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Abstract
Multi-modal fusion has been widely involved in fo-
cuses on the modern artificial intelligence research,
e.g., from visual content to languages and back-
ward. Common-used multi-modal fusion meth-
ods mainly include element-wise product, element-
wise sum, or even simply concatenation between
different types of features, which are somewhat
straightforward but lack in-depth analysis. Re-
cent studies have shown fully exploiting interac-
tions among elements of multi-modal features will
lead to a further performance gain. In this paper,
we put forward a new approach of multi-modal fu-
sion, namely Multi-modal Circulant Fusion (MCF).
Particularly, after reshaping feature vectors into cir-
culant matrices, we define two types of interac-
tion operations between vectors and matrices. As
each row of the circulant matrix shifts one ele-
ments, with newly-defined interaction operations,
we almost explore all possible interactions between
vectors of different modalities. Moreover, as only
regular operations are involved and defined a pri-
ori, MCF avoids increasing parameters or compu-
tational costs for multi-modal fusion. We evaluate
MCF with tasks of video captioning and temporal
activity localization via language (TALL). Experi-
ments on MSVD and MSRVTT show our method
obtains the state-of-the-art performance for video
captioning. For TALL, by plugging into MCF, we
achieve a performance gain of roughly 4.2% on
TACoS.

1 Introduction
Multi-modal data are widely involved in recent focuses on ar-
tificial intelligence research, e.g., visual to languages [Yao
et al., 2015] and the backward of visual localization via
language queries [Gao et al., 2017]. Though many efforts
have been made towards feature learning of images and texts,
e.g., via convolutional neural networks (CNN) [He et al.,
2016] and recurrent neural networks (RNN) [Kiros et al.,
2015], respectively, in-depth analysis of multi-modal fusion
has been unintentionally ignored. Common-used or some-
what straightforward multi-modal fusion methods mainly in-

Circulant

Interact

Interact

Visual Vector

Textual Vector

Visual Circulant Matrix

Textual Circulant Matrix

Circulant

(a) Element-wise sum

(b) Element-wise product

(c) Concatenation
Textual Vector

Visual Vector

(d) Multi-modal Circulant Fusion (MCF)

Visual Vector

Textual Vector

Visual Vector

Textual Vector

Multimodal

Circulant

Fusion

Figure 1: Different ways of multi-modal fusion. (a), (b), and (c)
indicate three common fusion methods. (d) is the proposed multi-
modal circulant fusion (MCF) method. ‘⊕’ denotes element-wise
sum. ‘�’ denotes element-wise product. ‘||’ denotes concatenation.
‘⊗’ denotes multiplication operation.

clude element-wise sum (Fig. 1 (a)), element-wise prod-
uct (Fig. 1 (b)), or even simply concatenation (Fig. 1
(c)) between different types of features [Fukui et al., 2016;
Yu et al., 2017]. As feature vectors of different modali-
ties lie in different feature spaces, interactions or correla-
tions might not just exist among corresponding dimensions of
multi-modal vectors. Besides no interactions with concatena-
tion, element-wise sum or product only partially explores in-
teractions or correlations among multi-modal features, which
may burden the fusion performance.

Recent studies [Fukui et al., 2016; Yu et al., 2017] have
shown fully exploiting interactions among elements of multi-
modal features will lead to a further performance gain. Au-
thors in [Fukui et al., 2016; Yu et al., 2017] develop multi-
modal bilinear pooling to capture pairwise interactions be-
tween multi-modal feature dimensions. As bilinear pooling
defines p parameterized projection matrices, where p is the
dimension of the output fused features, additional huge num-
ber of parameters are introduced into the model. Although
count sketch [Fukui et al., 2016] or matrix factorization [Yu
et al., 2017] were employed to shrink projection matrices,
more computational costs were introduced again. Moreover,
empirical studies in [Fukui et al., 2016] show that the perfor-
mance gain from multi-modal fusion is guaranteed only when
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the dimension p of the output fused features is high, which
means there still needs a large number of parameterized pro-
jection matrices. Therefore, if we skipped the parameterized
projection matrices and defined a fully-interacted module of
multi-modal fusion a priori, e.g., constituted with only reg-
ular operations like element-wise sum or product, we expect
to get a good fusion performance with fewer parameters or
lower computational costs.

