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Abstract
We propose Deterministic Binary Filters, an ap-
proach to Convolutional Neural Networks that
learns weighting coefficients of predefined orthog-
onal binary basis instead of the conventional ap-
proach of learning directly the convolutional fil-
ters. This approach results in architectures offer-
ing significantly fewer parameters (4× to 16×) and
smaller model sizes (up to 32× due to the use of bi-
nary rather than floating point precision). We show
our deterministic filter design can be integrated into
well-known network architectures (such as ResNet
and SqueezeNet) with as little as 2% loss of ac-
curacy under datasets like CIFAR-10. Under Ima-
geNet, they are used in an architectures 3× smaller
compared to sub-megabyte binary networks while
reaching comparable accuracy levels.

1 Introduction
Since the success of AlexNet [Krizhevsky et al., 2012], con-
volutional neural networks (CNN) have become the pre-
ferred option for computer vision related tasks. While tra-
ditionally the research community has been fixated on goals
such as model generalization and accuracy in detriment of
model size. Recently, multiple approaches attempt to reduce
model’s on-device memory footprint while still maintaining
high levels of accuracy. Such approaches could be subdivided
into two main categories: new network compression tech-
niques and novel layer architectural designs. Multiple net-
work compression techniques [Wang et al., 2016; Han et al.,
2015; Frosst and Hinton, 2017] have been proposed as post-
training stages. In addition, several approaches, [Courbariaux
and Bengio, 2016; Rastegari et al., 2016], proved the suit-
ability of aggressive data quantisation techniques as a way to
reduce the memory and compute requirements during infer-
ence by replacing 32-bit parameters with 8-bit and/or binary
values. Examples of novel layer design are [He et al., 2015;
Howard et al., 2017] aiming all of them to offer alternative
approaches to the traditional convolutional layers, being their
advantages more noticeable when operating with very high-
dimensional feature maps in deeper layers of the network.

In this work, we present Deterministic Binary Filters
(DBF), an approach to Convolutional Neural Networks that

learns weighting coefficients of predefined orthogonal binary
bases instead of the conventional approach of learning di-
rectly the convolutional filters. We generate the filters as a
linear combination of orthogonal binary codes that can be
generated very efficiently on real time. We achieve this by us-
ing a popular orthogonal binary code generator that has been
extensively studied for over two decades in the wireless com-
munity and widely used in mobile cellular systems. Our work
lies in the intersection between the previously mentinoned
categories: compression techniques and novel architectural
designs.

Our approach results in 4× to 16× reduction in the num-
ber of convolutional layer parameters to be learned, and more
than 32× savings in model size due to the use of binary
weights instead of floating point parameters. Unlike most
of the network compression techniques, our method allows
learning compressed models directly. We demonstrate our
deterministic filter design can be integrated into well-known
network architectures (such as ResNet [He et al., 2015] and
SqueezeNet [Iandola et al., 2016]) with as little as 2% loss
of accuracy under CIFAR-10. With fewer parameters such
models are less prone to over-fitting and can be potentially
trained with significantly less compute operations and mem-
ory needs. DBFs can also offer improved efficiency for in-
ference on microprocessors and embedded devices. Exper-
iments show the suitability of DBFs and their usage in net-
works with model size up to 3× smaller compared to al-
ready optimized binary networks while offering comparable
accuracy levels for datasets like ImageNet, which has 1000
classes.

We believe DBFs are a first step in the development of effi-
cient architectures relying less on large amounts of trainable
parameters and more on deterministic data structures. Mod-
els with such characteristics would be more suitable for appli-
cations on resource constrained embedded devices requiring
high accuracy rates but minimal compute complexity. In this
work we offer the following contributions:

• A new module that performs convolution filters using a
weighted combination of orthogonal binary bases that
offers significantly reductions on the amount of learn-
able parameters required for the network.

• We find that such a module is able to offer nearly equal
accuracy levels under common network architectures
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and datasets, making it a viable model choice, and pro-
viding insights into filter design moving forward.

• The ability to trade-off model size for low-complexity
compute, this is a unique characteristic important for
low-memory platforms.

• The number of parameters needed to be updated during
training can be greatly reduced since we only need to
update the weights and not the entire filter, leading to a
faster training and inferences stages.

