Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Dynamic Network Embedding :
An Extended Approach for Skip-gram based Network Embedding

Lun Du*, Yun Wang*, Guojie Song', Zhicong Lu, Junshan Wang
Peking University
{dulun, wangyun94, gjsong, phyluzhicong, wangjunshan } @ pku.edu.cn

Abstract

Network embedding, as an approach to learn low-
dimensional representations of vertices, has been
proved extremely useful in many applications. Lots
of state-of-the-art network embedding methods
based on Skip-gram framework are efficient and
effective. However, these methods mainly focus
on the static network embedding and cannot nat-
urally generalize to the dynamic environment. In
this paper, we propose a stable dynamic embed-
ding framework with high efficiency. It is an exten-
sion for the Skip-gram based network embedding
methods, which can keep the optimality of the ob-
jective in the Skip-gram based methods in theory.
Our model can not only generalize to the new ver-
tex representation, but also update the most affected
original vertex representations during the evolve-
ment of the network. Multi-class classification on
three real-world networks demonstrates that, our
model can update the vertex representations effi-
ciently and achieve the performance of retraining
simultaneously. Besides, the visualization experi-
mental result illustrates that, our model is capable
of avoiding the embedding space drifting.

1 Introduction

Network embedding, as an approach to learn low-
dimensional representations of vertices, has been proved
extremely useful in many applications [Hamilton et al.,
2017]. As the input of machine learning models, the low-
dimensional features help to complete specific tasks effi-
ciently, such as vertex classification, clustering, graph visu-
alization, link prediction and social influence analysis [He et
al., 2012; Song et al., 2015].

Network embedding can be categorized into the structure-
preserving methods and property-preserving methods [Cui et
al., 2017]. Our paper belongs to the former. In terms of
the static network embedding, some of them are based on
matrix factorization [Belkin and Niyogi, 2001]. Some are
based on a deep autoencoder [Wang et al., 2016; Cao et

*These authors contributed equally to the work.
"Corresponding Author

2086

al., 2016]. Other important methods [Perozzi et al., 2014;
Grover and Leskovec, 2016; Tang et al., 2015; Cao et al.,
2015] are inspired by skip-gram in word2vec [Mikolov er al.,
2013]. They are more efficient than the former ones, and also
have good performance.

However, there is nothing permanent except change. Many
real-world networks are not static but are continuously evolv-
ing, especially social networks, such as a new user joins the
network as an unseen vertex, or two users make friends as
a new link in the network. With the evolvement of net-
works, the representations of vertices become stale and need
to be updated to keep freshness. Naive dynamic network em-
bedding methods apply static embedding algorithms to each
snapshot of the dynamic networks, which may lead to the
following unsatisfactory situations: one is the retrained em-
bedding spaces will drift and it is hard to align. The other
is the time complexity of training increases linearly with the
number of vertices in networks. Actually, a network may not
change much during a short time in dynamic situations, thus
the embedding spaces should not change too much, and re-
training is not necessary as well.

There are few researches on dynamic network embedding
currently [Zhu et al., 2018; Zhang er al., 2017; Ma et al.,
2018], which can be categorized into structure preserving
and property preserving. Among the former ones, [Tang et
al., 2015; Perozzi et al., 2014] are skip-gram based methods
designed for static networks, which introduce a way to ob-
tain the vector representations of new vertices briefly. But
they can’t handle the complicated situations in dynamic set-
tings, e.g. the removal of vertices, the addition and removal of
edges, and the update of edge weights. Another type of dy-
namic network embedding methods is preserving attributes
[Li ef al., 2017; Hamilton et al., 2017]. For example, SAGE
can generalize the vertex representations efficiently with the
neighbor feature information based on a general inductive
framework. Meanwhile, it can also handle the network only
with structural information. Actually, the performance of
SAGE is inferior to models based on skip-gram framework
in plain network only with structural information.

Considering the outstanding performance of Skip-gram
based network embedding (SGNE) methods, we hope to ex-
tend the SGNE methods to dynamic setting and keep the op-
timality of the objective in theory. The dynamic changes of
networks are complex, including the addition and removal of

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

vertices and edges, and the update of edge weights. It’s chal-
lenging to design a framework for all these changes. Sec-
ondly, in order to improve efficiency, only the most affected
vertices should be updated. Sometimes, the nearest vertices
from the new vertex are not always the most affected vertices.
So how to measure the influence on the representations of ver-
tices is also a challenge. Thirdly, when the network has great
changes, it’s challenging to keep the accuracy of network em-
bedding from decreasing obviously.

