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Abstract

Over the past decades, numerous theories and stud-
ies have demonstrated that salient objects in differ-
ent scenes often share some properties in common
that make them visually stand out from their sur-
roundings, and thus can be processed in finer de-
tails. In this paper, we propose a novel method for
salient object detection that involves the transfer
of the annotations from an existing example onto
an input image. Our method, which is based on
the low-level saliency features of each pixel, esti-
mates dense pixel-wise correspondences between
the input image and an example image, and then
integrates high-level concepts to produce an initial
saliency map. Finally, a coarse-to-fine optimiza-
tion framework is proposed to generate uniformly
highlighted salient objects. Qualitatively and quan-
titatively experiments on six popular benchmark
datasets validate that our approach greatly outper-
forms the state-of-the-art algorithms and recently
published works.

1

Visual saliency enables us to focus on only the desired por-
tion from an overwhelming amount of incoming information.
The process of modeling the mechanism of visual saliency is
known as visual saliency detection. It has long been studied
by scientists from a range of fields, including artificial intel-
ligence, psychology, neuroscience, and computer vision. Re-
cently, a number of studies have concluded that the units un-
derlying visual saliency are individual objects whose bound-
aries constrain the allocation of attention [Scholl, 2001].
Salient object detection, which is the detection of the most
salient object(s) in natural scenes, is becoming a hot research
topic. One reason for this is because advances in understand-
ing this process facilitate the development of many other ap-
plications [Borji er al., 2014], such as object detection and
recognition, object-of-interest image segmentation [Rahtu et
al., 20101, adaptive compression, dominant color detection,
non-photorealistic rendering, and photo collage.
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Figure 1: Saliency maps generated by the leading method
(DRFI) and the proposed method. Our results are close to
ground truth (GT) for even these very challenging images.

Unlike eye-fixation prediction models, which typically
highlight sparse blob-like salient regions, salient object de-
tection models aim to generate smoothly connected areas. A
critical step in salient object detection is to distinguish salient
objects from their surroundings. To this end, many exist-
ing algorithms use intrinsic cues, like uniqueness and sur-
roundedness, to estimate a saliency map for an input image
[Perazzi et al., 2012] [Zhang and Sclaroff, 2015]. However,
using intrinsic cues alone often produces unsatisfactory re-
sults. Therefore, some other models argue that salient objects
share common visual attributes, and adopt extrinsic cues to
assist in detection. This can be achieved through learning
a salient object detector from a set of manually annotated
images [Huaizu er al., 2013] [Kim et al., 2014], leverag-
ing statistical features of visually similar images [Singh et
al., 2015], or exploiting depth/light field cues [Zhang et al.,
2015b]. An overview of salient object detection is presented
in [Borji er al., 2014].

In this paper, we offer fresh insights into the application of
both intrinsic and extrinsic cues during automatic detection
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Figure 2: Workflow of the method proposed in this study. Please refer to Section 2.1 for details.

of salient objects. First, our approach involves computation
of dense saliency features from within a given image, which
involves integration of intrinsic cues. In other words, a vec-
tor (SF descriptor) is generated for each pixel of the image to
represent its saliency property. This per-pixel SF descriptor
is called a “SF image”. Second, extrinsic cues derived from
ground-truth annotations (or mask) of an example image are
used to facilitate the detection of salient objects. To be more
specific, using the SF image of an input, the best match is re-
trieved from references based on its global saliency features
(GSF descriptor). Since the existing references are manually
annotated, the annotations from the best match (example im-
age) are transferred to the input image to roughly annotate the
salient regions. Third, the transferred mask is refined by us-
ing objectness proposals, thus creating an initial map. Finally,
a coarse-to-fine optimization framework is used in conjunc-
tion with the transferred mask and the initial map to produce
a high-resolution, full-field saliency map. Overall, the rea-
sonable integration of both intrinsic and extrinsic cues by this
method increases the reliability and accuracy of salient object
detection, even in particularly challenging images (see Figure
1).