2 Related Work
Our study of DBFs for CNNs touch upon the following areas
of deep neural network research.

Novel Filter Design. The design of filters within convolu-
tional networks is critical to the effectiveness of such net-
works in discriminative tasks, and have significant down-
stream implications for efficiency (e.g., requirements for
memory and compute). Earlier work [Jarrett et al., 2009]
showed random kernels with no learning achieving decent
performance in Caltech-101. Similarly, other works [Saxe
et al., 2011; Pinto et al., 2009] make use of random filters
to show that in addition to the convolutional filters, the net-
work architecture plays a fundamental role in the learning
process. Moreover, [Saxe et al., 2011] argued that some per-
formance of certain state-of-the-art methods can be attributed
to the their architecture alone. All of these demonstrate the
ability for filters despite not being learned from data during
training. More closely to our filter design is the LBCNN (Lo-
cal Binary CNN) module [Juefei-Xu et al., 2017] that use
pre-defined sparse local binary filters that also do not need to
be updated during training. However, a critical difference in
our design is our ability to generate DBFs on the fly through
efficient algorithms that enable significantly smaller model
sizes as light-weight compute operations replaces in-memory
overhead (critical for embedded and mobile scenarios with
low memory footprints). LBCNN modules also cannot di-
rectly replace conventional filters in existing architectures as
requires a two stage approximation of convolution. This may
not be applicable to all architectural designs. In comparison,
our DBFs can be trivially applied to common architectures.

Binary Networks. Adoption of network architecture de-
signs that include binary filters and weights are also a promis-
ing direction. Under this approach parameters are represented
with only one bit, reducing the model size by 32×. Al-
though such methods offer small model size and inference
efficiency they do not necessarily reduce the amount of pa-
rameters as offered by our deterministic binary filters. Ex-
pectation BackPropagation (EBP) [Soudry et al., 2014] pro-
poses a variational Bayes method for training deterministic
Multilayer Neural Networks, using binary weights and ac-
tivations. This and a similar approach [Esser et al., 2015]
give great speed and energy efficiency improvements. How-
ever, the improvement is still limited as binarised parameters
were only used for inference. Many other proposed binary

networks suffer from the problem of not having enough rep-
resentational power for complex computer vision tasks, e.g.
BNN [Courbariaux and Bengio, 2016], DeepIoT [Yao et al.,
2017], eBNN [McDanel et al., 2017] are unable to support
the complex ImageNet dataset seen in our results.

Network Architecture Optimization. Many attempts to-
wards optimizing network architectures for more efficient
training, inference and parameter exist. One direction in
quantization involves taking a pre-trained model and normal-
izing its weights to a certain range. This is done in [Van-
houcke et al., 2011] which uses an 8 bits quantization to store
activations and weights. Other works such as [Han et al.,
2015] and [Wang et al., 2016] are a conglomerate of multiple
clustering, quantisation and word encoding techniques that
have been proven to work well in large architectures such as
AlexNet and ResNet. In addition to compressing weights in
neural networks, researchers have also been exploring more
light-weight architectures: SqueezeNet uses 1 × 1 filters in
combination with 3 × 3 filters, reducing the model to 50×
smaller than AlexNet while maintaining the same accuracy
levels; bottleneck layers, introduced in ResNet, that aims to
reduce the number operations and parameters of convolu-
tional layers by reducing the number of channels of the input
tensor using 1×1 filters; or MobileNets [Howard et al., 2017]
that make use of depthwise convolutional layers and result in
lightweight networks suitable for embedded vision applica-
tions. SparseSep [Bhattacharya and Lane, 2016b] adds spar-
sification to both convolutional and dense layers resulting in
highly compact model representations.

Deep Learning for embedded platforms. Energy effi-
ciency and low computational complexity are two major re-
quirements that algorithms must fulfil when deploying them
in memory and compute restricted platforms [Lane et al.,
2015] and they become a major concern when considering
the commercialization of such applications. Embedded deep
learning applications, often instantiated as wearables, exist
for a diverse range applications including vision [Mathur et
al., 2017; Suleiman et al., 2017], audio [Fernandez-Marques
et al., 2018; Georgiev et al., 2017] and activity recogni-
tion [Tahavori et al., 2017; Bhattacharya and Lane, 2016a].
We refer the interested reader to [Lane et al., 2017] and [Sze
et al., 2017] for a deeper evaluation of the challenges associ-
ated with this area of research.

