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Abstract

Identifying patterns in time series that exhibit
anomalous behavior is of increasing importance
in many domains, such as financial and Web data
analysis. In real applications, time series data of-
ten arrive continuously, and usually only a single
scan is allowed through the data. Batch learning
and retrospective segmentation methods would not
be well applicable to such scenarios. In this pa-
per, we present an online nonparametric Bayesian
method OLAD for anomaly analysis in streaming
time series. Moreover, we develop a novel and effi-
cient online learning approach for the OLAD model
based on stochastic gradient descent. The proposed
method can effectively learn the underlying dynam-
ics of anomaly-contaminated heavy-tailed time se-
ries and identify potential anomalous events. Em-
pirical analysis on real-world datasets demonstrates
the effectiveness of our method.

1 Introduction
Sequential pattern mining is an important and challenging
research area with interesting applications to finance, Web,
mobile and IoT data analysis. For example, detection of
anomalous events in the financial time series can help under-
stand trading behavior, identify fraudulent transactions and
estimate value-at-risk. Another example is anomaly analy-
sis in network data, which can potentially improve the avail-
ability, performance, security, and the overall service expe-
rience of network systems. Due to its practical importance
and technical challenges, a number of time series anomaly
detection methods have been investigated in the literature
[Aggarwal, 2013; Chandola et al., 2009; Gupta et al., 2014;
Pimentel et al., 2014], such as support vector machines [Ma
and Perkins, 2003], dynamic Bayesian networks [Saada and
Meng, 2012], principal component analysis [Lakhina et al.,
2004] and Gaussian process [Smith et al., 2012]. How-
ever, time series data in many real-world systems usually
arrives in a streaming fashion, and is continuously accumu-
lated. Consequently, it is practically impossible to store the
entire stream for learning and inference to detect anomalies.
Moreover, the models are expected to directly learn from

the anomaly-contaminated heavy-tailed time series data and
identify the deviations.

To address these challenges, we present a flexible and
robust nonparametric Bayesian method OLAD for online
anomaly detection in streaming time series. We develop an
online Student-t process (TP) method to learn the underly-
ing dynamics of time series and identify potential anomalous
events in real time. By embedding the method in a nonpara-
metric Bayesian framework, the OLAD has good properties
such as nonparametric representation and analytic predictive
distributions. The heavy-tailed distributions of the OLAD
provide robustness against unknown anomalies in the time se-
ries. This allows the method to effectively capture the normal
patterns of anomaly-contaminated time series during the iter-
ative learning process. The OLAD has extra flexibility in that
the predictive covariance explicitly depends on the known ob-
servations. The more accurate predictive covariance will help
to enhance the anomaly detection performance. In addition,
online learning is a challenging problem in nonparametric
Bayesian models, especially for TP, as the observations are
not independent of each other (see e.g. the non-diagonal co-
variances). We develop a novel approach based on stochas-
tic gradient descent to learn the hyperparameters of Student-t
processes in an online fashion. We optimize predictive like-
lihood of newly available observations, instead of the non-
decomposable joint likelihood, to stochastically fit the model
to the new data. As the commonly used backpropagation in
neural networks is not applicable here, we develop the for-
mulations for computing the gradients in the TP framework.
Experiments on synthetic, network traffic and financial time
series datasets demonstrate the flexibility and effectiveness of
our method.

The rest of the paper is organized as follows. We start
off with a brief review of related work. Afterwards we de-
scribe the OLAD method in Section 3. Before concluding,
we present our experimental results on both real and synthetic
datasets in Section 4.

