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Abstract
Neural networks have been widely used for high re-
source language (e.g. English) named entity recog-
nition (NER) and have shown state-of-the-art re-
sults. However, for low resource languages, such
as Dutch and Spanish, due to the limitation of re-
sources and lack of annotated data, NER mod-
els tend to have lower performances. To narrow
this gap, we investigate cross-lingual knowledge
to enrich the semantic representations of low re-
source languages. We first develop neural networks
to improve low resource word representations via
knowledge transfer from high resource language
using bilingual lexicons. Further, a lexicon ex-
tension strategy is designed to address out-of lex-
icon problem by automatically learning semantic
projections. Finally, we regard word-level entity
type distribution features as an external language-
independent knowledge and incorporate them into
our neural architecture. Experiments on two low re-
source languages (Dutch and Spanish) demonstrate
the effectiveness of these additional semantic repre-
sentations (average 4.8% improvement). Moreover,
on Chinese OntoNotes 4.0 dataset, our approach
achieves an F-score of 83.07% with 2.91% abso-
lute gain compared to the state-of-the-art systems.

1 Introduction
Named entity recognition (NER) is defined as the extraction
of a contiguous sequence of textual tokens, which represents
the name of an object of a specified class, such as person,
location or organization. It plays a vital role in the overall
task of Information Extraction (IE) and serves as an interme-
diate step for subsequent IE tasks, like Relation Extraction
and Entity Linking. Current state-of-the-art methods for En-
glish NER usually use deep learning algorithms, e.g., Feed-
forward neural network (FNN) or Recurrent neural network
(RNN) [Huang et al., 2015], and build name taggers from an-
notated data with accompanying entity labels. Such models
generalize well on new entities based on features automati-
cally learned from the context. However, a neural-based NER
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Bilingual Lexicon

美联储B-Org 主席O 是O 本B-Per 伯南克I-Per 。

FED ; 
Federal Reserve ;

Chinese
Sentence:

chairman;
president;

is;
am;
are;
right

Ben;
books;

originally;

Bernanke;

English Translation: Federal Reserve Chairman is Ben Bernanke.

Figure 1: Example of NER labels with bilingual lexicon.

system could still get lower performance if its hidden feature
representations cannot be learned adequately, which happens
frequently when the annotated data is not enough, especially
in low resource scenario [Zhang et al., 2016]. In this paper,
we regard English as a high resource language, and other lan-
guages, such as Dutch, Spanish, and even Chinese, as low
resource languages.

To improve the performance of low resource NER, we
present a neural-based sequential tagger which incorpo-
rates additional word representations learned from seman-
tic projections based on cross-lingual knowledge. This ap-
proach is partly inspired by the previous empirical success of
feature-based sequence labeling models with bilingual con-
straints/inferences for Chinese and English NER [Che et al.,
2013; Wang et al., 2013]. Our approach is built on the
state-of-the-art LSTM-CRF framework [Lample et al., 2016],
which models each word of the input sentence with a contex-
tual embedding based on Bi-LSTM, and then assigns an en-
tity label for each word using CRF. Compared with previous
work which are only based on general word embeddings, we
design three strategies to enrich the semantic representations,
which embodies our main contributions:

(1) We build neural networks to model the external seman-
tic representation of each low resource language word based
on the translations from high resource languages. The intu-
ition is that different languages usually contain complemen-
tary cues about entities and these cues can be further trans-
ferred through bilingual lexicons. Figure 1 shows a simple
example for Chinese name tagging. The word “本” is com-
mon in Chinese but rarely appears as a name. However, based
on a Chinese-English dictionary, one of the English transla-
tion candidates of “本” is “Ben”, which provides a strong
semantic clue that the word is a person name in English.
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(2) The lexicon is usually limited and cannot cover all low
resource language words. Thus, we further design a new
strategy to extend the bilingual mappings with a linear trans-
formation function. After generating the external semantic
representations for the low resource language words based
on high resource translations (the output of the previous net-
work), we learn a linear projection function between the low
resource word embedding space and the high resource lan-
guage translation semantic space, accordingly, the out-of-
lexicon low resource language words can also be estimated
with a new semantic representation.

