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Abstract
Saliency detection is a fundamental yet challeng-
ing task in computer vision, aiming at highlighting
the most visually distinctive objects in an image.
We propose a novel recurrent residual refinement
network (R3Net) equipped with residual refinement
blocks (RRBs) to more accurately detect salient
regions of an input image. Our RRBs learn the
residual between the intermediate saliency predic-
tion and the ground truth by alternatively leverag-
ing the low-level integrated features and the high-
level integrated features of a fully convolutional
network (FCN). While the low-level integrated fea-
tures are capable of capturing more saliency de-
tails, the high-level integrated features can reduce
non-salient regions in the intermediate prediction.
Furthermore, the RRBs can obtain complementary
saliency information of the intermediate prediction,
and add the residual into the intermediate predic-
tion to refine the saliency maps. We evaluate the
proposed R3Net on five widely-used saliency de-
tection benchmarks by comparing it with 16 state-
of-the-art saliency detectors. Experimental results
show that our network outperforms our competitors
in all the benchmark datasets.

1 Introduction
Saliency detection seeks to highlight the most visually dis-
tinctive objects in an image. Inferring salient objects benefits
many applications, such as weakly-supervised object detec-
tion [Baisheng Lai, 2017] and visual tracking [Hong et al.,
2015]. However, detecting salient objects requires the seman-
tic understanding of the whole image as well as the detailed
structures of the objects. Hence, saliency detection is a fun-
damental yet challenging problem in computer vision.
∗Joint first authors
†Corresponding author (xuemx@scut.edu.cn)

Traditional methods employed hand-crafted visual fea-
tures (e.g, color, texture, and contrast) or heuristic pri-
ors [Liu et al., 2011; Yang et al., 2013; Zhu et al., 2014;
Cheng et al., 2015] to detect salient objects from the input
images. These hand-crafted features and priors are incapable
of capturing the high-level semantic knowledge, making the
saliency prediction unsatisfactory. To improve the detection
accuracy, many deep saliency networks [Li and Yu, 2015;
Zhao et al., 2015; Li et al., 2016] have been proposed by
leveraging the deep semantic features of fully convolutional
neural networks (FCNs) [Long et al., 2015]. Although the
deep features of FCN-based methods capture more high-level
semantic information over hand-crafted features, their results
suffer from neglecting many fine saliency details due to the
coarseness of feature maps in the deep layers of FCNs [Kong
et al., 2016].

More recently, several works [Liu and Han, 2016; Li and
Yu, 2016; Hou et al., 2017] utilized short connections to
merge multi-level features of FCNs in order to simultane-
ously exploit high-level semantic information and low-level
detailed structures for saliency detection. Although they im-
prove predictions by using complementary information of
multi-level features, those methods conduct the prediction
at one stage, making the results still unsatisfactory. Wang
et al. [Wang et al., 2017] further improve the performance
by leveraging a stage-wise refinement network to process the
saliency prediction in many stages, which can progressively
refine the intermediate saliency maps by absorbing low-level
detail information. However, such a refinement procedure
tends to introduce non-salient regions as it mainly relies on
the low-level features to refine the saliency maps. In addition,
it is insufficient to learn salient objects for refinement using
a plain network at each stage, because it produces the refined
saliency prediction from the scratch (random noise) without
preserving previous prediction. On the other hand, the resid-
ual learning has exhibited better performance in many vision
tasks, such as image classification [He et al., 2016] and face
attribute manipulation [Shen and Liu, 2017]. We employ a
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residual network as the starting point of our refinement net-
work.

