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Abstract
Attention-based models have shown to be effec-
tive in learning representations for sentence clas-
sification. They are typically equipped with multi-
hop attention mechanism. However, existing multi-
hop models still suffer from the problem of pay-
ing much attention to the most frequently noticed
words, which might not be important to classify the
current sentence. And there is a lack of explicitly
effective way that helps the attention to be shifted
out of a wrong part in the sentence. In this paper,
we alleviate this problem by proposing a differen-
tiated attentive learning model. It is composed of
two branches of attention subnets and an example
discriminator. An explicit signal with the loss in-
formation of the first attention subnet is passed on
to the second one to drive them to learn different at-
tentive preference. The example discriminator then
selects the suitable attention subnet for sentence
classification. Experimental results on real and syn-
thetic datasets demonstrate the effectiveness of our
model.

1 Introduction
Representation learning for different linguistic units is
a fundamental problem in Natural Language Processing
(NLP). Learning algorithms with better representations al-
ways achieve better performance on downstream tasks [Col-
lobert et al., 2011; Le and Mikolov, 2014; Kiros et al., 2015].
As one of the most common NLP tasks, sentence classifi-
cation relies heavily on the learned representation of sen-
tences. Much work, especially with deep neural networks in
recent years, has been done on sentence representation learn-
ing [Socher et al., 2013; Kim, 2014].
More recently, deep models for representation learning are

often augmented with various attention mechanisms and have
achieved significant improvements on sentence classification
[Yang et al., 2016; Cheng et al., 2016; Chen et al., 2017].
Attention-based models show more interpretability compared
to other neural models. They are illustrated to be able to
assign high attention weights to important parts of the sen-
tences. Different parts are then combined using attention
weights. This is, to some extent, consistent with the way that

humans classify sentences, as we often pay more attention
to important parts and combine different parts with different
attentions to form a whole picture of sentences.
Current methods with attention mechanisms generally fall

into two categories: models with single-hop attention and
with multi-hop attention. Single-hop models utilize either
a randomly initialized context vector or an early-stage rep-
resentation to locate important words in the sentence [Yang
et al., 2016; Liu et al., 2016]. They often get better per-
formance, but likely fail on complicated sentences [Kumar
et al., 2016; Lin et al., 2017]. Multi-hop models repeat-
edly or iteratively extract information from an explicit mem-
ory network [Sukhbaatar et al., 2015; Kumar et al., 2016;
Munkhdalai and Yu, 2017; Lin et al., 2017]. They are
also called Memory Controller (MC) models. MC models
show superior performance over the state-of-the-art single-
hop models, especially on those complicated sentences.
Despite the large improvements brought by attention mech-

anisms on sentence classification, there is still an important
problem on them. Single-hop mechanism is often insufficient
to locate words or features that are useful for classification.
As shown by Kumar et al. [2016], the attention tends to
be paid much to the most frequently noticed words, but less
to other words which might be crucial for the task at hand.
For example, in a negative polarity sentence “My response to
the film is best described as lukewarm.”, the strong sentiment
word “best” tends to get a lot of attention, while “lukewarm”
is in fact the key to the classification of the sentence. The
same phenomenon can also be observed in machine transla-
tion [Tu et al., 2016]. We refer to this as attention bias prob-
lem. Multi-hop mechanism tries to alleviate it by reassigning
attention weights multiple times. However, multi-hop mech-
anism typically shares the same structures and parameters in
all hops, leading to similar attention weights for all hops [Lin
et al., 2017] or more focus on some specific words [Kumar et
al., 2016]. It is still not a good solution for the attention bias
problem.
Intuitively, we think that an effective way to address the

problem is to pass on an explicit signal about how well the
previous hop works to the subsequent hop. The subsequent
hop then decides if it should shift its attention according to
that signal. Specifically, for sentence classification, some sen-
tences are correctly classified and others are not at the first
hop. A signal with this information passed on to the second
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hop will drive the model to shift its attention to other words
or features at the second hop. In this way, the two hops could
have differentiated attentive preference. The attention bias
problem can be alleviated effectively.
This paper proposes a Differentiated Attentive Representa-

