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Abstract

We study the problem of learning first-order rules
from large Knowledge Graphs (KGs). With recent
advancement in information extraction, vast data
repositories in the KG format have been obtained
such as Freebase and YAGO. However, traditional
techniques for rule learning are not scalable for
KGs. This paper presents a new approach RLVLR
to learning rules from KGs by using the technique
of embedding in representation learning together
with a new sampling method. Experimental results
show that our system outperforms some state-of-
the-art systems. Specifically, for massive KGs with
hundreds of predicates and over 10M facts, RLVLR
is much faster and can learn much more quality
rules than major systems for rule learning in KGs
such as AMIE+. We also used the RLvVLR-mined
rules in an inference module to carry out the link
prediction task. In this task, RLVLR outperformed
Neural LP, a state-of-the-art link prediction system,
in both runtime and accuracy.

1 Introduction

Much attention has recently been given to the creation of
large knowledge bases that contain millions of facts about
various entities in the world, such as people, universities,
movies, animals, etc. These knowledge bases have proven to
be incredibly useful for intelligent Web search, question un-
derstanding, in-context advertising, social media mining, and
biomedicine. Due to their new features, such modern knowl-
edge bases are often referred to as knowledge graphs or just
KGs. Major examples of KGs include YAGO [Suchanek et
al., 20071, DBpedia [Auer et al., 2007], Wikidata [Vrande&ié
and Krotzsch, 2014] and Freebase [Bollacker et al., 2008].
Due to their large data volume, it is impossible to con-
struct large KGs manually. Thus, a major task in KG con-
struction is to develop scalable methods for automated learn-
ing of new entities, their properties and relationships. As
some researchers have pointed out, a KG is not just a graph
database [Nickel et al., 2016a]. In particular, it should have
a layer of conceptual knowledge, which is usually repre-
sented as a set of rules like BornIn(x, y) A Country(y, z) —
Nationality(z, z), meaning that if person 2 was born in city
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y and y is in country z, then x is a citizen of z. Rules are
explicit knowledge (compared to a neural network) and can
provide human understandable explanations to learning re-
sults (e.g., link prediction) based on them. Thus, it is useful
and important to extract rules for KGs automatically.

Traditional methods of rule learning cannot be directly em-
ployed in rule construction over KGs for several reasons.
First, those methods are not scalable enough to handle the
huge amount of data contained in common KGs. For exam-
ple, DBpedia 3.8 has more than 11M facts, which poses a
challenge to most existing methods. Moreover, KGs do not
explicitly express negative examples, which are essential for
many data mining tools.

In the literature, many new approaches have been proposed
to learn rules of various forms from a variety of databases.
The problem of mining rules via exploring the space of all
possible hypothesizes (rules) has been investigated in the
paradigm of Inductive Logic Programming (ILP) [Muggle-
ton, 1996]. Some efficient rule miners for KGs have been
developed lately, including SWARM |[Barati et al., 2016],
RDF2rules [Wang and Li, 2015], ScaleKB [Chen et al., 2016]
and AMIE+ [Galérraga et al., 2015]. They are much more ef-
ficient than their predecessors and are able to learn rules from
large datasets. However, scalability is still a major challenge
for existing systems.

On the other hand, in the paradigm of representation learn-
ing, statistical predictive models have been widely applied
in learning facts that are absent in a KG. Tensor factoriza-
tion [Nickel ef al., 2016b] and the translation-based approach
[Lin et al., 2015] are two major approaches in this cate-
gory. The basic idea is to encode relational information by
using low-dimensional representations (embeddings) of enti-
ties and predicates. Such representation learning techniques
have been applied in learning rules in KGs [Yang er al., 2015;
Neelakantan et al., 2015]. This is a promising research direc-
tion for rule learning in large KGs but the resulting systems
are still not very efficient compared to some major rule min-
ers such as AMIE+ [Galdrraga et al., 2015].

In this paper, we tackle this challenge by providing a scal-
able method for learning rules in KGs. The main idea is
to define new embeddings (of arguments) and new scoring
functions, and then use them to guide the extraction of rules
and thus reduce the search space. Besides, we proposed a
novel sampling method and efficient rule evaluating mecha-
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nism that allows our system to handle massive benchmarks
efficiently.