3 Deterministic Binary Filters
In this section, we introduce a novel approach of performing
convolution operations and present an efficient algorithm for
training the parameters. Specifically, we design a convolu-
tion layer, where all filter kernels are generated using a lin-
ear superposition of a predefined bases set of binary orthogo-
nal vectors. Fewer number of tunable parameters generates a
model with a smaller memory footprint, which is particularly
suitable for deployment on resource-constrained wearable or
IoT devices. The properties of the binary codes used to gen-
erate the filters also makes it possible to implement convolu-
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Figure 1: Overview of representing a convolution kernel using a
set of binary mutually orthogonal basis vectors. The convolutional
kernel (on the left) can be represent accurately using linear superpo-
sition of all the binary vectors (patches) presented on the right. The
coefficient or strength of a binary vector used in the reconstruction
is given on top of the patches.

tions without explicitly having the filters allocated in RAM,
therefore allowing efficient runtime on embedded devices.

In this work we employ orthogonal variable spreading fac-
tor (OVSF) codes to generate filters for the convolution layer.
The presented technique can also be applied to the fully con-
nected layer parameters, however, we only focus on convolu-
tion layers in this work. In the following three sub-sections
we present the main intuition behind representing convolution
kernels with OVSF codes, present technique to efficiently use
the codes to generate kernels and lastly describe the feature-
maps generation process.

3.1 OVSF Codes: Overview
A point x ∈ RN can be represented by the span of a set of N
mutually orthogonal set of vectors or bases {Bi}Ni=1 (Bi ∈
RN ), where ∀i, j, and i 6= j, Bi ⊥ Bj . In other words, any
point in RN can be presented as a linear combination of the
basis vectors as:

x =
N∑

i=1

αi ·Bi, (1)

where, αi is the coefficient or strength for the ith basis vector.
Without a loss of generality, we can apply the same lin-

ear superposition strategy when generating the hypermatrix
or tensor that would become our convolutional filter. To
gain computational or representational benefits, we can en-
force certain properties on the bases set. For instance, in
this work we only consider binary basis vectors, i.e., Bi ∈
{−1,+1}N , ∀i. For illustration, in Figure 1 we present a sce-
nario when a random filter of dimension 4× 4 is represented
accurately by a set of 16 binary and mutually orthogonal ba-
sis vectors. The coefficients for individual binary vectors are
presented on the top of each patches. Note that, for illustra-
tion purpose we only consider 2D filters, whereas in practice
the filters used in convolution layers are 3D.

C1,1=(1)

C2,1=(1,1)

C2,2=(1,-1)

C4,3=(1,-1,1,-1)

C4,4=(1,-1,-1,1)

C4,1=(1,1,1,1)

C4,2=(1,1,-1,-1)

C8,1=(1,1,1,1,1,1,1,1)

C8,2=(1,1,1,1,-1,-1,-1,-1)
C8,3=(1,1,-1,-1,1,1,-1,-1)

C8,3=(1,1,-1,-1,-1,-1,1,1)

C8,5=(1,-1,1,-1,1,-1,1,-1)

C8,6=(1,-1,1,-1,-1,1,-1,1)
C8,7=(1,-1,-1,1,1,-1,-1,1)

C8,8=(1,-1,-1,1,-1,1,1,-1)

L=1 L=2 L=4 L=8

Figure 2: Code Tree for OVSF Code Generation

To achieve this filter representation, we require a tech-
niques for efficiently generating the basis vector set. Specifi-
cally, given the dimensionality of a filter, the bases generation
technique should output all the orthogonal binary vectors for
the convolution parameter space. This bases generator should
have the following properties: (i) capable of generating all
the bases for any space regardless of its dimensionality, (ii)
employs a deterministic procedure, i.e., for a given dimen-
sion, the basis vectors set remains invariant, (iii) being ef-
ficient such that it can be used in real-time applications on
embedded devices.