tion Learning Model (DARLM) to implement the above idea
on sentence classification. DARLM has two branches of at-
tention subnets and an example discriminator. One branch
tries its best to classify all sentences, while the other is en-
abled for sentences that cannot be handled well by the for-
mer. The two branches are jointly trained. To achieve this, a
specially designed signal related to the loss of the first branch
is passed on to the second one. It ensures the differentiated
training of the two-branch architecture and promotes the lat-
ter branch to shift its attention to different parts of a sentence.
The example discriminator is introduced to select one branch
to give the final label for each sentence. Experimental results
on real and synthetic datasets demonstrate the effectiveness of
DARLM comparing with a number of competitive baselines.
The results show that DARLM is flexible for giving differen-
tiated attention and capable of producing more discriminative
representations for different sentences.
The contributions of this paper can be summarized as fol-

lows.

1. We propose a novel DARLM architecture for alleviat-
ing the attention bias problem on sentence classification.
The model has two attention subnets and an example dis-
criminator which is used to select the suitable attention
subnet when classifying each sentence.

2. We introduce an explicit signal to drive attention subnets
to learn differentiated attention, as well as a joint training
method for DARLM to improve its effectiveness.

3. We illustrate the differentiated attentive preference
learned by two attention subnets.

2 Related Work
Most recent representation learning models for sentence
classification or some other tasks fall into two cate-
gories: attention-based models and composition-based mod-
els. Attention-based models, including single-hop models
and multi-hop models, focus on extracting task-relevant in-
formation to compose the representation. Among single-hop
models, Yang et al. [2016] proposed a two-level single-hop
mechanism to locate important words and sentences, Liu et
al. [2016] utilized an early-stage sentence representation to
attend key words. However, single-hop mechanism was of-
ten insufficient to locate useful words or features. Multi-hop
mechanism was then proposed to improve the capability of
attention in recent work. It explored to use different kinds of
control policies between adjacent hops. Kumar et al. [2016]
introduced an episodic module to iteratively locate the input.
Munkhdalai and Yu [2017] proposed a variable sized memory
where information can be read and written through attention.
Lin et al. [2017] proposed a self-attention mechanism with an
attention weight regularization to extract different aspects of
the sentence into multiple representations. While multi-hop
models focused on how to update attentions to the correct
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Figure 1: The overall architecture of DARLM.

parts consistently on all sentences by the final supervision in-
formation, our model tries to learn differentiated attention on
different hops by passing on a signal about how well the pre-
vious hop works to the subsequent hop.
Unlike attention-based models, composition-based mod-

els focus on different compositional strategies that aggregate
words [Tai et al., 2015; Zhou et al., 2016; Liu et al., 2017].
The recursive neural networks among them have become top
performing techniques [Zhao et al., 2015; Looks et al., 2017].
However, their dependence on syntactic parse trees limits the
practical applications. Though there have been few studies
on latent tree learning models without restore to conventional
parsers [Choi et al., 2017], it still leaves open an important
question that whether these models owe their effectiveness to
latent grammars [Williams et al., 2017].

3 Proposed Method
The architecture of proposed DARLM for sentence classifica-
tion is shown in Figure 1. It is composed of a shared memory
network, two branches of attention subnets with same struc-
ture but parameterized differently and an example discrimina-
tor network. The shared memory maintains encoded memo-
ries of the sentence. Each attention subnet then reads a set of
relevant memories to compose one representation and gives
its own prediction. Finally, one branch of attention subnets
is selected by the example discriminator to output the final
prediction.
In the following we describe shared memory and attention

subnets in Section 3.1 and Section 3.2 respectively, and ex-
ample discriminator in Section 3.3 together with the joint and
differentiated training method for the whole model.

