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Abstract

Machine reading comprehension has gained atten-
tion from both industry and academia. It is a very
challenging task that involves various domains such
as language comprehension, knowledge inference,
summarization, etc. Previous studies mainly focus
on reading comprehension on short paragraphs, and
these approaches fail to perform well on the doc-
uments. In this paper, we propose a hierarchical
match attention model to instruct the machine to
extract answers from a specific short span of pas-
sages for the long document reading comprehen-
sion (LDRC) task. The model takes advantages
from hierarchical-LSTM to learn the paragraph-
level representation, and implements the match
mechanism (i.e., quantifying the relationship be-
tween two contexts) to find the most appropriate
paragraph that includes the hint of answers. Then
the task can be decoupled into reading compre-
hension task for short paragraph, such that the an-
swer can be produced. Experiments on the modi-
fied SQuAD dataset show that our proposed model
outperforms existing reading comprehension mod-
els by at least 20% regarding exact match (EM), F1
and the proportion of identified paragraphs which
are exactly the short paragraphs where the original
answers locate.

1 Introduction

Reading comprehension of human languages is one of the
most challenging tasks for machines. Collecting clues from
passages or contexts, machines are expected to understand
the natural language, locate the probable span of the passages,
and answer various types of questions [Hermann et al., 2015].
Recently, machine reading comprehension has been success-
fully deployed in the E-commerce systems such as Alibaba
to quickly respond to questions from customers based on the
detailed introduction pages.
Studies on reading comprehension have made great

progress in the past few years. Attention-based deep neu-
ral networks learn to read documents and answer complex
questions with minimal prior knowledge of language struc-
ture [Hermann et al., 2015]. Besides, the memory network

jointly considers inference components as well as a long-
term memory component that acts as a dynamic knowledge
base [Weston et al., 2014], which helps bridge the gap of
requiring co-reference and involving more verbs and nouns.
In addition, co-attention mechanisms have shown prominent
performance for locating the proper span corresponding to
the questions and predicting final answers on machine read-
ing comprehension (MRC) [Cui et al., 2017; Seo et al., 2016;
Wang and Jiang, 2017]. Recently, the SLQA+ model and the
r-net+ [Wang et al., 2017] model, proposed by Alibaba iDST
NLP and Microsoft Research Asia respectively, have ex-
ceeded human-level performance according to the SQuAD’s
exact match (EM) metric [Rajpurkar et al., 2016].

Tasks of reading comprehension are much more difficult in
many real-world scenarios. Figure 1 shows an example of the
long document reading comprehension (LDRC) task. A de-
cent question and answer (QA) system is expected to provide
the precise answers to various types of questions over an en-
tire document, rather than a short paragraph of at most several
hundreds of tokens. For instance, the context in SQuAD has
at most 800 words in each paragraph, while a single article
has 150 paragraphs with 17174 tokens at most. Concatenat-
ing all paragraphs to one continuous context would not be
a wise solution, as it would be difficult to focus on the tar-
geted information, and prone to being misguided in the at-
tention calculation. Hierarchical structure [Li et al., 2015]

has been proposed to build embeddings for various structural
levels, such as document level, paragraph level and even sen-
tence level. However, implementing a large number of zero
paddings and constructing dynamic graph may degrade the
precision and efficiency of the machine reading comprehen-
sion system for LDRC tasks.

Intuitively, it can be observed that human written docu-
ments can always be split into paragraphs deliberately, where
each paragraph expresses relatively independent meaning
among the whole document. Therefore, we adopt a hierar-
chical LSTM model [Li et al., 2015] to learn the representa-
tion for each paragraph. We also implement a bi-directional
match-LSTM [Wang and Jiang, 2016] to learn a hidden repre-
sentation of each paragraph in the document for reflecting its
relation to the question. The relationship between each para-
graph and the question can then be figured out, providing us
with the evidence to choose the best paragraph to find the an-
swer. Moreover, the Pointer Net model [Vinyals et al., 2015]
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1. … were added to the new non-
metropolitan county of Cheshire …

2. ... the county palatine boundaries 
remain the same in 1850s…

3. ... In the 19th century, the county 
contained several mill towns …

4. ... the administrative county of 
Lancashire was created …

5. ... During the 20th century , it
started to be increasingly urbanised
…

6. ... the county shared in the national 
tradition of balladry …

...

