Session No. 5 Software Support

PROCEDURAL EMBEDDING OF
KNOWLEDGE IN PLANNER

Carl Hewitt
Artificial Intelligence Laboratory,
M.I.T., Cambridge, Massachusetts,
U.S.A.
0. Abstract

Since the last IJCAI, the
PLANNER problem solving formalism has
continued to develop. Our eplstemolgy
for the foundations for problem solving
has been extended. An overview of the
formalism Is given from an Information
processing viewpoint. A simple example
Is explained using snapshots of the
state of the problem solving as the
example Is worked, finally, current
applications for the formalism are
listed.

1. The Structural Foundations of
Problem Solving

We would |like to develop a
foundation for problem solving
analogous In some ways to the currently
existing foundations for mathematics.
Thus we need to analyze the structure
of foundations for mathematics. A
foundation for mathematics must provide
a definitional formalism In which
mathematical objects can be defined and
their existence proved. For example
set theory as a foundation provides
that objects must be built out of sets.
Then there must be a deductive
formalism In which fundamental truths
can be stated and the means provided to
deduce additional truths from those
already established. Current
mathematical foundations such as set
theory seem quite natural and adequate
for the vast body of classical
mathematics. The objects and
reasoning of most mathematical domains
such as analysis and algebra can be
easily founded on set theory. The
existence of certain astronomically
large cardinals poses some problems for
set theoretic foundations. However,
the problems posed seem to be of
practical Importance only to certain
category theorists. Foundations of
mathematics have devoted a great deal
of attention to the problems of
consistency and completeness. The
problem of consistency Is Important
since |If the foundations are
inconsistent then any formula
whatsoever may be deduced thus
trivializing the foundations.
Semantics for foundations of
mathematics are defined model

167

theoretically In terms of the notion of
satisfiability. The problem of
completeness is that, for a foundation
of mathematics to be Intuitively
satisfactory all the true formulas
should be proveable since a foundation
mathematics alms to be a theory of
mathematical truth.

Similar fundamental questions
must be faced by a foundation for
problem solving. However there are
some important differences since a
foundation of problem solving alms more
to be a theory of actions and purposes
than a theory of mathematical truth. A
foundation for problem solving must
specify a goal-orlented formalism In
which problems can be stated.
Furthermore there must be a formalism
for specifying the allowable methods of
solution of problems. As part of the
definition of the formalisms, the
following elements must be defined:
the data structure, the control
structure, and the primitive
procedures. The problem of what are
allowable data structures for facts
about the world Immediately arises.
Being a theory of actions, a foundation
for problem solving must confront the
problem of change: How can account be
taken of the changing situation In the
world? In order for there to be
problem solving, there must be a
problem solver. A foundation for
problem solving must consider how much
knowledge and what kind of knowledge
problem solvers can have about
themselves. In contrast to the
foundation of mathematics, the
semantics for a foundation for problem
solving should be defined In terms of
properties of procedures. We would
like to see mathematical Investigations
on the adequacy of the foundations for
problem solving provided by PLANNER.

In chapter C of the dissertation, we

have made the beginnings of one kind of
such an Investigation.

To be more specific a
foundation for problem solving must
concern Itself with the following
complex of topics.

PROCEDURAL EMBEDDING: How can
"real world" knowledge be effectively
embedded In procedures. What are good
ways to express problem solution
methods and how can plans for the
solution of problems be formulated?

GENERALIZED COMPILATION: What
are good methods for transforming high
level goal-orlented language into
specific efficient algorithms.

168

VERIFICATION: How can it be
verified that a procedure does what |Is
Intended.

PROCEDURAL ABSTRACTION: What
are Rood methods for abstracting
general procedures from special cases.

One approach to foundations for
problem solving requires that there
should be two distinct formalisms:

1: A METHODS formalism which
specifies the allowable methods of
solutlon

2. A PROBLEM SPECIFICATION
formalism In which to pose problems.

The problem solver Is expected to
figure out how combine Its available
methods |In order to produce a solution
which satisfies the problem
specification. One of the aims of the
above formulation of problem solving is
to clearly separate the methods of
solution from the problems posed so
that it Is Impossible to "cheat" and
give the problem solver the methods for
solving the problem along with the
statement of the problem. Ilie propose
to bridge the chasm between the methods
formalism and the problem formalism.
Consider more carefully the two
extremes In the specification of
process ing:

A: Explicit processing (e.g.
methods) is the ability to specify and
control actions down to the finest
detalls.

