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Abstract

Recent years have witnessed the rapid developmen-
t of machine learning in solving artificial intelli-
gence (AI) tasks in many domains, including trans-
lation, speech, image, etc. Within these domains,
AI tasks are usually not independent. As a specif-
ic type of relationship, structural duality does exist
between many pairs of AI tasks, such as transla-
tion from one language to another vs. its opposite
direction, speech recognition vs. speech syntheti-
zation, image classification vs. image generation,
etc. The importance of such duality has been mag-
nified by some recent studies, which revealed that
it can boost the learning of two tasks in the dual
form. However, there has been little investigation
on how to leverage this invaluable relationship in-
to the inference stage of AI tasks. In this paper,
we propose a general framework of dual inference
which can take advantage of both existing models
from two dual tasks, without re-training, to conduct
inference for one individual task. Empirical stud-
ies on three pairs of specific dual tasks, including
machine translation, sentiment analysis, and image
processing have illustrated that dual inference can
significantly improve the performance of each of
individual tasks.

1 Introduction
Due to the splendid power of mining big data, machine learn-
ing algorithms have played a critical role in solving artificial
intelligence (AI) tasks in many practical domains, including
machine translation, speech analysis, image processing, etc.
Various particular AI tasks, though different in their goals and
formations, are usually not independent and yield diverse re-
lationships between each other within each domain. Among
them, structural duality emerges as one of the important rela-
tionships. Two AI tasks are of structure duality if the goal of
one task is to learn a function mapping from space X to Y ,
the other’s goal is to learn a reverse mapping from Y and X .

∗This work was done when the first author was an intern at Mi-
crosoft Research Asia.

Note that we could call either of these two tasks as the primal
task and the other as the dual one.

Duality does exist between many pairs of AI tasks in real-
world. For example, machine translation [Wu et al., 2016]
from one language to another, e.g., English-to-French, and
that of the opposite direction, e.g. French-to-English, form up
a typical dual form; speech recognition [Graves et al., 2013;
Amodei et al., 2016] and speech generation/synthesis [Oord
et al., 2016] constitute a duality in the domain of speech
processing; besides, a specific pair of dual tasks in face at-
tribute manipulation can be comprised of the task of remov-
ing glass from face and that of wearing glass to face [Shen
and Liu, 2016]. Beyond, advanced deep learning algorithm-
s can formulate those pairs of tasks without explicit duality,
such as image classification [He et al., 2016b; 2016c] and
conditional image generation [van den Oord et al., 2016b;
2016a], into the dual form.

As common in real-world applications, the duality can pro-
vide vital knowledge for enhancing learning tasks. A recent
study [He et al., 2016a] has magnified its importance by intro-
ducing a new dual learning framework to boost the learning
of two tasks in the dual form. In particular, by leveraging un-
labeled data, this work exploited the structure duality in ma-
chine translation to design a two-player game with a closed-
loop feedback system as a dual Neural Machine Translation
(dual-NMT) algorithm. [Xia et al., 2017] explored duality for
supervised learning, whose idea is to increase the probabilis-
tic consistency of the two dual tasks. Another effort [Shen
and Liu, 2016] attempted to combine duality with adversarial
training to improve the performance of face attribute manip-
ulation.

To the best of our knowledge, all existing studies regarding
the duality focus on utilizing it to boost the training process
so as to obtain more powerful models. However, there has
been little investigation on how to leverage this invaluable
relationship into the inference stage of AI tasks. Intuitive-
ly, we have high confidence to judge y is a good output for
the input x in the primal task, if x is a good output for y in
the dual task. Therefore, in this paper, we propose a gener-
al framework of dual inference which can take advantage of
both existing models from two dual tasks, without re-training,
to conduct inference for each individual task.