In this paper, we propose a novel deep refinement network
to more accurately detect salient objects from the input im-
ages by leveraging advantages of the residual learning and
saliency information encoded in multiple layers of an FCN.
To achieve this, we first design a residual refinement block
(RRB), which takes the deep features concatenated with the
previous predicted saliency map as inputs to learn the dif-
ference (residual) between the ground truth and the previous
saliency map. Then, we embed a sequence of RRBs in an
FCN to construct our recurrent residual refinement network
(R3Net), which progressively refines the saliency maps at
each recurrent step by alternatively leveraging the high-level
semantic features and the low-level detailed features as the
inputs, which can enhance the saliency details and suppress
non-salient regions of intermediate saliency maps simultane-
ously. Finally, we take the saliency prediction at the last re-
current step as the final output of our network. The whole
network is trained in an end-to-end manner.

To verify the effectiveness of the presented R3Net, we eval-
uate it on five famous salient object detection benchmarks,
and compare our results with those of 16 state-of-the-art
methods. The experiments demonstrate that our model quan-
titatively and qualitatively outperforms other saliency detec-
tors. Overall, we can summary the contributions of this work
as follows.
• First, we design a novel residual refinement block (RRB)

to learn the residual between the ground truth and the
saliency map at each recurrent step. This learning strat-
egy can make the network easy to train and help to
learn the complementary saliency information of previ-
ous prediction for the refinement.
• We propose a recurrent residual refinement network

(R3Net) to progressively refine the saliency maps by
building a sequence of RRBs to alternatively use the low-
level features and high-level features. Such a general re-
finement strategy has potential to be used in other tasks
such as semantic segmentation and object detection.
• Third, we evaluate our network on five famous bench-

mark datasets and compare it with 16 state-of-the-art
saliency detection methods. Overall, our method consis-
tently has the best performance on all the five datasets.

2 Methodology
We illustrate the architecture of our recurrent residual re-
finement network (R3Net) equipped with residual refinement
blocks (RRBs) in Figure 1. It begins by utilizing a feature
extraction network to produce a set of feature maps, which
contain low-level details and high-level semantic informa-
tion with different scales. Then, the feature maps at shal-
low layers are integrated to generate the low-level integrated
features (denoted as L), and the feature maps at deep lay-
ers are merged together to form the high-level integrated
features (denoted as H). After that, we generate an initial
saliency map from H , and then develop a set of residual
refinement blocks (RRBs) to progressively refine the inter-
mediate saliency maps by harnessing L and H alternatively.

Meanwhile, at each recurrent step, we impose the supervi-
sion signal [Xie and Tu, 2015] to compute the loss between
the ground truth and the predicted saliency map during the
training process. Finally, we take the saliency map at the last
recurrent step as the final output of our network. In follow-
ing subsections, we first elaborate how to build the RRBs, and
then introduce the proposed R3Net for saliency detection.

2.1 Residual Refinement Block (RRB)
We develop an RRB at each recurrent step to correct pre-
diction errors in the previous saliency map for refinements.
The RRB alternatively takes the low-level integrated features
(L) or the high-level integrated features (H) with the saliency
map predicted at the previous step as inputs, and outputs a re-
fined saliency map by adding the previous saliency map with
a learned residual (difference between the ground truth and
the previous saliency map); see orange dash boxes of Figure 1
for the first and second RRBs.

Formally, an RRB is defined as:

residualj = Φj(Cat(Sj−1, F )),

Sj = Sj−1 ⊕ residualj ,
(1)

where we first obtain the residual (residualj) at j-th recur-
rent step by sending the concatenation (Cat) of the predicted
saliency map Sj−1 at (j−1)-th recurrent step and the feature
maps F , to the function Φj , which consists of three convolu-
tional layers (see Figure 1). Then, the residualj is added with
Sj−1 in an element-wise way to compute the output Sj of our
RRB. Note that the feature map F is alternatively set as L or
H in our recurrent network (see Section 2.2 for details), and
we find the unshared parameters Φ of our RRBs at different
recurrent steps show a superior performance than the shared
parameters; see Table 1 for detailed comparisons.