We have implemented a system prototype RLVLR! based
on our new methods and compared it with the state of art sys-
tem AMIE+ on major benchmarks such as YAGO, DBpedia
and Wikidata for the rule mining task. Our experimental re-
sults show that RLVLR outperformed AMIE+ in both time
efficiency and the number of mined quality rules. For exam-
ple, in a learning task for 20 specific predicates from Wikidata
(which has over 8M facts), RLVLR mined more than 56 rules
on average in 2.41 hours but AMIE+ mined 1 rule on average
in 10 hours (with the same rule quality thresholds). We have
also implemented an inference method to predict new facts.
RLVLR also outperformed Neural LP [Yang et al., 2017] on
link prediction regarding scalability and accuracy.

2 Preliminaries

In this section, we briefly recall some basics of knowledge
graphs and representation learning as well as fixing some no-
tations to be used later.

2.1 Knowledge Graphs and Rules

An entity e is an object such as a place, a person, etc., and
a fact is an RDF triple (e, P, ¢’), which means that the en-
tity e is related to another entity ¢’ via the binary predicate
P. Following the convention in knowledge representation,
we denote such a fact as P(e,e’). A knowledge graph (KG)
is a pair K = (E, F'), where F is the set of entities and F is
the set of facts.

We are interested in closed path rules (or CP rules) as
the syntax provides a balance between the expressive power
of mined rules and the efficiency of rule mining. Such
a syntactic restriction is a standard approach in the rule
mining literature. CP rules are the underlying formalism
of Path Ranking Algorithms [Gardner and Mitchell, 20151,
RuleEmbedding [Yang et al., 2015], [Wang and Li, 2015] and
ScaleKB [Chen et al., 2016].

A CP rule (or simply a rule) r is of the form

Pl(x,zl) A PQ(Z1,ZQ) VARTAN Pn(z'n—lay) — Pt(a:,y). @)

Here x, y and z;’s are variables, each P(u,v) is called
an atom, and v and v are called respectively, the sub-
ject and object argument for P. Intuitively, the rule
r reads that if Py(x,z21), P2(z1,22), ., Pn(2n—1,y) hold,
then P;(x,y) holds too.  The atom P (z,y) is the
head of r, denoted head(r), and the set of atoms
Py(x,21), Pa(z1,22), ..c; Pn(2n—1,y) is the body of r, de-
noted body(r). The rule r is called closed-path as the se-
quence of predicates in the rule body forms a path from the
subject argument to the object argument of the head predicate.
Note that CP rules allow recursion, i.e., the head predicate can
occur in the body.

To assess the quality of mined rules, we recall measures
that are used in some major approaches to rule learning
[Chen ef al., 2016] and [Galdrraga et al., 2015].

Let » be a CP rule of the form (1). A pair of enti-
ties (e,e’) satisfies the body of r, denoted body(r)(e,e’),

"https://www.ict.griffith.edu.au/aist/RLVLR/
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if there exist entities eq,...,e,_1 in the KG such that
Pi(e,er), Po(ey,e2),..., Pp(en—1,€) are facts in the KG.
And (e,e’) satisfies the head of r, denoted P;(e,e’), if
Pi(e,€’) is a fact in the KG. Then the support degree of r
is defined as

supp(r) = #(e,e') : body(r)(e,e') A Pi(e,e’)

To normalize this degree, the degrees of standard confidence
(SC) and head coverage (HC) are defined as follows:

supp(r)
#(e,e) : Pi(e,e)

supp(r)

S = B body(r) ()’

HC(r) =

2.2 Representation Learning

A method for representation learning from KGs often consists
of two major steps: (1) to embed the entities and predicates
of the given KG into a latent space, and (2) to construct a
learning model based on the obtained embeddings to predict
new facts.

