
Hybrid Neural Networks for Learning the Trend in Time Series

Tao Lin∗, Tian Guo∗, Karl Aberer
School of Computer and Communication Sciences

Ecole polytechnique federale de Lausanne
Lausanne, Switzerland

{tao.lin, tian.guo, karl.aberer}@epfl.ch

Abstract
Trend of time series characterizes the intermediate
upward and downward behaviour of time series.
Learning and forecasting the trend in time series
data play an important role in many real applica-
tions, ranging from resource allocation in data cen-
ters, load schedule in smart grid, and so on. In-
spired by the recent successes of neural networks,
in this paper we propose TreNet, a novel end-to-
end hybrid neural network to learn local and global
contextual features for predicting the trend of time
series. TreNet leverages convolutional neural net-
works (CNNs) to extract salient features from local
raw data of time series. Meanwhile, considering
the long-range dependency existing in the sequence
of historical trends, TreNet uses a long-short term
memory recurrent neural network (LSTM) to cap-
ture such dependency. Then, a feature fusion layer
is to learn joint representation for predicting the
trend. TreNet demonstrates its effectiveness by out-
performing CNN, LSTM, the cascade of CNN and
LSTM, Hidden Markov Model based method and
various kernel based baselines on real datasets.

1 Introduction
Time series, which is a sequence of data points in time order,
is being generated in a wide spectrum of domains, such as
medical and biological experimental observations, daily fluc-
tuation of stock markets, power consumption records, perfor-
mance monitoring of data centres, and so on. In many ap-
plications, users are interested in understanding the evolving
trend in time series and forecasting the trend, since the con-
ventional prediction on specific data points could deliver very
little information about the semantics and dynamics of the un-
derlying process generating the time series. For instance, time
series in Figure 1 are from the power consumption dataset
1. Figure 1(a) shows some raw data points of time series.
Though point A and B have approximately the same value,
the underlying system is likely to be in two different states

∗These two authors contributed equally.
1https://archive.ics.uci.edu/ml/datasets/Individual+household

+electric+power+consumption

when it outputs A and B, because A is in an upward trend
while B is in a downward trend [Wang et al., 2011]. On
the other hand, even when two points with the similar value
are both in the upward trend, e.g, point A and C, the differ-
ent slopes and durations of the trends where point A and C
locate, could also indicate different states of the underlying
process.

Particularly, in this paper we are interested in the trend of
time series which measures the intermediate behaviour, i.e.
upward or downward pattern of time series. It is charac-
terized by the slope and duration [Wang et al., 2011]. For
instance, Figure 1(b) and (c) show one time series and the
associated trend evolution over the time series. Given such
information, we aim to predict the duration and slope of the
subsequent trend. Learning and forecasting trends are quite
useful in a wide range of applications. For instance, in the
smart energy domain, knowing the predictive trend of power
consumption time series enables energy providers to sched-
ule power supply and maximize energy utilization [Zhao and
Magoulès, 2012]. in the stock market, due to its high volatil-
ity and noisy environment. In reality predicting stock price
trends is preferred over the prediction of the stock market ab-
solute values [Atsalakis and Valavanis, 2009]. Predicting the
trend of stock price time series provides the insight into the
intermediate behaviours of economic actors [Atsalakis and
Valavanis, 2009].

Meanwhile, in recent years neural networks have shown
the dramatical power in a wide spectrum of domains, e.g.,
natural language processing, computer vision, speech recog-
nition, time series analysis, etc [Wang et al., 2016b; Sutskever
et al., 2014; Yang et al., 2015; Lipton et al., 2015; Guo
et al., 2016]. For time series data, two mainstream ar-
chitectures, convolutional neural network (CNN) and recur-
rent neural network (RNN), have been exploited in differ-
ent tasks, e.g., RNN in time series classification [Lipton et
al., 2015] and CNN in activity recognition and snippet learn-
ing [Liu et al., 2015; Yang et al., 2015]. RNN is power-
ful in discovering the dependency in sequence data [Chung
et al., 2014] and particularly the Long Short-Term Memory
(LSTM) RNN works well on sequence data with long-term
dependencies [Chung et al., 2014; Hochreiter and Schmid-
huber, 1997] due to the internal memory mechanism. CNN
excels in extracting effective representation of local salience
from raw data of time series by enforcing a local connectivity

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2273

Figure 1: (a) Underlying information in time series. (b) Time series. (c) Sequence of trends associated with the time series.

between neurons [Yang et al., 2015; Hammerla et al., 2016;
Wang and Oates, 2015].

