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Abstract

Factorization Machines (FMs) refer to a class of
general predictors working with real valued fea-
ture vectors, which are well-known for their abil-
ity to estimate model parameters under signifi-
cant sparsity and have found successful applica-
tions in many areas such as the click-through rate
(CTR) prediction. However, standard FMs only
produce a single fixed representation for each fea-
ture across different input instances, which may
limit the CTR model’s expressive and predictive
power. Inspired by the success of Input-aware Fac-
torization Machines (IFMs), which aim to learn
more flexible and informative representations of a
given feature according to different input instances,
we propose a novel model named Dual Input-
aware Factorization Machines (DIFMs) that can
adaptively reweight the original feature representa-
tions at the bit-wise and vector-wise levels simul-
taneously. Furthermore, DIFMs strategically in-
tegrate various components including Multi-Head
Self-Attention, Residual Networks and DNNs into
a unified end-to-end model. Comprehensive exper-
iments on two real-world CTR prediction datasets
show that the DIFM model can outperform several
state-of-the-art models consistently.

1 Introduction
The prediction of click-through rate (CTR) is crucial in on-
line advertising [McMahan et al., 2013; Juan et al., 2016;
Wen et al., 2019], where the task is to estimate the probabil-
ity that a user will click on a recommended ad or item. In
online advertising, advertisers pay publishers to display their
ads on publishers’ sites. One popular payment model is the
cost-per-click (CPC) model [Zhou et al., 2018; Zhou et al.,
2019], where advertisers are charged only when a click oc-
curs. As a consequence, a publisher’s revenue relies heavily
on the ability to predict CTR accurately [Wang et al., 2017].

Representing features accurately is important for CTR pre-
diction. Typically, each feature is represented as a scalar
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weight and a k-dimensional embedding vector in Factor-
ization Machines (FMs)-based models [Rendle, 2010], such
as AFM [Xiao et al., 2017], NFM [He and Chua, 2017],
DeepFM [Guo et al., 2017] and xDeepFM [Lian et al., 2018].
However, in all the above models, the same representation
of a given feature is shared among different input instances
(a.k.a. different scenes), which may limit the CTR model’s
predictive power. For example, the feature female is appar-
ently crucial for click probability in the instance: {young,
female, student, pink, skirt}. However, in another instance:
{young, female, student, blue, notebook}, the feature female
is relatively less crucial. As such, the representation of a
given feature in different input instances (e.g., the feature
female in the above two instances) should be assigned dif-
ferent levels of predictive power. To this end, IFMs were
proposed [Yu et al., 2019], which consider the uniqueness
of each input instance and learn a unique input-aware factor
(used to reweight the original feature representations) for the
same feature in different input instances via DNNs.

Despite great promise, we argue that, in IFMs, plain DNNs
implicitly learn the input-aware factors at the bit-wise level.
That is to say, all the elements within the same embedding
vector will affect each other. Meanwhile, in the field of CTR
prediction, whether DNNs are the most effective model in
learning the input-aware factors remains an open question.
After all, the bit-wise level learning itself may be insufficient
for achieving optimal prediction.

Inspired by the success of Transformer in machine transla-
tion tasks [Vaswani et al., 2017], which is highly efficient and
capable of uncovering syntactic and semantic patterns among
words in a sentence, we adopt its core idea, the Multi-Head
Self-Attention mechanism, to exploit the implicit relationship
among features in an instance, and to adaptively learn the
input-aware factors at the vector-wise level.

In this paper, in light of the uniqueness of each instance,
by allowing the same feature to have different levels of pre-
dictive power in different instances, we propose a compe-
tent model for CTR prediction tasks named Dual Input-aware
Factorization Machines (DIFMs). It shares the same benefits
as the DNNs model (i.e., the IFM model) and introduces a
novel vector-wise network that is more effective in learning
the input-aware factors for reweighting the original feature
representations. To summarize, we make the following key
contributions:
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• We propose a novel network model DIFMs, which can
adaptively learn different representations of a given fea-
ture according to different input instances effectively.

• Compared to the IFM model, our proposed DIFM model
can effectively learn the input-aware factors (used to
reweight the original feature representations) at the bit-
wise and vector-wise levels simultaneously.

• The DIFM model strategically integrates various com-
ponents including Multi-Head Self-Attention, Residual
Networks and DNNs into a unified end-to-end model.