Various approaches have been proposed to construct em-
beddings (e.g. [Shen, 2016]), which include translation based
embeddings [Bordes er al., 2013] and matrix factorization
based embeddings [Nickel et al., 2011; 2016b]. The transla-
tion based embeddings use additive calculus and use vectors
to represent the embeddings of predicates. The matrix factor-
ization based embeddings use dot calculus and the embedding
of a predicate is a matrix. Since our rule mining approach re-
quires a relatively expressive form of embeddings, we adopt
matrix factorization based embeddings. In particular, we em-
ploy the state-of-the-art RESCAL system [Nickel et al., 2011;
2016b] to construct embeddings. This choice is based on
some reasons. First of all, since predicate embeddings are
used to guide the candidate rule search, we need expres-
sive predicate embeddings (i.e., matrices instead of vectors)
produced by RESCAL. In addition, some other systems that
compute embeddings as matrices were unavailable. As we
will see later, RESCAL is sufficient for our purposes.

RESCAL embeds each entity e to a vector E and each
predicate P to a matrix P. For each given fact Py(eq, e2),
the following scoring function is computed:

fle1, Po,e2) =Ef - Pq - Eq

The scoring function indicates the plausibility of the fact
Py(ey,e2). While existing representation learners, such as
RESCAL and TransE, use entity embeddings and predicate
embeddings for computing the plausibility score of the miss-
ing facts, we will use these embedding to find the plausibility
of the desired rules later.

3 An Overview of Our Approach

In this section, we present our embedding-based approach to
rule learning in a nutshell. We focus on discriminative rule
mining, that is, specifying a target predicate P; in a KG, to
mine quality rules whose head has the predicate P;.

In contrast to ILP approaches, instead of using a refine-
ment operator to search the rule space, we use embedding
models to effectively prune the search. However, this is not
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straightforward. In order to develop an efficient algorithm for
rule learning problem using embedding models, we need to
resolve two issues. First, existing embedding models do not
work directly for vast KGs. For instance, RESCAL is un-
able to handle YAGO?2 [Nickel et al., 2016b]. We address
this issue by introducing a new sampling algorithm to restrict
the range of entities to be considered so that embeddings are
computed only for those entities that are relevant to the tar-
get predicate. Moreover, we need a more efficient and refined
approach to rank candidate rules. To this purpose, we first
define the embeddings of arguments of predicates and then
introduce scoring functions that allow fast ranking of rules,
based on embeddings of entities, predicates and arguments
(instead of only entities and predicates). In addition, efficient
numerical algorithms for matrices are also employed to speed
up our method.

The above two aspects are also major sources where the ef-
ficiency of RLVLR is achieved. Our method for rule learning
is summarised in the following algorithm, while some major
components in the algorithm will be explained later.

Algorithm 1 Learn rules for a KG and a target predicate

Input: a KG K, a predicate P;, an integer len > 2, and two
real numbers MinSC, MinHC € [0, 1]
Output a set Rule of CP rules
K’ := Sampling(K, P,,len)
(P, A) := Embeddings(K’)
Candidates := ()
for 2 <[ <lendo
Add RuleSearch(K’, P, P, A,l) to Candidates
end for
Rules := Evaluate(Candidates, K)
Rules := Filter(Candidates, MinSC, MinHC')
return Rules

PRI NRLN

In Algorithm 1, the integer len is for the maximum length
of rules to be learned; MinSC and MinHC' set the min-
imum values of standard confidence and head coverage for
learned rules, respectively. Due to the vast size of the input
KG K = (E, F), it is necessary to sample the data first. For
this purpose, we use a sampling method Sampling() to obtain
an (often much) smaller KG K’ = (E’, F’) that contains only
those entities and facts that are relevant to the target predicate
P,. To learn rules of maximum body length len = n, we gen-
erate sample entities in an incremental manner Ey, ..., E,_1
as follows:

e Fy consists of the entities that are connected to another
entity in E by P, i.e., By = {e | there exists an entity
e in Es.t Pie,e') € ForP(e,e) € F};

e F; (0 <7 < n)consists of the entities that are connected
to another entity in F;_; by any predicate P, i.e., F; =
{e | there exists an entity ¢’ in E;_; s.t. P(e,e’) € F
or P(e/,e) € F};

Since we are interested only in CP rules with no more than n
body atoms, the subset £/ = U?:_Ol E; of all the entities in K
covers almost all information needed for mining such rules.
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We thus generate a sample set F” of facts as follows:
F/:{P(el,eg)|61,€2€E/,P(€1,62)EF}. 2)

After sampling, the next step, i.e., Embeddings(), is to ob-
tain the embeddings P, A for respectively predicates and ar-
guments in K’. Existing systems such as RESCAL usually
compute embeddings only for entities and predicates. We
will define the notion of argument embeddings later based on
entity embeddings, which together with embeddings of pred-
icates provide more refined scoring functions for candidate
rules.