3.1 Shared Memory
Given a sentence with L tokens, it can be represented as:

S = ⊕L
i xi, (1)

where ⊕ denotes concatenation, xi is a d dimensional word
embedding for i-th token in the sentence, and S is therefore
a d × L matrix. A one-layer Convolutional Neural Network
(CNN) is used to encode the matrix. A set of fixed-width-
window convolutional filters slide over S (padded where nec-
essary), generating one memory slot at a time. Each slot mi

contains information about a n-gram:

mi = ReLU
(
Wm ⊙ xi−⌊n−1

2 ⌋:i+⌈n−1
2 ⌉ + bm

)
, i ∈ [1, L],

(2)
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where Wm and bm are convolution parameters involving d
filters, ReLU is the rectified linear unit function and ⊙ de-
notes convolutional operation. Thus, all tokens are encoded
to a shared memoryM:

M = ⊕L
i mi. (3)

3.2 Attention Subnets
As shown in Figure 1, both attention subnets C1 and C2 have
access to the shared memory M with attention mechanism.
They extract the context vectors and then input them into two
connected Long-Short Term Memory (LSTM) units. LSTM
units then generate the high-level representations. Finally,
two attention subnets predict the probabilities of sentence S
belonging to class labels Y ={y1, ..., yk} respectively. In this
process, two attention subnets are not independent but corre-
lated by the inside attention operations and LSTM states.
Specifically, for each attention subnet Ct (t ∈ {1, 2}), we

calculate attention weight αt and context vector st as:

Zt = tanh
(
Ws

t (st−1 ⊗ eL) +Wh
t (ht−1 ⊗ eL)

+Wm
t M) ,

(4)

αt = softmax(wtZt), (5)

st = MαT
t , (6)

where Ws
t , W

h
t , W

m
t and wt are attention parameters, st−1

and ht−1 represent the context vector and high-level repre-
sentation of previous attention subnet respectively, eL is vec-
tor of ones, ⊗ denotes the out product of two vectors.
The LSTM unit takes st and ht−1 as inputs and outputs the

current high-level representation:

ht = LSTMt (st,ht−1) . (7)

The high-level representation ht is then fed through a soft-
max classifier to predict the probability distribution over class
labels:

Pt(Y |S) = softmax (Utht + bt) , (8)

whereUt are parameter matrix and bt is the bias term.
The initial s0 is predicted by an average of memory slots

fed through a one-layer feed forward neural network:

s0 = FNNs

 1

L

L∑
j

mj

 , (9)

and h0 is initialized with a vector of zeros.

3.3 Training of DARLM
Ideally, C2 should learn to pay more attention to those im-
portant words that have not been noticed by C1. However,
optimizing multiple classification losses on the same label di-
rectly cannot reach this goal. Therefore, we propose a differ-
entiated training method to drive C2 to shift its attention to
different parts of the sentence.

Differentiated Loss
We introduce our method starting from cross-entropy loss:

lt = − log pt, (10)
where pt ∈ [0, 1] is the estimated probability for the target
label by Ct (t ∈ {1, 2}) . Instead of simply summing up the
losses of two attention subnets, we add a modulating term
Φ(·) to the loss function of C2. More formally, we define the
differentiated loss function as:

lc = l1 +Φ(p1) l2. (11)
The modulating term Φ(·) could take different function
forms. We adopt Beta Probability Density Function (Beta-
PDF):

Φ(p1) =
1

B (a, b)
(p1)

a−1
(1− p1)

b−1
, (12)

where a and b are two positive shape hyper-parameters, B(·)
is beta function. Φ(p1) has some nice properties when de-
fined as Beta-PDF. For example, for Φ(p1) with a = 1 and
b = 3. If C1 correctly classifies a sentence, Φ(p1) will have
a small value. It shrinks the total loss of two attention sub-
nets and gets C2 to be rarely trained on that sentence. If C1

misclassifies a sentence, Φ(p1) tends to have a high value.
It enlarges the total loss of two attention subnets and makes
C2 receive more training on that sentence, thereby giving a
chance to C2 to shift its attention to more useful words that
are not noticed by C1. We can see that through the modulat-
ing term Φ(p1), an explicit signal about how well C1 works
is passed on to C2. Two attention subnets then could have
differentiated attentive preference and are complementary to
each other (see more details in Section 4.2).