Unlike [Wang et al., 2017], which directly learns the de-
sired underlying saliency mapping for the refinement in a
plain network, our RRB explicitly learns to fit a residual that
reflects the difference between the ground truth and the previ-
ous saliency map, since learning residual is much easier, and
usually outperforms learning from plain networks in various
tasks, as suggested in [He et al., 2016; Shen and Liu, 2017;
Xie et al., 2017]. Figure 2 shows the training loss of our
R3Net (see Section 2.2 for details) with/without the residual
learning technique in our RRB. Obviously, our residual learn-
ing can ease the optimization task with a faster convergence at
early stages, and reduce the training error over directly learn-
ing underlying saliency mapping; see Table 1 in Sec. 3.3 for
the quantitative comparisons of these two learning ways.

2.2 Recurrent Residual Refinement Network
To learn the salient regions in a refinement mechanism, we
develop a novel deep network with a sequence of RRBs to
gradually refine the saliency predictions. As illustrated in
Figure 1, our network first applies ResNeXt [Xie et al., 2017]
as the feature extraction network to produce a set of feature
maps with different scales. The feature maps at deep layers
have large scales and are able to capture the high-level se-
mantic information of salient objects, while the feature maps
at shallow layers have small scales and can extract the fine
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Figure 1: The schematic illustration of our R3Net. We produce a set of feature maps at multiple scales for the input image. The feature maps
at the first three layers are concatenated to generate the low-level integrated features (denoted as L) while features at the last two layers are
concatenated to construct the high-level integrated features (denoted as H). Then, we generate the initial saliency map using H , which is
recurrently refined by a sequence of residual refinement blocks (RRBs). Meanwhile, the supervision signal is imposed at each recurrent step.

Figure 2: Training on the MSRA10K dataset. The blue line denotes
R3Net with residual learning while the orange line denotes R3Net
without residual learning, which learns the saliency map directly.

delicate structures of salient regions. Then, we produce the
low-level integrated features (denoted as L) by upsampling
the feature maps from the first three layers to a quarter of the
size of the input image, concatenating them together, and ap-
plying a convolution operation to merge those features and
reduce the feature dimensions:

L = fconv(Cat(F1, F2, F3)) , (2)

where Fi is the upsampled feature maps at the i-th layer; Cat
operation is to concatenate feature maps at the first three lay-
ers; fconv is known as the feature fusing network, consist-
ing of 3 convolution layers, followed by 3 PReLU activation
functions [He et al., 2015]. Similarly, we produce the high-
level integrated features (denoted as H) by using the feature
maps (F4 and F5) at the last two layers:

H = fconv(Cat(F4, F5)) . (3)

Our network first predicts an initial saliency map (denoted
as S0) from the high-level integrated features (H), which tend
to capture the locations of the salient objects but neglect a lot
of saliency details. Then, taking S0 as a starting point, we de-
velop a sequence of RRBs to progressively refine the saliency

predictions. Specifically, since the low-level integrated fea-
tures L is capable of discovering many saliency details of
input images, we build the first RRB by setting F in Eq. 1
as the L to refine the initial saliency map (S0) and obtain
the saliency map (S1) with more fine details. However, the
low-level integrated features (L) also contain a large number
of non-saliency cues, and thus simultaneously introduce non-
salient regions into the S1. Hence, we build the second RRB
by using H to replace F in Eq. 1 to remove non-salient re-
gions introduced by L. Since the high-level features H focus
on semantic cues of the salient objects, such an operation can
eliminate non-saliency details that are not located in seman-
tic salient regions. To further improve the saliency prediction,
we construct a sequence of RRBs by alternatively incorporat-
ing L and H several times.

In addition, we apply deep supervision mechanism [Xie
and Tu, 2015] to impose the supervision signal on the pre-
dicted saliency map at each recurrent step during the training
process. By adding auxiliary supervisions connected to the
intermediate steps, each RRB is capable to learn the residual
from the ground truth directly, which makes the network op-
timization easier [Xie and Tu, 2015]. Finally, we take the
saliency map at the last recurrent step to compute the final
output of our R3Net network.