B: implicit processing (e.g.
problems) is the ability to specify the
end result desired and not have to say
very much about how It should be
ach leved.

PLANNER attempts to provide a formalism
In which a problem solver can bridge
the continuum between explicit and
Implicit processing. We aim for a
maximum of flexibility so that whatever
knowledge is available can be
incorporated even If It Is fragmentary
and heurlstlc.

Our work on PLANNER has been an
investigation in PROCEDURAL
ERISTEMOLOGY, the study of how
knowledge can be embedded in
procedures. The THESIS OF PROCEDURAL
EMBEDDING is that intellectual
structures should be analyzed through
their PROCEDURAL ANALOGUES. We will
try to show what we mean through
examples:

Session No. 5 Software Support

DESCRIPTIONS are procedures
which recognize how well some candidate
fits the description.

PATTERNS are
descriptions which match configurations
of data. For example <either 4
<atomic>> |Is a procedure which will
recognize something which 1is either 4
or is atomic.

DATA TYPES are patterns
used In declarations of the allowable
range and domain of procedures and
ldentifiers. More generally, data
types have analogues In the form of
procedures which create, destroy,
recognize, and transform data.

GRAMMARS: The
PROGRAMMAR language of Terry WInograd
represents the first step towards one
kind of procedural analogue for natural
language grammar.

SCHEMATIC DRAWINGS have
as their procedural analogue methods
for recognizing when particular figures
fit within the schemata.

PROOFS correspond to
procedures for recognizing and
expanding valid chains of deductions.
Indeed many proofs can fruitfully be
considered to define procedures which
are proved to have certain properties.

MODELS of PROGRAMS are
procedures for defining properties of
procedures and attempting to verify
these properties. Models of programs
can be defined by procedures which
state the relations that must hold as
control passes through the program.

PLANS are general, goal
oriented procedures for attempting to
carry out some task.

THEOREMS of the
OUANTIFICATIONAL CALCULUS have as their
analogues procedures for carrying out
the deductions which are justified by
the theorems. For example, consider a
theorem of the form (IMPLIES x y). One
procedural analogue of the theorem Is
to consider whether x should be made a
subgoal in order to try to prove
something of the form y. Ira Goldstein
has shown that the theorems of
elementary plane geometry have very
natural procedural analogues.

DRAWINGS: The
procedural analogue of a drawing is a
procedure for making the drawing.

Session No. 5 Software Support
169

PROGRESSIVE REFINEMENT

YER SCGLUTION

+ STATF
ATTAINED
NO
Y<+— <EVAL X)
ANTECEDENTS (WHAT
O 'S ALREADY KNOWN)
e
O .
[f
O
N s
— L 4

CONSEQUENCES OF
ANTECEDENTS

CONSEQUENT (OUR ULTIMATE GOAL)
CONSEQUENCES OF
CONSEQUENT

170

Rather sophisticated display processors
have been constructed for making
drawings on cathode ray tubes,

RECOMMENDATIONS:
PLANNER has primitives which allow
recommendations as to how disparate
sections of goal oriented Ilanguage
should be linked together in order to
accomplish some particular task.

GOAL TREES are represented by a
snapshot of the instantaneous
configuration of problem solving
processes.

One corollary of the thesis of
procedural embedding Is that learning
entails the learning of the procedures
iIn which the knowledge to be learned is
embedded. Another aspect of the thesis
of procedural embedding is that the
process of going from general goal
oriented language which Is capable of
accomplishing some task to a special
purpose/ efficient/ algorithm for the
task should Itself be mechanized. By
expressing the properties of the
special purpose algorithm in terms of
their procedural analogues/ we can use
the analogues to establish that the
special purpose routine does Iin fact do
what it Is intended to do.

We are concerned as to how a
theorem prover can unify structural,
problem solving methods with domain
dependent algorithms and data into a
coherent problem solving process. By
structural methods we mean those that
are concerned with the formal structure
of the argument rather than with the
semantics of Its domain dependent
content.

An example of a structural
method Is the "consequences of the
consequent” heuristic. By the
CONSEQUENCES OF THE CONSEQUENT
heuristic, we mean that a problem
solver should look at the consequences
of the goal that is being attempted in
order to get an idea of some of the
statements that could be useful in
establishing or rejecting the goal.