Context

Par

Par

Par

Par

Par

Par

Query:
• When did the county become 

more urbanised ?

Correct Paragraph:
• Paragraph 5

Answer span in paragraph:
• 29 -- 30

Answer span in document:
• 983 -- 984

Answer:
• 20th century

Figure 1: An example of long document reading comprehension
task.

is leveraged to find the most potential paragraph, while the
softmax outputs can also provide the top-K best paragraphs,
similar to how a recommender system works [Resnick and
Varian, 1997]. Then, we can apply the state-of-the-art mod-
els to focus on these short paragraphs and analyze the most
appropriate span of answers. The SQuAD dataset provides up
to 150 paragraphs for each article, which can be used for the
LDRC task. Experiments on SQuAD show that our proposed
model performs better than simply applying single-paragraph
MRC models such as Match-LSTM with Pointer [Wang and
Jiang, 2017], AoA network [Cui et al., 2017] with Pointer,
BiDAF [Seo et al., 2016], as well as structural model, i.e.,
Hierarchical-LSTM [Li et al., 2015].
Our contributions can be summarized as follows.

• We leverage the characteristic that documents are usu-
ally divided to paragraphs, and combine the match-
LSTM network and the hierarchical-LSTM network to
find the best paragraph for answering queries related to
long documents. Then, the LDRC task can be simplified
to reading comprehension task on single-paragraph.

• The proposed MH-LSTM model has achieved an exact
match score of 58.83% and an F1 score of 67.15% on
the modified development set of SQuAD, where it cor-
rectly locates 80.91% of the original paragraphs of the
answers. It outperforms existing approaches for reading
comprehension on single-paragraph.

2 Related Work

Three Types of Reading Comprehension Tasks: The first
type comes from multiple choice questions, where the mod-
els are asked to choose one answer from several candidates,
such as MCT [Richardson et al., 2013]. The second type is
cloze style comprehension, either with given candidate tokens
such as CBT [Hill et al., 2016] or without any candidate such
as CNN/Daily Mail [Hermann et al., 2015]. The third type
includes analyzing the context and answering the questions
without options. Dataset such as SQuAD [Rajpurkar et al.,
2016] is usually taken as the standard for comparing the read-
ing comprehension capabilities of machine and human. In
this paper, we study the reading comprehension task for long

documents and experiments are conducted over SQuAD.

Single-paragraph Reading Comprehension: Reading com-
prehension on single-paragraph has gained efforts from re-
searchers. Existing work includes developing various ar-
rangements of layers of neural networks such as recurrent
neural network (RNN) [Sutskever et al., 2014], convolution
neural network (CNN) [Hu et al., 2014], fully-connected lay-
ers [Botha et al., 2017], and designing different attention
mechanisms [Hermann et al., 2015] and memory mecha-
nisms [Weston et al., 2014], for providing better answers to
the questions. In particular, the co-attention model on both
context and query is one of the preeminent solutions to this
task. For example, BiDAF [Seo et al., 2016] is a hierarchi-
cal multi-stage architecture for modelling the representation
of the context paragraph at different levels of granularity. The
model constructs the character embedding layer and the word
embedding layer as inputs to map each word to a vector space.
Then, the attention flow layer is set to couple the query and
context vectors and produce query-aware feature vectors for
each token in the context. The attention flow layer connects to
multi-layer bi-LSTM and finally the model provides answers
to the queries.

Hierarchical Structure: Regarding long documents with in-
dividual paragraphs, most models for single-paragraph com-
prehension fail to work well. Treating the whole document
as one paragraph would increase the possibility of vanishing
or exploding gradient during training and make it tough to
calculate accurate attention. The hierarchical structure is pro-
posed to learn the representation of different levels of the doc-
uments. Hierarchical-LSTM [Li et al., 2015] is a typical hi-
erarchical structure to learn the representation for paragraphs
and documents. Together with attention, the learned embed-
dings can reserve most of the context and approximately re-
cover the origin sentences.