3 Experiments
In this section, we describe the training and testing strategies
of our R3Net, introduce the benchmark datasets and evalua-
tion metrics, and report the experimental results.

3.1 Training and Testing Strategies
Loss function. As shown in Figure 1, our network can out-
put several saliency maps, including the initial saliency map
S0, and a sequence of refined saliency maps (S1, . . . , Sn)
after applying RRB n times. During the training process, we
apply deep supervision mechanism [Xie and Tu, 2015] into
impose a supervision signal (ground truth) for each saliency
output, and thus we can compute the cross-entropy loss be-
tween each predicted saliency map and the ground truth (su-
pervision). The total loss Θ of our network is defined as the
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Method ECSSD HKU-IS PASCAL-S SOD DUT-OMRON
Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

R3Net-0 0.918 0.049 0.900 0.044 0.831 0.101 0.816 0.128 0.769 0.079
R3Net-1 0.926 0.044 0.910 0.038 0.841 0.100 0.833 0.125 0.783 0.073
R3Net-2 0.931 0.043 0.911 0.038 0.844 0.104 0.836 0.127 0.787 0.073
R3Net-3 0.934 0.041 0.915 0.036 0.847 0.100 0.841 0.123 0.794 0.066
R3Net-4 0.932 0.042 0.912 0.038 0.843 0.102 0.841 0.125 0.782 0.073
R3Net-5 0.933 0.042 0.913 0.037 0.845 0.100 0.841 0.122 0.791 0.069
R3Net-6 0.935 0.040 0.916 0.036 0.845 0.100 0.847 0.124 0.805 0.063
R3Net-7 0.934 0.040 0.914 0.036 0.848 0.096 0.842 0.121 0.804 0.063
R3Net w/o r 0.931 0.042 0.910 0.039 0.839 0.103 0.839 0.121 0.782 0.077
R3Net w s 0.933 0.041 0.914 0.037 0.841 0.102 0.842 0.122 0.794 0.070
R3Net LL 0.932 0.041 0.910 0.038 0.844 0.100 0.839 0.125 0.778 0.080
R3Net HH 0.926 0.046 0.902 0.042 0.836 0.101 0.819 0.128 0.786 0.071
R3Net-D 0.928 0.046 0.907 0.042 0.829 0.112 0.847 0.127 0.793 0.067
R3Net-V 0.913 0.049 0.891 0.047 0.814 0.105 0.818 0.121 0.746 0.089

Table 1: The F-measure and MAE of different settings on five saliency detection datasets for ablation analysis.

summation of the loss on all predicted saliency maps:

Θ = w0Y0 +
n∑
i=1

wiYi, (4)

where w0 andY0 are the weight and loss in our initial saliency
prediction; wi and Yi denote the weight and loss of the pre-
diction at i-th recurrent step; n is the number of recurrent
steps employed in our method. In our experiment, we empir-
ically set all the weights (including w0 and wi) as 1, and set
the hyper-parameter n as 6 by balancing the time performance
and the detection accuracy (see Section 3.3 for details).

Training parameters. In order to accelerate the training
process and reduce the over-fitting issue, we use the well-
trained ResNeXt network on ImageNet [Xie et al., 2017] to
initialize parameters of feature extraction network (see Fig-
ure 1), while other layers are randomly initialized from a
Gaussian distribution. We use the stochastic gradient de-
scent (SGD) to train the network with the momentum of
0.9 and the weight decay of 0.0005, set the basic leaning
rate as 0.001, adjust the learning rate by the “poly” pol-
icy [Liu et al., 2015] with the power of 0.9, and stop the
training procedure after 6k iterations. The R3Net is trained
on the MSRA10K dataset [Cheng et al., 2015], which is
widely used for training the saliency models [Lee et al., 2016;
Zhang et al., 2017a]. Images in this dataset are randomly ro-
tated, cropped and horizontally flipped for data augmentation.
Our R3Net is trained on a single GPU with a mini-batch size
of 14, and it takes only 80 minutes to train the network.