In this paper, we propose a new module of Multi-modal
Circulant Fusion (MCF) to fully exploit interactions among
multi-modal features. In Fig. 1 (d) we show the main idea
of MCF by taking the fusion of visual and textual vectors
as an example. In particular, after reshaping visual or tex-
tual vectors into circulant matrices, respectively, we define
two types of interaction operations between original feature
vectors and the reshaped circulant matrices. Finally, we use
element-wise sum to obtain the joint representation of these
two cross-fused vectors. As each row of the circulant ma-
trix shifts one elements, with newly-defined interaction op-
erations, we almost explore all possible interactions between
vectors of different modalities. Note that, as only regular op-
erations are involved in the MCF and the proposed MCF is
defined a priori, we avoid introducing new parameters or in-
creasing computational costs for multi-modal fusion.

In the experiments, we extensively evaluate the proposed
MCF with tasks of video captioning and temporal activity
localization via language (TALL) [Gao et al., 2017]. Ex-
perimental results on MSVD [Chen and Dolan, 2011] and
MSRVTT [Chen and Dolan, 2011] show that our method
could obtain the state-of-the-art performance of video cap-
tioning. For TALL, by plugging into the MCF, we achieve a
performance improvement of roughly 4.2% on TACoS [Reg-
neri et al., 2013].

2 Related Works
As the original bilinear method [Tenenbaum and Freeman,
1997] needs a huge number of parameters and is not ap-
plied into a multi-modal task [Peng et al., 2018; Zhang et
al., 2018], the method MCB [Fukui et al., 2016] uses the
count sketch to reduce the number of parameters of bilinear
pooling and employs bilinear pooling to solve multi-modal
fusion. However, MCB always outputs a high-dimensional
fused feature which increases computational cost of follow-
ing processes. Whereas the work in [Yu et al., 2017] proposes
a bilinear pooling method based on matrix factorization to
combine multi-modal features.

Recent advances in video captioning mainly follow the
encoding-decoding framework and generate captions via
RNN [Zhu et al., 2017; Yang et al., 2017]. Though strengths
in representation ability, CNN has not been well exploited
in video captioning. In this paper, we propose a coarse-to-
fine multi-stage convolutional network which includes a MCF
and many convolutional decoders that generate finer video de-
scriptions. In order to reduce the risk of vanishing gradients,
inspired by the work [Zhang et al., 2016], we enforce inter-
mediate supervisions for each stage. Experimental results on
MSVD and MSRVTT show the effectiveness of our method.

As a backward direction of video captioning, Temporal Ac-
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Figure 2: The flowchart of Multimodal Circulant Fusion (MCF).

tivity Localization via Language (TALL) [Gao et al., 2017] is
given a temporally untrimmed video and a natural language
query, and then determines the start and end moments for the
described activity inside the video. By plugging MCF into the
architecture of [Gao et al., 2017], we obtain a performance
improvement owing to a better multi-modal fusion.

3 Multi-modal Circulant Fusion
The detailed procedures of MCF are illustrated in Fig. 2.
Given two feature vectors in different modalities, e.g., the
visual features x ∈ Ro and the textual features y ∈ Rn, to
reduce computational cost, we first utilize two projection ma-
trix W1 ∈ Rd×o and W2 ∈ Rd×n (d ≤ min(o, n)) to project
the two input features to a lower dimensional space.

V = xWT
1

C = yWT
2

(1)

where WT
1 and WT

2 are the transpose of W1 and W2.
Then we use the projection vector V ∈ Rd and C ∈ Rd to

construct circulant matrix A ∈ Rd×d and B ∈ Rd×d.

A = circ(V )

B = circ(C)
(2)

where circ(b) denotes converting b to a circulant matrix.
In order to make elements in projection vector and circu-

lant matrix fully interact, we explore two different multiplica-
tion operations. The first is shown in Eq. (3) and uses matrix
multiplication between circulant matrix and projection vector.