Natural Language Inference: With the help of the hierar-
chical representation, the potential span of the answer can be
fixed to one or several short paragraphs. Hence, it is nec-
essary to find the relationship between each paragraph and
the corresponding query. Natural language inference (NLI) is
the task of determining whether one can infer one hypothe-
sis from another premise [MacCartney, 2009]. Several atten-
tion models have been verified to be promising in addressing
this problem, such as match-LSTM [Wang and Jiang, 2016].
Match-LSTM processes the premise and the hypothesis using
two LSTMs. Then the model calculates the attention from
premise to hypothesis, and feeds them to another LSTM net-
work. The state of the last cell of this LSTM network can be
taken as the evidence for natural language inference.

3 Match-based Hierarchical Attention Model

Finding the appropriate paragraph or several sentences as the
evidence is the core of our approach for the LDRC task.
Given a query and a corresponding document context, it is
necessary to learn the hierarchical representation of different
granularity and figure out the inference between each para-
graph and the query. The structure of our model is illustrated
in Fig. 2, abbreviated as MH-LSTM.
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Figure 2: The structure of the MH-LSTMmodel. The model takes the word-level embeddings and the character-level embeddings as input. A
two-layer highway network is used to learn the representations of each word in documents, and a bi-LSTM model to learn the representations
of queries. The representations of each paragraph are extracted by mask, which are then fed into a match-LSTM network. The outputs are
generated by a softmax pointer.

3.1 Problem Formulation

The problem is formulated as follows. Given a full document

P̃∗ with several paragraphs (which we refer to as a piece of

context, and a query Q̃∗ related to the context), the prepro-
cessing script on the dataset would label the paragraph ã∗
where the answers locate. Therefore, the dataset can be repre-

sented by a tuple {(P̃n, Q̃n, ãn)}
N
n=1, whereN is the number

of tuples in the dataset.

3.2 Design of the Model

Token Embedding Layer

The token embedding layer maps each token in the document
to a high-dimensional vector space. The words in the docu-
ment are first tokenized into individual tokens. Specifically,
we add a paragraph break “<par>” at the end of each para-
graph. Then the tokens are transformed to the corresponding
embeddings by two mechanisms. The first mechanism comes
from word-level embedding. We use pre-trained word vec-
tors, GloVe [Pennington et al., 2014], as the fixed word em-
bedding of each word, where the missing words from GloVe
are denoted by “<unk>”. The second mechanism computes
the character-level embedding. Characters of every word are
embedded into vectors and fed into CNN as introduced by
Kim [Kim, 2014]. The outputs of the CNN are max-pooled
over the entire word as the fixed-size embedding. The word-
level embedding and character-level embedding are then con-
catenated to represent the embedding of each token, which
has a dimension of d.

Preprocessing Layer for Query

Let Q denote the embeddings of words in a query from
token embedding layer with length |Q|, where Q =<

q1, . . . ,q|Q| >∈ R
d×|Q|. We first obtain representation vec-

tors of each word in the query as well as the whole query
sentences by feeding the tokens to a one-layer bi-LSTM, i.e.,

HQ,qrep =
←−−→
LSTM(Q), (1)

where HQ = [yQ
1 , . . . ,y

Q

|Q|] ∈ R
hQ×|Q| represents the ma-

trix of the outputs of bi-LSTM, where each column repre-
sents the concatenation of forward and backward outputs of
the corresponding word from the LSTM network. Besides,
qrep concatenates the forward and the backward final states

of bi-LSTM, and hQ is the hidden size of the bi-LSTM layer.

Preprocessing Layer for Context

Let P ′ denote the embeddings of each word in the docu-
ment from token embedding layer with length |P ′|, where

P ′ =< p′
1, . . . ,p

′
|P ′| >∈ R

d×|P ′|. To discover the rela-

tionship between each word in the document and the query,
we concatenate qrep to the embeddings of each word in the

document, i.e., P =< p1, . . . ,p|P | >∈ R
(d+hQ)×|P |, where

pt = p′
t||qrep, t ∈ [1, |P |] and “||” represents the concate-

nation. As the length of a document is usually far longer
than a paragraph, it would be much more difficult for training
[Glorot and Bengio, 2010]. Here, we follow the approach
proposed by Zilly [Zilly et al., 2017] and leverage a two-
layer recurrent highway network (RHN) for the preprocess-

ing of context. Specifically, let WP
H,T,C ∈ R

hP×(d+hQ) rep-
resent the weight matrices of the nonlinear transformation.