To better illustrate the high effectiveness of dual inference,
we apply it into dual AI tasks in three particular domains:
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(1) Neural Machine Translation (NMT): Translation from a
source language into a target language naturally yields a dual
task of inverse translation from the target to the source. N-
MT, emerging as widely-used approach, employs a Recurrent
Neural Network based encoder-decoder framework to model
the probability of a sentence in target language conditioned
on the sentence in source one.
(2) Sentiment Analysis: Sentiment classification, aiming at
predict the sentiment label of sentences, is a popular primal
task in the domain of sentiment analysis. The corresponding
dual task, is indeed sentence generation, whose objective is
to automatically generate sentences based on a pre-designed
sentiment.
(3) Image Processing: Image classification, the goal of which
is to predict the label of an image, is one of major AI tasks
in the domain of image processing. The dual task of image
classification is obviously image generation, which is an e-
merging AI task to automatically generate images based on
category labels.

Empirical studies on dual tasks under these three specif-
ic domains have shown that dual inference can significant-
ly improve the inference performance of each of individual
tasks. We would like to point out that such improvement are
achieved without changing/re-training the original primal and
dual models. Moreover, we provide theoretical discussions to
provide better understanding on dual inference.

2 Dual Inference Framework
As structural duality is popular and yields important knowl-
edge is many AI applications, in this section, we propose
a general framework of dual inference to leverage existing
models of both dual tasks for better inference for each indi-
vidual task.

Assume there are two tasks in the dual form in a particular
AI application. We use f : X 7→ Y to denote the model for
the primal task which is a mapping from space X to space Y ,
and use g : Y 7→ X to denote the model for the dual task1.
The loss functions corresponding to f and g are represented
as `f (x, y) and `g(x, y), respectively, which are mappings
from the product space X × Y to R.

There are various potential rules to formulate duality in-
to the dual inference framework. In this paper, we employ a
most natural and straightforward approach, which first com-
bines the loss functions of the primal task and the dual task
and then selects the output that can minimize the combined
loss as the inference result. More formally, we have follow-
ing dual inference equations for the primal and dual task, re-
spectively:

fdual(x) = arg min
y′∈Y
{α`f (x, y′) + (1− α)`g(x, y

′)}, (1)

gdual(y) = arg min
x′∈X
{β`g(x′, y) + (1− β)`f (x′, y)}, (2)

where α and β are hyperparameters to balance the tradeoff
between two losses, and they will be tuned based on perfor-

1There are some tasks like generating images from a given label.
In this case, usually the mapping function g needs additional inputs,
e.g., random vectors. With a little confusion, we still say that g maps
the points in Y to X .

mance on a validation set. Note that we do not re-train or
make any change on the models of both primal and dual tasks.

Most of inference rules, currently widely-used in machine
learning tasks, can be described as below.

f(x) = arg min
y′∈Y

`f (x, y′); g(y) = arg min
x′∈X

`g(x
′, y). (3)

which are extreme cases in dual inference by setting α and β
to one. From this perspective, dual inference can be viewed
as a more general inference framework.

Note that, a branch of inference rules using multiple mod-
els correspond to the ensemble [Opitz and Maclin, 1999]
methods. However, dual inference yields a crucial difference
from the ensemble. In particular, all models in an ensemble
framework follow the same mapping direction, thus they can
only serve for either the primal or the dual task, whilst the
two models applied in the dual inference framework serve for
both the primal and the dual tasks with opposite mapping di-
rections, simultaneously.

To gain better understanding of dual inference, in the fol-
lowing, we apply this new framework into dual AI tasks in
three particular domains and conduct corresponding empiri-
cal studies to examine the effectiveness of dual inference.