F = CA

G = V B
(3)

The second is to have projection vector and each row vector
of circulant matrix do element-wise product. The procedures
are shown as follows:

F =
1

d

d∑
i=1

ai � C

G =
1

d

d∑
i=1

bi � V

(4)
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Figure 3: Illustration of multi-stage sequential decoder. For this
decoder, we first use MCF to obtain joint representation of visual
feature and word embedding feature. Then we take the joint repre-
sentation as input of this decoder. ‘Coarse’, ‘Refined’, and ‘Final’
indicate three stages of decoder. The corresponding increasingly im-
proved video description are show in green, yellow, and orange.

where ai ∈ Rd and bi ∈ Rd are row vector of circulant ma-
trix A and B. � denotes operation of element-wise product.
It is noted that we do not introduce new parameters in the
multiplication operation.

Finally, through a projection matrix W3 ∈ Rd×k, we con-
vert the element-wise sum vector of F ∈ Rd and G ∈ Rd to
target vector M ∈ Rk.

4 MCF for Video Captioning
In this section, we develop a new framework for video cap-
tioning, in which we construct convolutional encoder and de-
coder for video-to-language translation. Note that, in the de-
coder, we take MCF as a base layer for coarse decoding,
stacked on which with layered dilations for refined and fi-
nal decoding. Thus we construct a Multi-stage Decoder with
MCF.

4.1 Convolutional Encoding Network
Feature Extraction. We use pre-trained convolutional net-
works to extract feature for each of them video frames, which
results in a vector Xi ∈ Rq for the i-th frame.
Discriminative Enhancing. Given two consecutive frame
features Xi and Xi+1 (i = 0, 2, · · · ), we first compute inter-
frame differences diff . Then by a ReLU operation, we add
the positive values of diff to Xi+1 and the absolute value of
negative values in diff to Xi. Thus, we enlarge the discrim-
ination gap between Xi and Xi+1.

diff = Xi+1 −Xi, (5)
Vi+1 = Xi+1 +ReLU(diff), (6)
Vi = Xi +ReLU(−diff), (7)

ReLU(x) =

{
x, if x > 0;

0, else
(8)

where i = 0, 2, · · · . Vi ∈ Rq is the enhancing result of Xi.
Reconstruction Network. In this work, we construct a re-
construction network to learn a compact representation Zi for
each video frame. The procedures are shown as follows:

Zi = ReLU(WE ∗ Vi + bE)

Ri =WD ∗ Zi + bD

Lrecon = ||Xi −Ri||22

(9)

where i = 0, 1, · · · . WE ∈ R1×q×r denotes convolutional
filter and r ≤ q, bE ∈ Rr and bD ∈ Rq are the bias pa-
rameters. Zi ∈ Rr is the learned compact representation.
WD ∈ R1×r×q is the reconstruction filter and Ri ∈ Rq
denotes reconstruction result. Lrecon denotes reconstruction
loss between Ri and Xi and || · ||2 denotes an `2-norm. ∗
denotes a convolutional operator.

4.2 Multi-stage Convolutional Decoder with MCF
As introduced above, we stack many dilated convolutional
layers [Chen et al., 2017] to form a coarse-to-fine multi-stage
decoder (Fig. 3). In the following, we denote by Ŷ j =

{Ŷ j0 , ..., Ŷ
j
T−1} the predicted word sequence of the j-th stage

of decoder, where j ∈ {0, ..., Nf} and (Nf + 1) is the num-
ber of stages. We denote by Y = {Y0, ..., YT−1} the target
word sequence, where T denotes sequence length. Note that
we treat the initial stage j = 0 as coarse decoder and above
stages as refined decoders. [a, b] represents the concatenation
of a and b. And ‘�’ is an element-wise product operation, ‘∗’
denotes a convolutional operator. Z = {Z0, Z1, · · · }. The
σ(·) is a sigmoid function.
MCF as a Coarse Decoder. In the bottom stage (j = 0), we
use one dilated convolutional layer to learn a coarse decoder.
At each time step t ∈ [0, T − 1], the input to coarse decoder
consists of previous target word Yt−1 and mean vector Zmean
of encoding output Z. As the inputs are two different modal-
ities, we first use MCF to obtain the joint representation M0

t .
The operation of coarse decoder can be described as follows:

M0
t =MCF (Zmean, Yt−1)

h0t = tanh(w0
f ∗H0

t + b0f )� σ(w0
g ∗H0

t + b0g)
(10)

where H0
t = [M0

t−1,M
0
t ]. MCF (a, b) represents using

MCF to fuse a and b. w0
f and w0

g denote convolutional fil-
ters on the 0th layer. b0f and b0g denote bias on the 0th layer.
Refined Decoder. In this paper, our refined decoder consists
of two stages. The first stage contains three dilated convolu-
tional layers. And the second stage only includes one dilated
convolutional layer which stacks on top of first stage. We take
prediction of the second stage as final description.

