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Abstract

Despite huge success, deep networks are unable
to learn effectively in sequential multitask learning
settings as they forget the past learned tasks after
learning new tasks. Inspired from complementary
learning systems theory, we address this challenge
by learning a generative model that couples the cur-
rent task to the past learned tasks through a dis-
criminative embedding space. We learn an abstract
generative distribution in the embedding that allows
generation of data points to represent past experi-
ence. We sample from this distribution and utilize
experience replay to avoid forgetting and simulta-
neously accumulate new knowledge to the abstract
distribution in order to couple the current task with
past experience. We demonstrate theoretically and
empirically that our framework learns a distribution
in the embedding, which is shared across all tasks,
and as a result tackles catastrophic forgetting.

1 Introduction
Recent breakthrough of deep learning has led to algorithms
with human-level performance for many machine learning
applications. This may seem natural as these networks are
the best accessible tools that mimic the human nervous sys-
tem [Morgenstern et al., 2014]. However, this success is
highly limited to single task learning, and retaining learned
knowledge in a continual learning setting remains a major
challenge. That is, when a deep network is trained on multiple
sequential tasks with diverse data distributions, the new ob-
tained knowledge usually interferes with past learned knowl-
edge. As a result, the network is often unable to accumulate
the new learned knowledge in a manner consistent with the
past experience and forgets past learned tasks by the time the
new task is learned. This phenomenon is called “catastrophic
forgetting” in the literature [French, 1999]. It is in contrast
with continual learning ability of humans over their lifetime.

To mitigate catastrophic forgetting, one of the main ap-
proaches is to replay data points from past tasks that are
stored selectively in a memory buffer [Robins, 1995]. This is
consistent with the Complementary Learning Systems (CLS)
theory [McClelland et al., 1995]. CLS theory hypothesizes

that a dual long-term and short-term memory system, involv-
ing the neocortex and the hippocampus, is necessary for the
continual, lifelong learning ability of humans. In particu-
lar, the hippocampus rapidly encodes recent experiences as a
short-term memory that is used to consolidate the knowledge
in the slower neocortex as long-term memory through expe-
rience replays during sleep [Diekelmann and Born, 2010].
Similarly, if we selectively store samples from past tasks in a
buffer, like in the neocortex, they can be replayed to the deep
network in an interleaved manner with current task samples
from recent-memory hippocampal storage to train the deep
network jointly on past and current experiences. In other
words, the online sequential learning problem is recast as an
offline multitask learning problem that supports performance
on all tasks. A major issue with this approach is that the
memory size for storing data points grows as more tasks are
learned. Building upon recent successes of generative mod-
els, this challenge has been addressed by amending the net-
work structure such that it can generate pseudo-data points
for the past learned tasks explicitly [Shin et al., 2017].

In this paper, our goal is to address catastrophic forgetting
via coupling sequential tasks in a latent embedding space. We
model this space as the output of a deep encoder, which is
between the input and the output layers of a deep classifier.
Representations in this embedding space can be thought of
neocortex representations in the brain, which capture learned
knowledge. To consolidate knowledge, we minimize the dis-
crepancy between the distributions of all tasks in the embed-
ding space. In order to mimic the offline memory replay pro-
cess in the sleeping brain [Rasch and Born, 2013], we amend
the deep encoder with a decoder network to make the clas-
sifier network generative. The resulting autoencoding path-
ways can be thought of neocortical areas, which encodes and
remembers past experiences. We fit a parametric distribu-
tion to the empirical distribution of data representations in
the embedding space. This distribution can be used to gener-
ate pseudo-data points through sampling, followed by pass-
ing the samples into the decoder network. The pseudo-data
points can then be used for experience replay of the previous
tasks towards incorporation of new knowledge. This would
enforce the embedding to be invariant with respect to the tasks
as more tasks are learned; i.e., the network would retain the
past learned knowledge as more tasks are learned.
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2 Related Work

Past works have addressed catastrophic forgetting using two
main approaches: model consolidation [Kirkpatrick et al.,
2017] and experience replay [Robins, 1995]. Both ap-
proaches implement a notion of memory to enable a network
to remember the distributions of past learned tasks.