• We conduct comprehensive experiments on two real-
world CTR prediction datasets, and the results confirm
that our DIFM model can outperform major state-of-the-
art models consistently.

2 Factorization Machines
As a class of general predictors working with real valued fea-
ture vectors, Factorization Machines (FMs) are able to esti-
mate parameters under significant sparsity effectively. For-
mally, FMs predict the target as:

ŷFM (x) = w0 +
n∑

i=1

wixi +
n∑

i=1

n∑
j=i+1

〈vi,vj〉xixj (1)

where w0 is the global bias, wi and vi ∈ Rk denote the scalar
weight and the k-dimensional embedding vector of the i-th
feature, respectively. 〈vi,vj〉 is the dot product of two vec-
tors of size k, which models the interaction between the i-th
and j-th features.

3 Our Approach
In this section, we present the structure of our proposed DIFM
model as shown in Figure 1.

3.1 The DIFM Model
The motivation is to adaptively learn the input-aware factors
(used to reweight the original feature representations: w and
v) both at the bit-wise and vector-wise levels simultaneously.
To this end, we propose the novel Dual Input-aware Factor-
ization Machines (DIFMs) for CTR prediction.

The DIFM model consists of the following components:
(1) Sparse Input and Embedding Layer; (2) Dual-Factor Esti-
mating Networks (Dual-FEN) Layer; (3) Combination Layer;
(4) Reweighting Layer; (5) Prediction Layer.

Sparse Input and Embedding Layer
The sparse input layer and embedding layer are widely used
in deep learning based CTR models such as DeepFM [Guo
et al., 2017] and AFM [Xiao et al., 2017]. The sparse input
layer adopts a sparse representation for raw input features.
The embedding layer is able to embed the sparse feature into
a low dimensional, dense real-value vector. The output of the
embedding layer is a concatenated field embedding vector:
Ex = [vT

1 ,v
T
2 , · · · ,vT

i , · · · ,vT
h ], where h denotes the num-

ber of fields while vi ∈ Rk denotes the embedding vector of
the i-th field , and k is the embedding size.

… … ……
Field 1 Field 2 Field h

0 0 0 0 0 01 11

……𝑤1 𝑤2 𝑤ℎ
𝑉1 𝑉2 𝑉ℎ

bit-wise

Transformation + Combination

Dual-FEN Layer

Combination Layer

Representation Refining Reweighting Layer

Factorization Machines Prediction Layer

y(x) Output

Embedding Layer

Sparse Input x 

vector-wise

Figure 1: The network structure of the proposed Dual Input-aware
Factorization Machines model.

Dual-FEN Layer
The Dual-FEN Layer consists of two components1: the
vector-wise part and the bit-wise part, which both aim to learn
a unique input-aware factor for the same feature in different
input instances.

The vector-wise part is inspired by the success of Trans-
former for machine translation in natural language processing
(NLP) [Vaswani et al., 2017]. In this work, we adopt its core
idea, the Multi-Head Self-Attention mechanism, to learn the
input-aware factors at the vector-wise level. Figure 2 shows
the structure of the vector-wise part.

First, we need to reshape the embedding vector Ex into a
h× k matrix, which is the input of the vector-wise part.

Uvec = reshape(Ex) (2)

Next, we map the input matrix into three different matrices:
Qi (Queries), Ki (Keys), Vi (Values) for the i-th head (a.k.a.
the i-th subspace):

Qi = UvecW
Qi

Ki = UvecW
Ki

Vi = UvecW
Vi

(3)

where the projection matrices WQi , WKi ∈ Rk×dk , WVi∈
Rk×dv , and dk denotes the size of the attention factor (in gen-
eral, dk = dv). Then, according to Scaled Dot-Product At-
tention [Vaswani et al., 2017], we conduct the dot products of
the Query with all Keys divided by

√
dk, and apply a softmax

function to obtain the weights on Values:

Attention(Qi,Ki,Vi) = softmax(
QiKi

T

√
dk

)Vi (4)

As the original paper [Vaswani et al., 2017] suggests, it
is beneficial to linearly project the Queries, Keys and Values
n times with different, learned linear projections to dk, dk
and dv dimensions, respectively. On each of these projected
Queries, Keys and Values, we perform the attention function

1For simplicity of writing, we use “vec” denotes “vector-wise”
and “bit” denotes “bit-wise” in formulas.
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Figure 2: The network structure of the vector-wise part in DIFM.

in parallel, yielding a set of dv-dimensional vectors and con-
catenate them:

MultiHead(Uvec) = Concat(head1, . . . , headn)

where headi = Attention(Qi,Ki,Vi)
(5)

where headi ∈ Rh×dv denotes the output of the i-th single
head and n is the number of heads. MultiHead(Uvec) ∈
Rh×(dv×n) denotes the output of Multi-Head Self-Attention.