For the first refined decoder, we first use the output h0t of
coarse decoder to compute visual attention ϕ0

t (Z). The oper-
ation of first layer in this refined decoder is shown as follows:

M1
t = w1 ∗ [h0t , ϕ0

t (Z)] + b1

H1
t = [M1

t−1,M
1
t ]

h1t = tanh(w1
f ∗H1

t + b1f )� σ(w1
g ∗H1

t + b1g)

(11)

where w1 is learnable filter to convert the channel of concate-
nated representation. w1

f and w1
g denote convolutional filters

on the 1th layer. b1f and b1g denote bias on the 1th layer.
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Then, operations of the next two layers in first refined de-
coder are shown as follows:

H l
t = [hl−1

t , hl−1
t−rl]

hlt = tanh(wlf ∗H l
t + blf )� σ(wlg ∗H l

t + blg)
(12)

where rl represents dilated rate of the layer l. hl−1
t denotes

the output of (l− 1)-th layer at time step t. wlf and wlg denote
convolutional filters on the layer l. blf and blg are bias.

For the second refined decoder, the procedures can be de-
scribed as follows:

ML+1
t = hL

t + ϕ1
t (Z)

HL+1
t = [ML+1

t ,ML+1
t−2 ]

Mid1 = tanh(wL+1
f ∗HL+1

t + bL+1
f )

Mid2 = σ(wL+1
g ∗HL+1

t + bL+1
g )

hL+1
t =Mid1�Mid2

(13)

where L denotes the number of layers of first refined stage.
hLt denotes the output of layer L at time step t. wL+1

f and
wL+1
g denote convolutional filters of layer L + 1. bL+1

f and
bL+1
g are bias. ϕ1

t (Z) represents attention computed by hLt .
In this section, we use the method [Yao et al., 2015] to

compute attention (Fig. 3). Besides, based on different size of
filter and dilated rate, we use different number of zero vectors
to pad the input of each layer.

Finally, the t-th generated word Ŷ 1
t of the first refined stage

and Ŷ 2
t of the second refined stage are computed as follows:

Ŷ 1
t ∼ softmax(wp(hLt + ϕ1

t (Z)) + bp)

Ŷ 2
t ∼ softmax(wp(hL+1

t + ϕ1
t (Z)) + bp)

(14)

where wp and bp are learnable projection matrix and bias.
Training Loss. For each stage j, we employ a cross-entropy
(XE) loss.

LjXE(θ0:j) = −
T−1∑
t=0

log(pθ0:j (Yt|Y0:t−1, Z)) (15)

where Yt is the ground-truth word at time t, θ0:j are param-
eters up to the j-th stage decoder, and pθ0:j (Yt|Y0:t−1, Z) is
the output probability of word Yt given by the previous word
Y0:t−1 and encoding output Z.

The training loss Ltrain is computed as follows:

Ltrain = β2Lrecon + β1

Nf∑
j=0

λjL
j
XE(θ0:j) (16)

where λj , β1, and β2 are hyber-parameters.
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Figure 4: The architecture with MCF for the task of temporal activity
localization via language query.

5 MCF for TALL
For temporal activity localization via language query, we plug
MCF into the architecture of work [Gao et al., 2017]. Con-
cretely, we first feed visual feature fv and textual feature fs
into MCF (Fig. 4). For MCF, after obtaining F ∈ Rd and
G ∈ Rd by Eq. (4), we use a projection matrix WM ∈ Rd×k
to convert F and G to Fs ∈ Rk and Gv ∈ Rk.

Fs = fsWM

Gv = fvWM
(17)

The following operations are same as that of the work [Gao
et al., 2017].