(3) For each word, we calculate its distributional proba-
bilities over all entity types and add them as additional fea-
tures to the original word representation for both low resource
and high resource languages. The rationale is that the entity
type distribution can be regarded as a language-independent
knowledge and it is helpful for low resource NER. For exam-
ple, both the English and Chinese are describing the same
entity, even probably with different spelling (e.g., “United
States” in English vs. “美国” in Chinese), the entity type
of that entity does not change from one language to another
[Ni and Florian, 2017]. And if we know that “United States”
is a location in English space, then naturally we can predict
that the entity type of Chinese word “美国” prefers location.

Experiments on two low resource languages (Dutch and
Spanish) demonstrate that the additional semantic represen-
tations can bring in an average 4.8% F-score gain compared
with general word embeddings. Moreover, we also conduct
experiments on the Chinese portion of the OntoNotes 4.0 cor-
pus. The results show that we achieve a 2.91% improvement
compared to the state-of-the-art system.

2 Methodology
In this section, we first describe the background on LSTM-
CRF model, which is the backbone of our approach. After-
wards, we present two neural networks to learn the cross-
lingual semantic representation of each low resource lan-
guage word based on high resource language translations.
Lastly, we introduce a lexicon extension strategy to alleviate
the out-of-lexicon problem and describe how to learn the en-
tity type distribution based on original word representations
and entity type representations in both languages.

2.1 Basic Model: LSTM-CRF
LSTM-CRF model is originally introduced by [Huang et al.,
2015], which takes a sequence of elements as the input and
outputs a sequence of category labels corresponding to the
input sequence1. The idea has been successfully applied in
POS Tagging, Chunking and NER [Liu et al., 2017a].

The approach of [Lample et al., 2016] is based on LSTM
and CRF Tagging models. An illustration of this network is
given in the left of Figure 2. The LSTM is a special form
of recurrent neural networks (RNNs) with three gated units,
input, output and forget, which could control the passing of

1Entity types are usually represented in BIOES format (which
stand for Begin, Inside, Outside, End, and Single, indicating the po-
sition of the token in the entity) as this scheme has been reported to
outperform others such as BIO [Ratinov and Roth, 2009].

information along the sequence and thus improves the mod-
eling of long-range dependencies. Following [Lample et al.,
2016], they take a sequence of vectors X = {x1, ..., xi, ..., xn}
as input and return another sequence H = {h1, ..., hi, ..., hn}
that represents some information about the sequence at every
step in the input. For brevity, the details of LSTM equations
are given in [Gers et al., 1999]. The conditional random field
(CRF) [Jurafsky and Martin, 2000] is a probabilistic graph-
ical model, which works in a sequential way and predict a
label sequence y = {y1, ..., yi, ..., yn} corresponding to the
input sequence X. They define a score function as follows:

s(X, y) =
n∑

i=0

Ayi,yi+1 +
n∑

i=1

Hi,yi (1)

where A is a matrix of transition scores such that Ai,j repre-
sents the score of a transition from the tag i to tag j. y0 and
yn are the start and end tags of a sentence. Matrix A is there-
fore a square matrix of size k + 2, k is the number of tags. A
softmax over all possible tag sequences yields a probability
for the sequence y:

p(y|X) = exps(X,y)∑
ỹ∈YX exp

s(X,ỹ)
(2)

where YX represents all possible tag sequences for the input
sequence X.

Furthermore, [Lample et al., 2016] incorporated character-
level structure into word representation. Each input vector
xi consists of two parts, pre-trained word-level representa-
tion wi [Mikolov et al., 2013] and task-related character-level
representation ci. They adopted a bidirectional LSTM to cap-
ture information in both forward and backward directions and
concatenate the outputs of these two LSTMs as ci.

2.2 Improved with Bilingual Lexicon
We present an overview of the developed networks for mod-
eling bilingual lexicons, as illustrated in the right of Figure
2. Following the same setting in Section 2.1, given a low
resource language sentence X = {x1, x2, ..., xi, ..., xn}, we
assume that each word xi has a corresponding high resource
language translation Ti based on the bilingual lexicon 2. The
translation Ti can be viewed as a combination of multiple
translation items and each translation item consists of mul-
tiple high resource language words. To make better under-
standing of the high resource language translation of a low re-
source word, all translation items should be encoded into the
encoder. One simple way is to take the concatenation of all
translation words as the input for the vanilla RNN unit [Liu et
al., 2017b]. We also map each high resource language trans-
lation word into its embedding vector. Therefore, translation
word vectors {t1, ..., ti, ..., tl} are stacked and regarded as
the translation memory unit T ∈ Rd×l, where l is the number
of all translation words. An example is given in Figure 1. The
Chinese word “美联储” has two translation items in English,
namely “FED” and “Federal Reserve”. We can get its trans-
lation sequence as [“FED”, “Federal”, “Reserve” ], of which
size is 3.