Example Discriminator
The example discriminator D is introduced to select one at-
tention subnet to output the final label. It typically consists of
two-layer feed forward neural network followed by a softmax
classifier, and is trained simultaneously with other compo-
nents. The high-level representations h1 and h2 are supplied
as input, and the probabilities p1 and p2 provide supervised
information. Thus, the probability distribution over two at-
tention subnets and the loss function are defined as follows:

PD(C|S) = softmax (FNND (h1 ⊕ h2)) , (13)

ld = − p1
p1 + p2

log pc1 −
p2

p1 + p2
log pc2 , (14)

where pc1 and pc2 represent D’s estimated probabilities for
C1 and C2 respectively. From Eq. (14), we can see that the
goal ofD is to learn which attention subnet gives more accu-
rate estimattion to the probability of target label.

Confidence Penalization
In practice, we find out that, whenC1 places all probability on
a single class in the training set, C2 tends to be inadequately
trained. Or conversely, when C1 predicts a much smoother
output distribution, the modulating termΦ(p1) has little or no
effect on C2. Thus, we add a penalization term that prevents
peaked or smooth output distributions of C1:

le = H (P1(Y |S)) , (15)
where H(·) represents the entropy of a probability distribu-
tion.
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Put It All Together
Finally, we combine all above loss functions:

L(D) =
1

|D|

D∑
j

l(j), (16)

l(j) = l(j)c + l
(j)
d − λl(j)e , (17)

where D is the training corpora and λ controls the strength of
the penalty. All trainable parameters in the model are jointly
learned by minimizing L(D).

4 Experiments
In this section, we empirically evaluate the performance of
DARLM and compare it with the state-of-the-art models. To
further show the effectiveness of our model and give some in-
sights into what differentiated attention our model learns, we
also investigate a sentence classification task involving a syn-
thetic dataset - Toy Zoo. The codes and datasets are publicly
available at https://github.com/Chanrom/DARLM.

4.1 Comparison Experiments
Datasets
We evaluate our model on four different datasets. Each
dataset is briefly described as follows.
SST is a popular sentiment classification dataset intro-

duced by Socher et al. [2013]. The review sentences are
annotated with five classes. We only use sentence-level anno-
tation. Standard train/dev/test split is used.
TREC is a question type classification dataset [Li and

Roth, 2002], where questions are labeled with six classes. We
randomly split 500 questions in the training set into a devel-
opment set.
SUBJ is a subjectivity dataset where each snippet can be

classified as subjective or objective. [Pang and Lee, 2004].
MR is a movie reviews with positive/negative labels [Pang

and Lee, 2005]. We follow the same split as [Liu et al., 2017]
on above two datasets.

Implementation Details
The word embedding size, LSTM hidden size and number of
hidden units inside all fully connected layers are set to 300.
Convolution window sizes are 3, 4 and 5, and each window
size has 100 filters. The word embeddings are initialized with
the pre-trained GloVe vectors [Pennington et al., 2014] and
fine-tuned during training. Other parameters are initialized
from a uniform distribution in [−0.1, 0.1]. For regularization,
we apply dropout [Srivastava et al., 2014] with a dropout rate
of 0.5 to all layers (except those in example discriminator)
and batch normalization to the outputs of one-layer CNN.
The model is trained using mini-batch stochastic gradient

descent with the RMSProp optimizer in a total of 30 epochs.
The initial learning rate is set to 0.0005 and mini-batch size
is 16. The hyper-parameter a is set to 1 for all experiments,
while b is estimates by grid search across the set {2, 3, 4, 5}.
For the coefficient λ, we empirically set it to a positive or
negative number for different datasets.