Let RP
Hl,Tl,Cl

∈ R
hP×hP

and bP
Hl,Tl,Cl

∈ R
hP×hP

denote
the weights and biases of the transformation, and carry gates
at layer l ∈ {1, 2}. Then the calculation of the recurrence
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process could be expressed by

sPl,t = hP
l,t · t

P
l,t + sPl−1,t · c

P
l,t, (2)

hP
l,t = tanh(WP

HptI{l=1} +RP
Hl
sPl−1,t + bP

Hl
), (3)

tPl,t = σ(WP
T ptI{l=1} +RP

Tl
sPl−1,t + bP

Tl
), (4)

cPl,t = σ(WP
CptI{l=1} +RP

Cl
sPl−1,t + bP

Cl
), (5)

where I{·} is the indicator function, and σ(·) represents the

sigmoid function. The initial states sP0,t are set to pt−1. We

collect the outputs of layer 2, i.e. sP2,t, and take them as the
representations of each token in the context, i.e.,

HP = [sP2,1, . . . , s
P
2,|P |] ∈ R

hP×|P |. (6)

Hierarchical Mask Layer

As we mainly focus on the representation of paragraph-level,
we should extract the evident vectors that contain sufficient
knowledge of the paragraphs. Hence, we set up a mask layer,
which only reserves the outputs from the RHN whose input
corresponds to the paragraph break “<par>”. The vectors are
then fed into a bi-LSTM network to obtain the representations
of each paragraph, i.e.,

HM =
←−−→
LSTM(mask(HP )) = [yM

1 , . . . ,yM
|M |], (7)

where |M | is the length of the reserved representations after
being masked, and it is exactly the number of paragraphs in
the document.

Attention Layer

This layer is designed to interpret the degree to which the net-
work attends to every paragraph in the document. Inspired by
the word-by-word attention mechanism, we concentrate on
the attention from each paragraph to every token in the query.
Specifically, the attention of the t-th paragraph on the i-th to-
ken in the query in the forward direction can be calculated
by:

−→
Gt,i = tanh(

−−−→
WAQy

Q
i +

−−−−→
WAMyM

t +
−→
bA), (8)

−→α t = softmax(−→wᵀ
−→
Gt,∗), (9)

where −→α t is the normalized attention from paragraph t to ev-
ery token in the query.

Match-LSTM Layer

We are expected to focus on the textual entailment by treating
the query as a premise and the paragraphs as hypotheses. The
match-LSTM layer is used for providing the evidence for the
inference [Wang and Jiang, 2017], which is actually a one-

layer LSTM network. Let
−−→
HO = [

−→
yO

1, . . . ,
−→
yO

|M |] denote
the hidden outputs of the match-LSTM, satisfying:

−→
yO

t =
−−−−→
LSTM(−→z t,

−→
yO

t−1), (10)

where

−→z t =

[
yM
t

HQ−→α ᵀ

t

]
. (11)

In order to improve the attention between each paragraph and
query, we take the outputs from the match-LSTM into ac-
count for Eqn.(8), i.e., modified to

−→
Gt,i = tanh(

−−−→
WAQy

Q
i +

−−−−→
WAMyM

t +
−−−→
WAO

−→
yO

t +
−→
bA).
(12)

Similarly, we build a match-LSTM in the backward direc-

tion, denoted as
←−−
HO = [

←−
yO

1, . . . ,
←−
yO

|M |], to obtain the
precise representation based on the surrounding contextual
paragraphs. Finally, the outputs of the bi-directional match-
LSTM network would be the concatenation of the outputs of
the forward match-LSTM and the outputs of the backward

match-LSTM, i.e.,HO = [
−→
yO

1||
←−
yO

1, . . . ,
−→
yO

|M |||
←−
yO

|M |].