2 Related Work
Anomaly analysis for sequential data [Aggarwal, 2013;
Chandola et al., 2009; Gupta et al., 2014] is of practical im-
portance in diverse application domains and poses a variety
of technical challenges. Gornitz et al. [2015] presented a hid-
den Markov chain type structured output model for detection
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of outlier sequences. This method extends the one-class sup-
port vector machine by integration of structured output learn-
ing. Not like our work on finding outliers within a single
time series, this method aims to detect anomalous ones from
a set of time series. Lakhina et al. [2004] introduced a princi-
pal component analysis based method to discover normal and
anomalous network conditions. It is an offline method and not
applicable for the streaming time series analysis. Saligrama
and Zhao [2012] proposed a graph-based statistical notion to
compute anomaly scores of spatio-temporal data with local
neighborhood distances. Saada and Meng [2012] introduced
a method based on dynamic Bayesian networks (DBN) to find
anomalies in flight data. They learned a DBN to model dis-
crete pilot actions and to detect pilot errors in the past. These
two methods model the spatio-temporal data and discrete ac-
tion/environment data respectively, while our work focuses
on continuous time series streams. Smith et al. [2012] com-
bined Gaussian process and extreme value theory (EVT) to
uncover anomalous behaviors in time series. They relaxed
the basic i.i.d assumption (independent identical distribution)
of EVT. Twitter’s Anomaly Detection method introduced in
[Vallis et al., 2014] is another recent work, which models
regular patterns with time series decomposition and employs
robust statistical metrics together with the generalized ex-
treme studentized deviate (ESD) test to find deviation from
the learned normality. In contrast to existing approaches,
we propose a flexible and robust online anomaly detection
method for streaming time series. By embedding itself in a
robust nonparametric Bayesian framework, the method can
better model the dynamics of time series in the presence of
anomalies. Additionally, we present a novel and efficient on-
line learning approach for the proposed model with stochastic
method.

3 Online Anomaly Detection
In this section, we describe our online nonparametric
Bayesian method OLAD for anomaly detection in streaming
time series.

3.1 Time Series Stream Modeling
Assume that there is a time series stream y = {y1, y2, . . .}
with an infinite number of observations. We use Student-
t process (TP) [Shah et al., 2014] to model the stream. In
particular, the time series is viewed as a function yt = f(t)
(shortened as ft) of the time t. The function f represents
the underlying dynamics of the time series. This modeling
method can easily address unevenly spaced time series and
missing value problem. More importantly, for the task of
anomaly detection, it can avoid introducing anomalies into
predictors like the autoregression based methods do, thus po-
tentially reduces the complexity of modeling anomalies in
time series. The functional form of f is often unknown. As
the real time series can be of any shape and include anoma-
lous observations, we assume that the function f itself is ran-
dom and drawn from a TP, which defines a robust nonpara-
metric distribution over functions. By embedding itself in
a robust nonparametric Bayesian framework, the time series
modeling method has three main advantages. First we can

quantify prediction uncertainty that could be introduced by
limitations in the quantity and the quality of the data. Sec-
ond, due to the flexible nonparametric nature, the method can
model complex data as well as prevent overfitting if complex
models are not warranted by the data. Most importantly, the
method can make robust inference resistant to anomalies that
may unduly affect performance of statistical models.

Now the streaming time series can be represented as an in-
finite dimensional vector {f1, f2, . . .}, which t’th dimension
is the function value ft. The vector follows a TP prior

T P(µ(t), k(t, t′), ν),

which is characterized as follows: mean function µ(t) and
covariance function (a.k.a. kernel) k(t, t′) as well as degrees
of freedom ν > 2. More precisely, the generative process for
a time series stream can be specified as follows

ζ|ν, k ∼ IWP(ν, k),

f |µ, ζ ∼ GP(µ , (ν − 2)ζ). (1)

That is, we first draw a covariance function ζ from the in-
verse Wishart process IWP(ν, k), which is then used to
draw functions— the time series—from a Gaussian process
GP(µ, (ν − 2)ζ). They are formally defined as follows:

Definition 1. A function ζ follows an inverse Wishart process
(IWP) on some input space X with parameters ν ∈ R+ and
base kernel (positive definite) k : X × X → R if for any
finite collection x1, . . . , xn ∈ X , ζ(x1, . . . , xn) follows an
inverse Wishart distribution IWn(ν,K), where K ∈ Π(n)
with Ki,j = k(xi, xj) and Π(n) is a set of n× n real valued,
symmetric, positive definite matrices.