Comparison Methods
We compare DARLM with three types of strong baselines:
single-hop models, multi-hop models and composition-based
models.
HAN: A hierarchical attention model for text classifica-

tion. We only adopt the word-level attention mechanism
[Yang et al., 2016].
Bi-LSTM-IA: A bidirectional LSTM (Bi-LSTM) with

inner-attention, utilizing the sentence first-stage representa-
tion to attend words [Liu et al., 2016].
DMN: Dynamic memory network, using an iterative atten-

tion process to search the relevant facts [Kumar et al., 2016].
NSE: Neural semantic encoder, equipped with a variable

sized memory which can be accessed during read and write
according to attention weights [Munkhdalai and Yu, 2017].
SELF-ATTN: A structured self-attentive model, utilizing

multi-hop mechanism to extract different aspects of the sen-
tence into multiple vector representations [Lin et al., 2017].
Tree-LSTM: Tree-Structured LSTM that requires pre-

defined syntactic structures [Tai et al., 2015].
AdaSent: A self-adaptive model that forms a hierarchy

of representations from words to sentences through recursive
gated networks [Zhao et al., 2015].
BLSTM-2DCNN: It utilizes 2D max pooling to extract

features from Bi-LSTM hidden states [Zhou et al., 2016].
DSCNN: Dependency sensitive CNN, which utilizes an

LSTM to extract low-level representation, and then apply a
CNN to extract task-specific features [Zhang et al., 2016].
DC-TreeLSTM: Dynamic compositional neural networks

over tree structure, in which the compositional function is dy-
namically generated by a meta network [Liu et al., 2017].
LR-Bi-LSTM: A Bi-LSTM for sentiment classification,

leveraging the linguistic knowledge by imposing sentiment
regularizers on intermediate outputs [Qian et al., 2017].
To investigate the effect of the differentiated loss, we also

compare against Attentive Representation Learning Models
(ARLMs). ARLM is composed of a memory network and
only one branch of attention subnet. It is a standard MC
model and trained in a normal way. We get ARLM-Single
without unfolding LSTM unit in the attention subnet, and
ARLM-Multi by unfolding LSTM unit two or more times
(the best results are reported). The final hidden state of LSTM
unit is used as sentence representation for classification. For
the models without results on the above four datasets, we
reimplement them and perform grid search over key hyper-
parameters (such as learning rate, batch size and the number
of hops). Statistical significance tests are adopted for com-
parisons.

Results Analysis
Table 1 shows the experimental results of DARLM and other
baselines. The classification performance is evaluated in
terms of accuracy. Among all models, DARLM consistently
outperforms single-hop and multi-hop models on all datasets
(with a p-value that is smaller than 0.05), and it outperforms
almost all composition-based models. Specifically, compared
with the best single-hop models, DARLM achieves a 1.8%
improvement on SST, a 2.8% improvement on TREC, a 0.8%
improvement on SUBJ and a 1.0% improvement on MR.
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Models SST TREC SUBJ MR

HAN 47.0 92.8 92.9 82.2
Bi-LSTM-IA 47.0 92.8 93.3 81.5
ARLM-Single 46.2 93.2 92.5 80.8

DMN 47.3 93.8 93.3 82.1
NSE 48.7 94.8 93.5 81.7
SELF-ATTN 47.4 95.0 93.5 82.3
ARLM-Multi 47.8 93.8 93.2 81.4

Tree-LSTM 48.1 - 93.2 80.7
AdaSent - 92.4 95.5 83.1
BLSTM-2DCNN - 96.1 94.0 82.3
DSCNN - 95.6 93.9 82.2
DC-TreeLSTM - 93.8 93.7 81.7
LR-Bi-LSTM 48.6 - - 82.1

DARLM 48.8 96.0 94.1 83.2

Table 1: Evaluation results of DARLM and other models.

Compared with multi-hop models DMN, NSE and SELF-
ATTN, which use Bi-LSTM or two-layer LSTM to encode
the input sentence, DARLM only uses a simple one-layer
CNN. But DARLM achieves at least a 0.1% improvement
on SST, a 1.0% improvement on TREC, a 0.6% improve-
ment on SUBJ and a 0.9% improvement on MR. Considering
that one-layer CNN is less powerful for modeling long term
dependencies than Bi-LSTM or two-layer LSTM, it seems
clear that differentiated learning of the attention subnets in
DARLM plays a key role to locate important words in dif-
ferent parts of a sentence. Moreover, DARLM significantly
outperforms some composition-based models which utilize
syntactic structures or external linguistic knowledge (Tree-
LSTM, DC-TreeLSTM and LR-Bi-LSTM). It achieves the
best accuracy on SST and MR over all baseline models and
reaches comparable performance to the state-of-the-art model
BLSTM-2DCNN on TREC. On the SUBJ dataset, our model
is better than all other baseline models except AdaSent.

