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Abstract

In this talk, I will focus on the applications and the
latest development of deep learning technologies at
Alibaba. More specifically, I will discuss (a) how
to handle high dimensional data in deep learning
and its application to recommender system, (b) the
development of deep learning models for transfer
learning and its application to image classification,
(c) the development of combinatorial optimization
techniques for DNN model compression and its ap-
plication to large-scale image classification and ob-
ject detection, and (d) the exploration of deep learn-
ing technique for combinatorial optimization and
its application to the packing problem in shipping
industry. I will conclude my talk with a discussion
of new directions for deep learning that are under
development at Alibaba.

1 Introduction

The last decade has witnessed great success of deep learn-
ing in multiple domains, including speech recognition, image
classification, and video content analysis. Despite the amaz-
ing progress, we also run into many challenges when coming
to practical applications of deep learning technologies. In this
talk, we would like to share some of the key developments of
deep learning at Alibaba that explicitly address limitations of
the existing deep learning techniques.

The first challenge is how to deal with very high dimen-
sional but sparse data in deep learning. This is because typi-
cally, in deep learning, we need to learn either a conventional
layer or a fully connected layer that maps the input data into a
lower dimensional representation. When coming to the repre-
sentation of hundreds of millions of features, it becomes com-
putationally expensive to learn such a mapping layer, making
it difficult to fully explore the power of deep learning. In
Section 2, we address this challenge by developing a novel
framework for deep learning that explicitly handles the com-
putational challenge with very high dimensional data.

The second challenge is related to transfer learning. Al-
though numerous studies are devoted to exploring deep learn-
ing technique for transfer learning, they usually assume a rel-
atively small difference between the source domain and the
target domain. In contrast, for many applications of transfer
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learning at Alibaba, a very significant difference exists be-
tween the source domain and the target domain. As a result,
a simple fine tune based approach did not work well. To this
end, in Section 3, we propose to learn an explicit transform,
from limited data, that explicitly relates instances from the
source domain to those from the target domain.

The third challenge is how to compress a large complicat-
ed deep learning model into a smaller one without losing its
prediction power. This has been a popular topic in the recent
studies of deep learning. To reduce the complexity of deep
learning model, a common approach is to search for a neural
network with discrete weights. Although multiple algorithms
have been developed to compress large deep learning models,
they often failed to deliver the desire performance when com-
ing to construct neural networks with weights represented by
only two or three bits. In Section 4, we address this challenge
by developing an optimization technique, based on the idea
of extra gradient descent, that can significantly facilitate the
search of a neural network with discrete weights.

The last subject to be addressed in this talk is how to
explore reinforcement learning techniques for discrete op-
timization. Although the idea of exploring neural network
techniques in combinatorial optimization is not new at all, it
has not generated exciting results, mostly due to the limited
performance of neural network. We explore machine learning
techniques for combinatorial optimization by learning an ap-
propriate search policy from the long term awards. In Section
5, we will share some of the promising results when applied
the reinforcement learning technique to 3D bin packing prob-
lems.

In Section 6, we will conclude this talk by looking at the
latest development of deep learning at Alibaba.

2 Deep Learning with Very High Dimensional
Inputs

Alibaba Group has one of the world’s largest online shopping
platforms. The recommender system plays an important role
at Alibaba e-commerce platform because it is able to display
the most valuable items that fit in the needs of individual cus-
tomers. To make an accurate estimation of users’ needs at
any moment, an effective online recommender system needs
to take into account user profiles, the context information of
the scenarios, and the real-time feedback collected from indi-
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vidual users. In addition, most recommender systems have to
ensure the diversity of displayed items in order to maximize
user experience.

Generalized linear models (e.g. logistic regression ) are
widely used in online recommender systems, where con-
sumers are often represented by their ages, genders, living
locations and user group ids, while merchants are usually de-
scribed by their categories, sellers, brands and item ids. Since
most features are represented by one-hot coding, we often end
up with a representation of hundreds of millions of binary fea-
tures in order to accurately predict the probability for an user
to click on a specific item in a given scenario.