In this paper, we focus on learning and forecasting the
trends in time series via neural networks. This involves learn-
ing different aspects of the data. On the one hand, the trend
variation of time series is a sequence of historical trends car-
rying the long-term contextual information of time series and
naturally affects the evolution of the following trend. On the
other hand, the recent raw data points of time series [Wang et
al., 2011], which represent the local behaviour of time series,
affects the evolving of the following trend as well and have
particular predictive power for abruptly changing trends. For
instance, in Figure 2(b), trend 1, 2 and 3 present a continu-
ous upward pattern corresponding to the time series before
the prediction time instant. Then when we aim at predicting
the subsequent trend of time series, the previous three succes-
sive upward trends outline a probable increasing trend after-
wards. However, the local data points around the end of the
third trend as is shown in Figure 2(a), e.g., data points in the
red circle, indicate that time series could stabilize and even
decrease. The true data after the third trend indeed present
a decreasing trend indicated by the blue dotted segment. In
this case, the subsequent trend has more dependency on the
local data points. Therefore, it is highly desired to develop
a systematic way to model such hidden and complementary
dependencies in time series.

Figure 2: (a) Trend prediction on time series. (b) Associated se-
quence of trends.

To this end, we propose an end-to-end hybrid neural net-
work, referred to as TreNet. In particular, it consists of an
LSTM recurrent neural network to capture the long depen-
dency in historical trends, a convolutional neural network to
extract local features from local raw data of time series, and
a feature fusion layer to learn joint representation to take ad-
vantage of both features drawn from CNN and LSTM. Such

joint representation is used for the trend forecasting. The ex-
perimental analysis on real datasets demonstrates that TreNet
outperforms CNN, RNN, the cascade of CNN and RNN, and
a variety of baselines in term of trend prediction accuracy.

The rest of the paper is organized as follows. Section 2
presents related work. In Section 3, we present the proposed
TreNet. Section 4 reports experimental results and the paper
is concluded in Section 5.

2 Related Work
Traditional learning approaches over trends of time series
mainly make use of Hidden Markov Models (HMMs) [Wang
et al., 2011; Matsubara et al., 2014]. HMMs maintain short-
term state dependences, i.e., the memoryless Markov prop-
erty and predefined number of states, which requires signifi-
cant task-specific knowledge. RNNs can capture long-term
dependencies in sequence data. Previous time series seg-
mentation approaches [Wang et al., 2011; Yuan, 2015] focus
on achieving a meaningful segmentation, rather than mod-
eling the relation in segments and therefore are not suitable
for forecasting trends. Multi-step ahead prediction is another
way to realize trend prediction by fitting the predicted values
to estimate the trend [Chang et al., 2012]. However, multi-
step ahead prediction of time series is non-trivial [Venka-
traman et al., 2015] and suffers from the accumulative pre-
diction errors [Taieb and Atiya, 2016; Bao et al., 2014]. In
this paper, we concentrate on directly learning trends through
neural networks.

RNNs have recently shown promising results in a variety
of applications, especially when there exist sequential depen-
dencies in data [Chung et al., 2014; Sutskever et al., 2014].
Long short-term memory (LSTM) [Hochreiter and Schmid-
huber, 1997; Chung et al., 2014], a class of recurrent neural
networks with sophisticated recurrent hidden and gated units,
are particularly successful and popular due to its ability to
learn hidden long-term sequential dependencies. [Lipton et
al., 2015] uses LSTMs to recognize patterns in multivariate
time series, especially for multi-label classification of diag-
noses. [Malhotra et al., 2015] evaluate the ability of LSTMs
to detect anomalies in ECG time series.