In this paper, we propose an efficient and stable embed-
ding framework for dynamic networks. It is an extension
of the network embedding methods based on skip-gram in
a dynamic setting. All SGNE methods are applicable to our
framework and achieve the optimal solution of retraining the-
oretically. In this paper, we apply our framework to extend
LINE into dynamic settings as an example. Besides, our
model can also be applied to multiple dynamic changes and
keep the learning effect when the dynamic network changes
a lot.

In details, we divide the dynamic network embedding into
two tasks: calculating the representations of new vertices and
adjusting the representations of original vertices that are af-
fected greatly. Due to the changes of dynamic network at
each time step is small comparing with the network size, we
hope to learn new vertices and only update the representa-
tions of a part of vertices to improve the efficiency. There-
fore, we firstly propose a decomposable objective equivalent
to the Skip-gram objective, which can learn the representation
of each vertex separately. Secondly, we analyze the influence
of dynamic network changes on the original vertex represen-
tations quantificationally. A selection mechanism is proposed
to choose the original vertices affected greatly and update the
representations of them. In addition, through smooth regu-
larization, our model ensures the stability of the embedding
results.

To summarize, we make the following contributions:

e We propose Dynamic Network Embedding (DNE), an
extended dynamic network embedding framework for
Skip-gram based network embedding methods, which
can approximately achieve the performance of retrain-
ing more efficiently.

e We present a decomposable objective which can learn
the representation of each vertex separately. In theory,
we quantitatively analyze the degree of impact on origi-
nal vertices during the network evolvement, and propose
a selection mechanism to select the greatly affected ver-
tices to update.

e We conduct extensive experiments on four real networks
to validate the effectiveness of our model in vertex clas-
sification and network layout. The results demonstrate
that DNE can approximately achieve the performance of
LINE retraining, and it is about 4 times faster than LINE.
Besides, DNE shows strong layout stability.

2 Related Work

Static Network Embedding Network embedding can be
categorized into structure-preserving methods [Henderson et

2087

al., 2012; Ribeiro et al., 2017] and property-preserving meth-
ods [Li er al., 2015; Kipf and Welling, 2016] . Inspired by
the skip-gram in word2vec [Mikolov et al., 2013], some ap-
proaches represent a node with its nearby nodes. Deepwalk
[Perozzi et al., 2014] generalizes the word embedding and
employs a truncated random walk to learn latent representa-
tions of a network. LINE [Tang er al., 2015] designs an op-
timized objective function to preserve first-order and second-
order proximities to learn network representations. Besides
the structure-preserving, many property-preserving works [Li
et al., 2017] specialize to design for attributes network. How-
ever, all the aforementioned methods are designed for the
static network embedding specially.

Dynamic Network Embedding Similar to the static net-
work embedding, the dynamic network embedding can
also be categorized into structure-preserving methods and
property-preserving methods. Actually, DeepWalk [Perozzi
et al., 2014] LINE [Tang et al., 2015] can also be regarded
as a structure-preserving dynamic network embedding. The
two methods handle new vertices based on static embedding.
But the new vertices do not update the original vertices and
the relationship among the new vertices will not be preserved
into the representations. [Zhou et al., 2018] focuses on min-
ing the pattern of network evolvement to predicts whether
there will be a link between two vertices at the next time
step. But it can’t handle the addition of vertices. In term
of property-preserving dynamic network embedding, SAGE
[Hamilton er al., 2017] proposes a inductive method to learn
the projection between the node features and the node rep-
resentations. But the parameters in the model are fixed after
training, which greatly limits the scalability of the model. Be-
sides, it is proved in the paper that the model is still structure-
preserving when dealing with high-dimensional embeddings.
But our experiments show that its ability of preserving struc-
ture is inferior to our skip-gram based structure-preserving
framework.