Definition 2. A function f follows a Gaussian process (GP)
on some input space X with parameters: mean µ : X → R
and kernel (positive definite) ζ : X × X → R if for any
finite collection x1, . . . , xn ∈ X , f(x1), . . . , f(xn) follow
a multivariate Gaussian distribution Nn(m,K), where m ∈
Rn with mi = µ(xi) and K ∈ Π(n) with Ki,j = ζ(xi, xj).

The generative process (1) reveals that a Student-t process
actually defines a hierarchical Gaussian process: the covari-
ance function of the Gaussian process is not parameterized,
but random and drawn from an inverse Wishart process with
a base kernel k. This additional generative level increases
flexibility of the Student-t process and makes inference ro-
bust against outlier [Shah et al., 2014].

Given the hierarchical generative process, the distribution
of a time series f = {ft : t = 1, . . . , n} of length n is:

p(f |ν,m,K) =

∫
Nn(f |m, (ν − 2)Σ)IWn(Σ|ν,K)dΣ

Since the inverse Wishart distribution is a conjugate prior of
the covariance matrix of a Gaussian distribution, the integra-
tion can be solved analytically. Thus we end up getting a
multivariate Student-t distribution p(f |ν,m,K) by marginal-
izing out Σ. As already mentioned, the TP based time series
model involves three parameters: mean function µ (comput-
ing m), kernel function k (computing K) and degree of free-
dom ν. Without loss of generality, we often assume a zero
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Figure 1: Example kernel functions: γ-exponential (left) and
squared exponential (right) for different parameters.

Figure 2: Time series drawn from a GP (left) and a TP (right). The
shaded regions denote the 95% confidence intervals.

mean function [Rasmussen and Williams, 2006]. For the ker-
nel k, typical choices include, e.g.:

Squared exponential: ρ2 exp(−d2/2`2)

Rational quadratic: (1 + d2/2α`2)−α

γ-exponential: exp(−(d/`)γ), 0 < γ ≤ 2

where d = t − t′ denotes the time difference between two
observations. Typically, k(t, t′) quickly decays to zero with
increasing distance d as illustrated in Fig. 1. This is a sensible
feature in time series modeling as it turns out that historical
data can be discarded reasonably if it is far away from the
current time steps to be predicted; a kind of forgetting. More
details about time series kernels can be found in [Roberts et
al., 2013]. We also investigate automatic kernel selection for
Student-t processes [Xu et al., 2016]. In addition, the degree
of freedom ν also has an intuitive meaning. It controls how
heavy-tailed the process is. A small ν means a heavy tail, and
leads to a process that is more prone to producing outliers.
This flexibility compared to Gaussian processes is illustrated
in Fig. 2. As one can see, the variance of TP is significantly
larger than GP.

Modeling noise in time series with TPs is also an important
issue. In Bayesian modeling, it is common to model the noisy
observations as yt = ft + εt, where εt ∼ N(0, σ2

n) is inde-
pendent noise. When f follows a Student-t distribution, as in
our case, the model is unfortunately not analytically tractable.
To overcome this problem, the noise is modeled via integrat-
ing it into the base kernel k, see e.g. [Shah et al., 2014], i.e.,
k(t, t′) + σ2

nδ(t, t
′), where δ is the delta function.

Putting everything together, the joint distribution of a noisy
time series of length n can be defined as a multivariate

Student-t distribution MV Tn(ν,0,K + σ2
nI) =

Γ( ν+n2 )

((ν−2)π)
n
2 Γ( ν2 )

|K + σ2
nI|−

1
2 ×

(
1 +

yT (K+σ2
nI)

−1y
ν−2

)− ν+n2
(2)

where Γ and I denote Gamma function and identity matrix,
respectively.

3.2 Prediction of Normal Behaviors
After getting the underlying dynamics of the time series, rep-
resented as the function f , we can now estimate the normal
behavior of streaming time series in the near future. For-
mally, given the model and the observed noisy time series
y = {y1, . . . , yn} of length n, we predict the unknown value
f∗ at the next time t∗ ← n+ 1.