The method outlined in this study is training-free, so it
avoids the tedious and time-consuming training task (e.g. it
takes over 24h for DRFI [Huaizu et al., 2013] to train a
saliency detector). To incorporate extrinsic cues, our ap-
proach requires fewer than 20 high-quality references with
ground truths, where only a single reference (example im-
age) is needed at a time, from which annotations will be
transferred. In addition, this proposed method uses the GSF
and SF descriptors designed by ourselves rather than widely
used descriptors, such as GIST and SIFT, to find the nearest
neighbor and establish dense correspondences. This allows
the method prevents scene content from being a limiting fac-
tor. Therefore, this method differs substantially from previ-
ous methods [Wang et al., 2011][Singh et al., 2015] that need
a large collection covering all image categories and visually
similar images to provide a discriminant background. Our
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main contributions are summarized as follows:

e This paper proposes a new method for salient object
detection using both intrinsic (within each testing im-
age) and extrinsic (from an example image) information:
(i) Different from other methods using various intrinsic
cues to calculate a saliency value, our method integrates
them in a new way to represent the saliency property
of an image. (ii) We propose a novel GSF descriptor
to provide an overall SF image description, which helps
us construct references and find one suitable example.
(iii) Based on (i) and (ii), we devise a pixel-wise, cross-
category scheme for annotation transfer. Finally, (iv) we
design a novel coarse-to-fine optimization framework to
optimize the result.

The proposed method is compared to a number of top-
ranked salient object detection algorithms on several
commonly-used datasets, showing a distinct improve-
ment on the state-of-the-art algorithms.

2 Approach

2.1 Overview

As shown in Figure 2, the method proposed in this study can
be divided into two stages. In the first stage, dense low-level
saliency features (SF image) are constructed for an input im-
age based on surroundedness cue, boundary prior and con-
vex hull prior. Then, we retrieve the nearest neighbor of the
SF image from the references as its example image, and es-
tablish dense, pixel-to-pixel correspondences between the in-
put and the example image. During annotation transfer, we
warp the manual annotations (or mask) of the example im-
age onto the input image according to estimated dense cor-
respondences, imposing spatial smoothness while preserving
discontinuities. By utilizing generic object proposals, the ini-
tial map combining both high-level object concepts and low-
level features is generated.

In the second stage, the accuracy and reliability of the re-
sult are increased by using our saliency optimization frame-



work. Firstly, the proposed method computes a more accu-
rate saliency map as a temporary result. Then, the temporary
result, along with other information, such as color and loca-
tion, is used to update the transferred mask, thus increasing
the precision of the foreground/background color information
for the next layer. The interactions described above iterate at
multiple spatial extents from coarse to fine, which reduce run-
ning time and guarantee a sufficient number of interactions to
produce a high-quality result.

Based on the size of the detected salient object, this method
erodes away very small separate areas which are likely back-
ground regions, as well as smoothes the edges with the guided
filter [He et al., 2013]. This finally results in the accurate,
clean and uniform detection of salient objects as displayed in
Figure 2.

2.2 SF Image Construction

Unlike most existing approaches that directly compute a
saliency score or combine independent measures together to
finally form a saliency value, our method generates a 10-
dimensional descriptor that integrates important intrinsic cues
for each pixel. Ideally, the descriptor should be able to char-
acterize saliency, and also remain consistent across scenes.
To this end, a SF image is constructed based on surrounded-
ness cue, boundary prior and convex hull prior. This assists in
the capture of these three properties from a scene, regardless
of texture, scale or shape of the visual content of the image.

The Boolean map-based method, which allows effective
quantification of the surroundedness property of each region,
is used when employing the surroundedness cue. Our method
generates a set of Boolean maps B = {B,Ba,- -, By}
by evenly thresholding the CIELab color space of an in-
put image. It then constructs attention maps A(B)
{A(B):, A(B);, A(B)r, A(B)p} using the flood fill algorithm
to mask out pixels connected to the top, left, right and bottom
boundary of the image, respectively. This results in four-fold
the number of attention maps as the original BMS [Zhang
and Sclaroff, 20151, and thus, when salient objects touch the
image edge, more detailed information is recorded with lit-
tle loss of surroundedness information. To compute the sur-
roundedness property (Ssg) in a certain direction, the follow-
ing formula is employed:

Ssq = Normalize(Z(A(B)d)), (1)
where d is the direction (e.g. top), and A(B), denotes the
attention map computed by masking out the pixels connected
to the boundary in the d direction.

