non-decreasing
function of the marginal unobserved rewards of the base
actions selected in the slates’s slots, but this function
does not need to be estimated.

2. Instead of maintaining a slate-level reward posterior,
marginal posterior sampling maintains posterior distri-
butions for the marginal reward of each slot’s base ac-
tions and uses the samples from these marginal posteri-
ors to select the next slate.

3. The optimization for selecting a slate in every time pe-
riod happens at the slot-level rather than the slate-level,
which makes the approach computationally efficient.

Marginal posterior sampling assumes that the slate-level
expected reward is a non-decreasing function of unobserved
action-level expected rewards at each one of the slate’s slots.

Assumption 1 (Slate value decomposition). There exists (un-
known) function f and (unknown) reward vector v € |0, 1]“”
for the unobserved action-level rewards at each one of slate’s
s slots, such that the slate value satisfies

Vis) = f(v(l,s1),...,0(¢ )

Furthermore, [ is non-decreasing in v, ie., for any
v,v' € [0,1]"" such that v(j,a) < v'(j,a) for all (j,a),
f (U(lv sl)a s 7’0(& SZ)) < f (’U/(]., 31)7 s ,U/(év Sl))

For example, consider a function f which posits that
the slate-level success probability is a sigmoid func-
tion of the sum of its slot-action success probabilities,
f(’U(l,Sl),...,rU(€7S[)) = U(U(1781)+”'+’U(€7 S@))'
This function f trivially satisfies the above assumption. Our
assumption is much weaker than the additivity assumption,
common in the literature [Kale et al., 2010; Swaminathan et
al., 20171, which posits that the slate-level expected reward is
the sum of unobserved action-level expected rewards at each
one of the slate’s slots.

Instead of maintaining a slate-level reward posterior as
in the K-armed Bernoulli bandit and the generalized linear
bandit approach of Section 4.1, marginal posterior sampling
models the unobserved marginal reward of a slot’s base ac-
tions using a Beta distribution. Specifically, for the unob-
served reward of each slot-base action pair (j, a), the algo-
rithm maintains a Beta posterior with parameters (3, a) and
B(j4, a) initialized at 1.

When slate s is played and reward r is observed, marginal
posterior sampling relies on the non-decreasing link func-
tion assumption (Assumption 1) to impute the unobserved
reward of each slot’s action as 7(j,s;) = r. With this im-
putation, the Beta distributions of the slate’s slot-action pairs
are updated as follows: «(j,s;) = «(j,s;) + 7(j,s;) and
Birs;) = Bis;) + (1= #(j.s,) forall j = 1,...,1.

Algorithm 3 Marginal Posterior Sampling
Require: Initial «(j,a) and [(j,a) for all (j,a) €
{1,...,¢} x {1,...,m} (default value: 1)

I: fort=1,...,Tdo

2 for eachslot j € {1,...,/} do

3: for each base action a € A; do

4: Draw sample ©(j, a) ~ Beta(a(j,a), 5(4, a))

5 end for

6 end for

7 Selects; = | argmax©(1,a),...,argmax d(¢, a))
ac€A, ac€A,

8: Observe reward 7, ~ D(r|s;)

9: for eachslot j € {1,...,¢} do

10: Impute slot-action reward 7(j, s¢;) = 7+

11: if 7(j, s;) = 1 then

12: a(j, s;) = alj, se) + 1

13: else

14: B(J,st5) = B, s¢5) +1

15: end if

16: end for

17: end for

Therefore, at any given time ¢ the marginal posterior of the
unobserved reward of slot-action pair (j, a) is a Beta distri-
bution with parameters a(j,a) = 1+ >.°_ 1{s,; = a}r.,
Blj,a) =1+ Hsrj = a}(1 —rr).

At every time ¢, in order to make its next decision, the
agent samples from the marginal posteriors of each slot’s
base-actions, 0(j,a) ~ Beta(a(j, a), 8(j,a)) and uses these
samples to construct a slate. By Assumption 1, since the link
function mapping the unobserved slot-action-level rewards to
the slate-level reward is non-decreasing, maximization of the
slate is reduced to the maximization of each one of the slate’s
slots. Hence, the agent selects slate s; = (s1, .. ., St¢) Where
Stj = argmax,e 4, 9(j,a). Marginal posterior sampling is
outlined in Algorithm 3.

Discussion

A key feature of marginal posterior sampling is the imputa-
tion of the latent base actions’ rewards with the observed slate
reward r and the one-step updates of the base actions’ Beta
distributions, which is justified by Assumption 1. Hence,
marginal posterior sampling can perform Thompson sam-
pling efficiently, even in the face of complex models for
which the posterior updating is intractable.