The predictive distribution of f∗ can be computed as fol-
lows. Based on the property of the TP, (y; f∗) follows a
(n + 1)-dimensional Student-t distribution with zero-mean
and covariance matrix[

K + σ2
nI k∗

kT∗ k∗,∗

]
where k∗,∗ = k(t∗, t∗) is the variance of the new function
value f∗, and k∗ is a column vector of size n, whose i’th
entry is k(ti, t∗). With this, the predictive distribution of f∗ is
analytically tractable [Roth, 2013]. More precisely, we have

p(f∗|y) = UV T
(
ν∗,m∗, σ

2
∗
)
, (3)

ν∗ = ν + n,m∗ = kT∗ (K + σ2
nI)−1y, σ2

∗ =
ν + β − 2

ν∗ − 2
σ2,

β = yT (K + σ2
nI)−1y, σ2 = k∗,∗ − kT∗ (K + σ2

nI)−1k∗ ,

where UV T denotes the univariate Student-t distribution.
One may notice that: the variance of f∗ depends on the ob-
served time series. The variance will increase when there are
anomalies in the observations. It is prudent for reducing false
alarm in anomaly detection.

However, the time series in many cases arrive as streams.
This makes batch mode computation prohibitively expensive.
In particular, at each time step t∗ > n, we have to perform the
one-step ahead prediction from scratch as described in (3).
To solve the problem, we develop an online prediction for
Student-t processes, which is inspired by that for Gaussian
processes [Osborne et al., 2012; Seeger, 2004].

Assume that we have performed a one-step ahead predic-
tion at time n + 1. Now the observation ynew at time n + 1
is newly available, and we want to make a prediction for the
next time step t∗ ← n + 2. The covariance matrix of the
totally n+ 1 observations ỹ = (y; ynew) can be written as

K̃ =

[
K + σ2

nI knew
kTnew knew,new + σ2

n

]
,

which updates the covariance matrix of the last time step by
just adding one column and one row with the covariance knew
between new and previous observations, and the variance
knew,new+σ2

n of the new observation. The covariance matrix
is then represented with Cholesky decomposition K̃ = L̃L̃T

with the Cholesky factor L̃ =

[
L 0

˜̀T
new

˜̀
new,new

]
, where
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˜̀
new is a column vector of size n, and L is the Cholesky fac-

tor of K + σ2
nI , computed in the last time step. Then we get

the online update with:
˜̀
new = L \ knew (4)

˜̀
new,new =

(
knew,new + σ2

n − ˜̀T
new

˜̀
new

)1/2

(5)

For computational efficiency and numerical stability, we use
auxiliary variables ã = L̃ \ ỹ and b̃ = L̃ \ k∗. The notation
x = A\c means solving the triangular systemAx = c by for-
ward substitution. Again we use incremental representation
ã ≡ (a; ãnew) and get

ãnew = (ynew − ˜̀T
newa)/˜̀

new,new. (6)

With the online updated variables the prediction can be com-
puted as:

m∗ = b̃T ã; σ2 = k∗,∗ − b̃T b̃; β̃ = ãT ã. (7)

The entire procedure of the online method for one-step
ahead prediction is summarized in Alg. 1. The method re-
duces the computational complexityO(n3) of the batch mode
to O(n2). As kernels decay quickly with increasing distance
d (see Fig. 1), the historical data can then be discarded and
we can keep a reasonable small n with good predictions.

Algorithm 1: Online one-step ahead prediction for
streaming time series

Input : ynew (newly available observation), y (previous
observations), knew (covariance between ynew
and y), k∗ (covariance between fn+2 and
y, ynew), knew,new (variance of fnew), k∗,∗
(variance of fn+2), σ2

n (noise variance)
˜̀
new = L \ knew ;

˜̀
new,new =

(
knew,new + σ2

n − ˜̀T
new

˜̀
new

)1/2

;

ãnew = (ynew − ˜̀T
newa)/˜̀

new,new;

L←
[
L 0

˜̀T
new

˜̀
new,new

]
, a←

[
a

ãnew

]
, b = L \ k∗;

β = aTa, m∗ = bTa, σ2
∗ = ν+β−2

ν+n−1 (k∗,∗ − bTb);
Output: m∗ (mean) and σ2

∗ (variance) of the one-step
ahead prediction.