Despite the great success of generalized linear model for
modeling click through rate (CTR), it often failed to yield ac-
curate prediction for items with limited sales [Cheng er al.,
2016]. This is because feature engineering is usually well de-
signed for those popular items but not for items with limited
sales. For instance, a cross-product transformation is often in-
troduced to model the interaction between the binary features
of user and merchants. But, due to the limitation of memo-
ry, only the cross-products with respect to popular items are
computed for the feature vector, while cross-product features
are left out for those unpopular items. We address this chal-
lenge by proposing a deep learning framework that is able
to handle the very high dimensional input vectors. Instead
of manually introducing the cross-products among input fea-
tures, we apply deep learning to automatically model the non-
linear dependence among different input features.

The main challenge for the proposed deep learning frame-
work is how to deal with the high dimensional sparse vec-
tors since most deep learning approaches are not designed to
handle billions of input features. We address this challenge
by introducing a random coding scheme that maps the high
dimensional input vector into one with relatively low dimen-
sion. The main advantages of using a random coding scheme
are (a) it dramatically reduces the dimensionality of the in-
put vectors, (b) it is computationally efficient, and (c) with
a high probability, it preserves the geometric relationship a-
mong high dimensional vectors. Using the encoded dense
vectors, we apply a multi-layer non-linear transformation to
generate appropriate vector representation for users and item-
s. These learned representations will finally be fed into a lin-
ear prediction model to estimate the click through rate. Fig-
ure 1 illustrates the overall idea of the proposed deep learning
framework.

We run the online experiments to verify the effectiveness of
the proposed deep learning framework. The test scenario is to
estimate both CTR and CVR for the displayed items returned
by our search engine, which are used to rerank the returned
items. We compare the ranking results for the proposed deep
learning framework to those generated by the linear model
(i.e. logistic regression model). The A/B tests show that, us-
ing the proposed method, we observe a 6% improvement in
both CVR and GMV compared to directly using the linear
model. The improvement is more significant during the sin-
gle’s day in 2016 (i.e. 11/11/2016, the single largest promo-
tion day at Alibaba): we observed more than 16% improve-
ment in GMYV, and close to 20% improvement in CTR. We
note that the key difference between the proposed framework
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Figure 1: The architecture of the proposed deep neural net-
work for very high dimensional sparse inputs

and a generalized linear model is that a linear model is unable
to account for the nonlinear interaction between any user and
any item. We believe that it is this difference that limits the
performance of generalized linear model.

3 Deep Transfer Learning

Despite significant progress made in transfer learning, most
existing approaches of transfer learning explored the fact that
only a small difference exists between the source domain and
the target domain. For the real-world challenges we deal with
at Alibaba, we often observe a significant gap between source
domain and target domain, making it difficult for a simple fine
tune approach to deliver the desirable performance. To ad-
dress this challenge, we propose to learn an explicit transfor-
m from limited data, that directly maps deep feature learned
from the source domain to compact features in the target do-
main. Using the learned transform, we are able to successful-
ly apply transfer learning techniques to tasks such as image
recognition, retrieval, and matching effectively.

More specifically, we first learn a deep convolutional net-
work from the data of the source domain that outputs the
feature mapping. We then learn a linear transform layer
f(z) = Wa, where W is the transformation matrix, that
maps the embedding features z of the source domain into the
target domain. The optimal transform is obtained by mini-
mizing the distance between images with similar tags and at
the same time maximizing the distance between images with
different tags. The overall framework is given in Figure 2.
A CNN model is learned from the source domain to output a
vector representation for each image. A transformation layer
is then learned to transfer the feature vectors output from the
pre-trained CNN network into a vector representation for the
target domain.

