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Abstract

In this paper, we leverage the efficiency of Bina-
rized Neural Networks (BNNs) to learn complex
state transition models of planning domains with
discretized factored state and action spaces. In or-
der to directly exploit this transition structure for
planning, we present two novel compilations of
the learned factored planning problem with BNNs
based on reductions to Boolean Satisfiability (FD-
SAT-Plan) as well as Binary Linear Programming
(FD-BLP-Plan). Experimentally, we show the ef-
fectiveness of learning complex transition models
with BNNs, and test the runtime efficiency of both
encodings on the learned factored planning prob-
lem. After this initial investigation, we present an
incremental constraint generation algorithm based
on generalized landmark constraints to improve the
planning accuracy of our encodings. Finally, we
show how to extend the best performing encoding
(FD-BLP-Plan+) beyond goals to handle factored
planning problems with rewards.

1 Introduction

Deep neural networks have significantly improved the abil-
ity of autonomous systems to perform complex tasks, such as
image recognition [Krizhevsky er al., 2012], speech recogni-
tion [Deng et al., 2013] and natural language processing [Col-
lobert et al., 2011], and can outperform humans and human-
designed super-human systems in complex planning tasks
such as Go [Silver et al., 2016] and Chess [Silver et al., 2017].

In the area of learning and online planning, recent work on
HD-MILP-Plan [Say et al., 2017] has explored a two-stage
framework that (i) learns transitions models from data with
ReLU-based deep networks and (ii) plans optimally with re-
spect to the learned transition models using mixed-integer lin-
ear programming, but did not provide encodings that are able
to learn and plan with discrete state variables. As an alter-
native to ReLU-based deep networks, Binarized Neural Net-
works (BNNs) [Hubara et al., 2016] have been introduced
with the specific ability to learn compact models over discrete
variables, providing a new formalism for transition learning
and planning in factored [Boutilier ef al., 1999] discrete state
and action spaces that we explore in this paper. However
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planning with these BNN transition models poses two non-
trivial questions: (i) What is the most efficient compilation of
BNNSs for planning in domains with factored state and (con-
current) action spaces? (ii) Given that BNNs may learn in-
correct domain models, how can a planner repair BNN com-
pilations to improve their planning accuracy?

To answer question (i), we present two novel compilations
of the learned factored planning problem with BNNs based
on reductions to Boolean Satisfiability (FD-SAT-Plan) and
Binary Linear Programming (FD-BLP-Plan). Over three fac-
tored planning domains with multiple size and horizon set-
tings, we test the effectiveness of learning complex state tran-
sition models with BNNs, and test the runtime efficiency of
both encodings on the learned factored planning problems.
While there are methods for learning PDDL models from
data [Yang er al., 2007; Amir and Chang, 2008] and excel-
lent PDDL planners [Helmert, 2006; Richter and Westphal,
20101, we remark that BNNGs are strictly more expressive than
PDDL-based learning paradigms for learning concurrent ef-
fects in factored action spaces that may depend on the joint
execution of one or more actions. Furthermore, while Monte
Carlo Tree Search (MCTS) methods [Kocsis and Szepesviri,
2006; Keller and Helmert, 2013] including AlphaGo [Silver
et al., 2016] and AlphaGoZero [Silver et al., 20161 could
technically plan with a BNN-learned black box model of tran-
sition dynamics, unlike this work, they would not be able
to exploit the BNN transition structure and they would not
be able to provide optimality guarantees with respect to the
learned model.

To answer question (ii), we introduce an incremental al-
gorithm based on generalized landmark constraints from the
decomposition-based cost-optimal classical planner [Davies
et al., 2015], where during online planning we detect and con-
strain invalid sets of action selections from the decision space
of the planners and efficiently improve their planning accu-
racy. Finally, building on the above answers to (i) and (ii),
we extend the best performing encoding to handle factored
planning problems with general rewards (FD-BLP-Plan+).