2We construct bilingual lexicons from online translators such as
Bing Dict and FAIR (Facebook AI Research) dictionary.
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Start End

A A AA

B/I/O B/I/O B/I/O

CRF layer

BiLSTM layer

Hidden

Input
wi ci veci eiwi-1 ci-1 veci-1 ei-1 wi+1 ci+1 veci+1ei+1

veci

tj-1 tj tj+1tj-2

LSTM layer

Bilingual lexicon representations by LSTM-based Network

tj-1 tj tj+1tj-2
Bilingual lexicon representations by  attention-based Network

wi

veci=∑ 𝛼𝑗t𝑗𝑗

EO EL ENEP

Entity Type Distribution

wi

cosij=
E𝑗∙w𝑖

𝑇

∥E𝑗∥×∥w𝑖∥

ei

Word Embedding Representation Character Representation

Bilingual Lexicon Representation Entity Type Distribution

High Resource Word Embedding Entity Type Representation

wi ci

veci ei

tj Ej

POS-tag Vector

Figure 2: Main architecture of our model. In this framework, the translation representation of low resource word veci can be modeled by
two approaches, LSTM-based network or attention-based model.

Following [Liu et al., 2017b], we first present a LSTM-
based network for modeling bilingual lexicons. To bet-
ter encode the structural information of different translation
items, we incorporate the POS-tag information of each trans-
lation item into their corresponding translation words. In our
method, each POS-tag label is also mapped to a dp (a hyper-
parameter) dimensional vector, which is randomly initialized
and optimized by the model. Then we combine the embed-
ding of each translation word ti and its corresponding POS-
tag vector pi as [ti, pi], and then feed it to the Bi-LSTM
unit. Finally, we concatenate the outputs of forward LSTM
and backward LSTM as translation representations vec. We
name this model as LSTM-CRF+BLLSTM , as illustrated in
the upper-right of Figure 2.

Considering that each word in the translation does not con-
tribute equally to the semantic meaning of the original low
resource word, we further introduce an attention-based net-
work to model the bilingual lexicons, which is similar as
the attention-based memory network in question answering
[Sukhbaatar et al., 2015]. In detail, taking an external trans-
lation unit T ∈ Rd×l and a low resource word vector xi ∈ Rd

as input, the attention model outputs a continuous vector
vec ∈ Rd, which is a weighted sum of each piece of memory
in T:

vec =

l∑
j=1

αjtj (3)

where l is the memory unit size, αj ∈ [0, 1] is the weight of tj
and

∑
j αj = 1. We implement a neural network based atten-

tion model based on previous work [Bahdanau et al., 2014].
For each piece of translation memory tj , we use a feed for-
ward neural network to compute its semantic relatedness with
the low resource word. The scoring function is calculated as

follows:

gj = tanh(Wattxi + Uatttj + batt) (4)

where Watt ∈ Rd, Uatt ∈ Rd and btt ∈ R1×1.
After obtaining g1, g2, ...gl, we feed them to a softmax

function to calculate the final importance distribution
α1, α2, ...αl. We name this model as LSTM-CRF+BLATT ,
as illustrated in the right-middle of Figure. 2

αj =
exp(gj)∑l
z=1 exp(gz)

(5)

2.3 Improved with Mapping based Lexicon
Extension Strategy

In the actual situation, the bilingual lexicons can not cover all
low resource language words. To overcome this challenge,
we design a lexicon extension strategy to estimate the trans-
lation representations of out-of-lexicon word.