We need to discover more
powerful structural methods. PLANNER
Is intended to provide a computational
basis for expressing structural
methods. One of the most important
ldeas in PLANNER is that it brings some
of the structural methods of problem
solving out into the open where they
can be analyzed and generalized. There
are a few basic patterns of looping and
recursion that are in constant use
among programmers. Examples are
recursion on binary trees as In LISP

Session No. 5 Software Support

and the FIND statement of PLANNER. The
primitive FIND will construct a list of
all the objects with certain
properties. For example we can find
five things which are on something
which |Is green by evaluating

<FIND 5 x
<GOAL (ON x y)>
<GOAL (GREEN y)>>

which reads "find 5 x's such that x |Is
ON y and y Is GREEN."

The patterns of looping and
recursion represent common structural
methods used In programs. They specify
how commands can be repeated
lteratively and recursively. One of
the main problems In getting computers
to write programs Is how to use these
structural patterns with the particular
domain dependent commands that are
available. It is difficult to decide
which/ if any, of the basic patterns s
appropriate in any given problem. The
problem of synthesizing programs out of
canned loops Is formally Identical to
the problem of finding proofs using
mathematical Induction. We have
approached the problem of constructing
procedures out of goal oriented
language from two directions. The
first is to use canned loops (such as
the FIND statement) where we assume a-
priorl the kind of control structure
that |Is needed. The second approach Is
to try to abstract the procedure from
protocols of Its action In particular
cases.

Another structural method is
progressive refinement. The way
problems are solved by progressive
refinement |Is by repeated evaluation.
Instead of trying to do a complete
search of the problem space all at
once, repeated refinements are made.
For example Iin a game |like chess the
same part of the game tree might be
looked at several times. Each time
certain paths are more deeply explored
in the light of what other searches
have revealed to be the key features of
the position. Problems in design seem
to be particularly suitable for the use
of progressive refinement since
proposed designs are often themselves
amenable to successive refinement. The
way in which progressive refinement
typically is done In PLANNER Is by

repeated evaluation. Thus the
expression which Is evaluated to solve
the problem will Itself produce as Its

value an expression to be evaluated.

Session No. 5 Software Support

2. Information Processing Overview

Some readers will prefer to
read section 3 which has concrete
examples before the abstract discussion
in this sectlon.

There are many ways in which
one can approach a description of
PLANNER. In this section we will
describe PLANNER from an Information
Processing Viewpoint. To do this we
will describe the data structure and
the control structure of the formalism.

DATA STRUCTURE:

ASSOCIATIVE MEMORY forms the
basis for PLANNER'S data space which
consists of directed graphs with
labeled arcs. The operation of PUTTING
and GETTING the components of data
objects have been generalized to apply
to any data type whatsoever. For
example to PUT the value CANONICAL on
the expression (+ X Y (* X Z)) under
the Indicator SIMPLIFIED Is one way to
record that (+ X Y (* X Z)) has been
canonlcally simplified. Then the
degree to which an expression is
simplified can be determined by GETTING
the value under the |Indicator
SIMPLIFIED of the expression. The
operation of PUT and GET can be
Implemented efficiently using hash
coding. Lists and vectors have been
introduced to gain more efficiency for
common special case structures. The
associative memory Is useful to PLANNER
In many ways. Monitoring gives PLANNER
the capability of trapping all read,
wrlite, and execute references to a
particular data object. The monitor
(which Is found under the indicator
MONITOR) of the data object can then
take any action that it sees fit in
order to handle the situation. The
associative memory can be used to
retrieve the value of an identifier |
of a process p by GETTING the |
component of p. Code can be commented

by simply PUTTING the actual comment
under the indicator COMMENT.
DATA BASE: What is most

distinctive about the way in which
PLANNER uses data is that It has a data
base In which data can be Inserted and
removed. For example Inserting (AT BI
P2) into the data base might signify
that block Bl Is at the place P2. A
coordinate of an expression is defined
to be an atom In some position. An
expression Is determined by Its
coordinates. Assertions are stored in
buckets by their coordinates using the
associative memory in order to provide
efficient retrieval. In addition a

total ordering is Iimposed on the
assertions so that the buckets can be
sorted. Imperatives as well as
declaratives can be stored In the data
base. We might assert that whenever
an expression of the form (At objectl
placel) is removed from the data base,
then any expression in the data base of
of the form (ON objectl obdJdect2) should
also be removed from the data base.

The data base can be tree structured so
that It is possible to simultaneously
have several l|ocal data bases which are
Incompatible. Furthermore assertions
In the data base can have varying
scopes so that some will last the
duration of a process while others are
temporary to a subroutine.