3 Problem Definition and Analysis

3.1 Problem Definition

Definition 1 (Dynamic Network). A dynamic network G
is a sequence of network snapshots within a time interval
and evolving over time: G = (Gy,...,Gr). Each G, =
(V:,E;) € G is a weighted and directed network snapshot
recorded at time 7, where V. is the set of vertices and E,
is the set of edges within the time interval 7. Each edge
(¢,7) € E-. is associated with a weight w;; > 0. For each
(i,5) & Er, w;j is set to 0.

As undirected networks and unweighted networks are spe-
cial cases of the network we defined, they are included in our
problem definition. In addition, AG, = (AV,,AFE,) de-
notes the change of the whole network, where AV, and AE,
are the sets of the vertices and edges to be added (or removed)
attime 7. According to the definition of dynamic network, we
define the dynamic network embedding:

Definition 2 (Dynamic Network Embedding). Given a dy-
namic network G, the dynamic network embedding is a se-
quence of functions & = (P4, ..., P7), where each function

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

®, € ®is V, — R4(d < min, |V;|) which can preserve the
structure property of G,.

Since we focus on the vector representations of vertices,
the dynamic embedding process can be divided into two parts,
the learning of the representations of the new vertices and the
adjustment of the original ones. All situations of dynamic
changes mentioned above will influence the representations
of original vertices, while only the addition of new vertices
needs to learn new vectors. In our framework, other changes
are considered as a special case of adding vertices. The ad-
dition of vertices is introduced as the example of our model,
and how to handle other situations will be presented briefly
later.

3.2 Analysis

Our method is an extended framework for the Skip-gram net-
work embedding (SGNE) methods in a dynamic setting. We
firstly generalize about the main idea of SGNE. Since we use
LINE as an example of SGNE to introduce our method, the
objective of LINE [Tang et al., 2015] is introduced secondly.

Main Idea of SGNE The SGNE methods are to learn use-
ful vertex representations for predicting the neighbor vertices.
Thus, they have the same essential objective that is to maxi-
mize the log probability:

> 2

v; €V v;ENg(v;)

log p(v;vi), (1)

where Ng(v;) is the neighbor set of v; and p(v;|v;) is mod-
eled using Softmax. Different methods have different defini-
tions of neighbour set Ng. Among several SGNE methods,
the neighborhood definition of LINE is the most direct. So
we use LINE as an example to introduce our model, and we
will also present how other methods are applied to our model
later.

Objective of LINE In LINE, the neighborhood definition
of the vertex v; is direct, namely, Ng(v;) = {v;|(i,j) € E}.
LINE introduces two definitions of objectives. One of them,
LINE with Second-order Proximity (LINE-SP), is based on
Skip-gram which we mainly talk about.

LINE-SP learns the vertex representations to preserve the
similarity between the neighborhood network structures of
vertex pairs. The objective is defined as:

(i,j)€E (2)
+k-Ey,np,wlogo(=c, - d;)]),

max L =
a,¢

where, o(-) = 1/(1+e~7) is the sigmoid function, w; is the
weight of the edge (4, j), @; is the representation of v; when
it is treated as a central vertex and ¢; is the representation
of v; when it is treated as a specific “context” (i.e a specific
successor vertex). Py, (v) oc d2 is the noise distribution for
negative sampling, where d,, is the out-degree of the vertex v
and « is a hyper parameter which is set to 3/4 in LINE.

In our model, we have two adjustments regarding the d.
To facilitate the theoretical proof, we set « = 1, the same

2088

as the setting of [Levy and Goldberg, 2014]. In fact, sam-
pling according to P3/* produces somewhat superior results
on some of the semantic evaluation tasks [Levy and Goldberg,
2014] and it has not been proved to have a better effect in the
network representation. The other one is that we set d,, to the
in-degree of v instead of the out-degree. As the meaning of
P, (v) is the probability of a vertex to be sampled as a neg-
ative sample when v is a specific successor node, we believe
the in-degree is a better choice.

4 Dynamic Network Embedding Model

In this section, we firstly propose a decomposable objective
equivalent to the objective of LINE (Eq.(2)), which can be op-
timized for u;, ¢; on the basis that the representations of most
vertices don’t need to be adjusted. Based on the objective, we
secondly introduce a method to learn the representations of
new vertices. Thirdly, we present an embedding adjustment
mechanism for original vertices, analyzing the influence of
the dynamic changes on original vertices quantitatively. Fi-
nally, we discuss the applicability of the framework on other
SGNE methods, and to deal with other dynamic changes of
the network.