To preserve some information about the original embed-
ding vector, after the Multi-Head Self-Attention, we use the
Residual Network to add the original feature embedding vec-
tor to the output of Multi-Head Self-Attention:

Resdual(Uvec) = Concat(R1, . . . ,Rn)

whereRi = UvecW
Ri

(6)

where WRi ∈ Rk×dr denotes the linear projection by the
shortcut connections to match the dimensions. Ri ∈ Rh×dr

is the i-th residual block related to headi. Note that, to keep
dimensions consistent, we set dr = dk = dv . Finally, the
output of the vector-wise part can be formulated as:

Ovec = σ(MultiHead(Uvec) + Resdual(Uvec)) (7)

where Ovec ∈ Rh×(dv×n) and σ is the activation function.
The bit-wise part is a stack of fully connected layers. The

input of the bit-wise part: Ibit = Ex. Figure 3 shows the
structure of the bit-wise part.

a1 = σ1(W1Ibit + b1),

· · ·
ai = σi(Wiai−1 + bi)

(8)

where Ibit ∈ R(h×k) is the input of the bit-wise part, and Wi,
bi, σi, ai denote the weight matrix, bias vector, activation
function and the output of the i-th layer, respectively. The
output of the bit-wise part Obit ∈ Rt where t is the number
of neurons of the last hidden layer is defined as:

Obit = aL = σL(WLaL−1 + bL) (9)

…𝑉1 𝑉2 𝑉h

Field 1 Field 2 Field h

…

Fully 
Connected 

Layers

…

Output of Bit-wise

Figure 3: The network structure of the bit-wise part in DIFM.

Combination Layer
In this layer, the output of the vector-wise part is reshaped into
the form of a single vector (i.e., Ovec ∈ Rh1 , Obit ∈ Rh2 ,
where h1 = h× dv × n and h2 = t).

Then, the two input-aware factors based on the vector-wise
and bit-wise parts are calculated as:

mvec = OvecPvec

mbit = ObitPbit
(10)

where Pvec ∈ Rh1×h and Pbit ∈ Rh2×h are the weight ma-
trices that transform Ovec and Obit into a h-dimensional vec-
tor, respectively. Finally, we combine the two intermediate
input-aware factors:

mx = mvec +mbit (11)
where mx ∈ Rh is the complete input-aware factor cor-
responding to the sparse input x, which considers both the
vector-wise and bit-wise parts.

Reweighting Layer
The definition of the reweighting layer is as follows:

wx,i = mx,iwi

vx,i = mx,ivi
(12)

where mx,i is the i-th element in mx, which denotes the i-th
input-aware factor for each non-zero feature in x. wx,i, vx,i

are the reweighted representations of features for the specific
input x, which are more accurate and informative.

Prediction Layer
With the reweighted input-aware weight wx,i and embedding
vector vx,i, the final FM prediction score is obtained as:

ŷDIFM (x) = w0 +
n∑

i=1

wx,ixi +
n∑

i=1

n∑
j=i+1

〈vx,i,vx,j〉xixj

(13)

3.2 Learning
For binary classification, the learning process aims to mini-
mize the following objective function (log loss):

L = − 1

N

N∑
i=1

(yi log(σ(ŷi))+(1−yi) log(1−σ(ŷi))) (14)

where yi ∈ {0, 1} is the ground truth of the i-th instance
while σ(ŷi) ∈ (0, 1) is the predicted CTR (here σ is the
sigmoid function) and N is the total number of training in-
stances.
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3.3 Relationship with FM and IFM

By removing the vector-wise part and Combination Layer, it
is easy to see that our DIFM model will be degraded to the
IFM model. If we further remove the DNNs (bit-wise part) ,
and at the same time fix all mx,i to 1, wx,i and vx,i will only
depend on the i-th feature, and the shallow DIFM model is
downgraded to the traditional FM model.