CONTROL STRUCTURE: PLANNER uses a
pattern directed multiprocess backtrack
control structure to tie the operation

of Its primitives together,

BACKTRACK ING: PLANNER
processes have the capability of
backtracking to previous states. A
process can backtrack into a procedure
activation (l.e. a specific instance of
an invocation of the procedure) which
has already returned with a result.
Using the theory of comparative
schematology, we have proved in the
dissertation that the use of backtrack
control enables us to achieve effects
that a language (such as LISP) which Is
limited to recursive control structure
cannot achieve. Backtracking cuts
across the subroutine structure of
PLANNER. Backtrack control allows the
consequences of elaborate tentative
nypotheses to be explored without

osing the capability of rejecting the
nypotheses and all of their
consequences. A choice can be made on

the basis of the available knowledge
and If it doesn't work, a better choice
can be made using the new Information
discovered while investigating the
first choice. Also backtrack control
makes PLANNER procedures easier to
debug since they can be run backwards
as well as forwards enabling a problem
solver to "zero In" on bugs.

MULTIPROCESSING gives PLANNER
the capability of having more than one
locus of control in problem solving.
By using multiple processes, arbitrary
patterns of search through a conceptual
problem space can be carried out.
Processes can have the power to create,
read, write, interrupt, resume, single
step, and fork other processes.

171

172 Session No. 5 Software Support

I)

PATTERN DIRECTION combines aspects
of control and data structure. The
fundamental principle of pattern
directed computation Is that a
procedure should be a pattern of what
the procedure Is Intended to
accomplish. In other words a
procedure should not only do the right
thing but It should appear to do the
right thing as well!l PLANNER uses
pattern direction for the following

operations:

CONSTRUCTION of structured data
objects Is accomplished by templates.
We can construct a list whose first
element is the value of x and whose
second element Is the value of y by the
procedure (x vy). If x has the value 3
and y has the value (A B) then (x Yy)
will evaluate to (3 (A B)).

~
+
X
..<
%
X
N
\—”

DECOMPOSITION Is accomplished
by matching the data object against a
structured pattern. If the pattern (x1
x2) 1is matched against the data object
((3 4) A) then x|l will be given the
value (3 4) and x2 will be given the
value A.

O 321 T7dwWi S

RETRIEVAL: An assertion Is (_ A/
retrieved from the data base by
specifying a pattern which the A OA//(A Z
assertion must match and thus bind the
identifiers in the pattern. For
example we can determine if there s
anything in the data base of the form
(ON x A). if (ON B A) Is the only iter
In the data base, then x Is bound to B,
If there Is more than one item In the
data base which matches a retrieval
pattern, then an arbitrary choice is
made. The fact that a choice was made
Is remembered so that if a simple
failure backtracks to the decision,
another choice can be made.

INVOCATION: Procedures can be EXAM pl E O F

Invoked by patterns of what they are

supposed to accomplish. For example a
procedure might be defined which AA/ ASSOC/AT/OA/
attempts to satisfy patterns of the
form (ON x y) by causing x to be ON V.
Such a procedure could be Invoked by
making (ON A B) a goal. The procedure
might or might not succeed In achieving
its goal depending on the environment
in which t was called. Since many
theorems might match a goal, a
recommendaition is allowed as to which
of the candidate theorems might be
useful. The recommendation is a
pattern which a candidate theorem must
match In order to be Iinvoked.

Session No. 5 Software Support

3. An Extended example

This section contains an
extended description of a simple
example in PLANNER. It Is partially
based on a draft written by T. WInograd
for the course 6.545. |If the reader
would like to see a more logically
systematic presentation, he can consult
the the athor's dissertation.

The easiest way to understand
PLANNER Is to watch how It works, so In
this section we will present a few
simple examples and explain the use of
some of Its most elementary features.
These examples are not ,ntended to
represent TOY PROBLEMS to serve as test
cases for "general problem solvers”.
The toy problem paradigm Is misleading
because toy problems can be solved
without any real knowledge of the
domain In which the toy problem Is

posed. Indeed, It seems gauche to use
any thing as powerful as real knowledge
on such simple problems. In contrast

we believe that real world problems
require vast amounts of procedural
knowldege for their solution. We see
It as part of our task to provide the
Intellectual capabilities needed for
effective problem solving. We would
like to see the toy problem paradigm
replaced with an [INTELLECTUAL
CAPABILITY paradigm where the object is
to Illustrate the Intellectual
capabilities needed so that knowledge
can be effectively embededed in

procedures.
First we will take the most
venerable of traditional deductions:
Turing Is a human
All humans are fallible
SO
Turing is falible.