A triplet loss based deep learning is developed to learn the
optimal transform that effectively combines the strength of
metric learning with the power of CNN [Schroff et al., 2015].
Let z¢ and z¥ be the feature vectors output from the pre-
trained neural network for the query image and the image
“similar” to the query !, respectively. Let 27 be the feature
vector for the image that share a different tag from that of the

' An image is similar to a given query if both of them are labeled
by the same tag
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Figure 2: The transfer learning framework that combines the
strength of metric learning, based on triplet loss, with the
power of CNN. Hard triplet mining is used to identify the
most informative subset of triplets in order to improve the
learning efficiency.

query. Using vectors z¢, 2%, and 2", we form a triplet and
define the triplet loss as follows

[ @) = F@DIE +1 = (1 (25) = F)IE]

where [z] is the hinge loss that outputs one when z > 0 and
zero otherwise. By minimizing the triplet loss, we require that
the distance between x¢ and z! is significantly smaller than
that between z{ and z'. As a result, our overall objective is
to minimize the sum of the triplet loss over all the possible
triples that can be formed, i.e.
N
a Py (12 a ny|12
Do @) = fEDIE +1 = [1f (@) = FeTIB],

i=1

One challenge with optimizing the sum of triplet losses is
that it is infeasible to compute the loss for all triplets given
its size is O(n?). To address this challenge, we only select
the difficult triplets, i.e. hard triplets, where 7 is visual-
ly similar to the given query x{ but with different tags. To
further improve the learning efficiency, we iteratively update
the set of hard triplets in each epoch, which is more effective
than using a set of static triplets. More specifically, for each
query image, we keep its K nearest neighbors, with K = 200.
The hard triplets are identified at each epoch by selecting the
negative instances xj' from the KNN of z{ that have smaller
distance than those of the positive instances.

Our empirical studies have shown that this approach is sig-
nificantly more effective than randomly sample a subset of
triplets to form the the objective function. The pre-train mod-
el is learned from the product images collected by the Taobao
platform. The target domain in our experiment is images from
Openlmages dataset [Krasin er al., 2016]. We run our al-
gorithm over the Aliyun ODPS platform with 2000 cores to
train the model, which took 2 hours for each epoch. By us-
ing the transfer learning with hard triplet mining strategy, we
are able to improve the classification accuracy by 6.9% when
compared to the original pre-trained features. In contrast, we
only observe 2% improvement for the classification accura-
cy when using simple random selection strategy to form the
triplets.
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4 Learning a Deep Network with Discrete
Weights

The success of deep learning largely owes to the fast devel-
opment of computing resources. Most of the deep learning
models are deployed on high-ended GPUs or CPU clusters.
On the other hand, deeper networks typically impose heavy
storage footprint due to the enormous amount of network pa-
rameters. The complexity of deep neural network, both in
terms of computation and storage requirements, has made it
difficult to run deep learning algorithms for scenarios with
limited memory and computational resources.

In this talk, we present a unified framework for low-bits
quantized neural networks that leverage the alternating di-
rection method of multipliers (ADMM) [Boyd et al., 2011],
which was originally designed for convex optimization. We
first model the quantized neural network as a optimization
problem with discrete constraints. By introducing consen-
sus constraints, we find such problem may be solved by the
ADMM algorithm, and we furthermore introduce special op-
timization approaches to address the subproblems related to
the ADMM algorithm.

Denote f(W) as the loss function of a normal neural net-
work, where W = {W1, Wy, --- , W} and W; is the param-
eter of the ¢-th layer in the network. Low-bits quantized neu-
ral network can be formulated as a constrained optimization
problem:

mmi/n Fw) (1)

Wec

where C is a discrete set including numbers that are ei-
ther zero or powers of two. The advantage of restricting
the weights to zero or powers of two is that an expensive
floating-point multiplication operation can then be replaced
by a sequence of cheaper and faster binary bit shift opera-
tions. Since batch normalization [Ioffe and Szegedy, 2015]
is often used to improve the convergence of deep neural
network training, it will lead to a scale invariance in the
weight parameters. As a result, we further introduce a s-
caling factor « to the constraints, i.e., instead of requiring
C={-,-2,-1,0,+1,42.--- }, we simply restrict C to
Cc ={,-2a,—,0,+a,+2q, -} with an arbitrary s-
caling factor « > 0 that is strictly positive [Rastegari et al.,
2016]. The optimization problem in (1) can then be rewritten
as

S.t.

fW) + Ie(G)

W=aG
where we introduce G to handle the discrete weights and the
consensus constraint W = G to ensure the resulting weight
W will be discrete. Notation /¢ is introduced to represent the
indicator function, i.e.