4.1 Decomposable Objective Equivalent to LINE

The objective of LINE-SP Eq.(2) can not decompose into lo-
cal objective for ; and ¢; simultaneously. We give the de-
composable objective:

Z wij(log o (& i) + k(p - By, py, () log 0(—Cp - ;)]
(i,9)€EE
(1= 1) By pps o log o(—55 - i)])),
3)
where, o is an arbitrary real number between 0 and 1.
Py, (v) o d™ and Poui(v) d° are the noise distri-
butions for negative sampling, where dgm) is the in-degree

of vertex v; and d\®" is the out-degree of vertex v;, i.c.

dgln) = Zj Wyq and dl(out) = Zj Wij.
Lemma 1. For any real number ¢ € [0,1], the objective
Eq.(3) is equivalent to Eq.(2), i.e.the objective of LINE-SP.

Proof. According to the w;; = 0 for any (¢, j) ¢ E, Eq.(2)
can be rewritten:

L=> > wy(logo(d i)

v, eV ’UjGV

+ Z Z wij(k - By, ~p,,) logo(=¢, - 4;)])

v, EV ’UjEV

=Y > wyllogo(E - i)

v €V v; €V

+ 3 Ak By, o llogo (=2, - @),
v, EV
where the expectation term can be explicitly expressed:

]EUnN in('U) [10g0<75n ! 67«)] = Z nD

“4)

T

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

where D =}, - p wij.
We focus on the latter term of Eq.(4):

ST A (k- By, p, (o log o (=G - i03)])

v, €V
g0
=33 ked- J logo(—&T - @;))
v, €V v; eV
=y A (k- By, oy, log o (—E; - T0))) -
’UjGV
Combine Eq.(4) and Eq.(5):
0= wi;(logo(d; - ii;))
viGijGV
+u > d (kB p,, (o llog o (=, - @)
v; eV
+1-p) > A (k- By, (0 log o(~C; - Tn)))

v; €V

=D wi (log o(€j - ;) +k(p - By, npy, (o) log o (= -)]
(i,9)eE

+ (L= 1) Epynppuillogo(—5; - @)).
Thus, the lemma has been proved. O

The objective can decompose on w when p is set to 1:

max Z w;j(log o (Cjtls) +REy, ~p,, (v)[log o (—Cnl;)]),

V; ENout (Vi)

and the objective can decompose on ¢, when p is set to 0:

max 37 w;i(10g o Gy HRE v,y log 0 (~5n).
Cq
v;ENin (V)

[Levy and Goldberg, 2014] derives the theoretical optimal
solution of Skip-gram with negative sampling. Based on the
work, we give the theoretical optimal solution of LINE-SP:

Ww;
J J d(out) . d(zn)

J

—logk. (6)

It shows that the optimal solution is for the inner product ¢;-u;
of the vertex pairs rather than every specific @; and ¢;. Thus,
with a fixed ; (or ¢;), we can optimize the objective only for
¢; (or @;), which makes c; - i; tend to x;;.

4.2 New Vertex Representation

We discuss the situation of adding several vertices at time 7.
For the new vertices, their edges can be categorized into three

types. For any edges (i,j) € AE;: AEY = {(i,9)|vi €
AV, Av; € AV, AED = {(i,)lv; € AV, Aw; ¢
AV}, AE®) = {(i,j)lv; ¢ AV, Av; € AV,}. They cor-
respond to different values of y in the objective: %, 1or0.
Thus, the objective for new vertices is defined as:

min £ =/{; + {y + {3, @)

u(T) c(’r

2089

where,

60=y- wZJ(logU(_'(T)_'(T))Jr fm(*”n 5 Fout @),
(i.))€AE

tr=Y —wi;(loga(@ V@) + k- Fon(i)),
(i,5)eAEY

l3=> — w;j(log U(EJ(T) @) ke]:out(gj‘(T)))7

(i,j)eAE?
")),

_7:m(—*(7'))
i),

fout(Ej(T)) =Ey, ~P,,.(v)[log a(—é’;ﬂ i

where u(), :) is the vector representations of v; at time
T. Tp equals to 7 when v, € AV, otherwise 7,, equals to
7 — 1. It shows that the objective only learns the vector repre-
sentations of the new vertices, but doesn’t adjust the original
ones.