The idea of model consolidation is based upon separating
the information pathway for different tasks in the network
such that new experiences do not interfere with past learned
knowledge. This is inspired from the notion of structural
plasticity [Lamprecht and LeDoux, 2004]. During the learn-
ing of a task, important weight parameters for that task are
identified and are consolidated when future tasks are learned.
As a result, the new tasks are learned through free pathways
in the network; i.e., the weights that are important to retain
knowledge about distributions of past tasks mostly remain
unchanged. Several methods exist for identifying impor-
tant weight parameters. Elastic Weight Consolidation (EWC)
models posterior distribution of weights of a given network
as a Gaussian distribution that is centered around the weight
values from past learned tasks and a precision matrix, de-
fined as the Fisher information matrix of all network weights.
The weights are then consolidated according to their impor-
tance; i.e., the value of Fisher coefficient [Kirkpatrick et al.,
2017]. In contrast to EWC, Zenke et al. [Zenke et al., 2017]
consolidate weights in an online scheme during task learn-
ing. If a network weight contributes considerably to changes
in the network loss, it is identified as an important weight.
More recently, Aljundi et al. [Aljundi et al., 2018] use a
semi-Hebbian learning procedure to compute the importance
of the weight parameters in both an unsupervised and online
scheme. The issue with the methods based on structural plas-
ticity is that the network learning capacity is compromised to
avoid catastrophic forgetting. As a result, the learning ability
of the network decreases as more tasks are learned.

Methods that use experience replay retain the past tasks’
distributions via replaying selected representative samples of
past tasks continuously. Prior works have mostly investigated
on how to store a subset of past experiences to reduce depen-
dence on memory. These samples can be selected in different
ways. Schaul et al. select samples such that the effect of un-
common samples in the experience is maximized [Schaul et
al., 2016]. Isele and Cosgun explore four potential strategies
to select more helpful samples in a buffer for replay [Isele
and Cosgun, 2018]. The downside is that storing samples
requires memory, and selection becomes more complex as
more tasks are learned. To reduce dependence on a memory
buffer, similar to humans [French, 1999], Shin et al. [Shin et
al., 2017] developed a more efficient alternative by consider-
ing a generative model that can produce pseudo-data points
of past tasks to avoid storing real data points. They use a gen-
erative adversarial structure to learn the tasks’ distributions to
allow for generating pseudo-data points without storing data.
However, adversarial learning is known to require deliberate
architecture design and selection of hyper-parameters [Roth
et al., 2017], and can suffer from mode collapse [Srivastava
et al., 2017]. Alternatively, we demonstrate that a simple au-
toencoder structure can be used as the base generative model.

Figure 1: Architecture of the proposed framework.

Our contribution is to match the distributions of the tasks in
the embedding layer of the autoencoder and learn a shared
distribution across the tasks to couple them. The shared distri-
bution is then used to generate samples for experience replay
to avoid forgetting. We demonstrate the effectiveness of our
approach theoretically and empirically validate our method
on benchmark tasks that have been used in the literature.

3 Generative Continual Learning
We consider a lifelong learning setting [Chen and Liu, 2016],
where a learning agent faces multiple, consecutive tasks
{Z(t)}TMax

t=1 in a sequence t = 1, . . . , TMax. The agent learns a
new task at each time step and proceeds to learn the next task.
Each task is learned based upon the experiences gained from
learning past tasks. Additionally, the agent may encounter
the learned tasks in future and hence must optimize its perfor-
mance across all tasks; i.e., not to forget learned tasks when
future tasks are learned. The agent also does not know a pri-
ori the total number of tasks, which potentially might not be
finite, the distributions of the tasks, and the order of tasks.

Let at time t, the current task Z(t) with training dataset
Z(t) = 〈X(t),Y (t)〉 arrives. We consider classification
tasks where the training data points are drawn i.i.d. in pairs
from the joint probability distribution, i.e., (x

(t)
i ,y

(t)
i ) ∼

p(t)(x,y), which has the marginal distribution q(t) over x.
We assume that the lifelong learning agent trains a deep neu-
ral network fθ : Rd → Rk with learnable weight parameters
θ to map the data points X(t) = [x