0 ifwecC,

Le(W) = { ifW ¢ C.

Following the framework of ADMM, we need to optimize
the augmented Lagrange of (2), i.e.
L,(W,G,\) = f(W)+Ic(G)+(p/2)HW—GIIQHW—GQ))

min 2)

)

S.t.

oo
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where )\ denotes the Lagrangian multipliers. Following the
standard process of ADMM, this problem can be solved by
repeating the following iterations:

Wkl .= argmin L,(W,G* \F) 4)
w

GF1i= argmin L,(W* G \F) (5)
G

ARFL = AF 4 p(WEHE — g (6)

In order to efficiently run the ADMM algorithm, we have to
solve the optimization problems in (4) and (5) efficiently. To
this end, we develop an extra gradient descent method to ef-
fectively solve the optimization problem in (4) and an itera-
tive quantization method to effectively solve the optimization
problem in (5).

Accuracy [ Binary | Ternary | {-4, +4} | Full Precision

0.611 0.635 0.665 0.665

0.838 0.852 0.875 0.871

Table 1: Accuracy of Resnet-18 on ImageNet classification

mAP [ {-4.+4} | Full Precision
Darknet+SSD 0.624 0.642
VGG16+SSD 0.776 0.778

Table 2: mAP of VGG and Darknet on Pascal VOC 2007

We run the proposed algorithm against the imagenet
dataset to discretize the weights of Resnet-18 [He er al., 2016]
into one, two and three bits, which corresponds to the titles
of “Binary”, “Ternary”, and {—4, +4} in Table 1. We mea-
sure the prediction accuracy of the top 1 and top 5 returned
results in Table 1, and compare them to the performance of
the original Resnet-18 with continuous weights. It is clear
that when the number of bits increases to three, we observe
almost no lost in prediction accuracy. We run the proposed al-
gorithm for object detection, using either Darknet+SSD [Liu
etal.,2016] or VGG16+SSD, over Pascal VOC 2007. Table 2
summarize the results of the proposed approach and the orig-
inal network. We again observe that with three bits of weight
quantization, the resulting networks yield performances that
are close to the original ones with continuous.

5 Learning to Optimize

Combinatorial optimization has found applications in many
fields such as artificial intelligence, machine learning, opera-
tions research, mathematics, auction theory, and software en-
gineering. Since many combinatorial optimization problem-
s are NP-hard (e.g. traveling salesman problem, bin pack-
ing, and vehicle routing problem), solving them in prac-
tice often relies on handcrafted heuristics that help find ap-
proximate but competitive solutions efficiently. To address
the limitation of using human-engineered heuristics, one ap-
proach is to design hyper-heuristics that leverages machine
learning techniques in order to guide the search in the s-
pace of heuristics [Burke ef al., 2013]. The alternative ap-
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proach is to operate in the solution space directly. Recen-
t advances in sequence-to-sequence model [Sutskever et al.,
2014] have motivated the study of exploring deep neural net-
work for combinatorial optimization [Vinyals et al., 2015;
Bello et al., 2017].

In this work, we followed this line of work and applied
deep learning and reinforcement learning methods to solve
the 3D bin packing problem, an NP hard but also an im-
portant combinatorial optimization problem that has found
applications in computational resource allocation and logis-
tics (e.g. see [Coffman et al, 1980; Chen et al., 1995;
Crainic et al., 2008; Clautiaux et al., 2014]). We developed
a heuristic (a constructive approach) to obtain a competitive
solution efficiently in practice. There are three key decisions
which are heuristically made during the packing procedure:
1) the packing order of items; 2) the location where to place
items; 3) the orientation of items to be placed. We show
that appropriate heuristics can be learned by a pointer net-
work and reinforcement learning method. Below, we will first
introduce the pointer network framework and reinforcement
learning for optimization, and then describe the preliminary
results.