3 Neural Machine Translation
Structural duality apparently exists in the scenario of machine
translation. Specifically, translation from a source language
into a target language naturally yields a dual task of inverse
translation from the target to the source. As a state-of-the-art
approach, neural machine translation (NMT) is a deep learn-
ing based end to end approach for machine translation. NMT
models the conditional probability P (y|x; θ) of a sentence y
in target language given a sentence x in source language, and
the parameter θ is learned based on the training data consist-
ing of a set of bilingual sentence pairs. During the typical
inference step, given a source sentence x, NMT finds the tar-
get sentence y with largest conditional probability P (y|x; θ)
as the translation of x. Since the number of candidate tar-
get sentences is exponentially large, it usually employs beam
search to find a reasonable target y more efficiently.

Due to the natural existence in NMT, structural duality has
been exploited into the learning process of NMT [He et al.,
2016a]. However, there has been little investigation on how to
leverage duality into the inference stage. Hence, we will ex-
amine how to apply dual inference into NMT in the following
of this section.

3.1 Dual Inference for NMT
Let f denote the machine translation model from language
X to Y and let g denote that from Y to X . Following the
widely used work [Bahdanau et al., 2015], the loss functions
used for inference in two directions, represented as `f and
`g respectively, are specialized as negative log-likelihood in
machine translation. Mathematically,

`f (x, y)=− logP (y|x; f), `g(x, y)=− logP (x|y; g), (4)

The dual inference for the primal task of neural machine
translation is shown as follows:
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1. Translate source x with beam search by model f and get
K candidates ŷi i ∈ [K]; (K is beam size)

2. i∗ = arg mini∈[K] α`f (x, ŷi) + (1−α)`g(x, ŷi), where
`f and `g are defined in Eqn.(4)

3. Return ŷi∗ as the translation of x.

Since the primal task and the dual one are of equal position
in machine translation, the dual inference algorithm for the
dual task can be defined in the same way, and we only show
the algorithm for the primal task due to the limited space.

3.2 Experimental Setup
In this paper, we conduct empirical studies on the translation
between English↔German (briefly, En↔De) and that be-
tween English↔French (briefly, En↔Fr). To train the primal
and the dual translation models for each language pair, we
rely on the same datasets as those used in [Jean et al., 2015;
He et al., 2016a]. To be more concrete, the bilingual train-
ing data are part of WMT’14, consisting of 4.5M for En↔De
and 12M for En↔Fr sentences pairs, respectively. We con-
catenate newstest2012 and newstest2013 as the validation sets
and use newstest2014 as the test sets2. We employ two train-
ing methods, as described below, to obtain the NMT models:
• RNNSearch represents the standard sequence-to-

sequence training method as introduced in [Bahdanau et
al., 2015; Jean et al., 2015].
• dual-NMT denotes the dual learning as that proposed

in [He et al., 2016a].
The translation qualities are evaluated by tokenized case-
sensitive BLEU [Papineni et al., 2002] scores calculated by3

multi-bleu.pl. The larger BLEU is, the better the translation
quality is.

3.3 Results of NMT
Figure 1 shows the BLEU scores by dual inference, under
varying parameter settings, of En↔De translation models
trained by RNNSearch. (Figures for En↔Fr are omitted due
to space limitation.) In this figure, the red curves represent
the results on the validation sets while the green ones denote
those on the test sets. From this figure, we can see that du-
al inference can outperform the standard inference rule, i.e.,
α = 1 or β = 1, in a wide value range of α and β.

Table 1 compares the BLEU scores by various inference
methods of two different types of translation models. In this
table, column “Standard” represents the results obtained by s-
tandard inference rule, whereα and β are set as 1, column “D-
ual” denotes the results of dual inference, and column “∆” in-
dicates the increase in BLEU. From this table, we can observe
that the dual inference can give rise to significant improve-
ment on most of tasks, especially on the En→De. Further-
more, we can also find that the improvements on dual-NMT
models are smaller compared to those without dual-training,
due to that dual-NMT already integrate duality knowledge in-
to the translation model.