3.3 Hyperparameter Estimation
The OLAD model is in a full Bayesian framework, the hyper-
parameters can then be estimated by optimizing a loss func-
tion that is generally defined as negative log-likelihood. In ad-
dition, we explore a stochastic gradient descent based method
for online parameter estimation.

We first estimate the hyperparameters by minimizing the
negative log-likelihood with gradient methods [Nadarajah
and Kotz, 2008]:

NLL ≡ −2 log p(y) = log
(
|K + σ2

nI|
)

+ n log(ν − 2)

+2 log
(
B
(ν

2
,
n

2

))
+ (ν + n) log

(
1 +

β

ν − 2

)
, (8)

where the constant terms are removed. The derivatives w.r.t.
the hyperparameters are computed as follows:

∂

∂θi
NLL = −Tr

((
ν∗

ν + β − 2
ααT −K−1

)
∂K

∂θi

)
∂

∂ν̂
NLL = n+ (ν − 2) log

(
1 +

β

ν − 2

)
− (ν + n)β

ν + β − 2

+ (ν − 2)

[
ψ
(ν

2

)
− ψ

(
ν + n

2

)]
with α = LT \ a, ν̂ = log(ν − 2). ψ is digamma function,
and θi denotes the i’th kernel parameter. We compute the
derivative w.r.t. ν̂, instead of ν, due to the constraint ν > 2.

With the success of deep learning, stochastic gradient de-
scent (SGD) method attracts increasing attention [Robbins
and Monro, 1951; Duchi et al., 2011; Hoffman et al., 2013].
Here we also develop an SGD-based method for online pa-
rameter estimation by sequentially fitting the newly arrived
observation. In the nonparametric Bayesian framework, the
loss function (8) is intractable with SGD as the observations
are not independent of each other (non-diagonal kernel ma-
trix). To solve the problem, we introduce a novel loss func-
tion: the negative log predictive likelihood of the new obser-
vation:

NLL ≡ −2 logP (y∗|y) = log(ν∗ − 2) + log(σ2
∗)

+ 2 log

(
B

(
ν∗
2
,

1

2

))
+ (ν∗ + 1) log

(
1 +

β∗
ν∗ − 2

)
with the corresponding derivatives computed as:

∂

∂θi
NLL =

∂β

(ν + β − 2)∂θi
+

∂σ2

σ2∂θi
+

ν∗ + 1

ν∗ + β∗ − 2

∂β∗
∂θi

∂β

∂θi
= −αT ∂K

∂θi
α,

∂σ2

∂θi
=
∂k∗,∗
∂θi

− 2cTb + γT
∂K

∂θi
γ

∂β∗
∂θi

= −2(y∗ −m∗)
σ2
∗

∂m∗
∂θi
− (y∗ −m∗)2

σ4
∗

∂σ2
∗

∂θi

∂m∗
∂θi

= cTa− γT ∂K
∂θi

α,
∂σ2
∗

∂θi
=

σ2

ν∗ − 2

∂β

∂θi
+
ν + β − 2

ν∗ − 2

∂σ2

∂θi

with γ = LT \ b and c = L \ (∂k∗/∂θi).

∂

∂ν̂
NLL = (ν − 2)

[
1

ν∗ − 2
+ ψ

(ν∗
2

)
− ψ

(
ν∗ + 1

2

)
+

σ2(n− β)

σ2
∗(ν∗ − 2)2

+ log

(
1 +

β∗
ν∗ − 2

)
− β∗(ν∗ + 1)

(ν∗ − 2)(ν∗ + β∗ − 2)

(
1 +

σ2(n− β)

σ2
∗(ν∗ − 2)

)]
The online method fits the time series in real time and can
even lead to some non-stationary effects in practice.

3.4 Detecting Anomalies in Streams
The OLAD provides a natural way to detect anomalies from
streaming time series. With historical data, the OLAD will
learn the underlying dynamics of time series resistant to out-
liers due to the robust inference property. The one-step ahead
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Table 1: Anomaly detection on the Yahoo data.

