Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Hierarchical Representation Learning for Bipartite Graphs

Chong Li'*, Kunyang Jia®>, Dan Shen??

, C.J.Richard Shi' and Hongxia Yang?

'University of Washington
ZUniversity of South Florida
SDAMO Academy, Alibaba Group

{chongli, cjshi} @uw.edu, {kunyang.jky, d.shen, yang.yhx } @alibaba-inc.com

Abstract

Recommender systems on E-Commerce platforms
track users’ online behaviors and recommend rel-
evant items according to each user’s interests and
needs. Bipartite graphs that capture both user/item
feature and use-item interactions have been demon-
strated to be highly effective for this purpose.
Recently, graph neural network (GNN) has been
successfully applied in representation of bipartite
graphs in industrial recommender systems. Provid-
ing individualized recommendation on a dynamic
platform with billions of users is extremely chal-
lenging. A key observation is that the users of an
online E-Commerce platform can be naturally clus-
tered into a set of communities. We propose to clus-
ter the users into a set of communities and make
recommendations based on the information of the
users in the community collectively. More specifi-
cally, embeddings are assigned to the communities
and the user information is decomposed into two
parts, each of which captures the community-level
generalizations and individualized preferences re-
spectively. The community structure can be con-
sidered as an enhancement to the GNN methods
that are inherently flat and do not learn hierarchi-
cal representations of graphs. The performance of
the proposed algorithm is demonstrated on a public
dataset and a world-leading E-Commerce company
dataset.

1 Introduction

The online retail market is developing at a rapid pace and cus-
tomers are actively looking for more engaging and highly per-
sonalized retail experiences. To achieve success in a highly
dynamic market, E-Commerce businesses must be able to
stay one step ahead of their customers by predicting what cus-
tomers are looking for, based on their past click-through be-
haviors, shopping history, and product preferences. However,
in a complex environment of a world-leading E-Commerce
platform, how to predict user-specific and unique behaviors
among billions of online customers is quite challenging. A

*Work done as an intern at DAMO Academy, Alibaba Group

2873

Profa.
s

h) p
Shopping History

Figure 1: A user’s shopping pattern. The young lady belongs to
four communities based on her various social roles. The shopping
pattern reflects her community belonging as well as her personal
preferences.

widely-adopted methodology is to represent the users and
items as nodes in a bipartite graph [Grbovic and Cheng,
2018; Ying et al, 2018al. The relationships between the
nodes are treated as edges in the graph. Then a GNN based
method [Hamilton et al., 2017] encodes the nodes of the re-
sulted graph as low-dimensional embeddings, which capture
the node attributes as well as the relationships between the
nodes. With this formulation, the recommendation task could
be transformed as the link prediction problem.

While much effort has been made to address the idiosyn-
crasies of individual users in an E-Commerce recommender
system, we make the note that users can be naturally clus-
tered into a set of communities based on their demographic,
income level, occupation, among other factors. Figure 1 illus-
trates a user’s community-level shopping preferences. This
lady plays four community roles: a business professional, a
young mother, a traveler, and a fashion lady. As a mother,
she routinely purchases infant care products. This shopping
behavior is highly related to her community role as a young
mother. Making recommendations for a certain community
is arguably a less challenging task [Grbovic, 2017], as we
have access to significantly larger amount of data concerning
all the users in this community collectively. With the num-
ber of communities being dramatically lower than the num-
ber of users, we could also afford to carry out more elabo-
rated analyses and perform more sophisticated feature engi-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

neering for the communities. This observation is among the
motivations of a series of works on hierarchical graph neu-
ral networks [Chen et al., 2018; Zitnik and Leskovec, 2017,
Ying et al., 2018bl, in which the network learns to cluster
the users into communities. However, striking a delicate
balance between community-level generalization and user-
specific preference can be a major challenge. Going back to
the example in Figure 1, the lady may prefer high-end prod-
ucts with dark colors. These individualized preferences are
not reflected in the communities that she belongs to. Most of
the existing works in hierarchical graph networks ignore the
user-specific information that is not captured by the user’s
communities. For this reason, while hierarchical graph net-
work has been demonstrated to be effective in graph classifi-
cation tasks, it has not been widely applied in online person-
alized recommender systems.