OVSF Codes
For the purpose of generating convolutional kernels, while
meeting the above mentioned conditions, we use the algo-
rithm presented in [Adachi et al., 1998]. The OVSF codes
have been extensively studied in the wireless community [An-
dreev et al., 2003; Rintakoski et al., 2004; Kim et al., 2009;
Purohit et al., 2013] and widely used in W-CDMA based 3G1

mobile cellular systems to provide multi-user network access.
Their simplicity and efficiency on-silicon implementation
makes them suitable for real-time implementation on power-
constrained devices. OVSF codes are binary {−1,+1}, or-
thogonal to each other and of length L = 2l, l ∈ N. Figure 2
shows OVSF bases at different l values generated as a recur-
sive process in a binary tree [Adachi et al., 1997].

3.2 Filter Generation Process
Unlike in standard CNNs, our architecture does not learn con-
volutional filters directly. Instead, it learns the coefficient for
the basis vectors needed to generate the convolutional filters.
Note that the dimension of the OVSF code is the same as the
N filters, which isW×H×C, whereW andH are the width
and height of the filters2, and C is the number of channels.

For any given code length L, there are L different OVSF
codes (as observable in Figure 2). Therefore, to generate a
filter of dimensions dim =W ×H ×C, our generator could
output at most dim different codes that would form a ba-
sis of Rdim. Intuitively, by combining all OVSF codes of

13GPP TS 25.213, v 3.0.0, Spreading and modulation (FDD),
Oct. 1999

2In this work we only consider square filters with dimension of
the form 2l.
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Figure 3: From OVSF codes to DBFs. Each code bki is first re-
shaped to match the final filter dimensions, becoming b̃ki . Then, the
reshaped codes in b̃i are combined using the weights αi.

a given dimension dim we could perfectly represent any fil-
ter of that dimension. On the other hand, using fewer OVSF
codes would result in a coarser representation of the target fil-
ter. Mathematically, the quality of a filter generated by com-
bination of OVSF codes could be measured as:

Ek = ‖f ′k − fk‖22 =

∥∥∥∥∥∥

bρ·lc∑

i=0

αikB
i
k − fk

∥∥∥∥∥∥

2

2

< ε, (2)

where ρ ∈ [0, 1] is the ratio of codes to use in order to ap-
proximate filter fk, l is the total number of OVSF codes of
length l = WHC, Bi

k is the ith OVSF code and αij ∈ R its
associated weight. ε is the difference between the the approx-
imated DBF, f ′k, and the real filter, fk. Intuitively, ε → 0 as
we increase the ratio of binary codes used. When ρ 6= 1, the
product p · l is rounded to the nearest integer value.

Filter Generation Stages
During training, the set of weights {α}Ni=1 that pre-multiply
each of the OVSF codes are learnt via backpropagation [Le-
Cun et al., 1989]. At inference time, the generated filter f ′k
can be treated as any other standard floating-valued convolu-
tional filter. The filter generation process using OVSF bases
and the learned weights is didactically illustrated in Figure 3.
This process involves: generation of bρ · lc OVSF codes of
length l =W ×H ×C; reshape each code in order to match
the shape of the filter; and combine them using the learnt
weights {α}Ni=1.

The Importance of Ratios
One of the main focus of our evaluation is the study of how
ρ impacts on the performance of our models. This parameter,
that can be independently set for each convolutional layer in
the network, is directly proportional to the number of learn-
able parameters N in a given layer. As an example, when
ρ = 0.5, the filter would be generated using half of the OVSF
codes and, therefore, our network would only require to learn
half to the weights.

OVSF Limitations
By design, OVSF codes must be of length L = 2l, l ∈ N.
This means that commonly used filter dimensions such as 3×
3 or 5 × 5 are not a possibility. We overcome this limitation
by only using a portion of the elements in each OVSF code.
For example, in order to construct a 3 × 3 × 1 × 1 filter, we

would first generate OVSF codes of length 4×4×1×1; then
keep 9 out of the 16 dimensions; and proceed with the reshape
and combination stages as shown in Figure 3. This approach
results in pseudo-OVSF codes that are no longer orthogonal
to each other. We call these codes square-pseudo OVSF, sp-
OVSF for brevity. In Section 4, we empirically show that the
generated filters perform well even though the codes used are
no longer mutually orthogonal.