EUHNPLTI (U) [1Og0(575,7—”) :

4.3 Adjustment of Original Vertex Representation

Generally, for a dynamic change in the network, a few ver-
tices will be influenced. Therefore, in order to improve the
efficiency, we don’t have to adjust the representations of all
vertices. We only adjust the vertices influenced greatly. We
analyze theoretically the changes of the optimal solution for
the original vertex representations when the network changes
dynamically.

Based on the Eq.(6), we can calculate the delta of the theo-
retical optimal solution Ax;; between two snapshots. When
a new vertex v, 1s added at time 7, the delta is

Aﬂcg;) = xg) — x(T b

)

=log o) +log (out) +log) .
di +Wix dj +w*j

In reality, we are unable to obtain the optimal solution.
Therefore, we give the standard to justify whether v; should
be adjusted combing the edge weights:

1 T (t—1 (-1
=~ (Y wl) - e)
PgeNg Y w)

out

T S(7—1 —(t—1
+ Z wji(xg'i)_ Ci() 'uj()))7
JENSTH (vi)

®)

()

where x;; is calculated according to Eq.(6) and Zi(T*l) is

a normalization factor, i.e. Zi(T*l) = ZjEN(EZ;U(Ui) wi; +
2Nt) Vit

We adjust the top m original vertices with the largest ¢;.
For the original vertices needed to be adjusted, we add them
into AG.. with their edges, and adopt the objective Eq.(7) to
learn them.To guarantee the stability of original vertex repre-
sentations, we introduce a smooth regularization term.

The overall objective is defined as:

max L =04 Myegq, ©)]

u(T) c(’r

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

where,

(T —(t—1 (T (rt—1
S —am Ve -,
Vi €EAVorigin

AVprigin = {v|v € AV Av e VD],

Kreg =

We adopt Adam optimizer [Rushing er al., 2005] to op-
timize the objective. The computational complexity of our
model is the same as LINE in each batch, if the sizes of
mini-batch are the same. But the number of parameters in
our model is O(]AV), while in LINE it’s O(]V|). So the
convergence speed of our model is faster than LINE.

4.4 Applicability Analysis

Various Dynamic Changes For any type of dynamic
change within the interval 7, we have two networks G.-_; and
G ;. According to the two networks, we first calculate two
theoretical optimal solutions :I:Z-ijl and z7; by Eq.(6). Next,
the impact degree ¢; of each vertices v; is obtained by Eq.(8).
Finally, we optimize the objective Eq.(9) to adjust the top m
original vertices with the largest €;. These steps above is suit-

able for all dynamic changes.

Various SGNE Methods Other Skip-gram based network
embedding methods can be extended to dynamic setting with
the framework of DNE. The main difference among these
methods is the definition of the vertex neighborhood Ng(v).
Based on Ng(v), we define Eg = {(¢,7)|v; € Ng(v;)}. In
order to extend these method with the help of our approach,
we replace E in the aforementioned equations (in section 4)
with F's. When new vertices arrive, we first obtain the neigh-
borhoods of the new vertices and the affected ones, and then
we optimize the objective Eq.(9) to learn the representations
of these vertices.

S Experiments

In this section, we evaluate our model in the dynamic setting
from three aspects: the performance on the multi-class ver-
tices classification, the time cost and the embedding stability.
Experimental analyses are presented as follows.

5.1 Experiment Setup

Data Sets We employed the following three real datasets
in Facebook social networks [Traud et al., 2012] for
vertex classification, which comprises 100 colleges and
universities in US. We choose the social networks in
Ambherst College (2235nodes, 90954edges), Duke Uni-
versity (9895nodes, 506443edges) and Auburn University
(18448nodes, 973918edges). Besides, in order to validate the
embedding stability of our model, Karate [Zachary, 1977] are
applied to visualize the network.