(t)
1 , . . . ,x

(t)
nt ] ∈ Rd×nt to

the corresponding one-hot labels Y (t) = [y
(t)
1 , . . . ,y

(t)
n ] ∈

Rk×nt . Learning a single task in isolation is a stan-
dard classical learning problem. The agent can solve for
the optimal network weight parameters using standard em-
pirical risk minimization (ERM), θ̂(t) = argminθ êθ =

argminθ
∑
i Ld(fθ(x

(t)
i ),y

(t)
i ), where Ld(·) is a proper loss

function, e.g., cross entropy. Given large enough num-
ber of labeled data points nt, the model trained on a sin-
gle task Z(t) will generalize well on the task test sam-
ples, as the empirical risk would be a suitable surrogate
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for the real risk function (Bayes optimal solution), e =
E(x,y)∼p(t)(x,y)(Ld(fθ(t)(x),y)) [Shalev-Shwartz and Ben-
David, 2014]. The agent then can advance to learn the next
task, but the challenge is that ERM is unable to tackle catas-
trophic forgetting as the model parameters are learned using
solely the current task data, which can potentially have a very
different distribution. Catastrophic forgetting can be consid-
ered as the result of considerable deviations of θ(T ) from past
values over {θ(t)}T−1t=1 time as a result of drift in tasks’ dis-
tributions p(t)(x,y). As a result, the updated θ(t) can poten-
tially be highly non-optimal for previous tasks. Our idea is
to prevent catastrophic forgetting through mapping all tasks’
data into an embedding space, where the tasks share a com-
mon distribution. We represent this space by the output of
a deep network mid-layer, and we condition updating θ(t) to
what has been learned before in this discriminative embed-
ding space. In other words, we want to train the deep net-
work such the tasks are coupled in the embedding space by
updating the parameters θ(T ) conditioned on {θ(t)}T−1t=1 .

High performance of deep networks stems from learn-
ing data-driven and task-dependent high-quality fea-
tures [Krizhevsky et al., 2012]. In other words, a deep
network maps data points into a discriminative embedding
space, captured by network layers, where classification
can be performed easily, e.g., classes become separable in
the embedding. Following this intuition, we consider the
deep network fθ to be combined of an encoder φv(·) with
learnable parameters v, i.e., early layers of the network,
and a classifier network hw(·) with learnable parameters w,
i.e., higher layers of the network. The encoder sub-network
φv : X → Z maps the data points into the embedding space
Z ⊂ Rf , which describes the input in terms of abstract
discriminative features. Note that after training, the encoder
network changes the input task data distribution.

If the embedding space is discriminative, this distribution
can be modeled as a multi-modal distribution for a given task,
e.g., using a Gaussian mixture model (GMM). Catastrophic
forgetting occurs because this distribution is not stationery
with respect to different tasks. The idea that we want to ex-
plore is based on training φv such that all tasks share a similar
distribution in the embedding; i.e., the new tasks are learned
such that their distribution in the embedding matches the past
experience. Doing so, the embedding space becomes invari-
ant with respect to any learned input task, which in turn miti-
gates catastrophic forgetting.

The key question is how to adapt the standard supervised
learning model fθ(·) such that the embedding space, captured
in the deep network, becomes task-invariant. Following prior
discussion, we use experience replay as the main strategy.
We expand the base network fθ(·) into a generative model
by amending the model with a decoder ψu : Z → X , with
learnable parameters u. The decoder maps the data repre-
sentation back to the input space X and effectively makes
the pair (φu, ψu) an autoencoder. If implemented properly,
we would learn a discriminative data distribution in the em-
bedding space, which can be approximated by a GMM. This
distribution captures our knowledge about past learned tasks.
When a new task arrives, pseudo-data points for past tasks

can be generated by sampling from this distribution and feed-
ing the samples to the decoder network. These pseudo-data
points can be used for experience replay in order to tackle
catastrophic forgetting. Additionally, we need to learn the
new task such that its distribution matches the past shared
distribution. As a result, future pseudo-data points would rep-
resent the current task as well. Figure 1 presents a high-level
block-diagram visualization of our framework.

4 Optimization Method
Following the above framework, learning the first task (t = 1)
reduces to minimizing discrimination loss for classification
and reconstruction loss for the autoencoder to solve for opti-
mal parameters v̂(1), ˆw(1) and ˆu(1):

min
v,w,u

n1∑
i=1

[
Ld
(
hw(φv

(
x
(1)
i )
)
,y

(1)
i

)
+

γLr
(
ψu

(
φv(x

(1)
i )
)
,x

(1)
i

)]
,

(1)

where Lr is the reconstruction loss and γ is a trade-off pa-
rameter between the two loss terms.