The search for candidate rules of the form (1) is actually
reduced to the search for plausible paths, that is, sequences of
predicates P;, P, ..., P, and their inverses. This is achieved
through the method RuleSearch(). We use the proposed scor-
ing function to guide and prune the search, which turns out
to be rather effective for extracting rules. Then the selected
candidates are kept for the final evaluation.

Finally, the candidates are evaluated according to their SC
and HC before being returned. This is achieved through the
method Evaluate(). To compute the SC and HC of candi-
date rules, we utilise the efficient matrix multiplication. The
embedding of arguments, the new scoring function and the
employment of matrix algorithms greatly contributed to the
scalability of our approach. More technical details will be
explained in Sections 4 and 5.

To show the usefulness of extracted rules, we implemented
an inference method that predicts new facts with a degree
of confidence based on the given facts and first-order rules
that are augmented with SC scores. To obtain the confi-
dence degree (CD) of a fact, we adapt the score*(-) func-
tion from [Galdrraga er al., 2015] by aggregating the SC of
all the rules inferring the facts in a Noisy-OR manner. The
intuition is that facts inferred by more rules should have a
higher confidence degree. Instead of using the PCA scores as
in [Galarraga et al., 2015], we use SC as it is easier to com-
pute. Formally, for a fact f = P(e, ¢’) and the set of rules R
that can infer f from the given KG, the CD of f is defined as

follows:
CD(f)=1- ] (1 -SsCw)
TER

With this module, RLVLR becomes an end-to-end learner that
is able to handle the link prediction task.

4 Scoring Functions

As explained above, the task of searching for CP rules can
be reduced to that of searching for plausible paths of predi-
cates. This is done by introducing scoring functions over all
possible paths. To define such a scoring function, note that a
pathp = Py, P», ..., P, can be seen as a binary predicate be-
tween the starting entity and the ending entity, and p is plau-
sible if the pairs of entities associated by the path are similar
to those associated by the target predicate P;. Such a similar-
ity between p and P, is referred to as synonymy, where two
predicates associate similar pairs of entities. For instance, the
predicates BornIn(u, v) and LiveIn(u,v) associate similar
pairs of a person u and a place v.
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Based on this intuition, a scoring function is defined us-
ing an embedding model in [Yang et al., 2015]. We use the
following rule r of length 3 to illustrate the method:

Pl(l',Z) A PQ(Zay) - Pt(x,y)

The embedding of path p = Py, P; is Py - Po, which should
be similar to the embedding of P;, denoted P; - Py, ~ P;.
Hence, the synonymy scoring function is

fl (’I") = szm(Pl . PQ, Pt) (3)

where sim is defined by the Frobenius norm as follows, for
two matrices M; and Mo,

stm(My, Mj) = exp(— [|[M; — Ma|| ).

Yet for rules gets longer than 2, the computation of syn-
onymy scoring function involves nesting of matrix manipula-
tion and become less effective for exploring the search space
as it involves whole paths. Thus, we propose a local scor-
ing function based on co-occurrence. Besides synonymy, co-
occurrence is also widely studied in natural language process-
ing [Jones er al., 2015]. In our context, P; and P> are adja-
cent in a path only if they share many entities in the KG. For
example, LiveIn(u,v) and LocatedIn(v, w) share cities v.