Next, we introduce how to generate a sequence of network
snapshots (G1, ..., Gr) from the original network. The initial
network G is a sub-network sampling from the original net-
work. Each time step 7, G can be obtained by adding a fixed
size of new vertices and edges to G, _1

2090

Compared Methods We compared the DNE against the
following three network embedding algorithms:

e LINE [Tang et al., 2015]. A static network embedding
method which optimizes a carefully designed objective
function to preserve the local and global network struc-
tures. In dynamic scenarios, as the representative of the
static embedding method, LINE can be retrained for new
vertices. In this paper, LINE with second-order proxim-
ity is employed in experiment.

e LINE for New Vertices (LINE-NV) [Tang et al., 2015].
A simply extended method on LINE for new vertices
through updating the embedding of the new vertex and
keeping the embeddings of existing vertices.

e GraphSAGE [Hamilton et al., 2017]. A general induc-
tive framework of the dynamic network embedding that
leverages vertex feature information (e.g. text attributes)
to efficiently generate vertex embeddings for previously
unseen data. Besides, GraphSAGE is capable of main-
taining modest performance by leveraging graph struc-
ture, even with completely random feature inputs.

Parameters Settings For fair comparison, the parameters
settings of all models in experiments are consistent. The di-
mensionality of embeddings is set to 20 for classification and
2 for visualization. The mini-batch size of the stochastic gra-
dient descent is set as 300. The learning rate is set as 0.003.
There are some special parameters in DNE: the number of
original vertices that need to be updated at each time step is
set as 10. Other special parameters settings for SAGE follows
the recommended settings in the relevant code package'.

5.2 Vertex Classification

In order to verify the effectiveness of DNE, we employ three
real social networks to validate the accuracy of vertex classi-
fication and time cost. The learned representations are used to
classify the vertices into a set of labels. The classifier we used
is Logistic Regression with sklearn package, and the evalua-
tion metric is Accuracy. For all models, the size of network
at the first snapshot (i.e. the initial network G1) is set to 200
nodes for Duke and Auburn, 500 nodes for Amherst. The
number of new arriving nodes at each snapshot is set to 200.
The dimensionality of embeddings is set to 20. The results
are averaged over 10 different runs.

Fig.1 illustrates the effect of number of snapshots on the
vertex classification and the average time cost on every snap-
shot. In terms of accuracy, it can be seen from the Fig.1 that
the performance of our model DNE almost keeps up with
LINE. Obviously, since LINE-NV does not update the origi-
nal vertices during the network evolvement, the performance
of the model is unstable and inferior to DNE and LINE. Be-
sides, the experiment results illustrate that SAGE is weak in
structure preservation. In terms of time cost, since the LINE-
NV does not refresh the original vertex embeddings during
the evolvement of the network, LINE-NYV is the fastest. Com-
pared with LINE, fewer parameters and faster convergence
make DNE several times faster than LINE. Compared with

'https://github.com/williamleif/GraphSAGE

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

—DNE=LINE LINE-NV - SAGE]
0.95 570
c
0.9 860
[
. w@ 850
$0.85; @
5 E40
8 =
8 08
< %30
0.75 £20
>
0.7 <10
0 4 8 12 16 20 24 28 32 36

o

Number of snapshots DNE LINE LINE-NV SAGE

(a) The comparison of vertex classification accuracy and time cost of

different models on the Amherst dataset

—DNE-&-LINE 4 LINE-NV © SAGE]
0.6 300
8 250
055 L2
g Y] g0
g
5 05 E
o =150
Q
< [
0.45 &100
£
5 50
04 <
0 64 112 160 208 256 304 352384
Number of snapshot 0

DNE LINE LINE-NV SAGE

(b) The comparison of vertex classification accuracy and time cost of

different models on the Duke dataset

n
=3
13

—DNE-&LINE 4 LINE-NV © SAGE

14
o

I

o

a
@
=)

Accuracy

o
o

0.45

0 16

48 80 112

Number of snapshot

176192

Average Time (second)
o
o

a
=]