Upon learning the first task, as well as subsequent fu-
ture tasks, we can fit a GMM distribution with k compo-
nents to the empirical distribution represented by data sam-
ples {(φv(x(t)

i ),y
(t)
i )nt

i=1}Tt=1 in the embedding space. The
intuition behind this possibility is that as the embedding space
is discriminative, we expect data points of each class to form
a cluster in the embedding. Let p̂(0)J (z) denote this para-
metric distribution. We update this distribution after learn-
ing each task to accumulate what has been learned from the
new task to the distribution. As a result, this distribution cap-
tures knowledge about past experiences. Upon learning this
distribution, experience replay is feasible without saving data
points. One can generate pseudo-data points in future through
random sampling from p̂

(T−1)
J (z) at t = T and then passing

the samples through the decoder sub-network. It is also cru-
cial to learn the current task such that its distribution in the
embedding matches p̂(T−1)J (z). Doing so ensures suitability
of GMM to model the empirical distribution.

Let Z(T )
ER = 〈X(T )

ER ,Y
(T )
ER 〉 denote the pseudo-dataset gen-

erated at t = T . Following our framework, learning subse-
quent tasks reduces to solving the following problem:

min
v,w,u

nt∑
i=1

[
Ld
(
hw
(
φv(x

(T )
i )

)
,y

(T )
i

)
+ γLr

(
ψu

(
φv(x

(T )
i )

)
,x

(T )
i

)]
+

ner∑
i=1

[
Ld
(
hw
(
φv(x

(T )
er,i)

)
,y

(T )
er,i

)
+ γLr

(
ψu

(
φv(x

(T )
er,i)

)
,x

(T )
er,i

)]
+ λ

k∑
j=1

D
(
φv(q

(T )(X(T )|Cj)), p̂(T−1)J (Z
(T )
ER |Cj)

)
,

(2)
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where D(·, ·) is a discrepancy measure (metric) between two
probability distributions and λ is a trade-off parameter. The
first four terms in Eq. (2) are empirical classification risk and
autoencoder reconstruction loss terms for the current task and
the generated pseudo-dataset. The third and the fourth terms
enforce learning the current task such that the past learned
knowledge is not forgotten. The fifth term is added to en-
force the learned embedding distribution for the current task
to be similar to what has been learned in the past, i.e., task-
invariant. Note that we have conditioned the distance between
the two distributions on classes to avoid the class match-
ing challenge, i.e., when wrong classes across two tasks are
matched in the embedding, as well as to prevent mode col-
lapse from happening. Class-conditional matching is feasible
because we have labels for both distributions. Adding this
term guarantees that we can continually use GMM to fit the
shared distribution in the embedding space.

The main remaining question is selecting the metricD(·, ·)
such that it fits our problem. Since we are computing the
distance between empirical distributions through drawn sam-
ples, we need a metric that can measure distances between
distributions using the drawn samples. Additionally, we must
select a metric that has non-vanishing gradients as deep learn-
ing optimization techniques are gradient-based methods. For
these reasons, common distribution distance measures such
as KL divergence and Jensen–Shannon divergence are not
suitable [Kolouri et al., 2018]. We rely on Wasserstein Dis-
tance (WD) metric [Bonnotte, 2013], which has been used ex-
tensively in deep learning applications. Since computing WD
is computationally expensive, we use Sliced Wasserstein Dis-
tance (SWD) [Rabin and Peyré, 2011], which approximates
WD, but can be computed efficiently.

SWD is computed through slicing a high-dimensional dis-
tribution. The d-dimensional distribution is decomposed
into one-dimensional marginal distributions by projecting
the distribution into one-dimensional spaces that cover the
high-dimensional space. For a given distribution p, a one-
dimensional slice of the distribution is defined as:

Rp(t; γ) =
∫
S
p(x)δ(t− 〈γ,x〉)dx, (3)

where δ(·) denotes the Kronecker delta function, 〈·, ·〉 denotes
the vector dot product, Sd−1 is the d-dimensional unit sphere
and γ is the projection direction. In other words, Rp(·; γ) is
a marginal distribution of p obtained from integrating p over
the hyperplanes orthogonal to γ.