6 Evaluation on Video Captioning
We evaluate the benefit of MCF on two video captioning
datasets. All results all evaluated by metrics of BLEU, ME-
TEOR, and CIDEr [Yao et al., 2015].

6.1 Dataset and Implementation Details
Datasets. MSVD [Chen and Dolan, 2011] contains 1,970
video clips. We use 1,200 clips for training, 100 clips for
validation, and 670 clips for testing. MSRVTT [Xu et al.,
2016] contains 10,000 video clips. We use 6,513 clips for
training, 497 clips for validation, and 2,990 clips for testing.
Video Processing. For the MSVD dataset, we select 40
frames from each video and feed them into GoogLeNet
[Szegedy et al., 2015] to extract a 1,024 dimensional rep-
resentation. For the MSRVTT dataset, we select 20 frames
from each video and feed them into GoogLeNet and ResNet-
152 [He et al., 2016] to extract 1,024 and 2,048 dimensional
representation, respectively.
Encoding Network. In the encoder, we set the channel r (in
Eq. (9)) of the encoding temporal output Zi to 512.
Decoding Network. For the multi-stage decoder, we use
five dilated layers with dilated rate 1, 1, 2, 4 and 2. The
number of filter channel is set to 512, 256, 256, 512 and
512, respectively. The width of filter is set to 2. For MCF,
we set W1 ∈ R256×512, W2 ∈ R256×512 (in Eq. (1)) and
W3 ∈ R256×512.
Training Details. The vocabulary size is 12,596 for MSVD
and 23,308 for MSRVTT, respectively. We use Adam opti-
mizer with an initial learning rate of 1 × 10−3. We empiri-
cally set β1 and β2 to 0.9 and 0.1, respectively. And λ0, λ1
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GT: a man is pouring pasta into a bowl

Bilinear: a man is putting a water into a bowl

Product: a man is eating a container

Sum: a man is eating something

MCF: a man is putting some pasta into a bowl

GT: a dog is playing with ball

Bilinear: a little girl is playing with a ball

Product: a small ball is playing

Sum: a little ball are playing

MCF: a little dog is playing with a ball

GT: a woman is putting on makeup

Bilinear: a woman is singing on a microphone

Product: a man is singing

Sum: a man is singing

MCF: a woman is putting on makeup

GT: a person is cutting meat

Bilinear: a person is cutting a potato

Product: a person is slicing a piece of pieces

Sum: a person is cutting a piece of pieces

MCF: a person is cutting the meat

GT: two girls are playing

Bilinear: a woman is dancing

Product: a man is dancing

Sum: a woman is dancing

MCF: two girls are playing

Concat: a man is putting something Concat: a little ball is playing Concat: a woman is singing on a microphone

Concat: a person is cutting a potato Concat: a man is playing on a room

GT: people are dancing

Bilinear: a man is dancing

Product: a man is dancing

Sum: a man is dancing

Concat: a man is dancing

MCF: two men are dancing

Figure 5: Examples of the generated video captions on MSVD. These captions are generated from multi-stage CNN which uses different
multi-modal fusion method. ‘GT’ represents ground truth. ‘Bilinear’, ‘Product’, ‘Sum’ and ‘Concat’ represent bilinear pooling, element-wise
product, element-wise sum and concatenation, respectively.

and λ2 are set to 0.2, 0.2, and 0.6, respectively. Note that we
do not conduct beam search in testing.

6.2 Experimental Results
MSVD Dataset. On MSVD dataset, we compare our method
with other methods. The results are shown in Table 1.

It can be seen that our method outperforms all above meth-
ods on the metric of METEOR and CIDEr. Particularly, for
the work [Song et al., 2017], they use multi-layer LSTM as
the decoder. Our convolutional sequential decoder outper-
forms the performance of hLSTMmat [Song et al., 2017].
This shows that our method is effective.