OLAD-1 OLAD-2 GPEVT GP HESD
p = 0.95 p = 0.93

AUC 0.7794 0.7821 0.6669 0.6708 0.7048 0.6764
R2 0.5570 0.5735 0.3232 0.3414 0.3333 —

forecast depending on the learned dynamics can be viewed
as the normality of the time series in the near future. If the
real observation deviates from the normality, then it will very
likely be an anomaly.

According to the predictive distribution p(f∗|y)—a one-
dimensional Student-t distribution—we can define a predic-
tive interval of a certain probability P , which means the real
observation will fall in the interval with a probability P . As
the predictive distribution is a heavy-tailed Student-t distribu-
tion, the predictive uncertainty will grow to match the poten-
tial anomalies in historical data. This will reduce the possi-
bility of false alarms in a data-driven fashion.

4 Empirical Analysis
We verify the proposed OLAD method on both real-world
and synthetic data. We first evaluate the performance of the
OLAD in an online anomaly detection scenario. The target
of the experiments is to find the anomalous events in real net-
work traffic data and financial data. The OLAD is compared
to several recent baselines. Then we conduct experiments to
further investigate the influence of outliers on different meth-
ods with synthetic data.

Experiments on network traffic data: We use the Ya-
hoo dataset of real network traffic to some of the Yahoo
services (https://webscope.sandbox.yahoo.com/catalog.php?
datatype=s&did=70). It consists of time series representing
the metrics of various Yahoo services with manually labeled
anomalies. In the experiments, we apply our method to de-
tect unusual traffic (anomalies) in data streams over time. In
particular, the experiment setup is as follows. For each time
series, the observations collected at the first T = 100 time
steps are viewed as initialization. At each time step t after the
initial period, we make a one-step ahead prediction for the
next step t + 1 using the OLAD method. The prediction is a
Student-t distribution with the mean m∗ and the variance σ2

∗
(see Sec. 3.2). If the real observation yt+1 fells far outside
the 99.99% predictive interval, then the observation at time
t + 1 is identified as an anomaly event. The OLAD parame-
ters is learned with the two developed methods (see Sec. 3.3),
denoted as OLAD-1 and OLAD-2 respectively. We compare
the OLAD with the following state-of-the-art methods:

• HESD [Vallis et al., 2014]: Twitter Anomaly Detection
is based on time series decomposition and robust sta-
tistical metrics together with the generalized ESD test
(https://github.com/twitter/AnomalyDetection).

• GPEVT [Smith et al., 2012]: Combine GPs and extreme
value theory to detect anomalies in time series. The au-
thors suggested to use the novelty threshold p = 0.95.
We tested different values p ∈ {0.91 . . . 0.99}, and
found the best results at p = 0.93.

(a) AUC = 0.9489; MAE = 579.8619

(b) AUC = 0.8579; MAE = 1027.2761

Figure 3: Detected anomalies from the Yahoo data.

• GP [Rasmussen and Williams, 2006]: Use GPs to cap-
ture normal patterns of time series.

To compare the performance of these approaches, we plot the
ROC curves of the anomaly detection results, and then mea-
sure them with the area-under-the-curve (AUC). The criteria
is commonly used in anomaly detection, see e.g. [Smith et
al., 2012]. In addition, we compare the methods in terms of
coefficient of determination (R2) since they detect anomalies
based on predictions of the future behaviors of the stream-
ing time series. Table 1 summarizes the experimental results
averaged over randomly selected 20 time series. The R2 is
unavailable for the HESD method since the Twitter Anomaly
Detection package does not provide the prediction results as
outputs. Here we use R2, rather than MAE (mean absolute
error) or RMSE (root mean squared error), to measure the
predictive performance as the time series range differently,
and it makes no sense to report averaged MAE or RMSE.
From the experimental results, one can find that the OLAD
provides better results with respect to anomaly detection and
prediction of the future behaviors of time series. We further
illustrate the results in Fig. 3 with two examples. It reveals
that the proposed method can effectively detect anomalous
traffic in streaming time series.