Algorithm 1 Training with DBFs
Input: A minibatch of inputs labels and labels(X , Y ), a dictio-
nary of orthogonal binary bases {B1, B2, ..., Bk} for each con-
volution filter and learning rate η.
Output: Updated coefficients {αt+1

1 , αt+1
2 , ..., αt+1

k } for each of
the binary filters.
for l = 1 to L do

1. Forward Propagation:
{B1,B2, . . . ,Bk} ← OVSF(n, k)
f t ← αt1B1 + αt2B2 + . . .+ αtkBk

Compute X ∗ f t . ∗ is the convolution operation.
2. Backward Propagation:
for i=1 to k, do
∂L
∂αt

i
=

∑n
j=1

∂L
∂ft

j

∂ft
j

∂αt
i

3. Coefficient Update:
for i=1 to k
αt+1
i ← αti − η ∂L

∂αt
i

3.3 Model Training and Optimization

In the following we describe the main steps involved in the
training of the proposed architecture. We use stochastic gra-
dient descent (SDG) to update all the tunable parameters in
the architecture and an overview of the training process is
presented in Algorithm 1. During the forward pass, we first
generate individual filters, and then follow the conventional
CNN inferencing to compute the loss. However, during the
backward pass, we only update the coefficients {α}Ni=1, but
not the binary basis vectors. The loss propagates to each of
the layers from the output layer, and the gradient of each co-
efficient with respect to the the total loss is calculated using
chain rule, i.e.:

∂L

∂αi
=

n∑

j=1

∂L

∂fj

∂fj
∂αi

(3)

where L is the loss, fj is the convolution filter. During the
forward propagation in the next iteration, the filters is gener-
ated using the updated coefficients.

Convolution kernel generation using OVSF codes as binary
basis vectors can be easily integrated to existing architectures,
such as fully CNNs, ResNet or any architecture employing
convolutions. Therefore, existing architectures can be trained
faster, as we have smaller number of free parameters to up-
date, and can have better inference time.
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3.4 Inference
The convolution operations within a layer, using the set of
OVSF codes, can be summarized as:

FOk =



bρ·lc∑

i=1

αik ·Bi
k


 ∗ F I , (4)

where, F I is the input feature-map and FOk is the output
feature-map for filter k, Bi

k and αik are the binary vector and
corresponding coefficient while representing the kth filter. In-
terestingly, we can use the linearity of the convolution opera-
tion and compute the same output feature-map as follows:

FOk =

bρ·lc∑

i=1

αik ·
(
Bi
k ∗ F I

)
, (5)

These two formulations allow two distinct architecture de-
ployment methods that are suitable in two different applica-
tion scenarios. In the first case, we generate a static version of
the model, employing Equation 4, and in the latter case, for
resource constrained devices, we instantiate a dynamic ver-
sion of the architecture where the OVSF codes are generated
on the fly and then used during convolution convolutions as
in Equation 5. In the following we describe the two cases.

Explicit Filter Generation. In scenarios with sufficient on-
device memory to store the model in memory, the DBFs could
be generated, and therefore allocated in memory, as part of a
initialization stage during model deployment and set-up. Af-
ter this, the inference stage would be identical to that of any
other CNN architecture.

On-the-fly convolutions. Due to the nature of the filter gen-
eration process by combining OVSF codes using weighting
coefficients learned during training we could bypass the gen-
eration and allocation of the filters during model deployment.
These filters would no longer need to be explicitly generated.
Instead, since our model has the weighting coefficient and we
can generate OVSF codes very efficiently, we can subdivide
the operations of a convolutional layer into smaller operations
that are less memory taxing. Effectively, this strategy trades
memory for computations.

4 Evaluation
In this section we validate the usage of DBFs in convolutional
networks for the task of image classification. Here we:

• Compare the performance of two popular CNNs archi-
tectures when using filters generated from OVSF codes
against standard fully-learnable filters.

• Make use of DBFs a as model size reduction strategy.

• Validate the usage of sp-OVSF codes that would permit
the usage of filter with arbitrary dimensionality.