To tackle such challenges, we present Bi-HGNN (Bipartite
Hierarchical Graph Neural Network), a recommender sys-
tem for the E-Commerce platform that effectively utilizes
the users’ community-level generalization as well as their
individualized preferences. Bi-HGNN enhances the current
GNN methods that are inherently flat and do not learn hi-
erarchical representations of graphs. To be more specific,
each community is assigned an embedding, which is jointly
trained with other parameters of the GNN. The distances be-
tween a particular user and the communities are computed
by a neural network based distance function. This distance
metric allows us to softly assign each user into a few com-
munities. We decompose user information into two orthog-
onal spaces, each of which represents information captured
by community-level generalization and individualized user
preference respectively. This decomposition is our primary
technical contribution. Bi-HGNN is capable of automatically
clustering users into communities in an end-to-end fashion.
To demonstrate its scalability, we have also deployed Bi-
HGNN on a world-leading E-Commerce platform. Our nu-
merical experiments demonstrate that Bi-HGNN consistently
outperforms state-of-the-art recommendation algorithms.

The remainder of this paper is organized as follows: in Sec-
tion 2, we review related works. Section 3 provides a detailed
description of the proposed Bi-HGNN framework. Experi-
mental results on both the public dataset and a real-world E-
Commerce dataset are shown in Section 4. Section 5 con-
cludes the paper.

2 Related Work

As conventional graph analytic methods often suffer from
scalability issue, a new paradigm, called graph embedding
(GE) [Perozzi et al., 2014; Tang et al., 2015; Grover and
Leskovec, 2016; Abu-El-Haija ef al., 2018; Bojchevski and
Giinnemann, 2018], paves an efficient yet effective way to
address large scale graph representation problems. Specifi-
cally, GE converts the nodes and/or edges of the graph into
low-dimensional embeddings such that vital information of
the graph are preserved. Based on this idea, a series of
GNNs have been proposed, including Structure2Vec [Ribeiro
et al., 2017], GCN [Kipf and Welling, 2017], and Graph-
SAGE [Hamilton et al., 2017]. Notably, GraphSAGE pro-

2874

poses an inductive framework to encode node features as well
as neighborhood information into the node embedding. How-
ever, the aforementioned GNN methods are inherently flat
and do not learn hierarchical representations of graphs.

Hierarchical graph representation has also been previously
proposed. [Chen er al., 2019] uses the non-backtracking op-
erator to yield improvements on hard community detection
problems. Since the user generally belongs to several com-
munities on an E-Commerce platform, the hard assignment is
not suitable. DiffPool [Ying ez al., 2018b] assigns a user into
communities using soft assignment. However, a fundamental
limitation of DiffPool is that it requires explicitly expressing
and computing with the adjacent matrix of the graph. This
is computationally prohibitive for recommender system that
operates on graphs with tens of millions of nodes. More im-
portantly, DiffPool focuses on the homogeneity of the clusters
while ignoring the node diversity. In this paper, we also pro-
pose an extension of DiffPool that preserves its core features
yet can scale to real-world recommender systems presented
in the experiment section. [Zhu et al., 2018] presents a tree-
based model to construct a hierarchical structure of items.
The computation complexity to chose an item to be recom-
mended is logarithmic w.r.t. the number of items.

3 Bi-HGNN Model

Let G(U, I, E) be a bipartite graph, where U is a set of user
nodes and [is a set of item nodes and E is a set of edges that
records user-to-item and item-to-item relationships. u and ¢
represents individual user and item nodes respectively. z is
the raw feature of the nodes. N is the neighborhood of a
node. N, is user u’s neighbors and N is item 7’s neighbors.
ey, and e; represents user and item embedding.