CNNs are often used to learn effective representation of
local salience from raw data [Vinyals et al., 2015; Donahue et
al., 2015]. [Hammerla et al., 2016; Yang et al., 2015] make
use of CNNs to extract features from raw time series data
for activity/action recognition. [Liu et al., 2015] focuses on

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2274

the prediction of periodical time series values by using CNN
and embedding time series with neighbors in the temporal
domain. Our proposed TreNet will combine the strengths of
both LSTM and CNN and form a novel and unified neural
network architecture for trend forecasting.

Hybrid neural networks, which combines the strengths of
various neural networks, are receiving increasing interest in
the computer vision domain, such as image captioning [Mao
et al., 2014; Vinyals et al., 2015; Donahue et al., 2015], image
classification [Wang et al., 2016a], action recognition [Ballas
et al., 2015; Donahue et al., 2015] and so on. But efficient
exploitation of such hybrid architectures has not been well
studied for time series data, especially the trend forecasting
problem. [Ballas et al., 2015] utilizes CNNs over images in a
cascade of RNNs in order to capture the temporal features for
classification. [Bashivan et al., 2015] transforms EEG data
into a sequence of topology-preserving multi-spectral images
and then trains a cascaded convolutional-recurrent network
over such images for EEG classification. [Wang et al., 2016a;
Mao et al., 2014] propose the CNN-RNN framework to learn
a shared representation for image captioning and classifica-
tion problems.

3 Hybrid neural networks for Learning the
Trend

In this section, we provide the formal definition of the trend
learning and forecasting problem. Then, we present the pro-
posed TreNet.

3.1 Problem Formulation

We define time series as a sequence of data points X =
{x1, . . . , xT }, where each data point xt is real-valued and
subscript t represents the time instant. The historical trend se-
quence ofX is a series of historical trends overX , denoted by
T = {〈`k, sk〉}. Each element of T , e.g., 〈`k, sk〉 describes
a linear function over a certain subsequence (or segment) of
X and corresponds to a trend in X . `k and sk respectively
represent the duration and slope of trend k. `k is measured
in terms of the time range covered by trend k. Both `k and
sk are continuous values. Trends in T are time ordered and
non-overlapping. The durations of all the trends in T address∑
k

`k = T .

Meanwhile, as we discussed in Section 1, local raw data
of time series affects the evolving of trend and thus we de-
fine the local data w.r.t. each historical trend in T as a
set of data points of size w. Formally, it is denoted by
L = {〈xtk−w, . . . , xtk〉}, where tk is the ending time of trend
k in T . w is empirically selected, which will be discussed in
Section 4.

Then, we aim to propose a neural network based approach
to learn a function f(T ,L) to predict the subsequent trend
〈l̂, ŝ〉. In this paper, we focus on univariate time series. The
following proposed method can be naturally generalized to
multivariate time series as well by augmenting the training
data.

3.2 TreNet
In this part, we first present the overview of the proposed hy-
brid architecture TreNet for the trend forecasting. Then we
will detail each component of TreNet.

Overview
The idea of TreNet is to combine CNN and LSTM to utilize
their representation abilities on different aspects of data (i.e.,
L and T) and to learn a joint feature used for the trend pre-
diction.

Technically, TreNet is designed to learn a predictive func-
tion 〈l̂, ŝ〉 = f(R(T), C(L)). R(T) is derived by training
the LSTM over the sequence T to capture the dependency
in historical trend evolving, while C(L) corresponds to local
features extracted by CNN from sets of local data in L. The
long-term and local features respectively captured by LSTM
and CNN, i.e., R(T) and C(L) convey complementary infor-
mation pertaining to the trend varying. Then, the feature fu-
sion layer merges the features for forecasting the subsequent
trend. Finally, the trend prediction is realized by the function
f(,), which corresponds to the feature fusion and output
layers as is shown in Figure 3.