4.1 Datasets
We conducted our experiments on three popular datasets, Im-
ageNet, CIFAR-10 and MNIST. ImageNet is a large-scale im-
age classification dataset, which contains 1000 categories and
a total of 1.33 million color images. These images vary in di-
mension and resolution and are generally resized and cropped
to 224×224 images. The dataset is divided into training and
validation data, with 1.28 million images and 50,000 images,
respectively. The CIFAR-10 dataset contains 60,000 32×32
color images in 10 classes, with 6,000 images per class. There
are 50,000 training images and 10,000 test images, with equal
number of images per class in both training set and test set.
The MNIST dataset consists of 28×28 grayscale images of
handwritten digits, with 60,000 training images and 10,000
test images.

4.2 Experimental Setup
Filters generated using OVSF codes can be used in any CNN
for both training and inference. In order to validate the rep-
resentation capabilities of these filters, we substitute the stan-
dard convolutional layers of two popular CNN architectures,
ResNet and SqueezeNet, and train them on CIFAR-10 for 250
epochs. We used batch size of 128, initial learning rate of 0.1
with decay factor of 0.1 at epochs {90, 150, 190, 220}. We
applied standard dat augmentation: random image cropping,
random mirroing and image normalization. We evaluate our
architecture on two configuration of ResNet with 18 and 34
layers. The architectures evaluated in this section were orig-
inally designed for ImageNet, here, they have been adapted
to the dimensionality of the CIFAR-10 dataset. This adapta-
tion consist on reducing the filter dimensions and stride of the
input convolutional layer.

Quality of OVSF filters. Given that OVSF codes are lim-
ited to be of length 2l, l ∈ N, we have modified the spatial
dimensions (width and height) of all the 3×3 and 7×7 the
convolutional filters in ResNet and SqueezeNet, and replace
them with 4×4 and 8×8 filters, respectively. In Table 1 (right)
we compare the accuracy levels reached for each architecture
when learning filters directly and when using the proposed
OVSF filter generation stage.

sp-OVSF: Overcoming 2l limitation. Despite not being
the focus of this work, we evaluated the suitability of OVSF
codes to generate filters whose dimensions are not a 2l, e.g.
those with spatial dimensions 3× 3 or 5× 5. To achieve this,
each time we require an OVSF code of l′, we first generate the
shortest OVSF code of dimensionality 2l > l′, and then clip
it. The resulting set of sp-OVSF codes are no longer orthog-
onal to each other, limiting the performance of the generated
filters. In Table 1 (left) we should that these codes can still be
use to generate convolutional filters.

The impact of ratios. The nature of the filter generation
process using OVSF codes permits, by means of a hyperpa-
rameter, choose how many bases use to generate each con-
volutional filter. This hyperparamter is represented in Eq. 2
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Figure 4: A three layers DBF Module.

as ρ. Lower ρ values results in fewer trainable parameters
and a more efficient inference stage at the cost of generating
coarser filters and a potential drop in accuracy. We evaluated
the effect of using coarser filters on ResNet-18, ResNet-34
and SqueezeNet. These results are shown in Table 2. Re-
ducing ρ effectively reduces the number of weights, α in
Eq.2, needed to generate the filter and therefore resulting in
a smaller model, as shown in Table 3. An architecture with
DBF and ρ = 1 has the same model size as it would have
with standard filters.

A new CNN architecture. We designed a new CNN archi-
tecture using DBFs. We will refer to it as DBFNet. Macroar-
chitecturally, it borrows from SqueezeNet in the sense that af-
ter an initial convolution and max-pooling layer, the remain-
ing of the pipeline is comprised of a three cascades of con-
volutional modules separated by max-pooling layers. We call
these blocks DBF Modules and consist of three stacked OVSF
convolutional layers with a bypass connection. Our network
is comprised of eight DBF Moudles arranged similarly to
SqueezeNet’s FireModules. Figure 4 shows a generic DBF
Module in isolation with explicit filter generation. When part
of a network, a single OVSF code generator is enough to gen-
erate the convolutional filters of the entire network. This ar-
chitecture is evaluated on MNIST, CIFAR-10 and ImageNet
at different ρ values. The results are shown in Table 4. On
ImageNet we used learning rate of 0.1 and decay factor of
0.1 every 30 epochs for a total of 100 epochs using bach size
64. For CIFAR-10 and MNIST datasets we used batch size
of 128, the same initial learning rate and decay factor but de-
caying it at epochs {40, 70, 90}. No pre-processing or data
augmentation was applied.