To define a co-occurrence scoring function, we first intro-
duce the notion of argument embeddings. For an argument of
a predicate, its embedding is defined as the average value of
the embeddings of all the entities appearing in the position of
this argument. Formally, the embeddings of the subject and
object argument of a predicate P are defined as:

S 1 o 1
P :kae.E and P :EZZE.E

ecE} ecEY

where n = #{P(e,e') € F'}, E} = {e | 3¢/ s.t. P(e,€’) €
F'}, E% = {e¢' | Jes.t. Ple,e’) € F'}, F' is defined by
Eq.2), , k. = #{P(e,¢’) | Fe's.t. Ple,e’) € F'} and
le = #{P(¢,e) | Jes.t. P(e,e’) € F'}. In path p, the em-
bedding of the object argument of P; should be similar to the
embedding of the subject argument of P», denoted P{ ~ P3.
Hence, the co-occurrence scoring function is

flOC(Pla P2) = sim(Pi’, P;)

Similarly, we should have P{ ~ P and P§ ~ P?, as well as
the corresponding co-occurrence scoring functions

floc(Pla Pt) = Slm(Piv Pf)? floc(P27 Pt) = Szm(Pg7 P?)
We aggregate the local scoring functions as follows.
fZ(T) = floc(PbPZ) + floc(PhPt) + floc(P27Pt)~ (4)

While the scoring function f; considers the predicates in the
paths, with f5, we consider the shared variables that are in-
volved in the paths. Consequently, we use both of these two
scoring functions, which complement each other.

5 Rule Evaluation

In the Evaluate() method, for efficiency, we first evaluate the
picked candidate rules based on the sampled KG K’, which
provides us an estimated quality of rules. We return the set
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of rules with supp > 1. These rules may still contain a large
number of redundant and low quality rules and thus it is nec-
essary to further clean the returned rules based on two mea-
sures SC and HC.

To compute SC and HC degrees, a method is required to
check the satisfiability of body atoms of all candidate rules
in the last phase. In other words, we need to figure out all
relevant atoms that can trigger a candidate rule. In this task,
we have a KG (e.g. K or K’) and a CP rule as input. Let £ =
{e1,...,en} be the set of all entities and P = {P,..., P}
be the set of all predicates. We can represent the input KG as
a set of S matrices like RESCAL, where each n X n matrix
S(Py) corresponds to a predicate Py, in the KG (1 < k <
m). Specifically, the (i, j) entry S(Py)[ij] of the adjacency
matrix S(Py) is 1 if the fact Py(e;, e;) is in the input KG; 0
otherwise. Thus, S(Py) is a binary one.

There is a close connection between the product of adja-
cency matrices for predicates and the closed-path rules. We
use an example to explain the idea. Consider the rule 7:
Pi(x,2) N Po(z,y) — Pi(xz,y). We say a fact Pi(e,e’) is
inferred by the rule 7 in a KG K = (E, F) if Py(e,e”) € F
and Py(e”,e’) € F for some ¢’/ € E. Then the product
S(Py) - S(Py) of two matrices S(P;) and S(P) is the adja-
cency matrix of the set of facts that are inferred by r.

The [i, j] entry of S(P;) - S(P2) represents the number of
rule paths that start from e;, traverse via P; to another entity
and so on but finally go to e; via P». From a matrix S, we
can obtain a binary matrix binary(.S) by setting all non-zero
entries of S as 1. Let S(Py, P;) = binary(S(P1) - S(P)).
Note that although we explain the case where rule length is
three, it is straightforward to generalize this relation to rules
of any length.

Letr be Pi(x,2) A Pa(z,y) — Pi(z,y) and K = (E, F)
where E = {e1, 3,3} and

K = {Pi(e1,e2), Pi(e2,e1), Pi(e1, e3), Pa(ez, e3),

P2(627 61)7 P2(637 63)3 Pt(e:l? 63)}
The matrices for the predicates P;, P, and P; are:

01 1 000 00 1
S(P): |1 0 0|,8P):|1 0 1|,8®F):]0 0 0
00 0 00 1 00 0

Then

oo
oo O
OO N

_ 1 o0 1]
S(Pl)-S(Pg)—[ ]MS(Pl,PQ)— 00 0
0

0 0

The last matrix represents the pairs that are inferred by the
rule: {(e1,e1), (e1,e3)}. Since we have just one fact for the
target predicate, P;(e1,e3), the quality degrees of rule r are
HC =1and SC = 0.5, respectively.