Learning the dependency in the historical trend sequence
During the training phase the duration `k and slope sk of each
trend k in sequence T are fed into the LSTM layer of TreNet.
Each j-th neuron in the LSTM layer maintains a memory cjk
at step k. The output hjk or the activation of this neuron is
then expressed as: hjk = ojktanh(c

j
k), where ojk is an output

gate of a LSTM neuron [Hochreiter and Schmidhuber, 1997;
Chung et al., 2014]. At each step k, the hidden activation hk

is the output to the feature fusion layer.
ojk is calculated by

ojk = σ(Wo[`k sk] +Uohk−1 + Vock)
j (1)

where [`k sk] is the concatenation of the duration and slope
of the trend k, hk−1 and ck are the vectorization of the acti-
vations of {hjk−1} and {cjk}, and σ is a logistic sigmoid func-
tion. Then, the memory cell cjk is updated through partially
forgetting the existing memory and adding a new memory
content c̃jk:

cjk = f jkc
j
k−1 + ijk c̃

j
k , c̃

j
k = tanh(Wc[`k sk] +Uchk−1)

j

(2)

The extent to which the existing memory is forgotten is mod-
ulated by a forget gate f jk , and the degree to which the new
memory content is added to the memory cell is modulated by
an input gate ijk. Then, such gates are computed by

f jk = σ(Wf [`k sk] +Ufhk−1 + Vfck−1)
j (3)

ijk = σ(Wi[`k sk] +Uihk−1 + Vick−1)
j (4)

Vf and Vi are diagonal matrices.

Learning local features from raw data of time series
When the k-th trend in T is fed to LSTM, the correspond-
ing local raw time series data points 〈xtk−w, . . . , xtk〉 in L

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2275

Figure 3: Illustration of the hybrid architecture of TreNet. (best viewed in colour)

is input to the CNN part of TreNet. CNN consists of H
stacked layers of 1-d convolutional, activation and pooling
operations. Each layer has a specified number of filters of a
specified filter size. Each filter on a layer sweeps through the
entire set of data points to exact local features. The output of
CNN in TreNet is the concatenation of max-pooling outputs
on the last layer H [Donahue et al., 2015].

Feature fusion and output layers
The feature fusion layer combines the output representations
from LSTM and CNN, i.e., R(T) and C(L), to form a joint
feature. Then, such a joint feature is fed to the output layer to
provide the trend prediction. Particularly, we first map R(T)
and C(L) to the same feature space and then add them to-
gether to obtain the activation of the feature fusion layer [Mao
et al., 2014]. The output layer is a fully-connect layer follow-
ing the feature fusion layer. Mathematically, the prediction of
TreNet is expressed as:

〈l̂, ŝ〉 = f(R(T), C(L))
=W o · φ(W r ·R(T) +W c · C(L))︸ ︷︷ ︸

feature fusion

+bo (5)

where φ(·) is element-wise leaky ReLU activation function
and + here denotes the element-wise addition. W o and bo
are the weights and bias of the output layer.

To train TreNet, we adopt the squared error function plus a
regularization term as:

J(W , b ; T ,X) = 1

|T |

|T |∑
k=1

[
(l̂k − lk)2 + (ŝk − sk)2

]
+ λ‖W ‖2

(6)
where W and b represent all the weight and bias parameters
in TreNet, λ is a hyperparameter for the regularization
term. The cost function is differentiable and the architecture
of TreNet allows the gradient of loss function (6) to be
backpropagated to both LSTM and CNN parts.

4 Experimental Analysis
In this section, we report experimental results to demonstrate
the advantage of TreNet by comparing to a variety of base-
lines.