4.2 Analysis of DARLM
Analysis of Attention
In order to understand how differentiated training method
contributes to the model’s performance and give some in-
sights into what attentions the model learns, we investigate
a classification task on a synthetic dataset, Toy Zoo. The
dataset includes 10,000 sentences. Inspired by [Krishna-
murthy andMitchell, 2013], each sentence is designed to con-
tain 5 Noun Phrases (NP) with the form of adverb-adjective-
noun. Each NP describes an animal. The name of an animal
is called animal-N for simplification. The larger the number
N, the bigger the animal itself. But some modifiers, such as
very very big and very small, can change the relations. A
lookup table for each NP and the corresponding size is main-
tained. The task is to find the biggest animal mentioned in
a sentence. Figure 2 shows an example. There are 5 animals
including a quite big animal-6, a very small animal-8 and oth-
ers. The size of each animal is given in the vector [0.35, 0.43,
0.45, 0.39, 0.41]. The answer for this sentence is the third
one. Compared with the real datasets, Toy Zoo has clear lin-
guistic patterns, which might be helpful for us to understand
and explain our model.

There are a quite big animal-6,
a very small fierce animal-8,
a very very big animal-7,
a fairly small blue animal-7,
a big white lovely animal-7.

Which one is the biggest ?

[ 0.35, 0.43, 0.45, 0.39, 0.41 ]

“Third one”

Figure 2: A example sentence in Toy Zoo.

Models Test Acc.

ARLM 91.8
ARLM + 2-hop + last 92.2
ARLM + 3-hop + last 92.3
ARLM + 4-hop + last 89.8
ARLM + 2-hop + avg pooling 91.0
ARLM + 3-hop + avg pooling 89.6

DARLM 93.7

Table 2: Accuracies on Toy Zoo classification task.

The baseline models, ARLMs, create sentence represen-
tations by either using the last hidden state or the average
pooling of all hidden states. The results are shown in Table
2. We can observe that DARLM significantly outperforms all
ARLMs. Varying hops and different representations cannot
compensate the lack of differentiated loss. Figure 3 shows an
example of attention visualization for DARLM and the best
ARLM. We can find that both models locate “animal-10” at
first. However, ARLM irretrievably focuses on this wrong
word at the second and third hop, while DARLM shifts its
attention to “very” correctly at the second hop (namely, C2).
A more interesting observation is that C1 and C2 actually

tend to have different attentive preference. As shown in Ta-
ble 3, we list some words that frequently receive attentions in
different attention subnets. We find that C1 tends to be atten-
tive to nouns, while C2 tends to be attentive to adverbs and
adjectives. The phenomenon of differentiated attention can
also be observed on real datasets (see in Table 3). However,
ARLM always pays a lot of attention to the same words. Fur-
thermore, if we cut off all connections between C1 and C2

and remove the differentiated loss, there is almost no atten-
tion complementation on any dataset. From these, it seems
that DARLM can alleviate the attention bias problem effec-
tively with differentiated attention.

Performance of Example Discriminator
The example discriminator D is used to select one attention
subnet to output the final label. Its prediction dominates the
performance of DARLM. Taking the models we used for Toy
Zoo, SST and TREC as examples, we investigate how D in-
fluences the performance of DARLM.
We first examine the stability that D selects a certain at-

tention subnet as the labeler for a given sentence after some
epochs of training. From Eq. (14), we know that the ground
truth label of D is automatically determined by the predic-
tions of C1 and C2 in the training. However, it’s possible
that some sentences are better suited to C2 in early stages of
training, while in later stages they may be better suited to C1,
which disrupts the convergence of D. Thus, we define the
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Figure 3: An example of attention visualization for DARLM and the best ARLM.