A GNN method [Hamilton ef al., 2017; Ying et al., 2018al
encodes the raw feature and the neighborhood information
of the nodes as embeddings. The user embedding and item
embedding are trained in an end-to-end fashion where the su-
pervision signal is whether a user interacted with a particular
item. When a new user joins the platform, his/her user em-
bedding is computed and recommendations for the new user
is solely based on the user embedding and the item embed-
dings.

As shown in Figure 2, we first encode the raw features of
the users and items with the Wide and Deep [Cheng er al.,
2016]. The raw features could be either numerical or categor-
ical.

) = WDy(zu), (M)
e = WDy(w),)
where WD, (.) and WD;,(.) are Wide and Deep module for
user and item respectively. We then feed eLW) and el(-W) as

hS and hY into GraphSAGE [Hamilton et al., 2017] to encode
neighborhood information as follows:

Rl = aggregatel,({hl "' i € N,,}), 3)
hy = o (W, -concat(hy ', hiy,)) , @

where o (.) is the sigmoid function, W/ is a trainable parame-
ter, ¢ is the number of hops of the neighbors. h’; is normalized

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

_— .,
Individualized Embedding est) User Community Embedding e(uC)
u [
Weighted Average product
Probability .
o — (o) tor o
e 4 4
u H
y Wide & Deep fi
Weight 1 : Weight k : for item
ReLU & BN
Decomposition Distance Function | Distance Funct : 5 GraphSAGE for user
S Sofmax) Softmax) ReLU & BN
T A T A :)
LY H H community space
7 P ReLU & BN
. ;yv g
Full User Embedding e{") --' e Embedding ;
H = . =
Community Space Embedding N —
GraphSAGE GraphSAGE
A
{ R (o 5]
——
N [| [| e H [| cee H [
User Item 1 Item 2 Item n Ttem 1 Item n Item
User Neighbors Item Neighbors

Figure 2: Framework of Bi-HGNN. Left side outputs user-community and individualized embeddings. Since user and item raw features
are generally sparse, wide and deep is used here for feature encoding. Based on the user’s historical behaviors, n items are selected as
his/her neighbors to generate full user embedding with GraphSAGE. Full embedding is decomposed into user-community and individualized
embeddings, which is illustrated in the upper left of the figure within the dashed square. User-community embedding is a weighted linear
combination of the community space embedding, where coefficients are determined by the distance between the user and community space
embedding. With both the user and item embeddings, the classifier computes the probability of the user interacting with the item.

to yield the full user embedding:

ht

(F) . _u
ey = - 5)

R (1A
Item embedding can be computed in a similar way.
hl. = aggregatel({h}™,j € Ni}), (6)
K. = o (W} concat(hi™', hl)), @)
nt

€ = —. (8)

C IR

The full user embedding and item embedding computed as
above have been demonstrated to be highly effective in in-
dustrial recommender systems [Ying et al., 2018a; Grbovic
and Cheng, 2018].

3.1 Community Embedding for Clustering

The primary technical contribution of this work is in cluster-
ing the users into communities and perform recommendation
based on the user’s community generalization as well as in-
dividualized preference. The clustering is achieved by (1)
assigning low-dimensional embeddings to a set of communi-
ties, and (2) devising a distance function that quantifies the
“closeness” between a user and a community using their em-
beddings.

As shown in the upper left part of Figure 2, community
space embedding, denoted by egb), cee ,e,(f), is a trainable
parameter that is randomly initialized to be an orthonormal

matrix. Here we require the number of the communities is
smaller than the dimension of the full user embedding. Given
a community space embedding e®) and a full user embedding
e&F), the user’s distance to the community is computed as

(el el(S)))
where [€ {1, -+, k} and f4() is the distance function that
takes the two embeddings as argument and yield a scalar in
interval [0, 1]. We shall elaborate on the design this distance
function later in this section.