4.1 Experiment Setup
Dataset:
• Power Consumption (PC). This dataset2 contains mea-

surements of electric power consumption with a one-
minute sampling rate over a period of almost 4 years. We
use the voltage time series throughout the experiments.
• Gas Sensor (GasSensor). This dataset3 contains the

recordings of chemical sensors exposed to dynamic gas
mixtures at varying concentrations. The measurement
was constructed by the continuous acquisition of the
sensor array signals for a duration of about 12 hours
without interruption. We mainly use the gas mixture
time series regarding Ethylene and Methane in air.
• Stock Transaction (Stock): This dataset is extracted

from Yahoo Finance and contains the daily stock trans-
action information in New York Stock Exchange from
1950-10 to 2016-4.

For the ease of result interpretation, the slope of the
trends is represented by the angle in a bounded value range
[−90, 90]. The duration of trends is measured by the number
of data points covered by the trend. Data instances are built
by combining historical trend sequence, local raw data and
the target trend w.r.t. each time series subsequence. We then
do random shuffling over such data instances, where 10% of
the data instances is held out as the testing dataset and the
rest is used for cross-validation. Totally, there exist 42279
instances in the power consumption dataset, 4418 instances
for the gas sensor dataset and 10014 instances for the stock
dataset.
Baselines: We compare TreNet with the following six base-
lines:
• CNN. This baseline method predicts the trend by using

CNN over the raw data of time series to learn features
used for the trend forecasting.
• LSTM. This method uses LSTM to learn the trend se-

quence T and then predicts the trend.
2https://archive.ics.uci.edu/ml/datasets/Individual+household

+electric+power+consumption
3https://archive.ics.uci.edu/ml/datasets/Gas+sensor+

array+under+dynamic+gas+mixtures

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2276

• ConvNet+LSTM(CLSTM). It is based on the cascade
structure of ConvNet and LSTM proposed in [Bashivan
et al., 2015] which feeds the features learnt by ConvNet
over time series raw data to an LSTM and obtains the
prediction from the LSTM.
• Support Vector Regression (SVR). A family of support

vector regression based approaches with different ker-
nel methods are used for the trend forecasting. We con-
sider three commonly used kernels [Liu et al., 2015],
i.e., Radial Basis kernel (SVRBF), Polynomial kernel
(SVPOLY), Sigmoid kernel (SVSIG). The trend se-
quence and the corresponding set of local time series
data are concatenated as the input features to such SVR
approaches.
• Pattern-based Hidden Markov Model (pHMM).

[Wang et al., 2011] proposed a pattern-based hidden
Markov model (HMM), which segments the time series
and models the dependency in segments via HMM. The
derived HMM model is used to predict the state of time
series and then to estimate the trend based on the state.
• Naive. This is the naive approach which takes the dura-

tion and slope of the last trend as the prediction for the
next one.

Evaluation metric: We evaluate the predictive performance
of TreNet and baselines in terms of Root Mean Square Error
(RMSE). The lower the RMSE, the more accurate the predic-
tions.
Training: In TreNet, CNN has two stacked convolutional
layers, which have 32 filters of size 2 and 4. The number
of memory cells in LSTM is 600. In addition to the learning
rate, the number of neurons in the feature fusion layer is cho-
sen from the range {300, 600, 900, 1200} to achieve the best
performance.

We use dropout and L2 regularization to control the ca-
pacity of neural networks to prevent overfitting, and set the
values to 0.5 and 5 × 10−4 respectively for all datasets
[Mao et al., 2014]. Regarding the SVR based approaches,
we carefully tune the parameters c (error penalty), d (de-
gree of kernel function), and γ (kernel coefficient) for
kernels. Each parameter is selected from the sets c ∈
{10−5, 10−4, . . . , 1, . . . , 104, 105}, d ∈ {1, 2, 3}, γ ∈
{10−5, 10−4, . . . , 1, . . . , 105} respectively.

4.2 Experiment Results
Table 1 studies the prediction performances of TreNet and
baselines on different datasets. For the approaches requiring
local raw data in the training data (i.e., SVRBF, SVPOLY,
SVSIG, and TreNet), the size of local data is chosen by cross
validation.