2Data from http://www.statmt.org/wmt14/translation-task.html
3https://github.com/moses-smt/mosesdecoder/blob/master/

scripts/generic/multi-bleu.perl
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Figure 1: BLEU scores by dual inference of En↔De models trained
by RNNSearch for varying settings of α / β

Model Task Standard Dual ∆

RNNSearch

En→De 16.54 17.53 0.99
De→En 20.69 21.17 0.48
En→Fr 29.92 30.45 0.53
Fr→En 27.49 27.86 0.37

dual-NMT

En→De 18.49 18.96 0.47
De→En 22.14 22.37 0.23
En→Fr 32.06 32.26 0.20
Fr→En 29.78 30.34 0.56

Table 1: BLEU scores with varying inference models and varying
training methods for machine translation

One may notice that in Figure 1(a), the BLEU scores at
α = 0 (corresponding to the dual model) outperform those
at α = 1 (corresponding to the primal model). This does not
mean that the dual model is better than the primal model for
the primal task. The reason is that, when α = 0, we first
use the primal model to generate several candidate transla-
tions (through beam search), and then re-rank the candidates
using the dual model. That is, α = 0 actually uses both the
primal and dual models. Therefore, it is possible that α = 0
outperforms α = 1 (using the primal model only).
Case study
In the following, we leverage a specific example in De→En
translation to illustrate how dual inference can improve the
performance of NMT. Let y denote the German sentence,
x1 and x2 denote 2 out of 12 candidates generated by beam
search, x∗ represent the ground-truth translation. Then, let f
denote the En→De model and g denote the De→En model.
The examples and the loss of corresponding sentence pairs
are shown in Table 2.

y Das System schafft die Gefahr , die es bekämpft .
x1 The system is in danger of being tackled .
x2 The system creates the risk that it is fighting against .
x∗ The system creates the threat that it is fighting against .

`g(x1, y) = 5.15; `g(x2, y) = 7.92;
`f (x1, y) = 34.05; `f (x2, y) = 12.28;

Table 2: Examples & loss in the case study

After using dual inference, the losses will be

β`g(x1, y) + (1− β)`f (x1, y) = 13.82,where β = 0.7;

β`g(x2, y) + (1− β)`f (x2, y) = 9.23,where β = 0.7;
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From these results, we can find that, standard inference rule
prefers x1 which is, however, quite a bad translation; in con-
trast, dual inference, by considering the probabilities of both
directions, tends to boost a better translation.
Discussions about NMT with reconstruction
An intuitive explanation of the magic of dual inference lies
in that it leverages the reconstruction ability, which indicates
that a matched pair (x, y) should not only get smaller loss
for primal task, but also for dual task. The similar idea is al-
so used for NMT by [Tu et al., 2017]. In that work, for any
sentence pair (x, y), the training objective is re-designed to
minimize `rec = logP(y|x, θ) + logP(x|s, γ), where θ and γ
are the parameters to learn, and s is a hidden representation
related to x and y. The inference phase in that work consists
of first using model θ to generate K candidates and then se-
lecting the sentence that can minimize `rec. The reconstructor
γ is only served for θ without capability to make translations
by itself. On the contrary, in the dual inference framework,
the translation models of two directions can both make trans-
lations and can be trained individually. Furthermore, dual in-
ference can improve the performance for both f and g, which
makes it quite different from the work in [Tu et al., 2017].

4 Sentiment Analysis
Although not very explicit, there exists duality in the domain
of sentiment analysis. Particularly, sentiment classification
and sentence generation comprise two AI tasks in the dual
form. On one hand, the goal of the primal task, i.e. sentiment
classification, is to classify the polarity of given natural lan-
guage sentences. The dual task, on the other hand, aims at
automatically generating sentences with the certain polarity
class of sentiment.

The widely-used approach for sentiment classification usu-
ally takes advantage of LSTM based RNN [Dai and Le,
2015], in which a sentence is encoded word by word such
that it is eventually transformed into a hidden representation,
then the hidden representation is used as the input to a fully-
connected neural networks to predict a polarity label.