In summary, this work provides the first planner capable of
learning complex transition models in domains with mixed
(continuous and discrete) factored state and action spaces as
BNNSs and capable of exploiting their structure in satisfiabil-
ity (or optimization) encodings for planning purposes. Em-
pirical results demonstrate strong performance in both goal-
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oriented and reward-oriented planning in both the learned and
original domains, and provide a new transition learning and
planning formalism to the data-driven model-based planning
community.

2 Preliminaries

Before we present the SAT and BLP compilation of the
learned planning problem, we review the preliminaries mo-
tivating this work.

2.1 Problem Definition

A deterministic factored planning problem is a tuple II =
(S,A,C,T,I,G) where S = {S9 5¢} is a mixed set of
state variables with discrete S¢ and continuous S¢ domains,
A = {A4 A} is a mixed set of action variables with discrete
A4 and continuous A€ domains, C' : S x A — {true, false}
is a function that returns true if action @ € A and state
s € S pair satisfies constraints that represent global con-
straints on state and action variables, 7" : S x A — S de-
notes the stationary transition function between time steps
tand t + 1, T(s',at) = s'Ttif c(st,at) = true for all
global constraints ¢ € C, and is undefined otherwise. Finally,
I C C is the initial state and G C C'is the goal state con-
straints over the set and subset of state variables S, respec-
tively. Given a planning horizon H, a solution (i.e. plan)
to II is a value assignment to action a! and state s’ vari-
ables such that T'(s?,a?) = s'*! and c(s?,a’) = true for
all global constraints ¢ € C' and time steps t € {1,...,H}.
The RDDL [Sanner, 2010] formalism is extended to handle
goal-specifications and used to describe the problem II.

2.2 Factored Planning with Deep-Net Learned
Transition Models

Factored planning with deep-net learned transition models
is a two-stage framework for learning and solving nonlinear
factored planning problems as first introduced in HD-MILP-
Plan [Say er al., 2017]. Given samples of state transition data,
the first stage of the framework learns the transition function
T using a deep-neural network with Rectified Linear Units
(ReLUs) [Nair and Hinton, 2010] and linear activation units.
The data is sampled from the RDDL-based domain simulator
RDDLsim [Sanner, 2010]. In the second stage, the learned
transition function 7 is used to construct the factored plan-
ning problem II = (S, A,C,T,1,G). That is, the trained
deep-neural network with fixed weights is used to predict the
state '™ at time ¢+ 1 for free state s* and action a' variables
at time t such that T'(s’,a’) = s'T1. As visualized in Fig-
ure 1, the learned transition function 7' is sequentially chained
over horizon ¢t € {1,...,H}, and compiled into a Mixed-
Integer Linear Program yielding the planner HD-MILP-Plan.
Since HD-MILP-Plan utilizes only ReLUs and linear acti-
vation units in its learned transition models, the state vari-
ables s € S°¢ are restricted to have only continuous domains

SeCS.

2.3 Binarized Neural Networks

Binarized Neural Networks (BNNs) are neural networks with
binary weights and activation functions [Hubara e al., 2016].
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Figure 1: Visualization of HD-MILP-Plan, where blue circles rep-
resent state variables s € S, red circles represent action variables
a € A, gray circles represent hidden units (i.e., ReLUs and linear ac-
tivation units) and w represent the weights of a deep-neural network.
During the learning stage, the weights w are learned from data. In
the planning stage, the weights are fixed and HD-MILP-Plan opti-
mizes a given reward function with respect to the free actiona € A
and state variables s € S.

During inference, BNNs reduce memory requirements of a
system by replacing most arithmetic operations with bit-wise
operations. BNN layers are stacked in the following order:

Real or Binary Input Layer: Binary units in all layers, with
the exception of the first layer, receive binary input. When
the input of the first layer has real-valued domains = € R,
m bits of precision can be used for a practical representation
such that 7 = Y7 | 2~ !z'w’ [Hubara et al., 2016].

Binarization Layer: Given input z;; of binary unit j € J(I)
at layer [ € {1,..., L} the deterministic activation function
used to compute output y;; is: y;; = 1if z;; > 0, -1
otherwise, where L denotes the number of layers and J(I)
denotes the set of binary units in layer ! € {1,..., L}.