SWD approximates the Wasserstein distance between two
distributions p and q by integrating the Wasserstein distances
between the resulting sliced marginal distributions of the two
distributions over all γ:

SW (p, q) =

∫
Sd−1

W (Rp(·; γ),Rq(·; γ))dγ, (4)

where W (·) denotes the Wasserstein distance. The main ad-
vantage of using SWD is that it can be computed efficiently
as the Wasserstein distance between one-dimensional distri-
butions has a closed-form solution and is equal to the `p-
distance between the inverse of their cumulative distribution
functions. On the other hand, the `p-distance between cu-
mulative distributions can be approximated as the `p-distance

Algorithm 1 CLEER (L, λ)

1: Input: data D(t) = (X(t),Y (t))TMax
t=1 .

2: Pre-training: learning the first task (t = 1)
3: θ̂(1) = (u(1),v(1),w(1)) =argminθ

∑
i[Ld(fθ(x

(t)
i ),y

(t)
i )+

4: γLr(ψu(φv(x
(1)
i )),x

(1)
i )]

5: Estimate p̂(0)J (·) using {φv(x
(1)
i ))}nt

i=1

6: for t = 2, . . . , TMax do
7: Generate pseudo-dataset:
8: DER = {(x(t)

er,i = ψ(z
(t)
er,i),y

(t)
er,i) ∼ p̂

(t−1)
J (·)}ner

i=1

9: Update learnable parameters using pseudo-dataset: Eq. (2)
10: Estimate: p̂(t)J (·)
11: use {φv(x

(t)
i )), φv(x

(t)
er,i))}

nt
i=1

12: end for

between the empirical cumulative distributions, which makes
SWD suitable in our framework. Finally, to approximate the
integral in Eq. (4), we rely on a Monte Carlo style integration
and approximate the SWD between f -dimensional samples
{φv(x(t)

i ∈ Rf ∼ q(t)}nt
i=1 and {φv(x(t)

er,i) ∈ Rf ∼ p̂
(t)
J }

nt
j=1

in the embedding space as the following sum:

SW 2(φv(q
(t)), p̂

(t)
J ) ≈

1

L

L∑
l=1

nt∑
i=1

|〈γl, φv(x
(t)

tl[i]
〉)− 〈γl, φv(x

(t)

tl[er,i]
)〉|2

(5)

where γl ∈ Sf−1 denote random samples that are drawn from
the unit f -dimensional ball Sf−1, and sl[i] and tl[i] are the
sorted indices of {γl ·φv(xi)}nt

i=1 for the two one-dimensional
distributions. We utilize the SWD as the discrepancy measure
between the distributions in Eq. (2) to learn each task. We
tackle catastrophic forgetting using the proposed procedure.
Our algorithm, named Continual Learning using Encoded Ex-
perience Replay (CLEER), is summarized in Algorithm 1.

5 Theoretical Justification
We use existing theoretical results about using optimal trans-
port within domain adaptation [Redko et al., 2017], to justify
why our algorithm can tackle catastrophic forgetting. Note
that the hypothesis class in our learning problem is the set
of all functions represented by the network fθ(·) parameter-
ized by θ. For a given model in this class, let et denote the
observed risk for a particular task Z(t) and eJt denote the ob-
served risk for learning the network on samples of the distri-
bution p̂(t−1)J . We rely on the following theorem.

Theorem 1 [Redko et al., 2017]: Consider two tasks Z(t)

and Z(t′), and a model fθ(t′) trained for Z(t′), then for any
d′ > d and ζ <

√
2, there exists a constant number N0 de-

pending on d′ such that for any ξ > 0 and min(nt, nt′) ≥
max(ξ−(d

′+2),1) with probability at least 1 − ξ for all fθ(t′) ,
the following holds:

et ≤et′ +W (p̂(t), p̂(t
′)) + eC(θ

∗)+√(
2 log(

1

ξ
)/ζ
)(√ 1

nt
+

√
1

nt′

)
,

(6)
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where W (·) denotes the Wasserstein distance between em-
pirical distributions of the two tasks and θ∗ denotes the op-
timal parameter for training the model on tasks jointly, i.e.,
θ∗ = argminθ eC(θ) = argminθ{et + et′}.

We observe from Theorem 1 that performance, i.e., real
risk, of a model learned for task Z(t′) on another task Z(t) is
upper-bounded by four terms: i) model performance on task
Z(t′), ii) the distance between the two distributions, iii) per-
formance of the jointly learned model fθ∗ , and iv) a constant
term that depends on the number of data points for each task.
Note that we do not have a notion of time in this Theorem;
i.e., the roles of Z(t) and Z(t′) can be shuffled and the theo-
rem would still hold. In our framework, we consider the task
Z(t′) to be the pseudo-task, i.e., the task derived by drawing
samples from p̂t

′

J and then feeding the samples to the decoder
sub-network. We use this result to conclude the following.