Suppose there is a low resource language word set W =
{w1, ..., wi, ..., wf}, each word has a low resource word vec-
tor wi and a high resource language translation vector veci.
We learn a linear projection function as the transformation
between the two semantic space, as follows:

veci = Mwi (6)

where M is the mapping matrix. We minimize the following
objective to optimize M:

lossM =

f∑
i=1

||veci − Mwi||2 (7)

After obtain M, for each out-of-lexicon word oi, we can esti-
mate the translation representation veoi as follows:

veoi = Moi (8)
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2.4 Improved with Language-Independent Entity
Type Distribution

In this section, we introduce the entity type-based distribu-
tional features, which denotes the probabilities of each word
to be tagged as each entity type. Word embeddings have been
empirically shown to preserve linguistic regularities, such as
similar words tend to be close to each other in the same space
[Mikolov et al., 2013]. We observe that the same property
also applies to the words with the same entity type. For ex-
ample, the distance between the word “Microsoft” and “Bill
Gates” is larger than that between “Microsoft” and “IBM”.
Therefore, we can learn an approximate representation of
each entity type, and use the similarities between each entity
type representation and each word embedding as the entity
type-based distributional feature.

In this work, we focus on three most common named en-
tity types, i.e., P (Person), L (Location), O (Organization),
and discard the others. Taking low resource language as an
example, we randomly select 10 entities from each entity
type and average their embeddings as the entity type repre-
sentation. At the same time, we randomly generate one vec-
tor representing non-entity; Therefore, four entity type vec-
tors {EP , EO, EL, EN} are constructed, each Ej ∈ Rd. Af-
terwards, we use standard cosine function to calculate the
semantic relatedness between the low resource word embed-
ding wi and the entity type representation Ej .

eij =
wTi · Ej

||wi|| × ||Ej ||
(9)

For high resource language, we also calculate the entity distri-
bution of each word. In the end, each low resource language
word and each high resource language word are assigned with
an entity distributional feature vector with dimensionality 4,
ei = {eP , eO, eL, eN}, as illustrated in the bottom-right of
Figure 2.

2.5 Low Resource NER
Now, the vectors of each word in the input low resource
sentence is made up of four parts: a word embedding wi,
a character-level representation ci, a high resource trans-
lation vector veci or veoi, and an entity type distribu-
tional representation ei. we regard the concatenation vec-
tors of these four representations as word representation xi =
[wi, ci, veci, ei], and feed them into the previous LSTM-CRF
model for NER (Section 2.1). The model is trained in a su-
pervised manner by minimizing the cross entropy error of se-
quence labeling and L2 loss:

loss = −
∑
X∈C

∑
y∈ỸX

pg(ỹ|X)log(p(ỹ|X)) + lossM (10)

where p(y|X) is the probability of predicting sequence X as
tag sequence ỹ. C denotes all training sentences. X is the in-
put sentence representations. YX represents all possible tag
sequences for the input sequence. pg(ỹ|X) is 1 or 0, indicat-
ing whether the correct sequence tag is ỹ. We use back prop-
agation to calculate the gradients of all the parameters, and
update them with stochastic gradient descent. We random-
ize other parameters with uniform distribution U (0.01, 0.01),

Languages
Embedding Embedding Vocabulary

Corpus dimension size
Dutch FAIR 300 33315
Spanish FAIR 300 31673
Chinese Gigword V5 300 66785
English Gigword V5 300 97473

Table 1: Embedding parameters used in our experiments on four
languages.

Languages Dataset Train Dev Test
Dutch CoNLL-2002 15520 2822 5077
Spanish CoNLL-2002 8323 1914 1517
Chinese Ontonotes 4.0 22761 3903 2730

Table 2: # of sentences.

and set the learning rate as 0.01. Table 1 illustrates the word
embedding parameters used in our experiments3. For brevity,
the details of other parameters are given in our codes 4.

3 Experiment
We apply our neural architecture for NER on various datasets
and evaluate the effectiveness separately. In this section, we
will describe the detailed experimental settings and discuss
the results.

3.1 Dataset
We evaluate the proposed approach on two low resource
languages (including Spanish and Dutch5 ), and Chinese6 ,
which is distinct from Latin-based languages. In this pa-
per, we regard English as high resource language and all
other languages as low resource languages. Table 2 shows
the detailed description of the data sets used in our ex-
periments. In this paper, we focus on four entity types
(Person, Location, Organization, None), which are com-
monly adopted in previous NER studies [Che et al., 2013;
Wang et al., 2013].

3.2 Low Resource NER
We compare with the following baseline methods on the two
languages.

• LSTM-CRF [Lample et al., 2016] is introduced in sec-
tion 2.1. Compared with standard Bi-LSTM, it adds
a CRF layer to impose several hard constraints of the
“grammar”.