Batch Normalization Layer: For all layers [ € {1,..., L},
Batch Normalization [Ioffe and Szegedy, 2015] is a method
for transforming the weighted sum of outputs at layer [ — 1 in
Aj = ZiEJ(l—l) Wj j,1—1Y4,1—1 to input x;; of binary unit
j € J(I) atlayer ! such that: z;; = j%”yj,l‘i’ﬂj?l where
parameters w; ji—1, [y, 0]2-’1, €51, V5,1 and 3;,; denote the
weight, input mean, input variance, numerical stability con-
stant (i.e., epsilon), input scaling and input bias respectively,
where all parameters are computed at training time.

2.4 Boolean Satisfiability Problem

The Boolean Satisfiability Problem (SAT) is the problem of
determining whether there exists a value assignment to the
variables of a Boolean formula such that the formula eval-
uates to true (i.e., satisfiable) [Davis and Putnam, 1960].
While the theoretical worst-case complexity of SAT is NP-
Complete, state-of-art SAT solvers are shown to scale exper-
imentally well for large instances with millions of variables
and constraints [Biere et al., 2009].

Boolean Cardinality Constraints

Boolean cardinality constraints describe bounds on the num-
ber of Boolean variables that are allowed to be true, and are in
the form of AtMosty(z1,...,2,) = > g x; < k. An effi-
cient encoding of AtMosty(x1,...,x,) in conjunctive nor-
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mal form (CNF) [Sinz, 2005] is presented below:

(A Csi)nC A (zivsig)

1<j<k 1<i<n

AN N Csig Ve AC N (Gaviasiog)

1<i<n 1<j<k 1<i<n

AN N (i Vesion o1 Vsig)

1<i<n 1<j<k

Here, s;; are auxiliary Boolean variables implicitly de-
fined in the constraints above. Note that the cardinality con-
straint Y, ; < k is equivalent to Y ., ~x; > n — k.
For notational clarity, we use AtLeasty(z1,...,x,) to de-
note the cardinality constraint E?zl x; > k, which is equiv-
alent to AtMost,_p(—x1, ...

, Ty

2.5 Binary Linear Programming Problem

The Binary Linear Programming (BLP) problem requires
finding the optimal value assignment to the variables of a
mathematical model with linear constraints, linear objective
function, and binary decision variables. Similar to SAT, the
theoretical worst-case complexity of BLP is NP-Complete.
The state-of-the-art BLP solvers [IBM, 2017] utilize branch-
and-bound algorithms and can handle cardinality constraints
efficiently in the size of its encoding.

2.6 Generalized Landmark Constraints

A generalized landmark constraint is a linear inequality in the
form of ., (x4 > ko) > 1 where L C A denotes the set
of action landmarks and &, denotes counts on actions a € L,
that is, the minimum number of times an action must occur
in a plan [Davies et al., 2015]. Davies et al. introduced a
decomposition-based planner, OpSegq, that incrementally up-
dates generalized landmark constraints to find cost-optimal
plans to classical planning problems.

3 SAT Compilation of the Learned Factored
Planning Problem

In this section, we show how to reduce the learned factored
planning problem II with BNNs into SAT which we denote
as Factored Deep SAT Planner (FD-SAT-Plan).

3.1 Propositional Variables

First, we describe the set of propositional variables used in
FD-SAT-Plan. We use three sets of propositional variables:
action variables, state variables and BNN binary units, where
variables use a bitwise encoding.

o X fm denotes if i-th bit of action @ € A is executed at
timet € {1,...,H}.

. Y;t denotes if i-th bit of state s € S is true at time
te{l,...,H+1}.

e Z;,+ denotes if binary unit j € J(I) at layer [ €
{1,..., L} is activated at time ¢t € {1,..., H}.
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3.2 Parameters

Next we define the additional parameters used in FD-SAT-
Plan.

o ] 2 is the initial (i.e., at t = 1) value of the i-th bit of state
variable s € S.

e S is the set of state variables S¢ C S specified by the
goal constraints G.

e G isthe goal (i.e., at t = H + 1) value of the i-th bit of
state variable s € SC.

e In(z,i) is the function that maps the i-th bit of a state or
an action variable x € SU A to the corresponding binary
unit in the input layer of the BNN such that In(z,i) = j
where j € J(1).

e Out(s,1) is the function that maps the i-th bit of a state
variable s € S to the corresponding binary unit in the
output layer of the BNN such that Out(s, ) = j where
jeJ(L).