It Is easy enough to see how
this could be expressed In the usual
logical notation and handled by a
uniform proof procedure. instead, Ilet
us express it In one possible way to
PLANNER by saying:

<ASSERT (HUMAN TURING)>

<ASSERT <DEFINE THEOREM!1
<CONSEQUENT (Y) (FALLIBLE ?Y)
<GOAL (HUMAN ?Y)>>>>

Function calls are enclosed
between "<" and ">". The proof would
be generated by asking PLANNER to
evaluate the expression:

<GOAL (FALLIBLE TURING)>

We Immediately see several points.
First, there are at least two different
kinds of Information stored in the data
base: declaratives and imperatives.
Notice that for complex sentences

173

containing quantifiers or logical
connectives we have a choice whether to
express the sentence by declaratives or
by Imperatives.

Second, one of the most Important
points about PLANNER is that it Is an
evaluator for statements. It accepts
input in the form of expressions
written in the PLANNER language and
evaluates them, producing a value and
side effects. ASSERT is a function
which, when evaluated, stores Its
argument In the data base of
assertions. In this example we have
defined a theorem of the CONSEQUENT
type (we will see other types later).
This states that if we ever want to
establish a goal of the form (FALLIBLE
?Y), we can do this by accomplishing
the goal (HUMAN ?Y), where Y is a
ldentifier. The strange prefix
character "7?" Is part of PLANNER'S
pattern matching capabilities (which
are extensive and make use of the
pattern-matching language MATCHLESS
which Is explained In chapter 4 of the
dissertation). If we ask PLANNER to
prove a goal of the form (A Y), there
Is no obvious way of knowing whether A
and Y are constants (like TURING and
HUMAN In the example) or identifiers.
LISP solves this problem by using the
function QUOTE to Indicate constants.
in pattern matching this Is
Inconvenient and makes most patterns
much bulkier and more difficult to
read. Instead, PLANNER uses the
opposite convention -- a constant is
represented by the atom Itself, while a
ldentifier must be Indicated by adding
an appropriate prefix. This prefix
differs according to the exact use of
the identifier in the pattern, but for
the time being let us just accept "7?"
as a prefix ndicating a ildentifier.
The definition of the theorem indicates
that It has one identifier, Y by the
(Y) following CONSEQUENT.

The third statement I[flustrates
the function GOAL, which tries to prove
an assertion. This can function in
several ways. if we had asked PLANNER
to evaluate <GOAL (HUMAN TURING)> it
would have found the requested
assertion immediately in the data base
and succeeded (returning as its value
some indicator that It had succeeded).
However, (FALLIBLE TURING) has not been
asserted, so we must resort to theorems
to prove It. Later we will see that a
GOAL statement can give PLANNER various
kinds of advice on which theorems are
applicable to the goal and should be
tried. For the moment, take the
default case, in which the evaluator
tries all theorems whose consequent s
of a form which matches the goal (l.e.

174

a theorem with a consequent (?Z TURING)
would be tried, but one of the form
(HAPPY 7?Z) or (FALLIBLE ?Y 7?Z) would
not). Assertions can have an arbitrary
list structure for their format -- they
are not |limited to two-member lists or
three-member lists as in these
examples.) The theorem we have Just
defined would be found, and In trying
It, the match of the consequence to the
goal would cause the Identifier Y to be
bound to the constant TURING.
Therefore, the theorem sets up a new
goal (HUMAN TURING) and this succeeds
Immediately since It Is In the data
base. In general, the success of a
theorem will depend on evaluating a
PLANNER program of arbitrary
complexity. 1in this case It contains
only a single GOAL statement, so Its
success causes the entire theorem to
succeed, and the goal (FALLIBLE TURING)
iIs proved. The following Is the
protocol of the evaluation:

<GOAL (FALLIBLE TURING)>
(FALLIBLE TURING) Is not In the
data base so attempt to invoke a
theorem to esablish the goal
enter THEOREMI
Y becomes TURING
<GOAL (HUMAN TURING)>
Is satisfied since the goal is In the

data base
return (FALLIBLE TURING)

The way In which Identifiers are
bound by matching Is of key Importance
to PLANNER. Consider the question "Is
anything fallible?", or In logic
(EXISTS X (FALLIBLE X)). This could be
expressed Iin PLANNER as:

<THPROG (X) <GOAL (FALLIBLE 7X)>>

Notice that THPROG (PLANNER'S
equivalent of a LISP PROG, complete
with GO statements, tags, RETURN, etc.)
In this case It acts as an existential

quantifier. It provides a binding-
place for the identifier X, but does
not initialize it -- it leaves It In a
state particularly marked as
unassligned. To answer the question,

we ask PLANNER to evaluate the entire
THPROG expression above. To do this It
starts by evaluating the GOAL
expression. This searches the data
base for an assertion of the form
(FALLIBLE 7?X) and falls. it then looks
for a theorem with a consequent of that
form, and finds the theorem we defined
above. Nov when the theorem is called,
the identifier Y In the theorem Is
linked to the identifier X in the goal,
but since X has no value yet, Y does
not receive a value. The theorem then
sets up the goal (HUMAN ?Y) with Y as
an identifier. The PLANNER primitive

Session No. 5 Software Support

GOAL uses the data-base searching
mechanism to l|look for any assertion
which matches that pattern (l.e. an
instantiation), and finds the assertion
(HUMAN TURING). This causes Y (and
therefore X) to be bound to the
constant TURING, and the theorem
succeeds, completing the proof and
returning the value (FALLIBLE TURING).

There seems to be something
missing. So far,the data base has
contained only the relevant objects,
and therefore PLANNER has found the
right assertions immediately. Consider
the problem we would get if we added
new Information by evaluating the
statements:

<ASSERT (HUMAN SOCRATES)>

<ASSERT (GREEK SOCRATES)>

Our data base now contains the
asse rtions:

(HUMAN TURING)
(HUMAN SOCRATES)
(GREEK SOCRATES)

and theoreml:

<CONSEQUENT (Y) (FALLIBLE ?Y)
<GOAL (HUMAN ?Y)>>

What If we now ask, "Is there a
fallible Greek?" In PLANNER we would do

this by evaluating the expression:

<THPROG (X)
<GOAL (FALLIBLE ?X)>
<GOAL (GREEK ?X)>>

THPROG is a wishy-washy version
of the LISP function PROG. If THPROG
runs Into a failure trying to evaluate
one of the expressions Iin its body,
then it backtracks to the last declson
that was made and dumps the
responsibility of how to proceed on the
procedure which made the decision.
Notice what might happen. The first
GOAL may be satisfied by exactly the
same deduction as before, since we have
not removed Information. If the data-
base searcher happens to run Into
TURING before It finds SOCRATES, the
goal (HUMAN ?Y) will succeed, binding Y
and thus X to TURING. After (FALLIBLE
?X) succeeds, the THPROG will then
establish the new goal (GREEK TURING),
which is doomed to fail since it has
not been asserted, and there are no
applicable theorems. if we think in
LISP terms, this is a serious problem,
since the evaluation of the first GOAL
has been completed before the second
one is called, and the "stack" now
contains only the return address for
THPROG and the identifier X. If we try

Session No. 5 Software Support 175

FORMAT OF FUNCTION ACTIVATIONS
IN SNAPSHOTS

DENTIFIER - BINDINGS

RETURN-CONTROL
H

EXPRESSION
BEING EVALUATED

VALUE OF ?_gil'(

- K
EXPRESSION > CON%ROL
NEW :
IDENTIFIER |
BINDINGS l

JOTE . THE IDENTIFIER-BINDINGS AND
RETURN - CONTROL POINTERS OF AN
ACTIVATION ARE USUALLY THE SAME
AND THUS ARE COMBINED INTO A
DOUBLE POINTER LIKE THIS =)

176 Session No. 5 Software Support

SNAPSHOT OF EVALUATION OF
<+ < ¥ 3 o> 5>

/

| 7

THUS <4+ <¥ 3 4> 5> EVALUATES TO I7.

on No. 5 Software Support 177

SNAPSHOT NO. 1

> <THPROG (X)

> <GOAL {FALLIBLE ? X)»

; <GOAL [GREEK ? X)Jp

DATA BASE]

(HUMAN TURING)

\ (HUMAN SOCRATES)

r | (GREEK SOCRATES)

E—

~t=~ <CONSEQUENT (Y)

(FALLIBLE PY)

<GOAL (HUMANPYD)

178

x —
«{ L)
[/
L\
- -
| FaIL \

Session No. 5 Software Support

SNAPSHOT NO. 2

™ <THPROG (X)
~ <GOAL (FALLIBLE P X)?