Inference. In the testing stage, for each input image, our
R3Net can predict a saliency map at each recurrent step.
Our final result is obtained by upsampling the prediction at
the last recurrent step to the size of the input image, and
then applying the fully connected conditional random field
(CRF) [Krähenbühl and Koltun, 2011] to enhance the spatial
coherence of the saliency maps.

3.2 Datasets and Evaluation Metrics
After training the R3Net on the MSRA10K dataset [Cheng
et al., 2015] (containing 10,000 images), we perform various
experiments to evaluate the proposed network on five widely-
used saliency benchmark datasets, including ECSSD [Yan et
al., 2013] with 1, 000 images, HKU-IS [Li and Yu, 2015] with
4, 447 images, PASCAL-S [Zhang et al., 2017a] with 850 im-
ages, SOD [Hou et al., 2017] with 300 images, and DUT-
OMRON [Yang et al., 2013] with 5, 168 images. Please refer
to the [Hou et al., 2017] for the detail descriptions of these
saliency benchmark datasets.

We use two metrics to quantitatively compare our method
with our rivals: F-measure (Fβ) and mean absolute error
(MAE) (see [Hou et al., 2017] for their definitions). A better
saliency detector shall have a larger F-measure and a smaller
MAE. To do fair comparisons, we apply the implementations
of [Hou et al., 2017] to compute the F-measure and MAE for
all the compared methods.

3.3 Ablation Analysis
We first perform ablation experiments on the 5 benchmarks
to evaluate the effectiveness of our R3Net. First, we show the
results of our R3Net with different recurrent steps. Second,
we perform a comparison with “R3Net w/o r”, which has a
similar structure with our R3Net but refines the saliency map
(six times) without residual learning. Third, we modify our
R3Net by using the shared parameters among all the RRBs
and denote the new one as “R3Net w s” for a comparison.
Then, we also compare with “R3Net-LL” using only L as the
features F of Eq. 1 in all the recurrent steps, and “R3Net-HH”
using only H as the features F of Eq. 1 in all the recurrent
steps to verify the effectiveness of alternatively using L and
H during the refinement procedure. Moreover, we compare
another two models (denoted as “R3Net-D” and “R3Net-V”),
which use the DenseNet [Huang et al., 2017] (161 layers) and
the VGG-Net [Simonyan and Zisserman, 2015] (16 layers)
respectively, instead of the our ResNeXt.

Table 1 summaries the quantitative results of these different
settings. From the results, we has the following observations:
(1) R3Net-0 to R3Net-7 in Table 1 are the initial prediction
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Method ECSSD HKU-IS PASCAL-S SOD DUT-OMRON
Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

MR [Yang et al., 2013] 0.736 0.189 0.715 0.174 0.666 0.223 0.619 0.273 0.610 0.187
wCtr* [Zhu et al., 2014] 0.716 0.171 0.726 0.141 0.659 0.201 0.632 0.245 0.630 0.144
BSCA [Qin et al., 2015] 0.758 0.183 0.723 0.174 0.666 0.224 0.634 0.266 0.616 0.191
MC [Zhao et al., 2015] 0.822 0.106 0.798 0.102 0.740 0.145 0.688 0.197 0.703 0.088

LEGS [Wang et al., 2015] 0.827 0.118 0.770 0.118 0.756 0.157 0.707 0.215 0.669 0.133
MDF [Li and Yu, 2015] 0.831 0.108 0.860 0.129 0.759 0.142 0.785 0.155 0.694 0.092
ELD [Lee et al., 2016] 0.867 0.080 0.844 0.071 0.771 0.121 0.760 0.154 0.719 0.091

DS [Li et al., 2016] 0.882 0.123 - - 0.758 0.162 0.781 0.150 0.745 0.120
RFCN [Wang et al., 2016] 0.898 0.097 0.895 0.079 0.827 0.118 0.805 0.161 0.747 0.095