• LM-LSTM-CRF [Liu et al., 2017a] is also a LSTM-
CRF-based sequence labeling framework and incorpo-
rates residual network and language model to extract
character-level knowledge from the self-contained order
information.

• CLNER (Cross-Lingual Named Entity Recognition) [Ni
et al., 2017], a weakly supervised method, which creates
automatically labeled NER data for a target language via

3FAIR:https://github.com/facebookresearch/MUSE
4Our code is available at: https://github.com/scir-code/lrner.
5CoNLL: https://github.com/synalp/NER/tree/master/corpus/
6Ontonotes: https://catalog.ldc.upenn.edu/ldc2011t03
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annotation projection on comparable corpora. The rec-
ognizer is a prototype-based neural model.

Our model has several variations, which are detailed below.
• LSTM-CRF+BLLSTM extends LSTM-CRF by taking

into account of the bilingual lexicon, and uses a LSTM-
based network towards the translations.
• LSTM-CRF+BL+MLSTM : an extension of LSTM-

CRF+BLLSTM by further incorporating the lexicon ex-
tension strategy.
• LSTM-CRF+BL+M+ELSTM : an extension of LSTM-

CRF+BL+MLSTM by further concatenating the seman-
tic representation of each word with entity type distribu-
tion features in both languages.
• LSTM-CRF+BLATT extends LSTM-CRF by taking into

account of the bilingual lexicon, and uses an attention-
based network towards the translations.
• LSTM-CRF+BL+MATT : an extension of LSTM-

CRF+BL+ATT by further incorporating the lexicon ex-
tension strategy.
• LSTM-CRF+BL+M+EATT : an extension of LSTM-

CRF+BL+M+ATT by further concatenating the seman-
tic representation of each word with entity type distribu-
tion features in both languages.

Experimental results are given in Table 3. Evaluation met-
ric is F measure [Manning and Schütze, 1999]. We can find
that our method LSTM-CRF+BL+M+ELSTM yields the best
performance on two languages compared with many strong
baselines. The performance of CLNER are relatively low be-
cause both of them utilize indirectly acquired features based
on linguistic resources and cross-lingual entity mappings.
LSTM-CRF obtains significant improvement over CLNER by
integrating semantic representations of low resource language
words and learning the constraints between entity labels. Be-
sides, we surprisingly find that all of our variants outper-
form the strong baseline LSTM-CRF on two languages, which
demonstrate the effectiveness of each of the additional se-
mantic representations for low resource NER. Among the
six variants of our model, LSTM-based models perform bet-
ter than attention-based models, which indicates that the se-
quence feature is more important for modeling lexicon struc-
ture. In the last, two real examples are given in Table 4 to
demonstrate the effectiveness of the additional bilingual lexi-
con representations for low resource NER.

Model Dutch Spanish
LSTM-CRF 81.74 83.41
LM-LSTM-CRF 86.24 85.13
CLNER 69.30 65.50
LSTM-CRF+BLLSTM 86.48 86.02
LSTM-CRF+BL+MLSTM 87.94 86.03
LSTM-CRF+BL+M+ELSTM 88.39 86.42
LSTM-CRF+BLATT 82.46 83.91
LSTM-CRF+BL+MATT 83.83 84.27
LSTM-CRF+BL+M+EATT 86.07 85.34

Table 3: Comparison of different methods on low resource NER.

Example 1 Some are in the George Grard Foundation.
Dutch Een aantal is in de Stichting George Grard.
Golden O O O O O B-ORG I-ORG E-ORG
LSTM-CRF O O O O O B-LOC I-LOC E-LOC
Our model O O O O O B-ORG I-ORG E-ORG
Example 2 The delegate of the Andalusian Gov in Cádiz,
Spanish El delegado del Gobierno andaluz en Cádiz,
Golden O O O S-ORG O O S-LOC
LSTM-CRF O O O O O O O
Our model O O O S-ORG O O S-LOC

Table 4: Case study for Dutch and Spanish NER (Italic Sentences
Show the English Translations for the Dutch and Spanish Exam-
ples). Our model is LSTM-CRF+BL+MLSTM .