Method BLEU@4 METEOR CIDEr
S2VT [Venugopalan et al., 2015] - 29.20 -
C3D+LSTM-E [Pan et al., 2016b] 41.70 29.90 -
VGG+p-RNN [Yu et al., 2016] 44.30 31.10 62.10
Tempor-attention [Yao et al., 2015] 41.92 29.60 51.67
G+Bi-GRU-RCN1 [Ballas et al., 2016] 48.42 31.70 65.38
G+HRNE [Pan et al., 2016a] 43.80 33.10 -
MAMRNN [Li et al., 2017] 41.40 32.20 53.90
Boundary [Baraldi et al., 2017] 42.50 32.40 63.50
G+hLSTMmat [Song et al., 2017] 48.50 31.90 -
G+MVRM [Zhu et al., 2017] 49.45 33.39 75.45
G+MCNN+MCF-element-wise product 45.65 33.56 73.86
G+MCNN+MCF-matrix multiply 46.46 33.72 75.46

Table 1: Comparison with other models on MSVD. Here ‘G’ denotes
GoogLeNet. ‘MCNN’ represents our multi-stage CNN. ‘MCF-
element-wise product’ and ‘MCF-matrix multiply’ mean we respec-
tively use element-wise product and matrix multiplication in our
MCF. All values are measured by percentage (%).

MSRVTT dataset. On MSRVTT dataset, we compare our
method with representative methods. Results are shown in
Table 2. Compared with all above methods which use a sin-
gle kind of visual feature as input, our method obtains the
best performance on METEOR and CIDEr metric. Besides,
compared with the work [Xu et al., 2017] which uses many
kinds of features as input, our method outperforms its perfor-

mance. This shows that the performance of our method on a
single kind of visual feature is valid.
Ablation Analysis. We respectively use bilinear pooling
[Fukui et al., 2016], concatenation, element-wise sum and
element-wise product to replace MCF used in our multi-stage
CNN and keep other components of multi-stage CNN and
their parameter settings unchanged. The output dimension
of bilinear pooling is set to 512. The results are shown in
Table 3. On MSVD and MSRVTT dataset, we can see that
MCF outperforms all above fusion methods on the metric of
METEOR and CIDEr. This shows that based on our convo-
lutional architecture, MCF is effective for video captioning.
Besides, through Table 1 and Table 2, we find that for our
method, using matrix multiplication in MCF outperforms the
performance of using element-wise product.

Method BLEU@4 METEOR CIDEr
MA-LSTM [Xu et al., 2017] 36.5 26.5 41.0
G+LSTM [Venugopalan et al., 2014] 34.6 24.6 -
C3D+SA [Yao et al., 2015] 36.1 25.7 -
R+S2VT [Venugopalan et al., 2015] 31.4 25.7 35.2
R+hLSTMat [Song et al., 2017] 38.3 26.3 -
G+MCNN+MCF-matrix multiply 36.1 26.4 39.2
R+MCNN+MCF-matrix multiply 38.1 27.2 42.1
R+MCNN+MCF-element-wise product 37.7 27.1 41.3

Table 2: Comparison with other models on MSRVTT. Here ‘G’, ‘R’,
and ‘C’ denote GoogLeNet, ResNet, and C3D. ‘MCF-matrix mul-
tiply’ and ‘MCF-element-wise product’ represent we respectively
use matrix multiplication and element-wise product in our MCF.
‘MCNN’ represents our multi-stage CNN for video captioning.

In Fig. 5, we show some video captioning examples gener-
ated by multi-stage CNN which uses different fusion method.
We can see that the captions generated by multi-stage CNN
using MCF are better than that generated by multi-stage CNN
using other fusion methods. Particularly, taking the first and
third results as examples, our method successfully identi-
fies ‘pasta’ and ‘makeup’, while are better than above fusion
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183.3 s

Query: The person gets out a fork.

ground truth

CTRL

CTRL+MCF

182.6 s 187.1 s

177.7 s 188.1 s

187.6 s

Query: The man removes a large knife from the drawer and places it on the cutting board.

ground truth 13.0 s 18.2 s

CTRL 18.9 s13.4 s

CTRL+MCF 18.2 s13.1 s

Figure 6: Examples of regression results on TACoS. The gray row shows the ground truth for the given query. The blue row shows the
prediction of CTRL. The green row shows the prediction of our method.

methods. This also demonstrates that based on our architec-
ture, MCF is an effective fusion method for video captioning.