DCL [Li and Yu, 2016] 0.898 0.071 0.904 0.049 0.822 0.108 0.832 0.126 0.757 0.080
DHSNet [Liu and Han, 2016] 0.907 0.059 0.892 0.052 0.827 0.096 0.823 0.127 - -

NLDF [Luo et al., 2017] 0.905 0.063 0.902 0.048 0.831 0.099 0.810 0.143 0.753 0.080
UCF [Zhang et al., 2017b] 0.910 0.078 0.886 0.073 0.821 0.120 0.800 0.164 0.735 0.131

DSS [Hou et al., 2017] 0.916 0.053 0.911 0.040 0.829 0.102 0.842 0.118 0.771 0.066
Amulet [Zhang et al., 2017a] 0.913 0.059 0.887 0.053 0.828 0.095 0.801 0.146 0.737 0.083

SRM [Wang et al., 2017] 0.917 0.056 0.906 0.046 0.844 0.087 0.843 0.126 0.769 0.069
NLDF+ 0.920 0.063 0.907 0.055 0.837 0.108 0.830 0.138 0.779 0.094
Amulet+ 0.925 0.055 0.900 0.053 0.832 0.109 0.823 0.136 0.783 0.082

DSS+ 0.928 0.044 0.909 0.038 0.843 0.101 0.839 0.125 0.779 0.071
SRM+ 0.927 0.052 0.907 0.048 0.844 0.089 0.838 0.125 0.786 0.071

R3Net (ours) 0.935 0.040 0.916 0.036 0.845 0.100 0.847 0.124 0.805 0.063

Table 2: Comparison with the state-of-the-arts. The top three results are highlighted in red, green, and blue, respectively.

and our refined results from the first to seventh recurrent step.
It is observed that our recurrent mechanism significantly out-
performs the initial prediction (denoted as “R3Net-0”), and
the saliency detection accuracy consistently increases in the
first four iterations, and then becomes stable from the fifth
to seventh iteration. To the end, we empirically set the total
recurrent step as six by balancing the performance and time
complexity. (2) Comparing our “R3Net” with “R3Net w/o r”,
we can find that our model with residual learning is supe-
rior to the model without residual learning, demonstrating the
effectiveness of the proposed RRB. (3) The comparison be-
tween our “R3Net” and “R3Net w s” demonstrates that our
method with separated parameters in different RRBs has a su-
perior performance. (4) Our model has a better performance
over “R3Net-LL”, demonstrating that H can help to suppress
non-saliency regions caused by L. Moreover, the superior
performance of our method over the “R3Net-HH” indicates
that L can complement more saliency details lacked in H .
(5) Comparing “R3Net” with “R3Net-D” and “R3Net-V”, we
can find that our model equipped with ResNeXt has a better
performance, showing that the ResNeXt [Xie et al., 2017] ex-
tracts more powerful features than VGG-Net and DenseNet.

3.4 Comparison with the State-of-the-arts
We further compare the results of our method with those
of 16 state-of-the-art saliency detectors (see the first col-
umn of Table 2 for compared saliency detectors). Among
them, MR [Yang et al., 2013], wCtr* [Zhu et al., 2014] and
BSCA [Qin et al., 2015] use hand-crafted features to differ-
entiate the salient objects from background while others are
based on the deep learning framework to learn the features for
saliency detection. In order to conduct a fair comparison, we
obtain saliency detection results of compared methods by us-

ing either the saliency maps provided by the authors, or their
implementations with recommended parameter settings.

Quantitative comparison. Table 2 summaries the compar-
ison results in terms of F-measure and MAE. Our method
(R3Net) consistently outperforms others on almost all the five
datasets with respect to both two metrics, demonstrating the
superior performance of our method on detecting salient ob-
jects. Especially, our method outperforms the previous state-
of-the-arts by a significant margin on the “DUT-OMRON”
dataset, where the images are with complicated salient re-
gions. It shows that our method is more powerful to deal with
the challenging images, which is further manifested in the
following visual comparisons (see Figure 3). Note that our
network is trained on the MSRA10K dataset, but it still has a
superior performance over others (e.g. RFCN and MDF) that
are directly trained on PASCAL-S or HKU-IS, demonstrating
a good generalization capability of our R3Net, which is vital
for the saliency detection.