Output Pointer Layer

The final outputs should indicate the probability of a para-
graph to be the most appropriate one for answering the query.
To address this problem, we leverage the novel attention
mechanism to model these probabilities, i.e., the outputs of
the match-LSTM layer connect to a sequence-to-sequence
model [Sutskever et al., 2014]:

[ye
1, . . . ,y

e
|M |], erep = ENCODER(HO), (13)

yd = DECODER(erep), (14)

where ye
∗ denotes the hidden outputs of the encoder, and yd

represents the hidden output of the decoder. Finally, we focus
on the output distribution over each paragraph, i.e., for the
t-th paragraph,

ut = vᵀtanh(Weye
t +Wdyd). (15)

We then take softmax normalization s on the distribution to
represent the probability of each paragraph to be the best can-
didate:

s = softmax(u∗). (16)

Answer to the Query

The most appropriate paragraph would be targeted by s.
Then we could leverage the reading comprehension model
for single-paragraph on the selected paragraph to generate the
answer. In this paper, we use BiDAF that has been verified to
be effective on the original SQuAD dataset.

Training

We define the training loss (to be minimized) as the sum of
the negative log probabilities that the softmax outputs can
correctly identify the short paragraphs where the original an-
swers locate, averaged over all examples:

L(θ) = −
1

N

N∑

n=1

log p(ãn|P̃n, Q̃n) = −
1

N

N∑

n=1

log s
ãn|P̃n,Q̃n

,

(17)
where θ represents the trainable variants in the model as men-
tioned in this section, and s

ãn|P̃n,Q̃n
represents the ãn-th soft-

max value from the output layer, given P̃n, Q̃n as inputs.
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(a) CP (b) EM (c) F1

Figure 3: The performance of MH-LSTM with various lengths of documents, compared with
BiDAF for single-paragraph.

Figure 4: The performance of
MH-LSTM with various num-
bers of reserved paragraphs.

4 Experiments

4.1 Dataset

We use the SQuAD v1.1 dataset to conduct the experiments.
Passages in SQuAD come from 536 articles in Wikipedia
covering a wide range of topics. Each article contains up
to 150 paragraphs, and each paragraph contains up to 785
words. Each paragraph has around 5 queries with the corre-
sponding answers, and the answer to each query has a pre-
labeled position in the paragraph. Totally, there are 107,785
queries.
We first merge all paragraphs of every article to substitute

the original context. Specific paragraph breaks are added as
mentioned in section 3, and the answer spans are also up-
dated. Meanwhile, we label the original paragraph, which
would be used in the LDRC task. After merging the para-
graphs, there would be at most 17174 tokens in each passage.
We split the training set into a training set (81,398 tuples)
and a validation set (4,285 tuples). The development set of
SQuAD is treated as the test set in our experiments.

4.2 Experiment Settings

We use the pre-trained GloVe [Pennington et al., 2014] pa-
rameters with 300-dimension embeddings to initialize the
model. The word embeddings would not be changed dur-
ing training. Besides, the hidden size of every recurrent net-
work involved in our model is fixed as 150 in single direction.
The labelled paragraphs where the original answers occur
are transformed to one-hot vectors. The learning rate is dy-
namically updated according to Adam optimization [Kingma
and Ba, 2014]. Besides, in order to avoid overfitting or out
of memory, the gradient descent is updated by minibatch of
32 instances. We do not observe performance gains using
dropout on this task.
We mainly focus on three metrics in the experiments: (1)

the percentage of exact match (EM) with the ground truth
answers, (2) the word-level F1 score when comparing the to-
kens in the predicted answers with the tokens in the ground
truth answers, and (3) the proportion of identified paragraphs
which are exactly the short paragraphs where the original an-
swers locate (CP). The experiments run on two GTX1080Ti

GPUs.