6 Experiments

Based on the methods presented in previous sections, we
have implemented a system RLvLR (Rule Learner via Learn-
ing Representation) and conducted two sets of experiments
to evaluate the new system. The executable codes, bench-
mark datasets and experimental results are publicly available
at https://www.ict.griffith.edu.au/aist/RLVLR/.
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KG # Facts # Entities  # Predicates
FB15K-237 310K 15k 237
FB75K 316K 75K 13
YAGO2s 4.12M 1.65M 37
Wikidata 8.40M 4.00M 430
DBpedia 3.8 11.02M 2.20M 650

Table 1: Benchmark specifications

The first set aims to evaluate the scalability of RLVLR
and the number of quality rules learned by the system, while
the second set is to evaluate the scalability and accuracy of
RLVLR for link prediction. The benchmark datasets adopted
in our experiments include various versions of Freebase,
YAGO, DBpedia and Wikidata that are widely used in ex-
perimental evaluations by major systems for rule learning and
link prediction in KGs. RLvLR was compared to state-of-the-
art rule miners such as AMIE+ [Galdrraga et al., 2015] and
ScaleKB [Chen er al., 2016], as well as state-of-the-art sys-
tem for link prediction, Neural LP [Yang et al., 2017]. Our
experiments were designed to validate the following state-
ments:

1. RLvLR is much faster than major rule mining systems
such as AMIE+ for large-scale KGs.

2. RLvLR is able to mine significantly more quality rules
than AIME+, especially on vast datasets such as DBpe-
dia 3.8 and Wikidata.

3. Regarding link prediction, RLVLR outperforms the
state-of-the-art link prediction system Neural LP in
terms of both scalability and accuracy.

The five benchmark datasets are specified in Table 1, where
the last three have been often used in rule mining [Galérraga
et al., 2015; Chen et al., 2016]. FB15K-237 [Toutanova
and Chen, 2015] (aka. FB15KSelected) and FB75K (from
NIPS’13 dataset) are obtained from Freebase and widely
adopted for link prediction benchmarking [Yang et al., 2017].

For benchmark KGs FB15K-237 and FB75K, we used a
PC with Intel Core 15-4590 CPU at 3.30GHz x 4 and with
5GB of RAM, running Ubuntu 14.04. For other larger bench-
mark KGs we tested, the experiments were conducted on a
server with Intel Xeon CPU at 2.67GHz (one thread) and with
40GB of RAM, running RedHat Linux 6.1.

6.1 Rule Mining

This set of experiments concerns mining quality rules. The
rule quality was measured by standard confidence (SC) and
head coverage (HC) [Galdrraga er al., 2015]. Note that while
we used sampling for rule mining, HC and SC degrees of
mined rules are computed over the whole datasets (i.e., not
on the samples).

Experiment I We randomly selected 20 target predicates for
YAGO2, Wikidata and DBPedia. A 10 hour limit was set for
each target predicate. Table 2 shows the average numbers of
quality rules (#R, SC> 0.1 and HC> 0.01 as in [Galérraga et
al., 2015]) and numbers of high quality rules (#QR, SC> 0.7)
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KG RLVLR AMIE+

#R #QR Timg #R #QR Time
YAGO2s 6.3 1.8 0.96| 5.65 0.5 10.00
DBpedia 3.8 | 42.7 9.2 388|905 05 459
Wikidata 568 256 241|095 03 10.00

Table 2: Rule mining comparison between RLVLR and AMIE+

KG RLVLR AMIE+
#Facts #QFacts | #Facts #QFacts
YAGO2s 1.1IM 7K | 0.27M 1
DBpedia 3.8 | 16.6M 162K 1.6M 1.8K
Wikidata 2.1M 99K | 0.17M 4.6K

Table 3: The numbers of new facts predicted by RLVLR and AMIE+

mined for selected target predicates and the running times (in
hours, averaged over the targets) of RLVLR and AMIE+.