0

DNE

LINE LINE-NV SAGE

8 8 8
6/ 6 6]® 6 ol 6
4 4 4
.| 0 , 9 400 9 N 9
0 ® () 0 ® - 0 ® ®
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
TimeStep=0 TimeStep=1 TimeStep=2
(a) Karate network layout with DNE
6 6
46 4 4
Yoog2 ° : ° 2 o °
0 ® 0 0 0 2
-2 -2 2 g #
-4 —4 L) -4
6 6 -6
-8 _8 , 9 —8
-2 0 2 4 6 8 10 12 -2 0 2 4 6 8 10 12 -2 0 2 4 6 8 10 12
TimeStep=0 TimeStep=1 TimeStep=2
(b) Karate network layout with LINE
1.0 1.0 1.0
05 05 05
2.
0.0 0.0 0.0
: 2
-0.5 [§} -0.5 -0.5
0 9 6 209 0 9 6o
-1.0 -1.0 *® -1.0 _
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
TimeStep=0 TimeStep=1 TimeStep=2

(c) Karate network layout with SAGE

(c) The comparison of vertex classification accuracy and time cost of Figure 2: 2D visualization on dynamic network. The Karate dataset

different models on the Auburn dataset

Figure 1: The performance comparison of vertex classification on
three real networks. For each sub-graph, the left is the effect of
number of snapshots on the vertex classification, and the right is the
average time cost on each snapshot.

SAGE, it can be found that the time cost of DNE will be
more stable, especially when the network becomes larger and
larger. This is because the sampling strategy of SAGE will
lead more and more original vertices need to be updated while
the network is becoming larger and larger. However, DNE
presents an embedding adjustment mechanism for original
vertices to adjust the top m original vertices. In general, our
model performs better, especially in the large-scale network.

5.3 Network Layouts

Network layout is an important application of network em-
bedding which projects a network into two-dimensional
space. Especially, in dynamic scenarios, layout stability is an
important and challenging problem. The embedding of net-
works at consecutive time steps should not differ too much
when the networks do not change much.

In this experiment, the Karate data set with 34 nodes is
generated into a sequence of three network snapshots G =
(G1, G2, G3), where (B is initialized as a network with 10

2091

are embedded into 2-dimensional space at each snapshot. In or-
der to evaluate the layout stability of different model, four vertices
(0,2,6,9) in Karate are tracked. According to the changes of the
tracked vertex positions, DNE is superior to other model in layout
stability.

nodes, and 12 nodes are added into G at each snapshot. In
order to evaluate the layout stability of models, G are embed-
ded into 2-dimensional space. Besides, we track four point
0, 2, 6, 9), which can be seen in Fig.2, to observe their po-
sitions at different snapshots. From the visualization, LINE,
as the representative of the static embedding method, appears
obvious embedding space drift. Our model DNE is superior
to other two models, because just the most affected m nodes
will be updated at each snapshot.

6 Conclusion

We propose an efficient and stable embedding framework for
dynamic networks, which is an extension of SGNE methods
in a dynamic setting. On three real social networks, we val-
idate the effect of our model in vertex classification. We can
achieve the approximate performance as retraining and DNE
are obviously more efficient. Besides, DNE shows strong lay-
out stability. The idea that we propose to extend the static
method in dynamic setting is a general method. A particu-
larly interesting direction for future work is to extend other

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

static network embedding methods in dynamic setting based
on our idea.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant No. 61572041).

References

[Belkin and Niyogi, 2001] Mikhail Belkin and Partha
Niyogi. Laplacian eigenmaps and spectral techniques for
embedding and clustering. pages 585-591, 2001.

[Cao er al., 2015] Shaosheng Cao, Wei Lu, and Qiongkai
Xu. Grarep: Learning graph representations with global
structural information. In ACM International on Confer-
ence on Information and Knowledge Management, pages

891-900, 2015.

[Cao et al., 2016] Shaosheng Cao, Wei Lu, and Qiongkai
Xu. Deep neural networks for learning graph represen-
tations. In Association for the Advancement of Artificial
Intelligence Conference, pages 1145-1152, 2016.

[Cui et al., 2017] P. Cui, X. Wang, J. Pei, and W. Zhu. A
Survey on Network Embedding. ArXiv e-prints, Novem-
ber 2017.

[Grover and Leskovec, 2016] Aditya Grover and Jure
Leskovec. node2vec: Scalable feature learning for

networks. Knowledge Discovery and Data mining, pages
855-864, 2016.

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing

Systems, pages 1025-1035, 2017.

[He et al., 2012] Xinran He, Guojie Song, Wei Chen, and
Qingye Jiang. Influence blocking maximization in social
networks under the competitive linear threshold model.
pages 463—474, 2012.