Lemma 1 : Consider CLEER algorithm for lifelong learn-
ing after Z(T ) is learned at time t = T . Then all tasks t < T
and under the conditions of Theorem 1, we can conclude the
following inequality:

et ≤eJT−1 +W (q̂(t), ψ(p̂
(t)
J )) +

T−2∑
s=t

W (ψ(p̂
(s)
J ), ψ(p̂

(s+1)
J ))

+ eC(θ
∗) +

√(
2 log(

1

ξ
)/ζ
)(√ 1

nt
+

√
1

ner,t−1

)
,

(7)

Proof: We consider Z(t) with empirical distribution q̂(t)

and the pseudo-task with the distribution ψ(p̂
(T−1)
J ) in

the network input space, in Theorem 1. Using the tri-
angular inequality on the term W (q̂(t), ψ(p̂

(T−1)
J )) recur-

sively, i.e., W (q̂(t), ψ(p̂
(s)
J )) ≤ W (p̂(t), ψ(p̂

(s−1)
J )) +

W (ψ(p̂
(s)
J ), ψ(p̂

(s−1)
J )) for all t ≤ s < T , Lemma 1 can

be derived.
Lemma 1 explains that When future tasks are learned,

our algorithms updates the model parameters conditioned on
minimizing the upper bound of et in Eq. 7. Given suit-
able network structure and in the presence of enough labeled
data points, the terms eJt−1 and eC(θ∗) are minimized using
ERM, and the last constant term would be small. The term
W (q̂(t), ψ(p̂

(t)
J )) is minimal because we deliberately fit the

distribution p̂(t)J to the distribution φ(q̂(t)) in the embedding
space and ideally learn φ and ψ such that ψ ≈ φ−1. This
term demonstrates that minimizing the discrimination loss is
critical as only then can we fit a GMM distribution on φ(p̂(t))
with high accuracy. Similarly, the sum terms in Eq. 7 are
minimized because at t = s we draw samples from p̂

(s−1)
J

and enforce indirectly p̂(s−1)J ≈ φ(ψ(p̂
(s−1)
J )). Since the up-

per bound of et in Eq. 7 is minimized and conditioned on its
tightness, the task Z(t) will not be forgotten.

6 Experimental Validation
We validate our method on learning two sets of sequential
tasks: permuted MNIST tasks and related digit classification
tasks. Our implementation code is available on GitHub.

(a) BP vs. EWC (b) CLEER vs. FR

Figure 2: Performance results for permuted MNIST tasks. (Best
viewed in color.)

(a) CLEER (b) FR

Figure 3: UMAP visualization of CLEER versus FR for permuted
MNIST tasks. (Best viewed in color.)

6.1 Learning Sequential Independent Tasks
Following the literature, we use permuted MNIST tasks to
validate our framework. The sequential tasks involve classifi-
cation of handwritten images of MNIST (M) dataset [LeCun
et al., 1990], where pixel values for each data point are shuf-
fled randomly by a fixed permutation order for each task. As a
result, the tasks are independent and quite different from each
other. Since knowledge transfer across tasks is less likely to
happen, these tasks are a suitable benchmark to investigate
the effect of an algorithm on mitigating catastrophic forget-
ting as past learned tasks are not similar to the current task.
We compare our method against: a) normal back propagation
(BP) as a lower bound, b) full experience replay (FR) of data
for all the previous tasks as an upper bound, and c) EWC as a
competing model consolidation framework.

We learn permuted MNIST tasks using a simple multi-
layer perceptron (MLP) network trained via standard stochas-
tic gradient descent and compute the performance of the net-
work on the testing split of each task data at each iteration.
Figure 2 presents results on five permuted MNIST tasks. Fig-
ure 2a presents learning curves for BP (dotted curves) and
EWC (solid curves) 1. We observe that EWC is able to ad-
dress catastrophic forgetting quite well. But a close inspec-
tion reveals that as more tasks are learned, the asymptotic
performance on subsequent tasks is less than the single task
learning performance (roughly 4% less for the fifth task).
This can be understood as a side effect of model consolida-
tion, which limits the learning capacity of the network. This
in an inherent limitation for techniques that regularize net-
work parameters to prevent catastrophic forgetting. Figure 2b
presents learning curves for our method (solid curves) ver-

1We have used PyTorch implementation of EWC [Hataya, 2019].
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(a)M→ U (b) U →M

Figure 4: Performance results on MNIST and USPS digit recogni-
tion tasks. (Best viewed in color.)