Meanwhile, a typical sentence generation approach, in-
spired by [Wang and Cho, 2015], is designed as follows: two
sentiment labels are first projected into a certain size of senti-
ment embedding, which will then become the input of LSTM
cells. More formally, let x denote the sentence (with the t-th
word denoted as xt) and y denote the sentiment label. The
LSTM cell takes W e

wEwxt−1 + W e
sEsy and ht−1 as input-

s and outputs ht, where E represents the embedding matrix,
W denotes the connection between the embedding layer and
LSTM cells, ht−1 and ht denote the hidden states at timestep
t − 1 and t. Sentences will be generated word-by-word and
the probability that a specific word xt is generated is propor-
tional to exp(W d

wEwxt−1+W d
s Esy+Whht). Note thatW ’s

and the E’s are the parameters to learn.

4.1 Dual Inference for Sentiment Analysis
Let f denote the sentiment classification model and g denote
the sentence generation model. Let `f and `g represent the
negative log-likelihood. Still,

`f (x, y)=− logP (y|x; f), `g(x, y)=− logP (x|y; g), (5)

Model Standard Dual ∆
Mw2v 10.10 8.31 1.79
MLM 7.76 7.15 0.61

Table 3: Comparison of classification error (%)
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Figure 2: IMDB classification error with using dual inference

where x and y are sentence and sentiment label respectively.
For the sentiment classification task, we can replace the `f
and `g in Eqn.(1) with those in (5). For the sentence genera-
tion task, we still follow the similar dual inference approach
as in NMT, by using which K candidates will be generated
first and the best one will be selected jointly by the sentiment
classifier and sentence generator.

4.2 Experimental Setup
To conduct our empirical studies, we use the IMDB movie
review dataset [Maas et al., 2011]4, which consists of 25K
training sentences and 25K test sentences. We split 3750 sen-
tences from the training as the validation set. During learning,
we set 500 dimension embedding size and 1024 dimension
hidden node size. As proposed by [Dai and Le, 2015], there
are two ways to initialize the classifiers:
(1) Mw2v: The embedding matrix is initialized by a pre-
trained word embedding matrix;
(2) MLM: The classifier is initialized by a pre-trained lan-
guage model.

Note that when training MLM, we can leverage a great
amount of unlabeled data, by using which can drastically re-
duce the error of sentiment classification.

4.3 Results of Sentiment Classification
Table 3 compares the accuracy of sentiment classification by
using standard inference rule against using dual inference.
From this table, we can find that dual inference can result
in better performance for both classifiers with separate ini-
tialization methods.

Moreover, Figure 2 demonstrates the validation/test curves
of the sentiment classifier with using dual inference. The s-
mall figure is the valid/test curve over a wider range [0, 1],
while we zoom in the [0, 0.1] region in the larger figure. From

4http://ai.stanford.edu/˜amaas/data/sentiment/
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this figure, we can find that the dual inference can give rise to
better classification accuracy in a wide ranges than standard
inference rules.

4.4 Results of Sentence Generation
To illustrate the effectiveness of dual inference on boosting
the performance of sentence generation, we show some ex-
ample sentences generated based on standard inference rules
and dual inference respectively in Table 4.

From this table, we can find that standard inference rules
tend to generate sentences of high-frequency in the training
data, such as “the plot is...”, as well as those with strong sen-
timent but using quite common style phrases, such as “it was
so bad”. We hypothesize the main reason of which is that the
sentence generation model g follows the language modeling
approach. Meanwhile, we highlight those sentences boosted
by dual task, i.e. the classifier f , in Table 4. We can observe
that, in order to achieve lower classification error in dual in-
ference, the classifier f not only prefers to phrases with strong
sentiment like “i love this movie” but also favors those cov-
ering more delicate aspects and modes, such as “I give it 2
out of 10”. All these examples have obviously illustrated the
strength of dual inference in improving sentence generation.