Pointer network Similar to [Bello ef al., 20171, the used
pointer network consists of two recurrent neural network
(RNN) modules (encoder and decoder) as shown in Figure
3. The input of this network is a sequence of dimensions of
items to be packed, while the output is the sequence of pack-
ing (e.g. order of packing items).

Figure 3: Pointer network(left: encoder, right: decoder) [Bel-
loetal., 2017]

Reinforcement learning Given a sequence of packed
items, we can obtain the smallest bin that can pack all the
items. Thus, the surface area can be used to evaluate the se-
quence (the output of network). Denote the input sequence as
s, and the output sequence as o, then the surface area is de-
fined as L(o|s) = WL+ LH + W H, where W, H, L are the
dimensions of the smallest bin. A model-free policy based re-
inforcement learning model was used to optimize the param-
eters of the pointer network 6. Let p(o|s) be the probability
of choosing the packing sequence o given the input s. The
training objective for a given s is the expected surface area,
which is given as below

J(0]8) = Eompy(-|s) L(0]5). @)
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The total training objective is defined as J(6) = EssJ(0]s),
where s is sampled from a distribution S. We used a train-
ing procedure similar to [Bello et al., 2017] to optimize the
parameters of the network.

Preliminary results We have carried out empirical studies
to evaluate the performance of this learning to optimization
model. For simplicity, we only used the learning to optimiza-
tion framework to optimize the packing order, while the lo-
cation and orientation of packed item are still decided by the
existing heuristics. 150, 000 train samples and 150,000 test
samples are used for all experiments, where the number of
packed items varies from 8, 10, to 12. The model was trained
using the Adam optimizer. When the number of items to be
packed is small (i.e. 8), we measure the optimality gap for
the heuristic solutions, which is about 10% on average. For
all experiments (item numbers are 8, 10, and 12), we found
that the learning to optimize model achieves about 5% im-
provement over the heuristics in terms of average surface area
[Hu et al., 20171, a significant improvement given that all the
heuristics used in the search are well tuned for the 3D bin
pack problems.

6 Deep Learning at Alibaba: Latest
Development

The recent studies of deep learning tend to examine neural
networks with extremely large number of layers. For in-
stance, in the recent reports of imagenet competition, the win-
ning team has developed a neural network with over 1,000
layers. Despite the encouraging performance, the extremely
deep network has clear disadvantages: they are usually dif-
ficult to train and expensive to deploy. As an alternative so-
lution to the extremely deep neural network, we ask if it is
possible to introduce the high nonlinearity into the prediction
function through the construction of complex activation func-
tions, instead of the depth of neural network. In other word-
s, we aim to develop a relatively shallow network but with
very complex activation functions. This idea is inspired by
the theory of function approximation that was first developed
by Allen Pinkus [Pinkus, 1999]. According to Theorem 7.1
in [Pinkus, 1999], there exists an activation function o which
is C*°, strictly increasing, and sigmoidal, and has the follow-
ing property: for any continuous function f € C[0,1]", and
any accuracy bound ¢ > 0, there exist constants d;, ¢; ;, 0
and ~y;, and vectors w™l € R™, such that

VARGV

4n+3 2n+1

f@) =Y dio | Y cijo(™,z)+0;)+7 || <e
i=1 j=1

In other words, this theorem implies that there exists a com-
plex activation function of sigmoid type such that any contin-
uous function can be well approximated by a neural network
with two hidden layers. The advantage of searching for a non-
linear activation function is that activation function is an uni-
variate function whose optimization can be done effectively
even in the non-parametric setting [Tsybakov, 2008]. Encour-
aged by this theoretic result, within Alibaba, we are work-
ing toward the direction of optimizing the activation function
within a two hidden layer network.
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