(a)M→ U (b) U →M

Figure 5: UMAP visualization for M → U and U → M tasks.
(Best viewed in color.)

sus FR (dotted curves). As expected, FR can prevent catas-
trophic forgetting perfectly but as we discussed the down-
side is the memory growth challenge. FR result in Figure 2b
demonstrates that the network learning capacity is sufficient
for learning these tasks, and that if we have a perfect gener-
ative model, we can prevent catastrophic forgetting without
compromising the network learning capacity. Despite more
forgetting in our approach compared to EWC, the asymptotic
performance after learning each task, just before advancing to
learn the next task, has been improved. We also observe that
our algorithm suffers an initial drop in performance of previ-
ous tasks, when we proceed to learn a new task. Forgetting
beyond this initial forgetting is negligible. This can be under-
stood as the existing distance between p̂(T−1)J and φ(q(t)) at
t = T . In other words, our method can be improved if more
advanced autoencoder structures are used. These results sug-
gest that catastrophic forgetting may be tackled better if both
model consolidation and experience replay are combined.

To provide a better intuitive understating, we have also in-
cluded the representations of the testing data for all tasks in
the embedding space of the MLP in Figures 3. We have
used UMAP [McInnes et al., 2018] to reduce the dimensions
for visualization purpose. In these figures, each color corre-
sponds to a specific class of digits. We can see that although
FR is able to learn all tasks and form distinct clusters for each
digit class for each task, five different clusters are formed for
each class in the embedding space. This suggests that FR is
unable to learn the concept of the same class across differ-
ent tasks in the embedding space. In comparison, we observe
that CLEER is able to match the same class across the differ-
ent tasks; i.e., we have exactly ten clusters for the ten digits.

This empirical observation demonstrates that we can model
the data distribution in the embedding using a multi-modal
distribution such as a GMM [Heinen et al., 2012].

6.2 Learning Sequential Tasks in Related Domains
We performed a second set of experiments on related tasks to
investigate the ability of the algorithm to learn new domains.
We consider two digit classification datasets for this purpose:
MNIST (M) and USPS (U) datasets. Despite being simi-
lar, USPS dataset is a more challenging task as the size of
the training set is smaller.We also resized the USPS images
to 28 × 28 pixels. We consider the two possible sequential
learning scenarios: M→ U andM→ U . The experiments
can be considered as a special case of domain adaptation as
both tasks are digit recognition tasks in different domains. we
use a CNN to capture cross-tasks relations.

Figure 4 presents learning curves for these two tasks. We
observe that the network retains the knowledge about the first
domain, after learning the second domain. We also see that
forgetting is negligible compared to unrelated tasks and there
is a jump-start in performance. These observations suggest
relations between the tasks help to avoid forgetting. As a re-
sult of task similarities, the empirical distribution can cap-
ture the task distribution more accurately. As expected from
the theoretical justification, this empirical result suggests the
performance of our algorithm depends on the closeness of
the distribution ψ(p̂(t)J ) to the distributions of previous tasks.
And improving probability estimation will increase the per-
formance of our approach. We have also presented UMAP
visualization of all tasks’ data in the embedding in Figure 5.
As expected the distributions are matched in the embedding.

7 Conclusions
Inspired from CLS theory, we addressed the challenge of
catastrophic forgetting for sequential learning of multiple
tasks using experience replay. We amend a base learning
model with a generative pathway that encodes experiences
meaningfully as a parametric distribution in an embedding
space. This idea makes experience replay feasible without re-
quiring a memory buffer to store task data. The algorithm
is able to accumulate new knowledge in a manner consis-
tent with past learned knowledge, as the parametric distribu-
tion in the embedding space is enforced to be shared across
all tasks. Compared to model-based approaches that regu-
larize the network to consolidate the important weights for
past tasks, our approach is able to address catastrophic for-
getting without limiting the learning capacity of the network.
Future works for our approach may extend to learning new
tasks and/or classes with limited labeled data points.
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