4.3 Results

We establish two categories of models, i.e., non-hierarchical
models and hierarchical models, to examine their perfor-
mances on the LDRC task. Both categories of models take
the word-level and character-level embeddings as inputs.
For the non-hierarchical models, we set up one baseline

model and select three reputable models from the SQuAD
leader board. The one-layer vanilla LSTM that takes the to-
kens from an entire document as inputs is used as the base-
line model, and then the outputs connect to a Pointer network
to find the beginning and the end of the span of the answer.
We examine the performance of match-LSTM with answer
pointer [Wang and Jiang, 2017] on the LDRC dataset. We
also modified the AoAmodel [Cui et al., 2017], i.e., replacing
the dot product in the last step of attention-over-attention pro-
cess by a fully-connected feedforward network that takes the
concatenation of attentions as inputs and obtains 150 output
neurons. Therefore, we would get one representative vector
for each paragraph as its representation. Similarly, a Pointer
network is leveraged to seek the answer. Meanwhile, we di-
rectly implement BiDAF [Seo et al., 2016] on this LDRC
task.
For the hierarchical models, we first compare the perfor-

mance of our model to the hierarchical-LSTM [Li et al.,
2015]. Specifically, we calculate the paragraph-level repre-
sentation rather than the sentence-level representation. A bi-
LSTM is implemented, and the hidden state of the last cell
is taken as the representation of the query. We use dot prod-
uct to depict the relationship between each paragraph and the
query. The paragraph with the highest probability are then

Model Type Model EM F1 CP

LSTM+Pointer 11.99 15.17 18.04
Non- Match-LSTM+Pointer 36.74 44.00 59.28

Hierarchical AoA+FC+Pointer 30.82 37.17 50.63
BiDAF 49.71 58.35 67.27

Hierarchical
Hierarchical-LSTM+BiDAF 52.60 61.45 71.33

MH-LSTM+BiDAF 58.83 67.15 80.91

Table 1: Results of different models on LDRC task.
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Description Context & QA pair

The MH-LSTM 
finds the correct
paragraph, while 

single BiDAF fails 
to find the 
appropriate 
paragraph.

Relevant: 
Par 1 (T, M): … the Yuan dynasty bore the Mandate of Heaven, 
following the Song dynasty and preceding the Ming dynasty…
Par 2 (B): … Before the end of the Yuan dynasty, 14 leaders of the 
Sakya sect had held the post of Imperial Preceptor, …
Query: What dynasty came before the Yuan?
Answer:
BiDAF: Sakya sect
MH-LSTM+BiDAF: Song dynasty

Both models fail to 
find the original 

paragraph, but they 
produce the correct 

answer based on 
information from 
other paragraphs.

Relevant:
Par 1 (T): …Oxygen is the most abundant element by mass in the 
Earth's crust as part of oxide compounds such as silicon dioxide…
Par 2 (M): … The rest of the Earth's crust is also made of oxygen 
compounds …
Par 3 (B): … Oxygen constitutes 49.2% of the Earth's crust by mass 
and is the major component of the world's oceans …
Query: What element makes up almost half of the earth's crust by 
mass?
Answer:
BiDAF: Oxygen
MH-LSTM+BiDAF: oxygen

Although MH-
LSTM finds the 

correct paragraph, it 
produces the wrong 
answer. However, 

single BiDAF finds 
answer in another 

paragraph.

Relevant:
Par 1 (B): …The textbook examples are cydippids with egg-shaped 
bodies and a pair of retractable tentacles…
Par 2 (T, M): … Cydippid ctenophores have bodies that are more or 
less rounded, sometimes nearly spherical and other times more 
cylindrical or egg-shaped… Some species of cydippids have bodies 
that are flattened to various extents…
Query: Cydippid are typically what shape?
Answer:
BiDAF: egg-shaped
MH-LSTM: flattened

Neither of the two 
models find the 

correct paragraph, 
nor do they produce 
the correct answer.

Relevant:
Par 1 (T): … to make way for the Eldon Square Shopping Centre, 
including all but one side of the original Eldon Square itself…
Par 2 (B): … The largest of these is the Eldon Square Shopping 
Centre, one of the largest city centre shopping complexes in the UK…
Par 3 (M): … Haymarket bus station and Eldon Square bus station..
Query: What is in Eldon Square?
Answer:
BiDAF: UK
MH-LSTM: bus station

Figure 5: Four typical instances in the LDRC task. The “T” and
the green dashed rectangles represent the true answer; The “M” and
the red rectangles represent the answer from the MH-LSTM with
BiDAF; The “B” and the blue dotted rectangles represent the answer
from BiDAF for single-paragraph.