Models Toy Zoo SST TREC

DARLM
C1

animal-16, animal-13, animal-9, Immediately, Ridiculous, confusing, Janice, How, desktop,
animal-14, animal-12, animal-8 Skip, jacked-up, stupider you, bandwidth, why

C2
big, very, quite, 3D, Brilliant, bonehead, I.V., USPS, NASA,
pretty, a, fairly Hmm, food, Good CPR, stand, SOS

ARLM
2nd hop

animal-16, animal-13, animal-14, Hmm, bet, Ridiculous, tall, often, cold,
animal-15, animal-9, “,” Brimful, Immediately, dreadful fast, far, wide

3rd hop
animal-16, animal-13, animal-14, Hmm, bet, Ridiculous, often, fast, cold,

“,”, animal-9, animal-15 Brimful, Immediately, dreadful tall, far, wide

Table 3: Some most attentive words on the test sets of Toy Zoo, SST and TREC.
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Figure 4: The stability scores of D across each epoch on training
sets.

Datasets C1 C2 D DARLM

Toy Zoo 91.3 8.7 94.5 93.7
SST 47.3 35.1 51.0 48.8
TREC 95.6 70.2 96.4 96.0

Table 4: The performance of components in DARLM on test sets.

stability score of e-th epoch on the training set:

ωe =

∑
t∈{1,2} |O

e−1
Ct

∩Oe
Ct
|

|D|
, e ∈ [1, 30], (18)

where Oe
Ct

is the set of sentences that are better suited to Ct

at e-th epoch and O0
Ct

is an empty set. Note that we prevent
D from selecting the same attention subnet for all sentences
in our experiments. Figure 4 shows the stability scores of D
across each epoch on three dataset. It can be seen that for all
three datasets, the ω converges to a number close to 1. Next,
we present the performance of components in DARLM on the
test sets (see in Table 4). We see that, despite the lower perfor-
mance that C1 and C2 shows, the overall accuracy is highest
because D selects the most suitable one for a given sentence.
It shows that DARLM can produce more discriminative rep-
resentations, improving the performance of classification.
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Figure 5: The effect of penalization term (by varying coefficient λ).

Effect of Penalization Term
As described in Section 3.3, the purpose of introducing penal-
ization term le is to promote the training of C2. Without le,
the example discriminator D would always select C1 for ev-
ery sentence due to the inadequate training of C2. We present
some results that show the effect of le by varying coefficient
λ (see in Figure 5).
We can find that i) le helps DARLM to achieve better per-

formance on three datasets by either preventing peaked (i.e.
on TREC) or smooth (i.e. on SST) output distributions of
C1; ii) without having le, the performance of DARLM drops
significantly.

5 Conclusion
In this work, we propose a differentiated attentive represen-
tation learning model (DARLM) for sentence classification.
With a differentiated training method, two attention subnets
in DARLM can have different attentive preference and gen-
erate different sentence representations. Experimental re-
sults demonstrate the effectiveness of DARLM and show that
DARLM can effectively alleviate the problem of attention
bias.
In future work, we are going to apply our method to multi-

ple branches and use more powerful memory network.
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Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from
scratch. The JMLR, 12(Aug):2493–2537, 2011.

[Kim, 2014] Yoon Kim. Convolutional neural networks for
sentence classification. In EMNLP, 2014.

[Kiros et al., 2015] Ryan Kiros, Yukun Zhu, Ruslan R
Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. Skip-thought vectors. In Ad-
vances in NIPS, pages 3294–3302, 2015.

[Krishnamurthy and Mitchell, 2013] Jayant Krishnamurthy
and Tom M Mitchell. Vector space semantic parsing:
a framework for compositional vector space models. In
ACL, page 1, 2013.

[Kumar et al., 2016] Ankit Kumar, Ozan Irsoy, Peter On-
druska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani,
Victor Zhong, Romain Paulus, and Richard Socher. Ask
me anything: dynamic memory networks for natural lan-
guage processing. In ICML, pages 1378–1387, 2016.

[Le and Mikolov, 2014] Quoc Le and Tomas Mikolov. Dis-
tributed representations of sentences and documents. In
ICML, pages 1188–1196, 2014.