[Henderson et al., 2012] Keith Henderson, Brian Gallagher,
Tina Eliassi-Rad, Hanghang Tong, Sugato Basu, Leman
Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li.
Rolx:structural role extraction & mining in large
graphs. In ACM Knowledge Discovery and Data Mining,
pages 1231-1239, 2012.

[Kipf and Welling, 2016] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. CoRR, abs/1609.02907, 2016.

[Levy and Goldberg, 2014] Omer Levy and Yoav Goldberg.
Neural word embedding as implicit matrix factorization.
In Advances in neural information processing systems,
pages 2177-2185, 2014.

[Lieral,2015] Yujia Li, Daniel Tarlow, Marc
Brockschmidt, and Richard S. Zemel. Gated graph
sequence neural networks. CoRR, abs/1511.05493, 2015.

[Li et al., 2017] Jundong Li, Harsh Dani, Xia Hu, Jiliang
Tang, Yi Chang, and Huan Liu. Attributed network em-
bedding for learning in a dynamic environment. CoRR,
abs/1706.01860, 2017.

2092

[Ma et al., 2018] Jianxin Ma, Peng Cui, and Wenwu Zhu.
Depthlgp: Learning embeddings of out-of-sample nodes
in dynamic networks. In Association for the Advancement
of Artificial Intelligence Conference, pages 1-9, 2018.

[Mikolov er al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Gregory S Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their composi-

tionality. Neural Information Processing Systems, pages
3111-3119, 2013.

[Perozzi et al., 2014] Bryan Perozzi, Rami Alrfou, and
Steven Skiena. Deepwalk: online learning of social repre-
sentations. Knowledge Discovery and Data mining, pages
701-710, 2014.

[Ribeiro et al., 2017] Leonardo F.R. Ribeiro, Pedro H.P.
Saverese, and Daniel R. Figueiredo. Struc2vec: Learn-
ing node representations from structural identity. In ACM
Knowledge Discovery and Data Mining, pages 385-394,
2017.

[Rushing ef al., 2005] John Rushing, Udaysankar Nair,
Udaysankar Nair, Ron Welch, Ron Welch, and Hong Lin.
Adam: a data mining toolkit for scientists and engineers.
Computers and Geosciences, 31(5):607-618, 2005.

[Song et al., 2015] Guojie Song, Xiabing Zhou, Yu Wang,
and Kunqing Xie. Influence maximization on large-scale
mobile social network: A divide-and-conquer method.
IEEE Transactions on Parallel and Distributed Systems,
26(5):1379-1392, 2015.

[Tang et al., 2015] Jian Tang, Meng Qu, Mingzhe Wang,
Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In International
Conference on World Wide Web, pages 1067-1077, 2015.

[Traud et al., 2012] Amanda L. Traud, Peter J. Mucha, and
Mason A. Porter. Social structure of facebook networks.
Social Science Electronic Publishing, 391(16):4165-4180,
2012.

[Wang et al., 2016] Daixin Wang, Peng Cui, and Wenwu
Zhu. Structural deep network embedding. In ACM Knowl-
edge Discovery and Data Mining, pages 1225-1234, 2016.

[Zachary, 1977] Wayne W Zachary. An information flow
model for conflict and fission in small groups. Journal
of anthropological research, 33(4):452-473, 1977.

[Zhang er al., 2017] Ziwei Zhang, Peng Cui, Jian Pei, Xiao
Wang, and Wenwu Zhu. Timers: Error-bounded svd restart
on dynamic networks. In Association for the Advancement
of Artificial Intelligence Conference, pages 1-8, 2017.

[Zhou et al., 2018] Lekui Zhou, Yang Yang, Xiang Ren, Fei
Wu, and Yueting Zhuang. Dynamic network embedding
by modeling triadic closure process. In Association for the
Advancement of Artificial Intelligence Conference, 2018.

[Zhu et al., 2018] Dingyuan Zhu, Peng Cui, Ziwei Zhang,
Jian Pei, and Wenwu Zhu. High-order proximity preserved
embedding for dynamic networks. IEEE Transactions on
Knowledge & Data Engineering, PP(99):1-1, 2018.