3.3 Chinese NER

Chinese Precision Recall F-score
Soft-Align 77.37 71.13 74.13
LSTM-CRF 82.58 76.92 79.65
LM-LSTM-CRF 81.90 78.50 80.16
LSTM-CRF+BLLSTM 82.01 82.81 82.41
LSTM-CRF+BL+MLSTM 82.05 83.24 82.64
LSTM-CRF+BL+M+ELSTM 82.84 83.32 83.07
LSTM-CRF+BLATT 81.72 80.68 81.20
LSTM-CRF+BL+MATT 82.41 80.44 81.42
LSTM-CRF+BL+M+EATT 82.46 80.97 81.71

Table 5: Comparison of different methods on Chinese NER.

To demonstrate the effectiveness of our models on large-
scale corpora, we show the results on Chinese Ontonotes 4.0
NER in Table 5. Additionally, we add a strong baseline for
Chinese NER with bilingual constraints, namely Soft-Align7.
From Table 5, we can still get consistent improvements on
Chinese NER over previous state-of-the-art methods. Specifi-
cally, we observe that LSTM-CRF+BL+M+ELSTM achieves
a significant gain in Recall. This is reasonable since the se-
mantic representation of each Chinese word is much richer in
LSTM-CRF+BL+M+ELSTM than other models.

3.4 Fine-Grained Performance on Different
Groups

This subsection studies the effectiveness of our cross-lingual
representations. For comparison purposes, we select the base-
lines: LSTM-CRF [Lample et al., 2016] and LM-LSTM-CRF
[Liu et al., 2017a] and compare them with LSTM-based bilin-
gual lexicon models. Moreover, to prove that cross-lingual
representation could capture more valuable semantics, espe-
cially for the entities that appear in the testing data but never
appear in the training data, we divide the entities in the test-
ing data into two parts (A: appearing in both testing and train-
ing data with the same entity type, or B: appearing in testing
data only) and perform evaluations separately. Experimental
results are shown in Table 6 and illustrate that for all situ-
ations, cross-lingual representation brings in significant im-
provements compared with word embedding and character-
level representation in NER. For situation B in three lan-

7Che et al. proposed a novel Integer Linear Programming-based
inference algorithm with bilingual constraints for English and Chi-
nese NER.
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Model
Dutch Spanish Chinese

A B All A B All A B All
53.56% 46.44% 100% 68.30% 31.70% 100% 72.81% 27.19% 100%

LSTM-CRF 92.31 54.71 81.74 85.72 67.43 83.41 83.48 64.22 79.65
LM-LSTM-CRF 96.50 58.85 86.24 87.06 69.87 85.13 84.09 65.46 80.16
LSTM-CRF+BLLSTM 96.93 58.97 86.48 87.62 70.97 86.02 85.39 68.65 82.41
LSTM-CRF+BL+MLSTM 96.98 62.20 87.94 87.66 71.07 86.03 85.83 68.92 82.64
LSTM-CRF+BL+M+ELSTM 97.00 64.10 88.39 87.93 71.69 86.42 86.02 69.89 83.07

Table 6: Comparison of the results for LSTM-CRF, LM-LSTM-CRF and our LSTM-based networks. A denotes the entities appearing in both
training and test datasets, and B indicates all other cases. Evaluation metric is F measure.

guages, our model (LSTM-CRF+BL+M+ELSTM ) yields an
average 6.44% improvement, which is 2 times in situation A.
This demonstrates that the cross-language representation has
better ability to model non-covered entities than word-level
and character-level representations.

4 Related Work
There exist two threads of related work regarding the topics in
this paper, which are Monolingual NER and how to improve
it with other languages (Cross-lingual NER).

4.1 Monolingual NER
Named entity recognition is typically regarded as a kind of
sequence labeling problem in literature. Therefore, standard
feature-based classification approaches such as conditional
random fields (CRFs) [Lafferty et al., 2001], hidden markov
models (HMMs) [Florian et al., 2003] and maximum entropy
classifiers [Chieu and Ng, 2002] can be naturally employed
to build a name tagger. Despite the effectiveness of feature
engineering, it is labor intensive and unable to discover the
discriminative or explanatory factors of data [Bengio et al.,
2015]. To handle this problem, some recent studies [Chiu and
Nichols, 2015; Santos and Guimarães, 2015; Huang et al.,
2015; Yang et al., 2017; Lample et al., 2016; Liu et al., 2017a;
Peters et al., 2017; Ma and Hovy, 2016] used neural network
methods and got promising results . The representative ap-
proaches include BiLSTM-CNN [Chiu and Nichols, 2015;
Santos and Guimarães, 2015], CNN-CRF [Huang et al.,
2015; Yang et al., 2017], LSTM-CRF [Lample et al., 2016;
Liu et al., 2017a; Peters et al., 2017] and LSTM-CNN-CRF
[Ma and Hovy, 2016]. Furthermore, character-based repre-
sentations had been proved to be effective in capturing the or-
thographic and morphological evidence. Also, most of these
models added a CRF layer, and reported significant improve-
ment over pure RNN models. Our architecture is based on
the success of LSTM-CRF model and is further modified to
enrich the word representation with cross-lingual knowledge
information.