For methods based on the deep neural networks, the train-
ing set and the feature extract network are important, because
a good training set will provide a large number of represen-
tative training data and provide more knowledge to the deep
neural network, and a strong feature extract network will ob-
tain more powerful features for discovering the salient re-
gions. However, the recent saliency detectors based on the
deep neural networks use different kinds of training sets and
feature extract networks. For a fair comparison, we retrain
the models (NLDF [Luo et al., 2017], DSS [Hou et al., 2017],
Amulet [Zhang et al., 2017b], and SRM [Wang et al., 2017])
by using the same basic network (ResNeXt) and the same
training set (MSRA10K) as our method. Table 2 also reports
the comparison results, where these retrained models are de-
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(a) Inputs (b) GT (c) Ours (d) SRM (e) Amulet (f) DSS (g) UCF (h) NLDF (i) DCL

Figure 3: Visual comparison of saliency maps produced by different saliency detectors. Apparently, our method produces more accurate
saliency maps than others, and our results are more consistent with the ground truths (denoted as ’GT’).

noted as “XX+”. By using the powerful basic network and the
MSRA10K dataset, these models show better performances
than the original ones, but our method still outperforms these
new models by a significant margin.

Visual comparison. We also visually compare our method
with our rivals on different input images; see Figure 3. From
these results, we can observe that other methods tend to in-
clude non-saliency backgrounds (see (d)-(i) of the first two
rows) or lost many saliency details (see (d)-(i) of the third
and fourth rows), while our R3Net produces more accurate
results of detecting salient objects, and our results are more
consistent with the ground truths (see (b) and (c)). In ad-
dition, for those challenging images with small salient ob-
jects (the fifth row in Figure 3) and multiple objects (the
last row in Figure 3), our method also predicts more pre-
cise saliency maps than others, which further indicates the
effectiveness and robustness of the presented R3Net. The
code, trained model and more results are publicly available
at https://github.com/zijundeng/R3Net.

4 Conclusion
This paper presents a novel refinement network equipped
with a sequence of residual refinement blocks (RRBs) for
single-image saliency detection. Our key idea is leveraging
RRBs to recurrently learn the difference (called “residual” in
this work) between the coarse saliency map and the ground
truth by alternatively harnessing the low-level features (L)
and high-level features (H) of an FCN. Learning the residual
counterpart in our RRB module can make the network easy to
be optimized, and obtain the complementary saliency infor-
mation of the intermediate results to refine the saliency pre-

diction maps. Furthermore, our RRBs employ the low-level
features and the high-level features to alternatively refine the
saliency maps by compensating saliency details and suppress-
ing non-salient regions. We test our R3Net on 5 benchmark
datasets, and the experimental results show that our method
consistently outperforms the other 16 state-of-the-art meth-
ods. The proposed refinement scheme is general enough to
be applied to other important computer vision tasks, such as
object detection and instance-aware saliency detection.
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Vladlen Koltun. Efficient inference in fully connected crfs
with gaussian edge potentials. In NIPS, 2011.

[Lee et al., 2016] Gayoung Lee, Yu-Wing Tai, and Junmo
Kim. Deep saliency with encoded low level distance map
and high level features. In CVPR, 2016.

[Li and Yu, 2015] Guanbin Li and Yizhou Yu. Visual
saliency based on multiscale deep features. In CVPR,
2015.

[Li and Yu, 2016] Guanbin Li and Yizhou Yu. Deep contrast
learning for salient object detection. In CVPR, 2016.