A fundamental assumption of this work is that the
user’s community-level generalization can be expressed as
a weighted linear combination of community space embed-
dings, with the coefficients being the distance between the
user and the community. Intuitively, if a user’s online be-
havior closely matches the collective behavior of a commu-
nity, the embedding of this particular community should have
a large weight in the user’s community-level generalization.
Formally, given the distance between user and community,
the weighted average of community embedding yiclds the
user-community embedding

k
e = e,
=1

Ideally we would like to a user to belong to only a few com-
munities. In other words, only a few of the coefficients in
could take non-zero value. This is achieved by passing a
user’s distance to the communities through a SoftMax func-

Wy, = fa

(10)

2875

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

tion. The user-community embedding in Equation (3.1) cap-
tures community behavior but not the user’s individualized
preferences.

In general, a user’s information can not be fully captured
by a linear combination of the community space embeddings.
This is because the number of the communities is smaller than
the dimension of the full user embedding, thus it is impossi-
ble to perfectly reconstruct the full user embedding using a
linear combination of community space embeddings. Intu-
itively, the community-level information of the user can be
represented by a linear combination of community space em-
beddings, while the user-specific individualization has to be
captured in the orthogonal space of the community space em-
beddings.

Formally, let S be the space spanned by community space
embedding (%), § = span{egg), - ,e,(vs)}. Projecting the
full user embedding e&F)
embedding eﬁf’)
e&F) using linear combination of e,

onto space S yields user-community
, which is the best possible approximation of

etP) = proj (egﬂ,s) , (11)

In the orthogonal space, the individualized embedding eg)

that captures the individualized preference of the user is sim-
ply
81([) = ei(l,F) - ei(tp)' (12)
‘We assume that eg), egF) and e&P) are of the same dimension.
The projection in Equation 11 can be computed in vari-
ous ways. We choose compute this projection using singu-
lar value decomposition (SVD) [Golub and Reinsch, 1971],
for the reason that SVD is a differentiable operation that can
be readily incorporated in a deep neural network. Decom-
pose matrix C = [!9) ... ¢ with SVD as ¢ = USVT,
where U and V' are the singular vectors and ¥ is a diago-
nal matrix with singular values on the diagonal. The column
vectors of matrix V, denoted by {(; | I € {1,--- ,k}}, are
orthonormal bases of the space spanned by community space
embedding (%), With the bases of the space, the projection
in Equation 11 can be easily computed as

e =<e ¢G>+t <el > G, (13)

where < ., . > is the inner product between two vectors.

Note that the inner product < .,. > is the coefficients of
the weighted linear combination. In other words, the inner
product < .,. > is essentially the distance function that we
have discussed earlier in this section. In this work, we used
a neural network as the distance function. Alternatively, it is
possible to use the dot product, which is efficient to compute
but less expressive.

We summarize the notations of embeddings discussed in
this section as follows:

The resulted user-community embedding eELP), individual-
ized embedding eg), and item embedding are fed into a clas-
sifier. The classifier computes the probability of the user in-
teraction with a particular item, given their embeddings.

2876

e,(AF) Full user embedding due to GraphSage
ez(-F) Item embedding due to GraphSage

(s) Community Space Embedding
“ (Embedding assigned to a community)

(p) User-community embedding
€u

(Project of eEF) on the space spanned by el(g))

(1) Individualized embedding
Cu (Individual preference cannot be captured by eLP))

3.2 Algorithm Framework and Loss Function

In the training phase, let s; and s; be positive and nega-
tive samples for user u respectively. Given user u, ¥y, ; is the
ground truth label. If user u has the interaction with item ¢,
then y,,; = 1, otherwise ¥, ; = 0. For user u, g, ; is the
predicted label for item 7. The likelihood function is derived
as

115 T PGui =1 J] PGui =0) (14)
v Liesd i€sy
which yields the loss function

-2

U jesfUsy

{yu,iIOg P(gu,z = 1)+

(]- - yu,i)log P(gu,i = 0)} . (15)
Bi-HGNN is summarized in Algorithm 1.