4.2 Cross-lingual NER
The idea of utilizing multilingual resources to improve mono-
lingual name tagger systems has been studied extensively. [Li
et al., 2012] presented a cyclic CRF model and performed
approximate inference using loopy belief propagation. Al-
though, their feature-rich CRF formulation of bilingual edge
is powerful, an obvious drawback of this approach is the re-
quirement of manually annotate bilingual NER data. There-

fore, [Chen et al., 2010] proposed approaches to extract bilin-
gual named entity pairs from unannotated bitext. The verifi-
cation was based on bilingual named entity dictionaries. In
this regard, one of the most interesting papers is [Burkett et
al., 2010], which explored an “up-training” mechanism by us-
ing the outputs from a strong monolingual model as ground-
truth, and thereby simulated a learning environment, where
a bilingual model is trained to help a “weakened” monolin-
gual model recover the results of the strong model. [Kim et
al., 2012] proposed a method of labeling bilingual corpora
with named entity labels automatically based on Wikipedia.
[Che et al., 2013; Wang et al., 2013] tackled the problem
of jointly recognizing and aligning bilingual named entities.
For low resource NER, [Zhang et al., 2016] proposed an
expectation-driven model that designed a large number of
language-specific features (rules, patterns, gazetteers, etc.)
via consulting and encoding linguistic knowledge from na-
tive speakers. [Ni and Florian, 2017; Ni et al., 2017] devel-
oped approaches to improve multilingual name tagging per-
formances with Wikipedia entity type mapping and word dis-
tribution mapping. However, these methods suffer from er-
ror propagation. Moreover, the selection and collection of
task related features are time-consuming and labor intensive.
Our approach differs in that it does not acquire any hand-craft
features and bilingual lexicons are one of the most basic lan-
guage resources for all languages.

5 Conclusions

Low resource NER is a very important yet challenging prob-
lem in natural language processing. In this paper, we fo-
cus on this problem by incorporating cross-lingual knowl-
edge into a neural architecture, which guides low resource
name tagging to achieve a better performance. Specifically,
we use bilingual lexicons to bridge cross-lingual semantic
mapping and design a lexicon extension strategy to allevi-
ate the out-of-lexicon problem. Moreover, we regard entity
type distribution as language-independent features and model
them in our architecture. Experiments on three languages,
namely, Dutch, Spanish and Chinese demonstrate the effec-
tiveness of our model for low resource language NER. In the
future, we will incorporate other knowledge resources, such
as FrameNet and WordNet, from high resource languages into
our neural architecture. We will also extend our architecture
to other NLP tasks, such as event extraction, sentiment anal-
ysis.
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and Victor Guimarães. Boosting named entity recogni-
tion with neural character embeddings. arXiv preprint
arXiv:1505.05008, 2015.

[Sukhbaatar et al., 2015] Sainbayar Sukhbaatar, Jason We-
ston, Rob Fergus, et al. End-to-end memory networks.
In NIPS, pages 2440–2448, 2015.

[Wang et al., 2013] Mengqiu Wang, Wanxiang Che, and
Christopher D Manning. Effective bilingual constraints
for semi-supervised learning of named entity recognizers.
In AAAI. Citeseer, 2013.

[Yang et al., 2017] Zhilin Yang, Ruslan Salakhutdinov, and
William W Cohen. Transfer learning for sequence tagging
with hierarchical recurrent networks. CoRR, 2017.

[Zhang et al., 2016] Boliang Zhang, Xiaoman Pan, Tianlu
Wang, Ashish Vaswani, Heng Ji, Kevin Knight, and Daniel
Marcu. Name tagging for low-resource incident languages
based on expectation-driven learning. In Proceedings of
NAACL-HLT, pages 249–259, 2016.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4077