In Table 1, we observe that TreNet consistently outper-
forms baselines on the duration and slope prediction by
achieving around 30% less errors at the maximum. Compared
with CNN and LSTM baselines, the results verify that the hy-
brid architecture of TreNet can improve the performance by
utilizing the information captured by both CNN and LSTM.
Specifically, pHMM method performs worse due to the lim-
ited representation capability of HMM. On the slope predic-

tion, SVR based approaches can get comparable results as
TreNet. Meanwhile, the results show that the trend in PC
dataset is less predictive compared with that of Stock and
GasSensor datasets.

In the following group of experiments, we investigate the
effect of local data size (i.e., w) on the prediction perfor-
mance. In particular, we tune the value of local data size
for the approaches whose input data contains local time se-
ries data and observe the prediction errors. Such approaches
include SVRBF, SVPOLY, SVSIG and TreNet. LSTM only
consumes the trend sequence and thus is not included. Base-
line Naive has no original time series data as input, while
CLSTM works on the whole time series. Thus they are ex-
cluded from this set of experiments as well. We report the
results on each dataset in Table 2 to Table 7.

Dataset Model Duration Slope

PC

CNN 27.51 13.56
LSTM 27.27 13.27

CLSTM 25.97 13.77
SVRBF 31.81 12.94

SVPOLY 31.81 12.93
SVSIG 31.80 12.93
pHMM 34.06 26.00
Naive 39.68 21.17
TreNet 25.62 12.89

Stock

CNN 18.87 12.78
LSTM 11.07 8.40

CLSTM 9.26 7.31
SVRBF 11.39 7.47

SVPOLY 11.44 7.41
SVSIG 11.36 7.42
pHMM 36.37 8.70
Naive 11.36 8.58
TreNet 8.51 6.58

GasSensor

CNN 53.99 11.51
LSTM 55.77 11.22

CLSTM 54.20 14.86
SVRBF 61.45 9.61

SVPOLY 63.83 10.37
SVSIG 68.09 11.54
pHMM 111.62 13.07
Naive 53.76 10.57
TreNet 51.25 9.46

Table 1: RMSE of the prediction of trend duration and slope on each
dataset.

Window Size SVRBF SVPOLY SVSIG TreNet
300 31.17 31.61 31.66 25.94
500 31.81 31.81 31.80 25.89
700 31.10 31.09 31.11 25.72
900 31.28 31.27 31.27 25.62

Table 2: RMSE of the duration predictions w.r.t. different sizes of
local data in PC dataset.

In Table 2, we observe that compared to baselines TreNet
has the lowest errors on the duration prediction across differ-
ent window sizes. As the window size increases and more

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2277

(a) PC (b) Stock (c) GasSensor

Figure 4: Visualization of the trend prediction by TreNet on examples from PC, Stock and GasSensor datasets. The yellow points represent
time series and the purple line in each figure represents the associated historical trend sequence.

Window Size SVRBF SVPOLY SVSIG TreNet
300 12.93 12.9346 12.9345 13.15
500 12.94 12.9342 12.9346 12.89
700 12.93 12.9345 12.9345 12.86
900 12.94 12.9350 12.9346 12.96

Table 3: RMSE of the slope predictions w.r.t. different sizes of local
data in PC dataset.

local data points are fed to the training process, the predic-
tion errors of TreNet decrease and then stabilize. This is be-
cause feature fusion and output layer of TreNet selectively fo-
cus on the features having strong predictive power and giving
overwhelming local data only gives rise to marginal improve-
ments. Such similar phenomenon is observed in the rest of
tables. The observation in above experiments w.r.t. the vary-

Window Size SVRBF SVPOLY SVSIG TreNet
300 11.41 11.44 11.42 8.85
500 11.39 11.44 11.36 8.51
700 11.45 11.59 11.58 8.58
900 11.32 11.47 11.59 8.78

Table 4: RMSE of the duration predictions on different sizes of local
data in Stock dataset.