Algorithm 1 Bi-HGNN Algorithm
Input: bipartite graph G(U, I,), user raw feature x,,, item
raw feature x;.
Output: Probability that user u would be interested in item
1

1: Initialize el(S), l=1,---,k;

2: Wide and deep for user in Equation (1): e&w) —

Ty, Vu € U;

w)

3: Wide and deep for item in Equation (2): eg «— x;,Vi €
I;

4: eELF) LO6 CraphSAGE (eELW), {eEW),i € Nu})

5: e,(f'v) LD weighted Avg (e,(LF), {egs), e ,e,(f)});

6: e&I) A0 decompose (e/,(LF), {egs), e ,e,(gs)});

7 ¢, L20E) GraphSAGE (eEW), {eg-W),j € M}),

8: Feed eg), e&c) and e; into the classifier to generate the
probability of ¢, ; = 1 in Equation (14) as

P (§y,; = 1) < classifier (eg), e&c),ez)

9: return Probability that the user would be interested in an
item.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4 Numerical Experiments

In this section, we describe the setup of our numerical exper-
iments. We report our results on the widely used MovieLens
dataset' as well as the real-world online shopping data from
a world-leading E-Commerce company. The baseline meth-
ods we compared against are GraphSAGE [Hamilton er al.,
2017] and DiffPool [Ying et al., 2018b]. GraphSAGE has
been demonstrated to be an effective yet scalable GNN algo-
rithm in a number of applications. We shall demonstrate that
Bi-HGNN outperforms GraphSAGE by considering the com-
munity information. DiffPool, which is closely related to our
method, recursively clusters nodes in a graph into communi-
ties. As previously discussed in Section 2, DiffPool suffers
from severe scalability issues. For comparison purpose, we
developed a modified version of DiffPool, named DiffPool-S
(S for scalable), that is scalable to graphs with tens of millions
of nodes, yet preserves the key characteristics of DiffPool. To
be more specific, DiffPool-S matches DiffPool in the follow-
ing two aspects: (1)A user is assigned to the communities
based on a pre-selected distance function that matches spe-
cific task requirement; (2)Once a user is clustered into a com-
munity, majority of their individualized information is lost
while only keeping abstracted community level information.

Additionally, we perform ablation studies on Bi-HGNN to
evaluate the importance of its individual building blocks, with
details summarized as follows:

e Bi-GNN: In this study, we remove the orthogonal de-
composition step in Bi-HGNN as in Equation (12). For-

() ()

mally, the inputs to the classifier are ey, 7, ey, 7, and e;.

e O-GNN: This variant is formulated similarly as
DiffPool-S, except that we explicitly require the user-
community embedding to be orthonormal in every train-
ing step. To satisfy the orthonormal requirement, let
Weo be a trainable parameter with proper size, and
Weo = USVT be the SVD of Weo. Since SVD is
a differentiable operation, the constructed orthonormal
V is trainable.

‘We choose not to consider methods based on matrix factoriza-
tion [Zhang et al., 2006] or Jaccard similarity [Moulton and
Jiang, 2018, since they are quite shallow and usually fail to
capture high-order non-linearity or interactions in real-world
recommender systems. Also, we do not consider transductive
methods that lack the ability to make inferences for unob-
served samples, thus impractical in practice.

4.1 Movielens Dataset

The MovieLens dataset contains around 6,000 user’s numer-
ical rating of approximately 3,000 films. The raw features of
the users include gender, age, and occupation, while the raw
features of the movies are year and genre. We split the dataset
into training and testing by the time stamp. For every user, we
use the first 70% of the data to predict the rest 30% of future
behaviors: whether this particular user would be interested in
watching the movie. We compared Bi-HGNN to the baseline
methods on four key classification metrics on the MovieLens
dataset. The results are summarized in Table 1.