4.3 Results
We have proven that, despite the simplicity of the filter gen-
eration process using binary OVSF codes, CNNs can perform
as well as if filters were learnt directly, like most CNNs do.
As we described in Eq.2, the proposed DBFs are as good as
any other standard convolutional filter. This is shown in Ta-
ble 1 (left). We have validated this on two popular deep con-
volutional architectures, ResNet and SqueezeNet.

Using Coarser DBFs
Networks using DBFs in their convolutional layers can adjust
their memory footprint by tuning ρ. This parameter can be set
independently for each convolutional layer and is used to de-
termine the number of OVSF codes a generator should output

Architecture Acc. (%)
ResNet-18 91.15

ResNet-18DBF 91.02
ResNet-34 92.46

ResNet-34DBF 92.32
SqueezeNet 91.16

SqueezeNetDBF 91.33

Architecture Acc. (%)
ResNet-18 90.68

ResNet-18sp-OVSF 89.12
ResNet-34 92.53

ResNet-34sp-OVSF 91.30
SqueezeNet 91.22

SqueezeNetsp-OVSF 90.25

Table 1: Evaluation on CIFAR-10 when filters are (left) either of
dimensionality 2l and (right) when maintaining the original filter
dimensions. DBFs are generated with ρ = 1. In each table, every
pair of architectures (e.g. ResNet-18 and ResNet-18DBF) uses the
same filter dimensions accross layers and the same model size.

in order to generate a given convolutional filter. We demon-
strate that even a 4× reduction in the number of parameters
of popular architectures such as ResNet and SqueezeNet can
result in only 2% accuracy loss. In our experiments we found
that reducing ρ for deeper convolutional layer has a lesser im-
pact on accuracy than in the first layers of the network. Con-
cretely, ρ was set to 6.25% for the last two layers in ResNet-
34DBF in the set up where, on average, ρ = 0.25. On the other
hand, shallower layers kept ρ = 1.

Architecture 100% 75% 50% 35% 25%
ResNet-18DBF 91.02 90.46 89.34 89.11 88.02
ResNet-34DBF 92.32 92.92 91.43 91.31 89.88
SqueezeNetDBF 91.33 91.28 91.17 89.89 89.22

Table 2: Evaluation of different architectures using DBFs generated
with different average ρ values (%) on CIFAR-10.

Architecture 100% 75% 50% 35% 25%
ResNet-18DBF 1.37 1.02 0.69 0.48 0.34
ResNet-34DBF 3.39 2.54 1.70 1.19 0.85
SqueezeNetDBF 4.41 3.31 2.21 1.54 1.10

Table 3: Model size (MB) of architectures using DBFs with different
average ρ values (%). Accuracy values are shown in Table 2.

To our advantage, ρ and the number of learnable param-
eters are tightly correlated for any architecture using DBFs.
This is evidenced in Table 3. Convolutional filters of deeper
layers tend to be considerably larger than those in shallower
layers, as is the case in ResNet and SqueezeNet. Conse-
quently, these filters represent a seizable portion of the to-
tal model size. By means of the parameter ρ their impact in
model size can be lessened and, as previously exemplified for
the case of ResNet-34DBF, it is possible to achieve 16×mem-
ory impact reduction of certain layers while maintaining good
accuracy results.

Finally, we show that the benefits of using an architecture
with OVSF-based filters are also applicable when the image
classification task is considerable more challenging, as is the
case with in the ImageNet dataset. Table 4 shows the perfor-
mance of DBFNet on various image classification dataset at
different ρ values.
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Dataset 100% 70% 50% 25%
MNIST 99.6 99.6 99.6 99.5

CIFAR-10 89.7 88.3 88.0 85.5
ImageNet 55.1/78.5 53.3/77.3 50.4/74.8 40.5/65.7
Size (MB) 10.32 7.25 5.16 2.58

Table 4: Accuracy (%) of our DBFNet in three popular image
datasets at different ρ values (expressed as %). For ImageNet, accu-
racy values are shown as Top-1/Top-5.