4 Related Work

Logistic Regression (LR) only models the linear combination
of raw features for CTR prediction. FMs [Rendle, 2010] use
factorization techniques to model second-order feature inter-
actions and work well on large sparse data. As a variant of
FMs, Field-aware FM (FFM) [Juan et al., 2016] allows each
feature to have multiple embedding vectors for feature inter-
actions but suffers from the memory requirement.

With the success of deep learning in computer vision,
speech recognition, and natural language processing [He et
al., 2016; Amodei et al., 2016; Cho et al., 2014], an increas-
ing number of DNN-based models for CTR prediction have
been proposed. How to effectively model feature interac-
tions has become the key challenge for most of these models.
FNN [Zhang et al., 2016] is a forward neural network using
FM to pre-train the embedding layer. PNN [Qu et al., 2016]
introduces a product layer between the embedding layer and
DNN layers to explore the high-order feature interactions.
NFM [He and Chua, 2017] devises a bilinear interaction layer
to obtain the element-wise product of pairwise feature inter-
actions and then stacks multiple non-linear layers over the
bilinear interaction layer to capture the high-order feature in-
teractions. Wide&Deep [Cheng et al., 2016] comprises the
wide and deep parts, where the wide part models the linear
low-order feature interactions, and the deep part models the
non-linear high-order feature interactions. However, feature
engineering is still needed in the wide part. DeepFM [Guo
et al., 2017] uses FM to replace the wide part in Wide&Deep
without any feature engineering. DCN [Wang et al., 2017] ef-
ficiently captures certain bounded-degree feature interactions
explicitly. xDeepFM [Lian et al., 2018] also models the low-
order and high-order feature interactions in an explicit way
by proposing a novel CIN component.

Meanwhile, the attention mechanism is also introduced for
CTR prediction. AFM [Xiao et al., 2017] adopts the atten-
tion mechanism to model the importance of all feature inter-
actions. AutoInt [Song et al., 2019] combines the multi-head
attention and residual networks for feature interactions.

However, in all the above models, the same representation
of a given feature is shared in different instances, which may
limit the CTR model’s predictive power [Yu et al., 2019]. To
overcome this limit, IFM [Yu et al., 2019] learns a unique
input-aware factor for the same feature in different instances
via DNNs. Inspired by the success of IFM, our proposed Dual
Input-aware Factorization Machines (DIFMs) can adaptively
learn the input-aware factors (used to reweight the original
feature representations) at the bit-wise and vector-wise levels
simultaneously and effectively.

5 Experiments
In this section, we conduct extensive experiments to answer
the following questions:
RQ1 How do the key hyper-parameters of DIFM (i.e., the

number of heads, the attention size dk, activation func-
tion and the number of hidden layers) impact its perfor-
mance?

RQ2 Is it necessary to combine the bit-wise and vector-wise
levels for learning the input-aware factors? Which is the
most important component in DIFM?

RQ3 How does DIFM perform compared to state-of-the-art
methods for CTR prediction?

We will answer these questions after presenting some funda-
mental experimental settings.

5.1 Experimental Settings
Datasets. We evaluate our proposed DIFM model on the
following two datasets. Avazu2 dataset was published in the
contest of Avazu Click-Through Rate Prediction in 2014. It
contains click logs with 40 millions of data instances. For
each click data, there are 24 fields which indicate elements of
a single ad impression. We follow the data processing details
of IFM [Yu et al., 2019] and split it randomly into two parts:
80% is for training and 20% is for testing. Criteo3 dataset
contains one month of ad click logs. There are 13 continu-
ous features and 26 categorical ones. We select 7 consecutive
days of samples for training, and the next 1 day for evalua-
tion. At last, it contains click logs with 100 millions of data
instances.
Evaluation Metrics. We use two evaluation metrics in our
experiments: AUC (Area Under ROC) and Logloss (cross en-
tropy). Note that an improvement of 0.001-level in AUC or
Logloss is usually regarded as being significant for CTR
prediction, because it will bring a large increase in a com-
pany’s revenue if the company has a large user base, which
has also been pointed out in many existing works [Cheng et
al., 2016; Guo et al., 2017; Wang et al., 2017; Song et al.,
2019].
Baselines. We compare our proposed DIFM model with the
following eight competitive models, some of which are state-
of-the-art models for CTR prediction.

- LR [Lee et al., 2012]: Logistic Regression only models
the linear combination of raw features.

- FM [Rendle, 2010]: FM uses factorization techniques to
model second-order feature interactions.