> <GOAL {GREEK P X

DATA BASE

iy
~ (HUMAN TURING)

(HUMAN SOCRATES)

(GREEK SOCRATES)
= <CONSEQUENT (Y)
(FALLIBLE ?Y)

—~ <GOAL (HUMANPY L

Session No. 5 Software Suppor® 179

SNAPSHCT NO. 3

— - D> <THPROG (X)

/> <GOAL {FALLIBLE ? X)>
x ——m

3 ~—————2> <GOAL (GREEK P X D)

DATA BASE

(HUMAN TURING)

'”f’msocr«*mes}

T~ (GREEK SOCRATES) |
\ l

\ > <CONSEQUENT (Y)

\ Ll_:b
\ (FALLIBLE ?Y)

\
N\
“~

180

to go back to the beginning and start
over, It will again find TURING and so
on, ad Infinitum.

One of the most Important features
of the PLANNER language Is that
backtracking in case of failure Is
always possible, and moreover this
backtracking can go to the last place
where a decision of any sort was made.
Here, the decision was to pick a
particular assertion from the data base
to match a goal. Another kind of
decision Is the choice of a theorem to
try to achieve a goal. PLANNER keeps
enough Information to change any
decision and send evaluation back down
a new path.

In our example the decision was
made Inside the theorem for FALLIBLE,
when the goal (HUMAN 7?7Y) was matched to
the assertion (HUMAN TURING). PLANNER
will retrace Its steps, try to find a
different assertion which matches the
goal, find (HUMAN SOCRATES), and
continue with the proof. The theorem
will succeed with the value (FALLIBLE
SOCRATES), and the THPROG will proceed
to the next expression, <GOAL (GREEK
?7X)>. Since X has been bound to
SOCRATES, this will set up the goal
(GREEK SOCRATES) which will succeed
Immediately by finding the
corresponding assertion in the data
base. Since there are no more
expressions in the THPROG, It will
succeed, returning as its value the
value of the last expression, (GREEK
SOCRATES). The whole course of the
deduction process depends on the
failure mechanism for backtracking and
trying things over (this Is actually
the process of trying different
branches down the conceptual goal
tree.) AIll of the functions Ilike
THCOND, THAND, THOR, etc. are
controlled by success vs. failure,
rather than NIL vs. non-NIL as In LISP.
This then Is the PLANNER executive
which establishes and manipulates
subgoals in looking for a proof.

We would now like to give a
somewhat more formal description of the
behavior of PLANNER on the above
problem. if we intoduce suitable
notation our problem solving protocols
can be made much more succinct and
their structure made visible. Also by
formalizing the notions, we can make
PLANNER construct and analyze
protocols. This provides one kind of
tool by which PLANNER can understand
Its own behavior and make
generalizations on how to proceed.

In this case the protocol |Is:

1: enter THPROG

Session No. 5 Software Support

X Is rebound but not Initialized
3.

<GOAL (FALLIBLE ?X)> will attempt a
pattern directed Iinvocation since
nothing In the data base matches
(FALLIBLE ?X).

enter THEOREM1
9.

match (FALLIBLE 7?Y) with
(FALLIBLE 7?X) thus linking Y to X

the situation is shown in
snapshot number 1
G:

<GOAL (HUMAN 7?Y)> finds
(HUMAN TURING) In the data base
I
Y gets the value TURING
thus giving X the value TURING
8.
return (HUMAN TURING)

9.

THEOREM1 returns (FALLIBLE
TURING)
10:

<GOAL (GREEK TURING)) falls since

It Is not In the data base and there
are no matching consequents

Thus PLANNER must backtrack to step 7
and try again. The situation Is shown
In snapshot number 2. For the
convenience of the reader, we will
repeat the first six steps from above
and then continue the protocol.

1 enter THPROG

2. X Is rebound but not Initialized
> <GOAL (FALLIBLE 2?X)>

’ enter THEOREM1

° match (FALLIBLE ?Y) with
éEALLIBLE ?X) thus linking Y to X

<GOAL (HUMAN ?Y)> finds
(HUMAN TURING) In the data base
11:

Y gets the value
SOCRATES thus giving X the value
SOCRATES

12:
return (FALLIBLE SOCRATES)
13:
THEOREM1 returns (FALLIBLE
SOCRATES)
14:

<GOAL (GREEK SOCRATES)>
15: return (GREEK SOCRATES) as the top
level value

The situation is shown in snapshot
number 3.