3.3 The SAT Compilation
Below, we define Ehe SAT encoding of the learned factored
planning problem II with BNNs.

Initial and Goal State Constraints

AN (AXL S INACA Vg o G)) O

1<i<m s€ES s€eSG

where clause (1) set the initial and goal values of the state
variables at times t = 1 and ¢t = H + 1, respectively.

BNN Constraints

/\ /\ /\ (Ytsi,tHZIn(s,i),l,t) 2)

1<t<H seS 1<i<m

/\ /\ /\ (Xzi,t A ZIn(a,i),l,t) (3)

1<t<H acA 1<i<m

/\ /\ /\ (Y 141 € Zow(s,i),Lot) 4)

1<t<H se€S 1<i<m
AR

1<t<H 2<I<L
AtLeastk(Zi,l,l,t Wi jl—1 = 1,i S J(l — 1),
“Zig—14 Wi -1 =—1,i€ J(l—1))) ®)
N N Z—

1<t<H 2<I<L
AtLeastkr(—' il—1,t Wiji—1 = 1,2 € J(l — 1),
Zig—1,4 wiji—1=—1ieJ(l—-1))) (6)

where k in the cardinality constraints is the binary activation
threshold computed at training time such that:

- n/o2 +e;
|T( = )]+ g — VT

Y.l

2

for binary unit j € J(I) in layer [ € {2,..., L}, where ||
denotes the size of set z, and ¥’ = |J(I — 1)| — k + 1 Clauses
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(2-3) map the binary units at the input layer of the BNN (i.e.,
I = 1) to a unique state or action variable, respectively. Sim-
ilarly, clause (4) maps the binary units at the output layer of
the BNN (i.e., I = L) to a unique state variable. Clauses (5-6)
encode the binary activation of every unit in the BNN.

Global Constraints

NV, 1<t<H+1,s€81<i<m,
ceC
Xi,1<t<HaecA1<i<m) @)

where clause (7) represents domain-dependent global con-
straints on state and action variables. Some common exam-
ples of global constraints ¢ € C' such as mutual exclusion on
Boolean action variables and one-hot encodings for the out-
put of the BNN (i.e., exactly one Boolean state variable must
be true) are respectively encoded below by clauses (8-9):

AtMOStl (Xa ta € A) (8)

AtMost; (Yt s € S) A \/Y;t 9)
sesS

In general, linear global constraints in the form of
Zi a;x; < k, such as bounds on state and action variables,
can be encoded in SAT where a; are positive integer coeffi-
cients and x; are decision variables with non-negative integer
domains [Abio and Stuckey, 2014].

4 BLP Compilation of the Learned Factored
Planning Problem

Given FD-SAT-Plan, we present the BLP compilation of the

learned factored planning problem II with BNNs, which we
denote as Factored Deep BLP Planner (FD-BLP-Plan).

4.1 Binary Variables and Parameters

FD-BLP-Plan uses the same set of decision variables and pa-
rameters as FD-SAT-Plan.

4.2 The BLP Compilation

FD-BLP-Plan replaces clauses (1-9) with equivalent linear
constraints. Clauses (1-4) are replaced by the following
equality constraints:

Ysi,l =1 Vses,1<i<m (10)
Yinn =Gy Viesoagicm (D)
Y= Zin(siy Vi<i<Hses1<i<m (12)
X! = Zrnia Vi<t<H,acA1<i<m (13)
Ysi,tJrl = ZOut(s,z‘),L,t VlgtgH,seS,lgigm (14)

Clause (5) is replaced by the following linear constraint:

kZjie < Z Zig—14+ Z

wi,j,1—1=1 Wi, j,1—1=—1
i€J(1—-1) iET(1—1)

(1—Zi—14)

s)
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foralll <t < H,2 <[] < L. Similarly, clause (6) is
replaced by the following linear constraint:

K(1—Z4) < Z Zig—1t+ Z (1—=Zi-1.4)

w;i j1—1=—1 w;i j1-1=1
ieT(1—1) ieT(1-1)

(16)

forall1 <t < H,2 <[ < L. Finally, clauses (7-9) are
replaced by linear constraints in the form of ), a;z; < k.