Fusion Method (dataset) BLEU@4 METEOR CIDEr
Element-wise sum (MSVD)+G 47.13 32.71 71.20
Element-wise product (MSVD)+G 46.21 32.67 71.92
Concatenation (MSVD)+G 45.25 32.90 70.64
Bilinear Pooling (MSVD)+G 43.61 32.46 71.11
MCF-matrix multiply (MSVD)+G 46.46 33.72 75.46
Element-wise sum (MSRVTT)+R 37.5 26.4 40.0
Element-wise product (MSRVTT)+R 36.8 26.6 39.3
Concatenation (MSRVTT)+R 36.2 26.3 39.9
Bilinear Pooling (MSRVTT)+R 37.5 26.7 40.9
MCF-matrix multiply (MSRVTT)+R 38.1 27.2 42.1

Table 3: The results using different fusion method in our multi-
stage CNN. Here ‘G’ and ‘R’ denote GoogleNet and ResNet feature.
‘MCF-matrix multiply’ denote using matrix multiplication in MCF.

7 Evaluation on TALL
7.1 Dataset and Implementation Details
We evaluate the benefit of MCF on TACoS dataset [Reg-
neri et al., 2013]. This dataset contains 127 videos. Each
video includes two type of annotations. The first is activ-
ity labels with temporal location (start and end frame). The
second is language descriptions. In total, there are 17,344
pairs of sentence and video clips. We split it in 50% for
training, 25% for validation and 25% for test. In experiment,
we set W1 ∈ R96×1024, W2 ∈ R96×1024 (in Eq. (1)), and
WM ∈ R96×1024 (in Eq. (17)). All other parameter settings
are same as those of the work [Gao et al., 2017].

7.2 Experimental Results
Evaluation Metric. We employ the metric used by [Regneri
et al., 2013; Gao et al., 2017] to compute ‘R@n, IoU=m’.
Comparison with other methods. We compare our method
with other methods on TACoS and report the result for IoU ∈
{0.1, 0.3, 0.5} and Recall@{1, 5}. The results are shown
in Table 4. ‘Random’, ‘Verb’ and ‘Verb+Obj’ are used by
work [Gao et al., 2017] to make contrast. ‘VSA-RNN’ and

‘VST-STV’ [Karpathy and Fei-Fei, 2015] leverage images
and their descriptions to learn about their correspondences.
‘CTRL-p’ and ‘CTRL-np’ denote using parameterized and
non-parameterized regression loss to train CTRL [Gao et al.,
2017]. And we use element-wise product in MCF.

It can be seen from Table 4 that our method outperforms
all above methods on most metrics. Particularly, our method
achieves a relative improvement of 4.2% on the metric R@5
with IoU=0.1. This shows that MCF is an effective fusion
method for this task.

Method R@1 R@1 R@1 R@5 R@5 R@5
IoU=0.5 IoU=0.3 IoU=0.1 IoU=0.5 IoU=0.3 IoU=0.1

Random 0.83 1.81 3.28 3.57 7.03 15.09
Verb 1.62 2.62 6.71 3.72 6.36 11.87
Verb+Obj 8.25 11.24 14.69 16.46 21.50 26.60
VSA-RNN 4.78 6.91 8.84 9.10 13.90 19.05
VSA-STV 7.56 10.77 15.01 15.50 23.92 32.82
CTRL-p 11.85 17.59 23.71 23.05 33.19 47.51
CTRL-np 13.30 18.32 24.32 25.42 36.69 48.73
CTRL+MCF-m 13.05 17.08 23.16 25.74 35.62 48.86
CTRL+MCF-p 12.53 18.64 25.84 24.73 37.13 52.96

Table 4: Comparison of different methods on TACoS. ‘MCF-m’ and
‘MCF-p’ denote using matrix multiplication and element-wise prod-
uct in MCF. All values are measured by percentage (%).

In Fig. 6, we show some examples about TALL task. Par-
ticularly, taking the second result as example, our method ac-
curately determines the start and end time for the query which
includes two actions.

8 Conclusion
In this paper, we propose the Multi-modal Circulant Fusion
(MCF) to combine visual and text representations. We test
the MCF on video captioning and TALL tasks. Experimental
results on three datasets demonstrate the effectiveness of our
method.
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