So far we have seen that although
PLANNER is written as an evaluator, It

Session No. 5 Software Support

differs In several critical ways from
anything which is normally considered a
programming language. First, It is
goal-directed. Theorems can be
thought of as subroutines, but they can
be called by specifying the goal which
is to be satisfied. This is like
having the abllltly to say "Call a
subroutine which will achieve the
desired result at this point." Second,
the evaluator has the mechanism of
success and failure to handle the
exploration of the conceptual goal
tree. In PLANNER there Is no explicit
goal tree. The conceptual goal tree is
represented by a SNAPSHOT of a
CONFIGURATION of PROCESSES. Thus
PLANNER has powerful control structure
primitives to allow the conceptlonal
goal structure to be easily and
naturally reflected In the execution of
PLANNER processes, Other evaluators,
such as LISP, with a basic recursive
evaluator have no way to do this.
Third, PLANNER contains a large set of
primitive commands for matching
patterns and manipulating a data base,
and for handling that data base
efflclently.

On the other side, we con ask how
It differs from other theorem provers.
What Is gained by writing theorems In
the form of programs, and giving them
power to call other programs which
manipulate data? The key is In the
form of the data the theorem-prover can
accept. Most systems take declarative
Information, as in predicate calculus.
This Is In the form of expressions
which represent "facts" about the
world. These are manipulated by the
theorem-prover according to some fixed
uniform process set by the system.
PLANNER can make use of Imperative
Information, telling it how to go about
proving a subgoal, or to make use of an
assertion. This produces what is
called HIERARCHICAL control structure.
That |s, any theorem can indicate what
the theorem prover is supposed to do as
It continues the proof. It has the
full power to evaluate expressions
which can depend on both the data base
and the subgoal tree, and to use its
results to control the further proof by
making assertions, deciding what
theorems are to be used, and specifying
a sequence of steps to be followed.

4. Current Applications for PLANNER
The PLANNER formal Ism s

currently being used in a variety of
applications. it is Dbeing used as
part of the conceptual machinery of a
robot at M.I.T. and Stanford. The
formalism is used for the following
purposes Iin a robot:

181

semantic basis for natural Ilanguage

formulating and executing plans of
act lon

finding high level descriptions of
visual scenes
Other applications are its use as a
procedural model for:

architecture design

children stories

models of programs

elementary Euclidean geometry

5. BIBLIOGRAPHY

Balzer, R. EXDAMS - Extendable
Debugging and Monitoring System. Proc
SJCC 1969, 34. May, 1969.

Balzer, R. M., On the Future of
Computer Program Specification and
Organization. December 1070.

Dennis, Jack B. Programming
Generality, Parallelism and Computer
Archltectue. Computation Structures
Group Memo No. 32. August 1968.

Earley Jay, Toward an
Understanding of Data Structures.
Computer Science Departement,
University of California, Berkeley.

Flkes, R., Ref-Arf: A System
for Solving Problems Stated as
Procedures Artificial Intelligence
(1970).

Fisher, D. A., Control

Sturctures for Programming Languages.
1970.

Hewitt, C, PLANNER: a Language
for Proving Theorems, Artificial
Intelligence Memo 137, Massachusetts
Institute of Technology (project MACQC),
July 1967.

Hewitt, C. PLANNER: A Language
for Manipulating Models and Proving
Theorems in a Robot, Proceedings of the
International Joint Conference on
Artificial Intelligence. Washington D.
C. May 1969.

Hewitt, C. Teaching Procedures
In Humans and Robots. Conference on
Structural Learning. April 5, 1970.
Philadelphia, Pa.

Hewitt, C. Description and
Theoretical Analysis (using Schemas) of
PLANNER: A Language for Proving
Theorems and Manipulating Models In a
Robot. Phd. Feb. 1971.

Hewitt, C. and Patterson M.
Comparative Schematology. Record of
Project MAC Conference on Concurrent

Systems and Parallel Compuatlon. June
2-5, 1970. Available from ACM.
Kay, Alan C, Reactive Engine,
Ph. D. thesis University of Utah, 1970.
McCarthy, J.; Abrahams, Paul
W.;, Edwards, Daniel J.; Hart, Timothy

P.; and Levin, Michael |, 1962. Lisp
1.5 Programmer's Manual, M. |. T.
Press.

McCarthy, J. and Hayes, P.,

182 Session No. 5 Software Support

Some Philosophical Problems form the
Standpoint of Artificial Intelligence.
Stanford A. |, Memo 73.

Newell, A., Shaw, J. C, and
Simon, H. A., 1059. Report on a General
Problem-solving Program, Proceedings of
the International Conference on
Information Processing, Paris: UNESCO
House, pp. 256-26'*.

Perils, A. J. The Synthesis of
Algorithmic Systems. JACM. Jan. 19C7.

Winograd, T. Procedures as a
Representation for Data In a Computer
Program for Understanding Natural
Language. MAC TR-84. February 1971.