S Incremental Factored Planning Algorithm
for FD-SAT-Plan and FD-BLP-Plan

Now we introduce an incremental algorithm for excluding in-
valid plans from the search space of FD-SAT-Plan and FD-
BLP-Plan. Similar to OpSeq [Davies et al., 2015], we update
our planners with generalized landmark constraints

D a- Y o Xe)z1l o an

a€EA 1<t<H 1<t<H
(a,t)€Ln (a,t)¢Ln

where L,, is the set of actions @ € A executed at time 1 <
t < H at the n-th iteration of the algorithm outlined below.

Algorithm 1 Incremental Factored Planning Algorithm for
FD-SAT-Plan and FD-BLP-Plan
1: n = 1, planner = FD-SAT-Plan or FD-BLP-Plan
2: L, < Solve planner.
3: if L, is @ or L,, is a plan for II then
4: return L,,
5
6

: else planner <— Constraint (17)
i n < n+1,gotoline 2.

For a given horizon H, Algorithm 1 iteratively computes
a set of actions L, or returns infeasibility for the learned
factored planning problem II. If the set of actions L,, is non-
empty, we evaluate whether L,, is a valid plan for the original
factored planning problem II (i.e., line 3) either in the actual
domain or using a high fidelity domain simulator — in our case
RDDLsim. If the set of actions L,, constitutes a plan for II,
Algorithm 1 returns L,, as a plan. Otherwise, the planner is
updated with the new set of generalized landmark constraints
to exclude L,, and the loop repeats. Since the original ac-
tion space is discretized and represented upto m bits of pre-
cision, Algorithm 1 can be shown to terminate in no more
than n = 2/41X™*H jterations by constructing an inductive
proof similar to the termination criteria of OpSeq where ei-
ther a feasible plan for II is returned or there does not exist a
plan to both IT and II for the given horizon H.

6 Experimental Results

In this section, we evaluate the effectiveness of factored plan-
ning with BNNs. First, we present the benchmark domains
used to test the efficiency of our learning and factored plan-
ning framework with BNNs. Second, we present the accuracy
of BNNSs to learn complex state transition models for factored
planning problems. Third, we test the efficiency and scalabil-
ity of planning with FD-SAT-Plan and FD-BLP-Plan on the
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learned factored planning problems II across multiple prob-
lem sizes and horizon settings. Fourth, we demonstrate the
effectiveness of Algorithm 1 to find a plan for the factored
planning problem II. Finally we test the effectiveness of fac-
tored planning with the best performing encoding over the
benchmark domains with reward specifications.

6.1 Domain Descriptions

The deterministic RDDL domains used in the experiments,
namely Navigation [Sanner and Yoon, 2011], Inventory Con-
trol (Inventory) [Mann and Mannor, 2014], and System Ad-
ministrator (SysAdmin) [Guestrin ef al., 2001; Sanner and
Yoon, 2011] are described below.

Navigation models an agent in a two-dimensional (m-by-
n) maze with obstacles where the goal of the agent is to move
from the initial location to the goal location at the end of hori-
zon H. The transition function 7" describes the movement of
the agent as a function of the topological relation of its cur-
rent location to the maze, the moving direction and whether
the location the agent tries to move to is an obstacle or not.
This domain is a deterministic version of its original from
IPPC2011 [Sanner and Yoon, 2011]. Both the action and the
state space is Boolean. We report the results on instances with
two maze sizes m-by-n and three horizon settings H where
m=3,4,n=3,H =4,6,8.