[Li et al., 2016] Xi Li, Liming Zhao, Lina Wei, Ming-Hsuan
Yang, Fei Wu, Yueting Zhuang, Haibin Ling, and Jing-
dong Wang. Deepsaliency: Multi-task deep neural net-
work model for salient object detection. IEEE Transac-
tions on Image Processing, 25(8):3919–3930, 2016.

[Liu and Han, 2016] Nian Liu and Junwei Han. Dhsnet:
Deep hierarchical saliency network for salient object de-
tection. In CVPR, 2016.

[Liu et al., 2011] Tie Liu, Zejian Yuan, Jian Sun, Jingdong
Wang, Nanning Zheng, Xiaoou Tang, and Heung-Yeung
Shum. Learning to detect a salient object. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
33(2):353–367, 2011.

[Liu et al., 2015] Wei Liu, Andrew Rabinovich, and Alexan-
der C Berg. Parsenet: Looking wider to see better. arXiv
preprint arXiv:1506.04579, 2015.

[Long et al., 2015] Jonathan Long, Evan Shelhamer, and
Trevor Darrell. Fully convolutional networks for seman-
tic segmentation. In CVPR, 2015.

[Luo et al., 2017] Zhiming Luo, Akshaya Mishra, Andrew
Achkar, Justin Eichel, Shaozi Li, and Pierre-Marc Jodoin.
Non-local deep features for salient object detection. In
CVPR, 2017.

[Qin et al., 2015] Yao Qin, Huchuan Lu, Yiqun Xu, and
He Wang. Saliency detection via cellular automata. In
CVPR, 2015.

[Shen and Liu, 2017] Wei Shen and Rujie Liu. Learning
residual images for face attribute manipulation. In CVPR,
2017.

[Simonyan and Zisserman, 2015] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks for
large-scale image recognition. In ICLR, 2015.

[Wang et al., 2015] Lijun Wang, Huchuan Lu, Xiang Ruan,
and Ming-Hsuan Yang. Deep networks for saliency de-
tection via local estimation and global search. In CVPR,
2015.

[Wang et al., 2016] Linzhao Wang, Lijun Wang, Huchuan
Lu, Pingping Zhang, and Xiang Ruan. Saliency detec-
tion with recurrent fully convolutional networks. In ECCV,
2016.

[Wang et al., 2017] Tiantian Wang, Ali Borji, Lihe Zhang,
Pingping Zhang, and Huchuan Lu. A stagewise refinement
model for detecting salient objects in images. In CVPR,
2017.

[Xie and Tu, 2015] Saining Xie and Zhuowen Tu.
Holistically-nested edge detection. In ICCV, 2015.

[Xie et al., 2017] Saining Xie, Ross Girshick, Piotr Dollár,
Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In CVPR, 2017.

[Yan et al., 2013] Qiong Yan, Li Xu, Jianping Shi, and Jiaya
Jia. Hierarchical saliency detection. In CVPR, 2013.

[Yang et al., 2013] Chuan Yang, Lihe Zhang, Huchuan Lu,
Xiang Ruan, and Ming-Hsuan Yang. Saliency detection
via graph-based manifold ranking. In CVPR, 2013.

[Zhang et al., 2017a] Pingping Zhang, Dong Wang,
Huchuan Lu, Hongyu Wang, and Xiang Ruan. Amulet:
Aggregating multi-level convolutional features for salient
object detection. In ICCV, 2017.

[Zhang et al., 2017b] Pingping Zhang, Dong Wang,
Huchuan Lu, Hongyu Wang, and Baocai Yin. Learning
uncertain convolutional features for accurate saliency
detection. In ICCV, 2017.

[Zhao et al., 2015] Rui Zhao, Wanli Ouyang, Hongsheng Li,
and Xiaogang Wang. Saliency detection by multi-context
deep learning. In CVPR, 2015.

[Zhu et al., 2014] Wangjiang Zhu, Shuang Liang, Yichen
Wei, and Jian Sun. Saliency optimization from robust
background detection. In CVPR, 2014.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

690