At the same time, marginal posterior sampling does not
need to make any parametric model assumption or estimate
any model, as generalized linear bandits do. When the
link function is given by a generalized linear model, i.e.,
fu(l,s1),...,v(ls0)) = o(w(l,s1)+ - +vl,se))s
there is a direct analogy of marginal posterior sampling to
the generalized linear bandits described in Section 4.1. Re-
call that in the latter, the slate-level response is modeled as
V(s) = o(w'xs) where x; is the slate indicator vector. If
we restrict the weights w to lie in [0, 1] and use a Beta prior
(instead of Gaussian) for those, then the above is clearly iden-
tical to assuming a link function f(v(1,s1),...,v(¢,s¢)) =
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o(w(l,s1)+---+v(¥, s¢)), where v(j,a) = w(j, a). In both
cases, that is, when using a Beta prior or a Gaussian prior on
v(j, a), Bayes rule is not closed-form and some approxima-
tion is in order. In the case of generalized linear bandits with
a Gaussian prior the update of the marginals is approximate
(typically given via a Laplace approximation). The latter in-
troduces extraneous variance which slows down the learning
process and incurs additional regret, as we show in the exper-
iments of Section 5.

Moreover, unlike the approaches of Section 4.1, marginal
posterior sampling scales well in the presence of slots with a
large number of base actions or of a large number of slots or
both. If there are ¢ slots with m base actions each, marginal
posterior sampling has complexity O(¢m) instead of O(m?*).

For both training and optimization, marginal posterior sam-
pling leverages the slate value decomposition assumption. In-
tuitively, this assumption states that every slot contributes
more or less positively to the value of the slate. Therefore,
learning the best action for each slot does not harm the slate
value overall. This is a reasonable assumption for most web-
service applications, where the slots’ action spaces are often
curated to be of high quality ahead of time. Moreover, slate
diversity, which is a desirable property in web-services, may
be formulated as a non-decreasing, submodular function us-
ing an entropy regularizer [Qin et al., 2014].

Despite its applicability, there are scenarios where this as-
sumption does not hold, for instance, when there are negative
interactions among slots. However, we argue that marginal
posterior sampling imposes far weaker limitations than many
slate bandit works in the literature, which assume an additive
link-function [Kale et al., 2010; Swaminathan et al., 2017]
or a parametric form that may be misspecified. Addition-
ally, leveraging slate value decomposition, marginal posterior
sampling achieves improved performance in terms of regret
and decreases computational time, as shown in Section 5.

5 Simulations

We now compare marginal posterior sampling with the base-
lines. First, we consider a link function f mapping the unob-

served slot-action-level expected rewards to the slate-level ex-

pected reward that is additive, V (s) = ijl v(j, s5) !, sim-

ilar to [Gyorgy, Linder, Lugosi and Ottucsak, 2007], [Kale,
Reyzin, Schapire, 2010], [Swaminathan et al., 2016]. Subse-
quently, we consider the following link function f
1

V(s) Lexp (=202, (vUss)+ 8y 0500800 5,0)) 1) )
where ¢;;; ~ Uniform([10,20]) for all j,;' € {1,...,¢},
which maps the unobserved slot-action-level expected re-
wards to the slate-level expected reward that is sigmoid and
also includes random positive interactions between all slots.

In both cases, the slot-action marginal expected re-
wards are drawn uniformly from the interval [0.05,0.15],
ie., for all (j,a) € {1,...,¢} x {1,...,m}, v(j,a) ~
Uniform ([0.05,0.15]). The size of the slate space is |S| =

"When responses are binary, additivity can lead to the expected
reward of the slate being greater than 1, in which case it is capped.
In our experiments, this does not occur.
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m’. The optimal slate is s* = argmax,e| g V(s). K-armed
Bernoulli bandit, generalized linear bandit and marginal pos-
terior sampling sequentially select slates in S over a horizon
of T' = 50000 time periods.

For the additive link function case, Figure 1 shows the cu-
mulative regret of each algorithm for slates with ¢ = 2 slots
and m = 2,3,4,5 base actions per slot. The results are av-
eraged over 1000 simulations and 95% confidence intervals
are shown. Table 1 shows the percentage improvement in cu-
mulative regret of marginal posterior sampling over the gen-

Regret® L™ (T) —Regret™ ©5(T)
P A 100%. The

results are presented for slates with ¢ = 2, 3,4 slots and
m = 2,3,4,5 base actions per slot and are averaged over
1000 simulations.

eralized linear bandit,

| [ m=2]m=3]m=4] m=5|

=21 22.89% | 30.18% | 27.86% | 28.29%
(=3 | 974% | 15.44% | 16.15% | 21.35%
{=41 632% | 8.13% | 12.97% | 14.84%

Table 1: Cumulative regret percentage improvement of marginal
posterior sampling over generalized linear bandit when the link
function is additive.

For the case of the sigmoid link function with random posi-
tive interactions, Figure 2 shows the cumulative regret of each
algorithm for slates with ¢ = 2 slots and m = 2, 3,4, 5 base
actions per slot and Table 1 shows the percentage improve-
ment in cumulative regret of marginal posterior sampling over
the generalized linear bandit. Again the results are averaged
over 1000 simulations.

| [ m=2]m=3]m=4] m=5 |

=21 952% | 21.63% | 23.39% | 23.52%
=31 10.12% | 14.66% | 22.47% | 22.82%
=41 688% | 997% | 15.46% | 16.43%

Table 2: Cumulative regret percentage improvement of marginal
posterior sampling over generalized linear bandit when the link
function is sigmoid with random positive interactions between slots.