Inventory describes the inventory management control
problem with alternating demands for a product over time
where the management can order a fixed amount of units to
increase the number of units in stock at any given time. The
transition function 7" updates the state based on the change in
stock as a function of demand, the current order quantity, and
whether an order has been made or not. The action space is
Boolean (either order a fixed positive integer amount, or do
not order) and the state space is non-negative integer. We re-
port the results on instances with two demand cycle lengths d
and three horizon settings H where d = 2,4 and H = 4,6, 8.

SysAdmin models the behavior of a computer network P
where the administrator can reboot a limited number of com-
puters to keep the number of computers running above a spec-
ified safety threshold over time. The transition function T’
describes the status of a computer which depends on its topo-
logical relation to other computers, its age and whether it has
been rebooted or not, and the age of the computer which de-
pends on its current age and whether it has been rebooted or
not. This domain is a deterministic modified version of its
original from IPPC2011 [Sanner and Yoon, 2011]. The ac-
tion space is Boolean and the state space is a non-negative
integer where concurrency between actions are allowed. We
report the results on instances with two network sizes | P| and
three horizon settings H where |P| = 3,4 and H = 2,3, 4.

6.2 Transition Learning Performance

In Table 1, we present test errors for different configurations
of the BNNs on each domain instance where the sample data
was generated using a simple stochastic exploration policy.
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For each instance of a domain, state transition pairs were col-
lected and the data was treated as independent and identically
distributed. After random permutation, the data was split into
training and test sets with 9:1 ratio. The BNNs were trained
on MacBookPro with 2.8 GHz Intel Core i7 16 GB mem-
ory using the code available [Hubara et al., 2016]. Over-
all, Navigation instances required the smallest BNN struc-
tures for learning due to their purely Boolean state and ac-
tion spaces, while both Inventory and SysAdmin instances
required larger BNN structures for accurate learning, owing
to their non-Boolean state and action spaces.

Table 1: Transition Learning Performance Table measured by error
on test data (in %) for all domains and instances.

Domain Network Structure | Test Error (%)
Navigation(3,3) 12:64:64:9 2.12
Navigation(4,3) 16:80:80:12 6.59
Inventory(2) 7:96:96:5 5.51
Inventory(4) 8:128:128:5 4.58
SysAdmin(3) 12:128:128:9 3.73
SysAdmin(4) 16:96:96:96:12 8.99

6.3 Planning Performance on the Learned
Factored Planning Problems

We compare the effectiveness of using a SAT-based encod-
ing against a BLP-based encoding, namely FD-SAT-Plan and
FD-BLP-Plan to find plans for the learned factored planning
problem II. We ran the experiments on MacBookPro with 2.8
GHz Intel Core i7 16GB memory. For FD-SAT-Plan and FD-
BLP-Plan, we used Glucose [Audemard and Simon, 2014]
and CPLEX 12.7.1 [IBM, 2017] solvers respectively, with 30
minutes total time limit per domain instance.

Overall Performance Analysis

In Figure 2, we present the runtime performance of FD-SAT-
Plan (Red Bar) and FD-BLP-Plan (Blue Bar) over Navigation
(Figure 2a), Inventory (Figure 2b) and SysAdmin (Figure 2¢)
domains. The analysis of the runtime performances across
all three domains show that the increase in the size of the
underlying BNN structure (as presented in Table 1) signif-
icantly increases the computational effort required to find a
plan. Similarly for both planners, we observed that increas-
ing the size of the horizon, with the exception of instance
(Nav,3,8), increases the cost of computing a plan.