treated as the context for BiDAF to extract the most relevant
answer.
Our results are summarized in Table 1. Due to the fact that

there are some tokens from the queries which only appear
once in the document, it is straightforward to find the corre-
sponding spans of answers to the queries that contain these
categories of tokens. However, the long document increases
the difficulty for LSTM to learn the answer to queries. The
performance of BiDAF model for single-paragraph decreases
by about 26%, where the EM decreases from 66% to 50%,
and F1 decreases from 76% to 58%. We find that the hierar-
chical models have greater probability to find the correct para-
graph than the non-hierarchical models. The hierarchical-
LSTM could help increase the probability of choosing the
correct paragraph to 71%, while our MH-LSTM could fur-
ther improve the CP to nearly 81%. The EM reaches 59% by
our proposed model, indicating that the MH-LSTM is effec-
tive for the LDRC task.

4.4 Further Analysis

Performance with Various Lengths of Document

We examine the performance of our MH-LSTM on docu-
ments with various lengths. As there are only 48 articles
with 48 different lengths in the development set of SQuAD,

we construct “sub-articles” for experiments by enumeration.
Specifically, we randomly enumerate several sets of para-
graphs (which must include the correct paragraph) from the
same article, treated as the contexts for queries. There-
fore, we have a new LDRC dataset with more context-query-
answer tuples. The sub-articles are divided into 7 groups by
their lengths: less than 500 tokens, 500–1000, 1000–2000,
2000–4000, 4000–8000, 8000–16000 tokens, and more than
16000 tokens. We set the number of tuples of sub-articles in
each group to 1000. We repeat the random enumeration 20
times and calculate the average value for each performance
metric. The performance metrics, i.e., CP, EM and F1, on
each group of data are plotted in Fig. 3. We observe that per-
formance of our model decreases slightly, compared with that
of directly using the BiDAF model for single-paragraph.

Performance with Various Numbers of Paragraphs

We also examine the performance of our MH-LSTM on docu-
ments with various numbers of potential paragraphs. We seek
to analyze the contribution of the number of reserved para-
graphs for comprehension. Intuitively, the more paragraphs
we reserve, the greater probability we would have to reach
the correct paragraph. However, due to the fact that longer
documents would decrease the performance of comprehen-
sion model for single-paragraph, it is necessary to restrict the
length of the reserved passages. We evaluate the performance
of our model when we reserve several paragraphs with the
highest values of the output neurons rather than reserve only
one paragraph, as shown in Fig. 4. Both EM and F1 increase
until two or three reserved paragraphs, and then they begin
to drop as the number of paragraphs increase. Up to 3% in-
crease of EM and F1 could be obtained when reserving one
or two more paragraphs.

4.5 Case Study

We found certain instances that can support the importance of
LDRC and the strength of our proposed model. We illustrate
four typical instances in Fig. 5.
The first instance indicates the condition where our pro-

posed MH-LSTM helps find the correct paragraph and then
the single passageMRCmodel produces the expected answer.
Without locating paragraph, the BiDAF model would fail to
find the correct answer. However, in the second instance
when both models fail to find the pre-labeled paragraph, the
two models could still answer correctly due to the supplemen-
tary information in other paragraphs of the document. Sim-
ilarly, the whole document would help single passage MRC
model to solve some queries although the model may choose
a “wrong” paragraph. For these queries, the model should
have produced wrong answers in the pre-labeled paragraphs,
such as the third instance. Meanwhile, the forth instance im-
plies that the two models may fail to find the correct para-
graph, or produce the expected answer, which requires future
efforts to address this problem.

5 Conclusion

Reading comprehension is a challenging task for machines.
Recently, existing work has focused on the reading compre-
hension task for single-paragraph or short passages. How-
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ever, these approaches fail to work well on the long docu-
ments. In this paper, we study the reading comprehension
task for long documents to find paragraph-level representa-
tion and natural language inference. We design a model that
takes advantages from hierarchical-LSTM and match-LSTM
to find the most appropriate paragraph for the answers. The
SQuAD dataset is modified for experiments, where the origi-
nal development set is treated as the test set. Results show
that the proposed MH-LSTM can outperform some exist-
ing known comprehension models for single-paragraph by at
least 20% regarding exact match (EM), F1 and the propor-
tion of identified paragraphs which are exactly the short para-
graphs where the original answers locate (CP).
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