We see that K -armed Bernoulli bandit performs the worse,
as the success probability of each slate is learnt independently
without benefiting from observations of overlapping slates.
Marginal posterior sampling consistently performs the best
and has lower regret than the generalized linear bandit for
both a simple additive and a complex sigmoid link function
with interactions and for a slates with varying number of slots
and varying number of base actions per slot. In most cases,
the improvement is more than 15% and goes up to 30%.

Finally, we compare the algorithms in terms of time re-
quired for choosing the next slate in the case of sigmoid link
function with interactions. This time includes sampling from
posteriors, optimizing based on these samples, and updat-
ing the posteriors. Marginal posterior sampling holds sim-
ple marginal posteriors at the slot-action level and avoids
(approximate) Bayesian updating over the slate posterior,
as generalized linear bandit does, which often becomes in-
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Figure 1: Cumulative regret of K-armed Bernoulli bandit, generalized linear bandit and marginal posterior sampling for the slate bandit
problem with £ = 2 slots, m = 2, 3,4, 5 base actions per slot and an additive link function.
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Figure 2: Cumulative regret of K-armed Bernoulli bandit, generalized linear bandit and marginal posterior sampling for the slate bandit
problem with £ = 2 slots, m = 2, 3,4, 5 base actions per slot and a sigmoid link function with random positive interactions between slots.

[ /=4 [ Bemmoulli [ GLM [ MPS |
m =2 0.10 ms 242ms | 0.19 ms
m=3 0.32 ms 4.82ms | 0.19 ms
m=4 0.92 ms 8.73ms | 0.19 ms
m=>5 2.14ms | 14.25ms | 0.20 ms

Table 3: Duration of a single slate decision for K -armed Bernoulli
bandit, generalized linear bandit (GLM) and marginal posterior sam-
pling (MPS) when the link function is sigmoid with random positive
interactions between slots (results averaged over 32 simulations).

tractable due to non-conjugacy. Moreover, the optimization
for marginal posterior sampling is done at the slot level and is
O(m/) rather than the slate level, which is O(m*). As shown
in Table 3, the performance of marginal posterior sampling
scales gracefully for large slates and can be up to 10 times
faster than K -armed Bernoulli bandit and 70 times faster than
generalized linear bandit.

6 Extensions

Marginal posterior sampling can be extended to incorpo-
rate contextual information. Contextual marginal poste-
rior sampling leverages the non-decreasing link function as-
sumption to model the reward per slot as a function of
the contextual information. If the user’s contextual infor-
mation u is d-dimensional, each slot j maintains for each
one of its base actions a € .4; an independent model
9j,a(W;¢(4,a)) parametrized by d-dimensional unknown pa-
rameters ¢(j,a) € R? (e.g. linear g; ,(u) = ¢(j,a)Tu or
logistic g, ,(u) = m). The models g; , and
9j,a’ can be trained independently, because when slot j has
action a it does not have action a¢’. When at time ¢, the con-

textual information is u;, the chosen slot s; has action a at slot
7 and the reward is ¢, the algorithm uses the non-decreasing
link function assumption to impute the unobserved marginal
reward as 7(j,a) = r; and then uses the imputed observa-
tion (uy,7(j,a)) to update the posterior on ¢ (7, a) [Li et al.,
2010]. For selecting the slate for user u, contextual marginal
posterior sampling samples ¢(j,a) from the marginal pos-
terior of each slot-action pairs’ model parameters and uses
it to constuct an estimate 0(j,a) = g;..(u;¢(j,a)). Sub-
sequently, it does slot-level optimization and selects slate
s = (s1,...,5¢) where s; = argmax,¢ 4, 9(j, a).

7 Conclusion

We have presented a novel Thompson sampling approach
for online slate bandits, called marginal posterior sampling.
By postulating a non-decreasing link function that maps the
marginal unobserved rewards at the slot-action level to the
slate-level reward, marginal posterior sampling is able to
maintain slot-action level posteriors and uses these marginal
posteriors rather than a slate level posterior to balance ex-
ploration versus exploitation. Unlike generalized linear ban-
dit, marginal posterior sampling does not make any functional
form assumptions or estimates any function and solely relies
on monotonicity, which is a much weaker assumption than
the additivity assumption used in the literature. Additionally,
marginal posterior sampling optimizes at the slot-level rather
than the slate-level, which makes the approach computation-
ally very efficient. We have shown the strong advantage of
marginal posterior sampling compared to the generalized lin-
ear bandit — a wide-spread choice in slate problems that ap-
pear in recommendations. For slates that have up to 4 slots
and up to 5 actions per slot, marginal posterior sampling can
achieve up to 30% improvement in the quality of decisions
and can be up to 70 times faster in its decision making.
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