Comparative Performance per Encoding

The pairwise comparison of FD-SAT-Plan and FD-BLP-Plan
over all problem settings show a clear dominance of FD-
BLP-Plan over FD-SAT-Plan in terms of runtime perfor-
mance. Overall, FD-SAT-Plan computed plans for 15 out
of 18 instances while FD-BLP-Plan successfully found plans
for all instances. Moreover, with the exception of instances
(Nav,4,6) and (Nav,4,8), FD-BLP-Plan found plans for the
learned factored planning problems under 20 seconds. On
average, FD-BLP-Plan is two orders of magnitude faster than
FD-SAT-Plan.
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Figure 2: Timing comparison between FD-SAT-Plan (Red Bar) and FD-BLP-Plan (Blue Bar). Over all problem settings, the BLP encoding
of the learned factored planning problem consistently outperformed its SAT equivalent.
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Figure 3: Timing comparison between FD-BLP-Plan (Blue Bar) and FD-BLP-Plan+ (Green Bar). The additional computational resources
required to solve the factored planning problem with reward specifications varied across different domains where the computational effort for
finding a plan increased minimally, moderately and significantly in Inventory, Navigation and SysAdmin domains, respectively.

6.4 Planning Performance on the Factored
Planning Problems

We test the planning efficiency of the incremental factored
planning algorithm using the best performing planner, that is
FD-BLP-Plan, for solving the factored planning problem II.
Overall only three instances, namely (Inv,4,8), (Sys,4,3) and
(Sys,4,4), required constraint generation to find a plan where
the maximum number of constraints required was equal to
one. The instances that required the generation of landmark
constraints, the runtime performance of FD-BLP-Plan was al-
most identical to the results presented in Figure 2.

6.5 Planning Performance on the Factored
Planning Problems with Reward Specifications

Finally, we extend FD-BLP-Plan to handle domains with re-
ward specifications. Hereby, we extend the definition of the
factored planning problem II to include the reward function
Q:SxA— Rsuchthat It = (S, A, C, T, I,G, Q). Given
a planning horizon H, an optimal solution to IT* is a plan that
maximizes the total reward function over all time steps such
that 317, Q(s'*!,a’). Similar to HD-MILP-Plan [Say et
al., 2017], we assume the knowledge on the reward function
@ and add @ as an objective function to our BLP encoding,
which we denote as FD-BLP-Plan+.

In Figure 3, we show results for solving the factored plan-
ning problems with reward specifications using Algorithm
1. The pairwise comparison of FD-BLP-Plan and FD-BLP-
Plan+ over all domain instances shows that the additional
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computational effort required to solve II* is minimal, mod-
erate and significant in Inventory, Navigation and SysAdmin
domains, respectively. Especially in (Sys,4,3) and (Sys,4,4)
instances, FD-BLP-Plan ran out of time at its fifth iteration of
Algorithm 1, as the solver could not prove the optimality of
the incumbent solution found.

7 Conclusion

In this work, we utilized the efficiency and ability of BNNs
to learn complex state transition models of factored planning
domains with discretized state and action spaces. We intro-
duced two novel compilations, a SAT (FD-SAT-Plan) and a
BLP (FD-BLP-Plan) encoding, that directly exploit the struc-
ture of BNNS to plan for the learned factored planning prob-
lem, which provide optimality guarantees with respect to the
learned model if they successfully terminate. We further in-
troduced an incremental factored planning algorithm based
on generalized landmark constraints that improve planning
accuracy of both encodings. Finally, we extended the best
performing encoding to handle factored planning problems
with reward specifications (FD-BLP-Plan+). Empirical re-
sults showed we can accurately learn complex state transition
models using BNNs and demonstrated strong performance
in goal-oriented and reward-oriented planning in both the
learned and original domains. In sum, this work provides a
novel and effective factored state and action transition learn-
ing and planning formalism to the data-driven model-based
planning community.



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

References

[Abio and Stuckey, 2014] Ignasi Abio and Peter J. Stuckey.
Encoding linear constraints into sat.  In Principles
and Practice of Constraint Programming, pages 75-91.
Springer Int Publishing, 2014.

[Amir and Chang, 2008] Eyal Amir and Allen Chang.
Learning partially observable deterministic action models.
JAIR, 33:349-402, 2008.

[Audemard and Simon, 2014] Gilles Audemard and Laurent
Simon. Lazy Clause Exchange Policy for Parallel SAT
Solvers, pages 197-205. Springer Int. Publishing, 2014.

[Biere er al., 2009] Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors. Handbook of Satisfi-
ability, volume 185 of Frontiers in Artificial Intelligence
and Applications. 10S Press, 2009.