"https://grouplens.org/datasets/movielens

Accurac F1 AUC AUC
Method y (ROC) (PR)
GraphSAGE 85.7% 241% 63.1% 17.5%
Bi-GNN 84.9% 23.8% 63.1% 17.4%
DiffPool 79.3% 24.0% 62.5% 16.7%
O-GNN 76.0% 232% 61.6% 16.1%
Bi-HGNN 89.5% 429% 82.0% 40.1%

Table 1: Performance comparison of Bi-HGNN to the baseline meth-
ods on the MovieLens dataset.

In a link prediction setting, the Movielens dataset contains
the positive samples, i.e. the movies that a user has actually
watched. To train a classifier, we also need to generate neg-
ative samples. Since in the real-world online shopping sce-
nario where a user is only interested in a tiny fraction of the
items, we created the training and testing set in a way that
the positive samples and negative samples are highly imbal-
anced (negative to positive ratio is 10). For such imbalanced
classification problems, we shall pay attention not only to the
classification accuracy, but also to the robustness of the clas-
sifier. We evaluated with accuracy measures including F1,
area under curve (AUC) of Receiver Operating Characteris-
tics (ROC) and precision. As shown in Table 1, the perfor-
mance of Bi-GNN is almost identical to that of the baseline
GraphSAGE. One may find this result a bit counter-intuitive,
since compared to GraphSAGE, Bi-GNN could utilize user-
community embedding e&m and corresponding distances as
auxiliary sources of information. However, we argue that
eftc) is inferred from eq(LF) and simple concatenation of the
two does not bring extra information. This observation high-
lights the importance of our proposed orthogonal decompo-
sition, which effectively forces the neural network to encode
useful community information in the training process.

The performance of DiffPool-S and O-GNN is worse than
other methods. This is expected since in these two meth-
ods, all the individualized information that is not captured
by the community embedding are completely lost. This illus-
trates the challenge of applying existing hierarchical GNNs
in recommender systems, where highly specific information
of individual users is required. By effectively capturing both
community generalization and user-specific information, Bi-
HGNN achieves superior performances both in terms of ac-
curacy and robustness.

4.2 E-Commerce Dataset

We also performed experiments on real online shopping data
from a world-leading E-Commerce platform. To preserve
anonymity, we use Company to represent the E-Commerce
company that provided this dataset. We randomly sampled
approximately 4.4 million active users who interacted with
approximately 5.9 million items from the Company’s plat-
form on 02/14/2019 as the training dataset. The transaction
data from 02/15/2019 are randomly sampled to construct the
testing dataset. The users and the items that appeared in
the testing dataset are not necessarily in the training dataset.
The statistics of the underlying bipartite graph is summa-

2877

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Precision

0.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

O'070.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

—e— GraphSage
—e— Bi-GNN
—e— DIFFPool-S
—— O-GNN
—e— Bi-HGNN

Threshold

Figure 3: Precision and Recall comparison. The metrics are com-
puted at thresholds evenly spaced between 0.1 and 0.9.

Users Items User-Item Item-Item
¢ em Edges Edges

Train 44M 59M 76.4 M 1029 M
Test 5SM 62M 92.6 M 110 M

Table 2: Statistics of the bipartite graph for the E-Commerce dataset
(in millions).

rized in Table ??. A user is described by 21 categorical fea-
tures (e.g. purchasing power, geolocation) and 5 continuous
features (e.g. number of transactions, user-item preference
scores), while an item is characterized by 8 categorical fea-
tures (e.g. item category, shipping costs) and 22 continuous
features (e.g. click-through rate, number of clicks). A user-
to-item edge is established if the user clicked the item in the
past 15 days. The weight of a user-to-item edge is computed
by a time-decaying preference score, which depends on the
action of the user (click, add to cart, or purchase). We used
the collaborative filtering algorithm [Ekstrand et al., 2011] to
calculate the weight of an item-to-item edge. In the training
phase, we randomly sample 10 neighbors of a node based on
the weight of the connecting edges as the neighbourhood in
GraphSAGE.