Compared to AMIE+, RLvVLR showed better performance
in terms of both the runtime and the numbers of mined quality
rules. The superiority of RLVLR is more obvious in mining
high quality rules. Note that RLvLR deployed the same re-
dundancy elimination as AMIE+, and the numbers were ob-
tained after the redundancy elimination.

To estimate the predictive power of the corpus of mined
rules, we eliminated from each benchmark 30% of its facts
(up to 5K facts) involving the target predicates and checked
how many facts (including the eliminated ones) can be predi-
cated by applying mined rules on the remaining facts. Table 3
shows the numbers of predicted facts (# Facts) and those pre-
dictions with CD> 0.9 (#QFacts). In this part, we consider
five target predicates in all three benchmarks. Note that while
AMIE+ mined some non-CP rules whose application cannot
be implemented using our inference method, the majority of
them can be applied: 77% for YAGO2s, 100% for DBpedia,
and 100% for Wikidata.

The numbers of quality rules mined by RLVRL on YA-
GOs, DBpedia 3.8 and Wikidata are 1.1, 4.7 and 59.7 times
of those mined by AMIE+ (from Table 2), where as the facts
predicated by RLVRL are 4.1, 10.3 and 12.3 times of those
predicated by AMIE+. This suggests the usefulness of the
additional rules mined by RLVLR in link prediction.

Since we were unable to run ScaleKB system or obtain the
Freebase benchmark used in [Chen ef al., 2016], we could
only compare the rules mined by RLVLR on YAGO2s with
those reported in [Chen et al., 2016]. As they only reported
rules with length up to 3, we restricted ourselves to rules of
length 3 too. For instance, we observed that the following
rules that were learned by RLVLR but not by ScaleKB. The
two numbers preceding a rule denote SC and HC degrees of
the rule, respectively.

0.82, 1 : isAffiliated To(x, y) — playsFor(x,y).
1,0.82 : playsFor(z,y) — isAffiliatedTo(z, y).
We also observed a large number of informative rules of

length 4 learned by RLvVLR but neither ScaleKB nor AMIE+
could learn them. For example, the following pattern with
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Target Predicate RLVLR | RLVLR*
formOfGovernment 137 97
awardWinner 1024 574
parentGenre 52 30
sameDirector 691 284
eventlLocation 229 141

Table 4: Number of mined rules with different scoring funcions

three body atoms:

0.89,0.13 :hasChild(z, t) A hasChild ™! (¢, 2)A
isCitizenOf (z,y) — isCitizenOf (x, y).

This rule means that if a person x has a common child ¢ with
somebody else z and the person z is a citizen of some place
vy, then the first person x is also the citizen of place y.
Experiment 2 'We have conducted an experiment to demon-
strate that our new scoring function is more informative than
the scoring function defined in [Yang et al., 2015]. For this
purpose, we implemented a system, named RLVLR*, by re-
placing the scoring function in RLVLR with the scoring func-
tion in [Yang et al., 2015]. We set a 5 hours time limit,
SC> 0.01 and HC> 0.001. As FB15k-401 KG was used
in [Yang er al., 2015], our experiment was conducted on the
similar benchmark, FB15K-237. The experimental results are
summarised in Table 4, which show that our scoring function
was capable to mine (up to 2.4 times) more rules than that
reported in [Yang et al., 2015].

6.2 Link Prediction

The second set of experiments aim to evaluate the predictive
power of mined rules for link prediction in KGs. Specifi-
cally, our experiments show that, for the task of link predic-
tion, RLVLR significantly outperforms Neural LP in terms of
scalability, while the accuracy of RLVLR is comparable to
that of other systems for link prediction. So, the major ad-
vantage of RLVLR is in its capability of handling vast KGs
with a accuracy that is comparable to other major systems.
Note that our goal is not to compete with them on accuracy
of link prediction for relatively small KGs.

Given a KG, the task of link prediction is to identify for
each predicate P and each entity e, an entity €’ such that
P(e, ') is in the KG; or alternatively, to identify for each
predicate P and each entity €', an entity e such that P(e,e’)
is in the KG.

We conducted two experiments for link prediction. The
first one is to demonstrate the scalability of RLvVLR while the
second one is to show that RLvLR is comparable to major
systems of link prediction in terms of accuracy.