[Boutilier ez al., 1999] Craig Boutilier, Thomas Dean, and
Steve Hanks. Decision-theoretic planning: Structural as-
sumptions and computational leverage. JAIR, 11(1):1-94,
1999.

[Collobert et al., 2011] Ronan Collobert, Jason Weston,
Leon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from
scratch. JMLR, 12:2493-2537, 2011.

[Davies er al., 2015] Toby O. Davies, Adrian R. Pearce, Pe-
ter J. Stuckey, and Nir Lipovetzky. Sequencing operator
counts. In 25th ICAPS, pages 61-69, 2015.

[Davis and Putnam, 1960] Martin Davis and Hilary Putnam.
A computing procedure for quantification theory. Journal
of the ACM, 7(3):201-215, 1960.

[Deng er al., 2013] Li Deng, Geoffrey E. Hinton, and Brian
Kingsbury. New types of deep neural network learning for
speech recognition and related applications: an overview.

In IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 8599-8603, 2013.

[Guestrin er al., 2001] Carlos Guestrin, Daphne Koller, and
Ronald Parr. Max-norm projections for factored MDPs. In
17th 1JCAI, pages 673-680, 2001.

[Helmert, 2006] Malte Helmert. The fast downward plan-
ning system. JAIR, 26(1):191-246, 2006.

[Hubara er al., 2016] Ttay Hubara, Matthieu Courbariaux,
Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Bina-
rized neural networks. In 29th NIPS, pages 4107—4115.
Curran Associates, Inc., 2016.

[IBM, 2017] IBM. IBM ILOG CPLEX Optimization Studio
CPLEX User’s Manual, 2017.

[Toffe and Szegedy, 2015] Sergey Ioffe and Christian
Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In 32nd
ICML, pages 448-456, 2015.

[Keller and Helmert, 2013] Thomas Keller and Malte
Helmert.  Trial-based heuristic tree search for finite
horizon MDPs. In 23rd ICAPS, pages 135-143, 2013.

4821

[Kocsis and Szepesviri, 2006] Levente Kocsis and Csaba
Szepesvéri. Bandit based Monte-Carlo planning. In
ECML, pages 282-293, 2006.

[Krizhevsky ef al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In 25th NIPS, pages 1097—
1105, 2012.

[Mann and Mannor, 2014] Timothy Mann and Shie Mannor.
Scaling up approximate value iteration with options: Bet-
ter policies with fewer iterations. In 27st ICML, volume 1,
2014.

[Nair and Hinton, 2010] Vinod Nair and Geoffrey E. Hinton.
Rectified linear units improve restricted boltzmann ma-
chines. In 27th ICML, pages 807-814, 2010.

[Richter and Westphal, 2010] Silvia Richter and Matthias
Westphal. The lama planner: Guiding cost-based anytime
planning with landmarks. JAIR, 39(1):127-177, 2010.

[Sanner and Yoon, 2011] Scott Sanner and Sungwook Yoon.
International probabilistic planning competition. 2011.

[Sanner, 2010] Scott Sanner. Relational dynamic influence
diagram language (rddl): Language description. 2010.

[Say et al., 2017] Buser Say, Ga Wu, Yu Qing Zhou, and
Scott Sanner. Nonlinear hybrid planning with deep net
learned transition models and mixed-integer linear pro-
gramming. In 26th IJCAI, pages 750-756, 2017.

[Silver er al., 2016] David Silver, Aja Huang, Christopher J.
Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mas-
tering the game of go with deep neural networks and tree
search. Nature, pages 484-503, 2016.

[Silver et al., 2017] David Silver, Thomas Hubert, Julian
Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. 2017.

[Sinz, 2005] Carsten Sinz. Towards an Optimal CNF Encod-
ing of Boolean Cardinality Constraints, pages 827-831.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[Yang et al., 2007] Qiang Yang, Kangheng Wu, and Yunfei
Jiang. Learning action models from plan examples using
weighted max-sat. AlJ, 171(2):107-143, 2007.