The comparison of our proposed method to the baseline
methods are summarized in Table 3. We also plotted the
curve of precision and recall computed at thresholds evenly
spread out between 0.1 and 0.9 in Figure 3. Again, O-GNN
performs the worst. Also, as shown in Figure 3, the classifier
broke down at threshold 0.5 in the precision metric. This phe-

150
L] ° °
L]
°
°
100 . ° ° ° (] o o ° o
° o ° ° °
504 N e ® o ° . °
o000 & 0o o o © °
° ® o © o ©
0 e o ® 0 o 0, ° °
o %o °, e e
° ° e® o
_50{ ® ° o S % © [°
°] e ° o °
° ° . . °
-100 ° -
° °
~150 1 @ o
-150 -100 -50 0 50 100 150

Figure 4: t-SNE plot of the trained community space embedding.
The dimension of the community space embedding is 256 and the
number of community is 100.

2878

Accuracy F1 AUC AUC
Method (ROC) (PR)
GraphSAGE 88.3% 474% 839% 46.1%
Bi-GNN 88.0% 44.6% 81.5% 41.3%
DiffPool-S 87.6% 382% T7.1% 33.6%
O-GNN 87.4% 258% 64.2% 19.2%
Bi-HGNN 90.5% 59.1% 90.2% 63.2%

Table 3: Performance comparison of Bi-HGNN to the baseline

methods on the E-Commerce dataset.

Figure 5: Visualization of the first three Principal Components of
the community space embedding, which is centered and normalized.
The dimension of the community space embedding is 256 and the
number of community is 100.

nomenon suggests that in hierarchical GNN, forcing the com-
munity embedding to be orthonormal across all the training
steps is likely to be too stringent. With such a requirement,
the stochastic gradient descent algorithm probably missed the
opportunity to escape from local minimums.

The t-Distributed Stochastic Neighbor Embedding (t-SNE)
[van der Maaten and Hinton, 2008] of the trained community
space embedding is shown in Figure 4. In Figure 5, we also
visualized the first three principal components [Rokhlin et al.,
2010] of the trained community space embedding. As shown
in Figure 5, most of the communities scattered nicely in the
space, but some of the communities are not spaced far enough
to distinguishable. Developing systematic methods to prop-
erly choosing the number of communities is the next step of
this research.

5 Conclusion

GNNs have achieved state-of-the-art results in various graph
representation tasks. However, most existing GNNs are in-
herently flat and unable to capture the hierarchical structure
of graphs. We propose Bi-HGNN a recommender system for
the E-Commerce platform that effectively utilizes the users’
community-level generalization as well as their individual-
ized preferences. Our proposed method is in clear contrast
with other hierarchical GNNs methods that ignore the user-
specific information that is not captured by the community-
level generalization. We evaluated our proposed on a world-
leading E-Commerce platform with satisfactory performance.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

References

[Abu-El-Haija et al., 2018] Sami Abu-El-Haija, Bryan Per-
ozzi, Rami Al-Rfou, and Alex Alemi. Watch your step:
Learning node embeddings via graph attention. In Neural
Information Processing Systems, 2018.

[Bojchevski and Giinnemann, 2018] Aleksandar Bojchevski
and Stephan Giinnemann. Deep gaussian embedding of
graphs: Unsupervised inductive learning via ranking. In
International Conference on Learning Representations,
2018.

[Chen et al., 2018] Haochen Chen, Bryan Perozzi, Yifan Hu,
and Steven Skiena. Harp: Hierarchical representation
learning for networks. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence. AAAI Press,
2018.