[Li and Roth, 2002] Xin Li and Dan Roth. Learning question
classifiers. In Proceedings of the 19th International Con-
ference on Computational Linguistics-Volume 1, 2002.

[Lin et al., 2017] Zhouhan Lin, Minwei Feng, Cicero
Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou,
and Yoshua Bengio. A structured self-attentive sentence
embedding. In ICLR, 2017.

[Liu et al., 2016] Yang Liu, Chengjie Sun, Lei Lin, and Xi-
aolong Wang. Learning natural language inference us-
ing bidirectional lstm model and inner-attention. arXiv
preprint arXiv:1605.09090, 2016.

[Liu et al., 2017] Pengfei Liu, Xipeng Qiu, and Xuanjing
Huang. Dynamic compositional neural networks over tree
structure. In IJCAI, 2017.

[Looks et al., 2017] Moshe Looks, Marcello Herreshoff, De-
Lesley Hutchins, and Peter Norvig. Deep learning with
dynamic computation graphs. In ICLR, 2017.

[Munkhdalai and Yu, 2017] Tsendsuren Munkhdalai and
Hong Yu. Neural semantic encoders. In EACL, 2017.

[Pang and Lee, 2004] Bo Pang and Lillian Lee. A sentimen-
tal education: Sentiment analysis using subjectivity sum-
marization based on minimum cuts. In ACL, 2004.

[Pang and Lee, 2005] Bo Pang and Lillian Lee. Seeing stars:
Exploiting class relationships for sentiment categorization
with respect to rating scales. In ACL, 2005.

[Pennington et al., 2014] Jeffrey Pennington, Richard
Socher, and Christopher Manning. Glove: global vectors
for word representation. In EMNLP, 2014.

[Qian et al., 2017] Qiao Qian, Minlie Huang, Jinhao Lei,
and Xiaoyan Zhu. Linguistically regularized lstms for sen-
timent classification. In ACL, 2017.

[Socher et al., 2013] Richard Socher, Alex Perelygin, Jean
Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for se-
mantic compositionality over a sentiment treebank. In
EMNLP, pages 1631–1642, 2013.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey E Hin-
ton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. The JMLR, 2014.

[Sukhbaatar et al., 2015] Sainbayar Sukhbaatar, Jason We-
ston, Rob Fergus, et al. End-to-end memory networks.
In Advances in NIPS, pages 2440–2448, 2015.

[Tai et al., 2015] Kai Sheng Tai, Richard Socher, and
Christopher D Manning. Improved semantic representa-
tions from tree-structured long short-term memory net-
works. In ACL, 2015.

[Tu et al., 2016] Zhaopeng Tu, Zhengdong Lu, Yang Liu,
Xiaohua Liu, and Hang Li. Modeling coverage for neu-
ral machine translation. In ACL, pages 76–85, 2016.

[Williams et al., 2017] Adina Williams, Andrew Drozdov,
and Samuel R Bowman. Learning to parse from a se-
mantic objective: It works. is it syntax? arXiv preprint
arXiv:1709.01121, 2017.

[Yang et al., 2016] Zichao Yang, Diyi Yang, Chris Dyer, Xi-
aodong He, Alexander J Smola, and Eduard H Hovy. Hi-
erarchical attention networks for document classification.
In HLT-NAACL, pages 1480–1489, 2016.

[Zhang et al., 2016] Rui Zhang, Honglak Lee, and Dragomir
Radev. Dependency sensitive convolutional neural net-
works for modeling sentences and documents. In NAACL-
HLT, pages 1512–1521, 2016.

[Zhao et al., 2015] Han Zhao, Zhengdong Lu, and Pascal
Poupart. Self-adaptive hierarchical sentence model. In
IJCAI, pages 4069–4076, 2015.

[Zhou et al., 2016] Peng Zhou, Zhenyu Qi, Suncong Zheng,
Jiaming Xu, Hongyun Bao, and Bo Xu. Text classifica-
tion improved by integrating bidirectional lstm with two-
dimensional max pooling. In COLING, 2016.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4636