5 Benefits of Deterministic Binary Filters
In the following section we present the main benefits of using
the binary basis vectors for the construction of convolution
filters and its effect during inference and training time.

5.1 Fewer Parameters
Results from Section 4 show that networks using DBFs offer
significant parameter savings. Table 2 shows that 4× reduc-
tion in the number of total learnable parameters is possible.
By means of parameter ρ we can adjust the memory impact
of each layer individually, resulting in 16× memory savings
in the deeper layers of the networks while maintaining their
dimensionality. We believe these results can be improved by
forcing the set of coefficients that pre-multiply each OVSF
bases to be sparse in a layer by layer.

We demonstrated the feasibility of DBFs to reduce the
model size of already small architectures, in the order of 1-4
MB in size. Our technique brings model size to levels achiev-
able by binary networks. In Table 5 we compare ResNet-
18 using DBFs to two popular binary networks. BinaryCon-
nect’s results use deterministic binarization. Our technique is
capable of providing similar levels of accuracy while reduc-
ing the model size to sub-MB levels. Similarly, we compare
in Table 6 BinaryConnect and BWN [Rastegari et al., 2016]
against our DBFNet when evaluated on ImageNet. DBFNet
performs better than BinaryConnect while being 3× smaller.

Architecture Accuracy (%) Size (MB)
BinaryConnect 90.1 0.73

BNN 89.85 0.73
ResNet-18DBF (ρ = 0.35) 89.11 0.48

Table 5: Comparison in terms of accuracy and model size of binary
architectures and floating-valued architectures using DBF. Results
are shown for CIFAR-10.

Architecture Top-1 (%) Top-5 (%) Size (MB)
BinaryConnect 35.4 61.0 7.8

DBFNet (ρ = 0.125) 36.5 61.9 2.2
BWN 56.8 79.4 7.8

DBFNet (ρ = 0.7) 53.3 77.3 7.3

Table 6: Comparison in terms of accuracy and model size of binary
architectures and DBFNet. Results are shown for ImageNet.

5.2 Inference Efficiency
During inference, the overhead of using binary bases is
marginal. Bases can be generated once and used across all

convolutional layers. This does not impose a big memory
footprint as bases are binary and they can be densely packed
into bytes and occupy 8× less space.

When these bases are expanded and combined to form the
full-precision kernel we do not need to store any of the in-
termediate values and the run-time memory required is the
same as any normal convolutional layer. However, since con-
volution operation is distributive and associative with scalar
multiplication one can change the order of operations and do
convolution of input with binary bases first and then scale
and combine the results. While this approach normally does
not make sense given the significant cost of convolution op-
eration, it can be efficient in architectures with binary inputs
where the convolution operation is reduced to XORing and
bit counting [Rastegari et al., 2016].

5.3 Training Efficiency
The main benefits of using Deterministic Binary Filters come
from their ability to reduce memory and computation foot-
prints without a significant drop in the recognition accuracy.
From the previous section we see that across different datasets
the proposed architecture can achieve high accuracy while
only considering a fraction of the OVSF codes. This allows
for a significant reduction int the number of tunable convolu-
tion parameters, in our case only the coefficients, and gener-
ates a very compact model size, which is ideal for embedded
deployment. As we need a smaller number of parameters to
tune, the model becomes less prone to overfitting than the cor-
responding static version of the architecture. An architecture
with DBFs runs faster backward pass, thereby reducing the
overall training procedure significantly.

6 Conclusion
We have presented Deterministic Binary Filters, an new ap-
proach to constructing modules within CNNs that only re-
quires learning of weighting coefficients with respect to a
predefined orthogonal binary basis. Significant savings re-
sult in comparison to conventional convolutional filters that
are learned entirely from data. With fewer parameters such
models are less prone to over-fitting and can be potentially
trained with significantly less compute operations and mem-
ory needs. DBFs provides important new insights in the
design of low-complexity models that maintain high accu-
racy level for discriminative image tasks with implications
for training and inference efficiency.
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