[Chen et al., 2019] Zhengdao Chen, Lisha Li, and Joan
Bruna. Supervised community detection with line graph
neural networks. In International Conference on Learning
Representations, 2019.

[Cheng er al., 2016] Heng-Tze Cheng, Levent Koc,
Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, et al. Wide & deep learning for recom-
mender systems. In Proceedings of the 1st Workshop on
Deep Learning for Recommender Systems, pages T—10.
ACM, 2016.

[Ekstrand et al., 2011] Michael D. Ekstrand, John T. Riedl,
and Joseph A. Konstan. Collaborative filtering recom-
mender systems. Foundations and Trends® in Hu-
man—Computer Interaction, 4(2):81-173, 2011.

[Golub and Reinsch, 1971] Gene H Golub and Christian
Reinsch. Singular value decomposition and least squares
solutions. In Linear Algebra, pages 134—151. Springer,
1971.

[Grbovic and Cheng, 2018] Mihajlo Grbovic and Haibin
Cheng. Real-time personalization using embeddings for
search ranking at airbnb. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, KDD ’18. ACM, 2018.

[Grbovic, 2017] Mihajlo Grbovic. Search ranking and per-
sonalization at airbnb. In Proceedings of the Eleventh
ACM Conference on Recommender Systems, RecSys 17,
pages 339-340, New York, NY, USA, 2017. ACM.

[Grover and Leskovec, 2016] Aditya Grover and Jure
Leskovec. Node2vec: Scalable feature learning for
networks. In Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 855-864, 2016.

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing
Systems, pages 1024—-1034, 2017.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional

2879

networks. In International Conference on Learning Rep-
resentations, 2017.

[Moulton and Jiang, 2018] Ryan Moulton and Yunjiang
Jiang. Maximally consistent sampling and the jaccard in-
dex of probability distributions. In 20/8 IEEE Interna-
tional Conference on Data Mining (ICDM), pages 347—
356. IEEE, 2018.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 2014.

[Ribeiro et al., 2017] Leonardo F. R Ribeiro, Pedro H. P
Saverese, and Daniel R Figueiredo. struc2vec: Learning
node representations from structural identity. In Proceed-
ings of the 23th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2017.

[Rokhlin et al., 2010] Vladimir Rokhlin, Arthur Szlam, and
Mark Tygert. A randomized algorithm for principal com-
ponent analysis. SIAM Journal on Matrix Analysis and
Applications, 31(3):1100-1124, 2010.

[Tang et al., 2015] Jian Tang, Meng Qu, Mingzhe Wang,
Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In Proceedings of
the 24th International Conference on World Wide Web,
pages 1067-1077, 2015.

[van der Maaten and Hinton, 2008] Laurens van der Maaten
and Geoffrey Hinton. Visualizing data using t-SNE. Jour-
nal of Machine Learning Research, 9:2579-2605, 2008.

[Ying ef al., 2018a] Rex Ying, Ruining He, Kaifeng Chen,
Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-
scale recommender systems. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2018.

[Ying er al., 2018b] Zhitao Ying, Jiaxuan You, Christopher
Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differen-
tiable pooling. In Advances in Neural Information Pro-
cessing Systems, pages 4805-4815, 2018.

[Zhang et al., 2006] Sheng Zhang, Weihong Wang, James
Ford, and Fillia Makedon. Learning from incomplete rat-
ings using non-negative matrix factorization. In Proceed-
ings of the 2006 SIAM international conference on data
mining, pages 549-553. SIAM, 2006.

[Zhu et al., 2018] Han Zhu, Xiang Li, Pengye Zhang,
Guozheng Li, Jie He, Han Li, and Kun Gai. Learning tree-
based deep model for recommender systems. In Proceed-
ings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2018.

[Zitnik and Leskovec, 2017] Marinka Zitnik and Jure
Leskovec. Predicting multicellular function through
multi-layer tissue networks. Bioinformatics, 33(14):190-
198, 2017.