Window Size SVRBF SVPOLY SVSIG TreNet
300 7.42 7.51 7.38 6.53
500 7.47 7.41 7.42 6.58
700 7.53 7.58 7.51 6.75
900 7.61 7.45 7.59 6.73

Table 5: RMSE of the slope predictions on different sizes of local
data in Stock dataset.

ing window size provides inspiration for choosing the size of
local data instead of expensive cross validation. Given the
training dataset, we can find out the maximum duration of
local trends and takes it as the local data size. This is be-
cause doing so can ensure that the range of local data in each
training instance can cover the most recent local trend, whose
raw data is believed to have strong predictive power for the
subsequent trend.

In the next group of experiments in Figure 4, we visualize
the trend prediction using sample testing data instances from
each dataset. The fusion layer of TreNet selectively uses com-
plementary information from CNN and LSTM and therefore
we can observe that in PC TreNet successfully predicts the
changed trend, though there are successive upward trends be-
fore. However, for the cascade structure of CLSTM it fails
to capture the effect of local and abrupt changing data on the
trend evolution.

Window Size SVRBF SVPOLY SVSIG TreNet
300 62.81 70.91 85.69 52.28
500 61.86 64.33 91.51 51.77
700 61.20 63.89 78.20 51.15
900 61.45 63.83 68.09 51.25

Table 6: RMSE of the duration predictions on different sizes of local
data in GasSensor dataset.

Window Size SVRBF SVPOLY SVSIG TreNet
300 10.21 10.95 11.92 9.57
500 10.08 10.65 11.64 9.60
700 9.54 10.44 11.72 9.55
900 9.61 10.37 11.54 9.46

Table 7: RMSE of the slope predictions on different sizes of local
data in GasSensor dataset.

5 Conclusion
In this paper we propose TreNet, a novel hybrid neural net-
work over time series and associated trend sequence to predict
the trend evolution of time series. The experimental results
demonstrate that such a hybrid network can indeed capture
complementary information to enhance the prediction perfor-
mance. Moreover, such architecture is generic and extendible
in that additional exogenous time series can be fed to TreNet.

Acknowledgements
This work was partly supported by Nano-Tera.ch through the
OpenSense2 project.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2278

References
[Atsalakis and Valavanis, 2009] George S Atsalakis and Ki-

mon P Valavanis. Forecasting stock market short-term
trends using a neuro-fuzzy based methodology. Ex-
pert Systems with Applications, 36(7):10696–10707, July
2009.

[Ballas et al., 2015] Nicolas Ballas, Li Yao, Chris Pal, and
Aaron Courville. Delving deeper into convolutional net-
works for learning video representations. arXiv preprint
arXiv:1511.06432, 2015.

[Bao et al., 2014] Yukun Bao, Tao Xiong, and Zhongyi Hu.
Multi-step-ahead time series prediction using multiple-
output support vector regression. Neurocomputing,
129:482–493, 2014.

[Bashivan et al., 2015] Pouya Bashivan, Irina Rish, Mo-
hammed Yeasin, and Noel Codella. Learning represen-
tations from eeg with deep recurrent-convolutional neural
networks. arXiv preprint arXiv:1511.06448, 2015.

[Chang et al., 2012] Li-Chiu Chang, Pin-An Chen, and Fi-
John Chang. Reinforced two-step-ahead weight adjust-
ment technique for online training of recurrent neural net-
works. IEEE transactions on neural networks and learn-
ing systems, 23(8):1269–1278, 2012.

[Chung et al., 2014] Junyoung Chung, Caglar Gulcehre,
KyungHyun Cho, and Yoshua Bengio. Empirical evalua-
tion of gated recurrent neural networks on sequence mod-
eling. arXiv preprint arXiv:1412.3555, 2014.

[Donahue et al., 2015] Jeffrey Donahue, Lisa Anne Hen-
dricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-
term recurrent convolutional networks for visual recogni-
tion and description. In IEEE CVPR, pages 2625–2634,
2015.

[Guo et al., 2016] Tian Guo, Zhao Xu, Xin Yao, Haifeng
Chen, Karl Aberer, and Koichi Funaya. Robust online time
series prediction with recurrent neural networks. In 2016
IEEE DSAA, pages 816–825. IEEE, 2016.