- FFM [Juan et al., 2016]: FFM introduces field-aware
embedding vectors mechanism, which gain FFM higher
capacity and better performance. Considering its high
space complexity, we set k = 4 in this paper.

- NFM [He and Chua, 2017]: We implement the Neu-
ralFM and set the number of layers in the hidden layer
to 1 with 512 neurons as the original paper.

2http://www.kaggle.com/c/avazu-ctr-prediction
3http://labs.criteo.com/downloads/

download-terabyte-click-logs/
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Figure 4: Impact of network hyper-parameters on AUC performance.
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Figure 5: Impact of network hyper-parameters on Logloss performance.

- AFM [Xiao et al., 2017]: AFM extends FM by using
attention mechanism to distinguish the different impor-
tance of second-order feature interactions.

- DeepFM [Guo et al., 2017]: The FM part is a factor-
ization machine, and the deep part is a three-layer MLP
with layer sizes 256, 256, 256.

- xDeepFM [Lian et al., 2018]: xDeepFM considers the
implicit and explicit modeling of high-order feature in-
teractions simultaneously, which are implemented with
the DNN and CIN components.

- IFM [Yu et al., 2019]: We implement the method with
the same structure of the original paper. The hidden di-
mension in Factor Estimating Network (FEN) is set to
256, 256, 256 as recommended.

Parameter Settings. We implement all models using Ten-
sorflow4. To enable a fair comparison, all models are learned
by optimizing the log loss (Equation 14) using the Adam
(Learning rate: 0.001) optimizer [Kingma and Ba, 2014]. For
all methods, the embedding sizes for Criteo and Avazu are
set to 20 and 40, respectively, which is the same as the pa-
rameter settings in IFM [Yu et al., 2019]. The batch size
is set to 2000 for both datasets. The default setting for the
number of neurons per layer is: (1) 256 for DNNs layers in
DeepFM, xDeepFM, IFM and DIFM; (2) 200 for CIN lay-
ers in xDeepFM. For AFM, the attention factor is also set to
256 as the original paper recommended [Xiao et al., 2017].
To be fair and achieve the best performance for each model,
hyper-parameters of each model are tuned by grid-searching
carefully. The best settings for each model have been shown
in corresponding sections.

4https://www.tensorflow.org/

5.2 Hyper-parameter Study (RQ1)
First, we study the impact of hyper-parameters on DIFM, in-
cluding (1) the number of attention heads n; (2) the attention
key size dk; (3) activation functions (the vector-wise part);
(4) the number of hidden layers in DNNs.

To avoid the analysis being affected by the bit-wise part,
we conducted experiments (1), (2), (3) via removing the
DNNs (bit-wise) part while varying the settings for the
vector-wise part. Subsequently, we conducted experiment (4)
via holding the best settings for the vector-wise part while
varying the settings for the bit-wise part.

Number of Attention Heads. Figures 4a and 5a demon-
strate the impact of the number of self-attention heads. We
can observe that model performance on two datasets increases
steadily when the number of heads increases from 1 to 16. We
also conducted experiments with heads greater than 16, but
found that the improvement of further increasing head num-
ber is not significant, even the quality will drop off with too
many heads. Consequently, we fixed the number of heads to
16 for the following experiments.

Size of Attention Factor. Adding the size of attention fac-
tor (dk) equals increasing the number of feature maps in Eq.3.
As shown in Figures 4b and 5b, model performance on Avazu
dataset increases steadily when we increase the size of atten-
tion factor from 20 to 100, while on Criteo dataset, 80 is a
more suitable setting for the size of attention factor. As such,
To avoid the model being too complicated, we fixed the size
of attention factor to 100 for Avazu and 80 for Criteo.

Activation Function. Note that we exploited relu as activa-
tion function on neurons of the vector-wise part, as shown in
Eq.7. A common practice in deep learning literature is to em-
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Avazu Criteo
Model AUC Logloss AUC Logloss

FM 0.7758 0.3822 0.7837 0.5600
bit-wise 0.7849 0.3771 0.7981 0.5437

vector-wise-no-res 0.7851 0.3766 0.7990 0.5425
vector-wise 0.7853 0.3764 0.7992 0.5423

complete-no-res 0.7857 0.3762 0.7996 0.5418
complete 0.7860 0.3760 0.7998 0.5416

Table 1: The performance of different components in our DIFM.
(Avazu: 40M instances and Criteo: 100M instances)

ploy non-linear activation functions on hidden neurons. We
thus compared the performance of different activation func-
tions on the vector-wise part (for neurons of the bit-wise part,
we keep the activation function with relu). As shown in Fig-
ures 4c and 5c, relu is indeed more appropriate for neurons of
the vector-wise part.