[Standard] this movie is one of the funniest movies i have ever
Positive seen. the acting is great, the plot is simple. it is

one of the best movies i’ve seen in a long time.
[Dual] i love this movie. i watched it over and over again

Positive and i have to say that it is one of the best movies
i’ve seen in a long time. the plot is simple, the
acting is great. if you are looking for a good
movie, go to see this movie.

[Standard] when i first saw this movie, i thought it was going
Negative to be funny, but it didn’t. it was so bad, i didn’t

think it was going to be funny. the only thing i
can say about this movie is that it is so bad
that it’s not funny.

[Dual] i give it 2 out of 10 because , it’s the worst movie i
Negative have ever seen . the only thing i can say about this

movie is that it is so bad that it makes no sense at
all . don’t waste your time .

Table 4: Sentences generated by standard / dual inference

5 Image Processing
An important duality relationship bridges between two major
tasks, i.e. image classification and image generation. In par-
ticular, image classification aims at predicting the semantic
category label of an image. Most recently, image classifica-
tion modeling, driven by deep learning, has attracted world-
wide research efforts, and some state-of-the-art work includes
NIN [Lin et al., 2014], DSN [Lee et al., 2015], ResNet [He
et al., 2016b] and WRN [Zagoruyko and Komodakis, 2016].
On the other hand, the corresponding dual task, image gener-
ation, targets automatically generating images based on cat-
egory labels. More formally, let x denote an N -pixel im-
age with the ith pixel xi, y denote the category label. The

inherent problem of an image generator is indeed to model
the image distribution, which is

∏N
i=1 P (xi|x<i, y). PixelC-

NN++ [Salimans et al., 2017] is a representative model for
image generation and achieves state-of-the-art performance.
Note that, the detailed dual inference approaches for above
two tasks are similar to those for sentiment analysis tasks as
described above. Therefore, we skip the details of them due
to the limited space.

5.1 Experimental Setup
In this paper, we use CIFAR-10 dataset in the experiments re-
garding image processing. We split 5k images away from the
training data as the validation set. Two state-of-the-art clas-
sifiers, including the 110 layer ResNet [He et al., 2016b] and
the WRN-40-10 proposed in [Zagoruyko and Komodakis,
2016], are used to verify the effects of dual inference on their
performance. Meanwhile, we choose PixelCNN++ [Salimans
et al., 2017] as the approach to model image generation. Note
that PixelCNN++ enables to take a one-hot label as the input
and output an image with respect to the given category. De-
tails of above three models can be referred in the correspond-
ing literature.

5.2 Results of Image Classification
Table 5 shows the error rate of two image classifiers with
varying inference methods. From this table, we can find that,
despite that ResNet-110 and WRN-40-10 are strong models
in image classification as they have reached quite low errors,
dual inference can still improve their performances, which
indeed emphasizes the strength of dual inference.

Model Standard Dual ∆
ResNet-110 6.46 5.98 0.48
WRN-40-10 3.86 3.68 0.18

Table 5: Error rates (%) of with varying inference methods.
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Figure 3: Classification result comparison between different infer-
ence methods on an example image. In the legends, x refers to the
image, and y refers to the label.

Figure 3 compares the classification result between differ-
ent inference methods on an example image. The selected
input image in this experiment belongs to category 3. From
this figure, we can find that, by using standard inference rules,
this image will be misclassified into category 8. However, du-
al inference can make the right decision since it considers the
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conditional probability of the image conditioned on different
labels during inference process.

5.3 Results of Image Generation
Figure 4 compares the results of image generation by using
standard inference rule and that by applying dual inference.
Each row in this figure corresponds to a specific category of
generated images. The left five columns contain the results by
using standard inference rule, which picks the top-5 images
with minimal test negative log-likelihood, while the right five
includes the results by applying dual inference.