[Hammerla et al., 2016] Nils Y Hammerla, Shane Halloran,
and Thomas Ploetz. Deep, convolutional, and recurrent
models for human activity recognition using wearables.
arXiv preprint arXiv:1604.08880, 2016.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[Lipton et al., 2015] Zachary C Lipton, David C Kale,
Charles Elkan, and Randall Wetzell. Learning to diag-
nose with lstm recurrent neural networks. arXiv preprint
arXiv:1511.03677, 2015.

[Liu et al., 2015] Jiajun Liu, Kun Zhao, Brano Kusy, Ji-rong
Wen, and Raja Jurdak. Temporal embedding in convolu-
tional neural networks for robust learning of abstract snip-
pets. arXiv preprint arXiv:1502.05113, 2015.

[Malhotra et al., 2015] Pankaj Malhotra, Lovekesh Vig,
Gautam Shroff, and Puneet Agarwal. Long short term

memory networks for anomaly detection in time series. In
European Symposium on Artificial Neural Networks, vol-
ume 23, 2015.

[Mao et al., 2014] Junhua Mao, Wei Xu, Yi Yang, Jiang
Wang, Zhiheng Huang, and Alan Yuille. Deep captioning
with multimodal recurrent neural networks (m-rnn). arXiv
preprint arXiv:1412.6632, 2014.

[Matsubara et al., 2014] Yasuko Matsubara, Yasushi Saku-
rai, and Christos Faloutsos. Autoplait: Automatic mining
of co-evolving time sequences. In ACM SIGMOD, pages
193–204. ACM, 2014.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing
systems, pages 3104–3112, 2014.

[Taieb and Atiya, 2016] Souhaib Ben Taieb and Amir F
Atiya. A bias and variance analysis for multistep-ahead
time series forecasting. IEEE transactions on neural net-
works and learning systems, 27(1):62–76, 2016.

[Venkatraman et al., 2015] Arun Venkatraman, Martial
Hebert, and J Andrew Bagnell. Improving multi-step
prediction of learned time series models. In AAAI, pages
3024–3030, 2015.

[Vinyals et al., 2015] Oriol Vinyals, Alexander Toshev,
Samy Bengio, and Dumitru Erhan. Show and tell: A neu-
ral image caption generator. In IEEE CVPR, pages 3156–
3164, 2015.

[Wang and Oates, 2015] Zhiguang Wang and Tim Oates. En-
coding time series as images for visual inspection and clas-
sification using tiled convolutional neural networks. In
Workshops at AAAI, 2015.

[Wang et al., 2011] Peng Wang, Haixun Wang, and Wei
Wang. Finding semantics in time series. In ACM KDD,
pages 385–396. ACM, 2011.

[Wang et al., 2016a] Jiang Wang, Yi Yang, Junhua Mao,
Zhiheng Huang, Chang Huang, and Wei Xu. Cnn-rnn:
A unified framework for multi-label image classification.
arXiv preprint arXiv:1604.04573, 2016.

[Wang et al., 2016b] Linlin Wang, Zhu Cao, Yu Xia, and
Gerard de Melo. Morphological segmentation with win-
dow lstm neural networks. In AAAI, 2016.

[Yang et al., 2015] Jian Bo Yang, Minh Nhut Nguyen,
Phyo Phyo San, Xiao Li Li, and Shonali Krishnaswamy.
Deep convolutional neural networks on multichannel time
series for human activity recognition. In IJCAI, pages 25–
31, 2015.

[Yuan, 2015] Chao Yuan. Unsupervised machine condition
monitoring using segmental hidden markov models. In
AAAI, pages 4009–4016. AAAI Press, 2015.

[Zhao and Magoulès, 2012] Hai-xiang Zhao and Frédéric
Magoulès. A review on the prediction of building en-
ergy consumption. Renewable and Sustainable Energy Re-

views, 16(6):3586–3592, 2012.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2279