Depth of Network. Figures 4d and 5d demonstrate the im-
pact of the number of hidden layers in DNNs. For Criteo
dataset, the performance of DIFM increases with the depth of
network at the beginning. However, the model performance
starts to degrade when the depth of network is set to greater
than 2. It is caused by overfitting evidenced by the observa-
tion that the training error still keeps decreasing. For Avazu
dataset, when we stack more layers, the performance is not
further improved, and the best performance is when we use
only one hidden layer.

5.3 Ablation Study (RQ2)

The DIFM model strategically integrates the bit-wise and
vector-wise levels for learning the input-aware factors into
a unified end-to-end model. As such, whether it is indeed
necessary and effective to combine them for joint prediction?
Which is the most important component in our DIFM model?
To validate and gain deep insights into the DIFM model, we
conducted ablation experiments over DIFM. Table 1 shows
the performance of DIFM w.r.t. different components (i.e.
different variants). We have the following key observations:

• First, introducing the input-aware factors mechanism for
reweighting the original feature representations is effec-
tive, which can be verified through the fact that all vari-
ants of the DIFM model outperform FM by a large mar-
gin on both datasets.

• Second, it is necessary and effective to combine the bit-
wise and vector-wise levels for joint prediction. Consid-
ering the bit-wise and vector-wise levels simultaneously
for learning the input-aware factors brings additional im-
provement over the cases of considering either alone.

• Lastly, the vector-wise component is the best individual
variant over DIFM, and the residual unit can further im-
prove performance, which demonstrates the importance
of preserving some information about the original em-
bedding vector.

Avazu Criteo
Model AUC Logloss AUC Logloss

LR 0.7505 0.3963 0.7766 0.5670
FM 0.7758 0.3822 0.7837 0.5600

FFM 0.7769 0.3813 0.7976 0.5443
AFM 0.7782 0.3805 0.7911 0.5512
NFM 0.7816 0.3785 0.7898 0.5528
IFM 0.7849 0.3771 0.7981 0.5437

DeepFM 0.7821 0.3782 0.7975 0.5446
xDeepFM 0.7830 0.3778 0.7979 0.5439

DIFM 0.7860 0.3760 0.7998 0.5416

Table 2: The performance comparison of different CTR models.
(Avazu: 40M instances and Criteo: 100M instances)

5.4 Performance Comparison (RQ3)

In this final subsection, we compared our DIFM model with
several strong baselines. The performance of different models
on Avazu and Criteo datasets is shown in Table 2, from which
we have the following key observations:

• First, learning feature interactions improves the perfor-
mance of CTR prediction models. This observation is
from the fact that LR performs far worse than all the rest
models. Meanwhile, learning the low-order and high-
order feature interactions endows the CTR prediction
model better representation ability.

• Second, learning adaptive and different representations
of a given feature according to different input instances
is crucial in CTR prediction, which can be verified
through the result that the shallow DIFM and IFM mod-
els achieve even better performance than deep learning
methods, such as AFM, NFM, DeepFM and xDeepFM.

• Lastly, our proposed DIFM model consistently achieves
the best performance on both datasets. This demon-
strates the effectiveness and rationality of the combina-
tion of the bit-wise and vector-wise in the DIFM model.

6 Conclusion

In this paper, we presented a novel model named Dual Input-
aware Factorization Machines (DIFMs) for CTR prediction.
It aims to adaptively learn flexible representations of a given
feature according to different input instances with the help of
the Dual-Factor Estimating Network (Dual-FEN). The major
advantage of DIFM is that it can effectively learn the input-
aware factors (used to reweight the original feature represen-
tations) not only at the bit-wise level but also at the vector-
wise level simultaneously. Extensive experiments on two
real-world CTR prediction datasets were conducted to ver-
ify the effectiveness of DIFM for CTR prediction. In terms
of two popular evaluation metrics, empirical results indicate
that DIFM can outperform the classical LR, FM, FFM and
several major state-of-the-art deep learning methods such as
AFM, NFM, IFM, DeepFM and xDeepFM consistently.
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