Figure 4: Image generated by standard / dual inference

From this figure, we can find that, dual inference tends to
generate much clearer images, especially for the category of
plane, dog, and ship. An interesting observation is that the
standard inference (i.e., the vanilla inference) often prefers to
generating blurred images, while the dual inference is capable
of filtering out such images.

6 Discussions
We observe that the performance of dual inference does not
highly depend on the model structures of the two dual tasks:
(1) In NMT, the network structures of f and g are the same,
i.e., bidirectional GRUs; (2) In sentiment analysis, the clas-
sifier (i.e., LSTM+sigmoid) and the sentence generator (i.e.,
LSTM+softmax) share some basic structures; (3) In image
processing, the classifier (i.e., ResNet) and the image gener-
ator (i.e., PixelCNN++) are quite different. Dual inference
works well on all these three situations.

The experiments in the above three sections show that dual
inference can give rise to significant improvements for both
of dual tasks. In the remaining part of this section, we provide
some simple theoretical discussions for dual inference.

Let ϕf denote 1 − `f and let ϕg denote 1 − `g . We
make two assumptions for theoretical analysis: (i) Y =

{1, 2, · · · , c} where c ≥ 2; (ii) For any x ∈ X and y ∈ Y ,
ϕf (x, y) ∈ [0, 1] and ϕg(x, y) ∈ [0, 1]. We further define
ϕ as αϕf + (1 − α)ϕg . The margin ρ(x, y) is defined as
ϕ(x, y) − maxy′ 6=y ϕ(x, y′). Thus, ϕ misclassifies (x, y) if-
f ρ(x,y) ≤ 0. We assume that training and test samples are
drawn i.i.d. according to some distribution D over X × Y
and denote by S = ((x1, y1), ..., (xm, ym)) a training set of
size m drawn i.i.d according to D. For any ρ > 0, the gener-
alization error R(ϕ) and its empirical margin error R̂S,ρ are
defined as follows:

R(ϕ) = E(x,y)∼D[1{ρϕ(x, y) ≤ 0}];

R̂S,ρ = (1/m)
∑m
i=1[1{ρϕ(xi, yi) ≤ ρ}].

(6)

Following [Kuznetsov et al., 2014], for any family of hy-
pothesis G mapping X × Y to R, we define Π1(G) as

Π1(G) = {x 7→ h(x, y) : y ∈ Y, h ∈ G}. (7)

Let Hf and Hg denote the two hypothesis spaces of ϕf and
ϕg . Let Rm(·) denote the Rademacher complexity [Bartlet-
t and Mendelson, 2002]. We leverage the Theorem 1 in
[Kuznetsov et al., 2014], further optimize it under our set-
tings, and obtain the following theorem:
Theorem 1. Fix ρ > 0, for any δ > 0, with probability at
least 1−δ over the choice of a training set S of size m drawn
i.i.d. according to D, the following inequality holds:

R(ϕ) ≤ R̂S,ρ(ϕ)+
8c

ρ

(
αRm(Π1(Hf )) + (1− α)Rm(Π1(Hg))

)
+

1

ρ

√
2

m
+

√
1

2m
log
(
d 4

ρ2
log(

mc2ρ2

2
)e+ 1

)
+

1

2m
log

1

δ
.

The above theorem shows that the generalization bound of
dual inference is related to the Rademacher complexities of
both Hf and Hg , and the hyper-parameter α also plays an
important role in the bound.

7 Conclusion
In this work, we have proposed a general framework of du-
al inference which enables dual tasks to boost each other in
the inference stage according to the valuable structure duality
widely-existed in AI applications. Empirical studies on three
pairs of specific dual tasks have revealed that dual inference
can efficiently improve the performance of both tasks.

In the future, we will explore better dual inference rules,
which can more efficiently explore the power of two dual
models. Moreover, we will enrich the theoretical analysis for
dual inference. Finally, we will investigate how to feed the
signal provided by the dual inference back to dual learning
(i.e., dual training) so as to induce more powerful learning
paradigms.
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