Following the experiments of Neural LP [Yang et al.,
20171, we used two metrics Mean Reciprocal Rank (MRR)
and Hits@10. MRR is the average of the reciprocal ranks of
the desired entities and Hits@10 is the percentage of desired
entities being ranked among top ten.

Experiment 1 1In this experiment, we compared RLVLR
with Neural LP [Yang et al., 2017] on two benchmark
datasets FB75K and WikiData. The two datasets FB75K
and WikiData have 75K and 4M entities, respectively. Each
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KG RLvVLR Neural LP
MRR Hits@10 Time| MRR Hits@10 Time

FB75K 034 434 009 | 0.13 257 233
WikiData | 0.29 389 314 | - - -

Table 5: Link prediction of RLVLR and Neural LP on large KGs

Learner MRR Hits@10
DISTMULT 0.25 40.8
Node+LinkFeat 0.23 34.7
Neural LP 0.24 36.1
RLvVLR 0.24 39.3

Table 6: The comparison on link prediction on FB15K-237

dataset is divided into training set (70%) and test set (30%).
Neural LP is a state-of-the-art system for link prediction
based on rule learning and it features for its scalability. It
was able to handle FB75K while it could not handle Wikidata
in our experiment. We note that the largest dataset for com-
paring Neural LP with other systems is FB15K-237, which is
still much smaller than FB75K regarding the number of enti-
ties. We ran both RLvLR and Neural LP on these two datasets
for link prediction. While all 13 predicates of FB75K were
tested, 50 randomly selected predicates for Wikidata were
tested as it has too many predicates (430). The experimen-
tal results are summarised in Table 5.

The parameters of RLVLR were set to SC> 0.005 and
HC> 0.001 to achieve better accuracy. The time unit was
hour and a 5-hour time limit was set for each target predicate.
Experiment 2 1In the literature, three benchmarks WN18,
FB15K and FB15K-237 are usually used for evaluating link
prediction [Nickel et al., 2016b; Lin et al., 2015; Yang ef al.,
2017]. As pointed out in [Yang et al., 20171, the challenging
benchmark for state-of-the-art systems is FB15K-237 as the
test entities are rarely directly linked in the KG, a system for
link prediction needs to reason explicitly about compositions
of relations. The CP rules learned by RLvLR and Neural LP
can naturally capture such relation compositions. So, we se-
lected FB15K-237 as the benchmark for our experiment.

Yang et al. selected five major systems for comparing with
their Neural LP but for the dataset FB15K-237, experimen-
tal results are only available for the two systems DISTMULT
and Node+LinkFeat. As a result, we included these two sys-
tems and Neural LP for comparison. The test results for these
three systems are extracted from the experimental results for
Neural LP [Yang er al., 2017]. We compare the performance
of RLVLR with the three systems and the experimental results
are summarized in Table 6.

From the results, RLVLR obtained better Hits@10 than
Neural LP and Node+LinkFeat while DISMULT is slightly
better. Regarding the MRR measure, all of these systems per-
formed quite similar.

7 Conclusion

In this paper, we have proposed a system RLVLR for extract-
ing closed-path rules, a special but useful class of first-order
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rules, from RDF Knowledge Graphs (KGs). RLvLR mines
in the space of closed-path rules (hypothesizes) by exploring
the space of embeddings of predicates and arguments. This is
achieved by a novel embedding model and new scoring func-
tions. A target oriented sampling has also been proposed,
which significantly contributes to the scalability of RLVLR in
handling large KGs with over 10 million facts. In a rule min-
ing system, a challenging and time-consuming task is about
how to evaluate candidate rules, and we reduce its computa-
tion to a series of matrix operations.

Our experimental results demonstrate that RLVLR outper-
forms AMIE+ in terms of rule quality and efficiency. For link
prediction, RLVLR outperforms Neural LP in terms of effi-
ciency and accuracy.

We plan to develop an efficient parallel algorithm for
RLVLR. The current algorithm learns rules with different tar-
get predicates independently, which could be useful for de-
veloping a parallel algorithm.
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