Experiments on financial data: We also validate the
OLAD method with the S&P 500 index data (https://fred.
stlouisfed.org/series/SP500) from January 2012 to January
2017. In Fig. 4, the top plot shows the predicted index with
MAE = 16.3763 and R2 = 0.9892. The bottom plot shows
the anomaly scores. Since the dataset has no labeled anoma-
lies, we perform a qualitative analysis on the detected anoma-
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Figure 4: Detected anomalies from S&P 500 index data. The re-
sults coincide with the important events, e.g., (a) Apr 2013, Greece
reaches bailout agreement (b) Jun 2013, Fed hints at winding down
stimulus program (c) Jan 2014, currency crises in emerging market
(d) Oct 2014, weak US retail and manufacturing data (e) Dec 2014,
crude oil prices fall sharply (f) Aug 2015, Chinese yuan devaluation
(g) Dec 2015, ECB expands stimulus package (h) Jun 2016, UK
votes to leave EU.

Table 2: Prediction with the OLAD and the GP methods.

Outliers MAE RMSE R2

GP OLAD GP OLAD GP OLAD
0 0.0140 0.0123 0.0245 0.0234 0.9991 0.9992
1 0.1205 0.1217 0.2190 0.2181 0.9317 0.9322
2 0.5128 0.1476 0.6346 0.2138 0.4263 0.9349
3 0.6515 0.1918 0.7730 0.2334 0.1488 0.9224
4 0.6762 0.2545 0.8002 0.3245 0.0879 0.8500
5 0.7329 0.4031 0.8523 0.6927 0 0.3164

lies. We find that the results are quite interpretable and nicely
coincide with the significant events with regard to the stock
market (marked in the figure for large scores). For example,
the detected recent anomalies are related to Brexit in June
2016, the ECB’s stimulus package in December 2015, and
the Chinese Yuan devaluation in August 2015.

Experiments on synthetic data: We further conduct some
supplementary experiments to evaluate the predictive perfor-
mance of the OLAD method in learning the underlying dy-
namics of the contaminated time series with the simulated
data. This is important for anomaly detection methods, which
rely on the learned normal patterns to identify the deviation
from the normality. We simulate the synthetic time series us-
ing Gaussian process with zero mean and squared exponential
kernel. The time series sampled from a GP are more flexible
to approach the complex real situations. In the simulation,
we set the parameters of the kernel function as: ρ = 1.0 and
` = exp(2.0). The length of the time series was n = 100.
We assume 30 time steps observed, and predict the remaining
part of the time series. For the observed time steps, we ran-
domly add m = 0, 1, . . . , 5 outliers. We compare the OLAD
with the GP method, as it is the state-of-the-art in the litera-
ture, which achieves excellent performance in modeling time
series, and the baseline GPEVT used in the last experiments
is also based on the GP prediction. Since Twitter’s Anomaly
Detection package mainly focuses on anomaly detection and
does not provide the time series predictions as outputs, it is
not used as a baseline in this experiment. We measure the

Figure 5: Prediction with OLAD (left) and GP (right) methods for
time series (dashed lines) with different number of outliers. The
shaded regions are the 95% predictive intervals.

prediction results of the methods using MAE, RMSE andR2.
Table 2 summarizes the results averaged over 10 reruns. The
results reveal that OLAD achieves comparable or better per-
formance compared to the baseline GP, especially when time
series are contaminated with anomalies. The degeneration of
the predictive distribution of the GP with increasing number
of outliers is mainly due to its weak robustness to outliers.
With the same initial hyperparameter settings, the GP con-
verges to reasonable hyperparameters and provides good pre-
dictions when there are few outliers, but degenerates when the
number of outliers increases. The results are also illustrated
in Fig. 5. One can see the OLAD captures the dynamics of
time series in complex situations.

5 Conclusion
This paper presents an online nonparametric Bayesian
method OLAD for detecting anomalous behavior in stream-
ing time series. We develop a new and efficient stochastic on-
line learning approach to capture temporal dynamics of time
series, and estimate the predictive distribution of observations
over time. OLAD also provides flexible and robust infer-
ence on anomaly-contaminated time series due to the heavy-
tail property, and thus effectively identifies anomalous events.
This advantage is of practical importance in the incremental
learning process. Empirical analysis on both real and syn-
thetic data shows promising results. There are many interest-
ing avenues for future work such as extending the method to
multivariate time series with complex correlations.
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