To further distinguish between completely and partially
surrounded areas, the complete surroundedness value (Ssq;;)
is computed as using Formula 2:

Ssa = Normalize(H(SSd)),
d

2

As is shown in [Yang er al., 2013], the regions along the
four boundaries of an image are usually non-salient. There-
fore, the boundary prior is used to capture another fundamen-
tal property of a scene. Taking the top boundary for an ex-
ample, we used the SLIC [Achanta et al., 2012] algorithm
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Figure 3: Illustration of the SF image construction. Some
fundamental properties of a scene are integrated to create a
10-dimensional vector for each pixel (v)(p)). Note that the
SF image (¢) is visualized by mapping top three principal
components to the RGB color space.

to oversegment the input image into /N small superpixels and
treat the superpixels along the top boundary as background
seeds for saliency propagation. The result of this propaga-
tion is expressed by an N-dimensional vector f;*, and the top
boundary-based saliency Bs;, which can be written as in For-
mula 3:

Bsi(i) =1 — Normalize(f (1)), 3)
where ¢ denote a superpixel node.

Similarly, by using the bottom, left, right boundary and the
regions outside the convex hull [Xie ef al., 2013] as back-
ground seeds, we can compute the other three boundary-
based saliency properties Bsp, Bs;, Bs, and convex hull-
based saliency information H s.

As shown in Figure 3, these properties are integrated to
form a 10-dimensional vector for each pixel p, which is de-
noted as 1(p) and computed as follows:

¥(p) = Normalize(Ss:(p) -+, Bs(p) - - 7Hs(p))T,
“4)

where Ss(p), Bs(p) and Hs(p) denote the computed
saliency properties of pixel p based on the surroundedness
cue, boundary prior and convex hull prior, respectively.

2.3 GSF Descriptor

In this paper, a novel GSF (global saliency features) descrip-
tor is constructed to summarize the saliency information for
different parts of an image, thus providing an overall SF im-
age description. Specifically, the GSF descriptor is computed
by dividing each feature layer of a given SF image into twelve
sub-regions (a 3 x 4 grid), and then a histogram with ten bins
is created for each sub-region. The resulting values from all
10 feature layers are concatenated and a 12 x 10 x 10 = 1200
GSF descriptor is generated. Because this 1200-dimensional
descriptor can characterize the global saliency information of
an image, it is used to select references and retrieve the near-
est neighbor of the input.



Creation of the Reference Set. A key component of our
method is a small set of carefully chosen and manually anno-
tated reference images. To this end, 1,000 images are firstly
randomly chosen from three publicly available datasets, in-
cluding MSRA [Liu et al., 2011b], SED [Alpert et al., 20121,
and iCoSeg [Batra er al., 2009]. Next, a GSF descriptor is
generated for each of these images. Based on their GSF de-
scriptors, we use message-passing based clustering [Frey and
Dueck, 2007] to divide them into groups. In each group, the
images should share similar global saliency properties. Thus,
only two images in each group are selected to represent the
different types of SF images, where one is a cluster center and
the other is randomly selected. Finally, fewer than 20 images
in total are carefully chosen to serve as the reference images.

Retrieval of the Example Image. The objective of ex-
ample image retrieval is to retrieve the nearest neighbor from
the references for the input. Here, we simply use Euclidean
distance of GSF to measure the similarities between images,
where only the top match is selected each time as the exam-
ple image. Once the example image is obtained, our next task
is to establish the dense, pixel-to-pixel correspondences be-
tween the input and example image.

2.4 Annotation Transfer

As our goal is to transfer the annotations from an example im-
age to assist in detection of the salient regions of an input im-
age, it is essential to find the dense saliency correspondence
for images across scene contents. Similar to SIFT flow [Liu
et al., 2011al], we want SF descriptor to be matched along the
flow vector, and the flow field to be smooth, with discgntinu—
ities agreeing with object boundaries. Let ¢)(p) and ¢ (p) be
the 10-dimensional saliency vector for the two images at the
location of pixel p, respectively. Our task is to estimate the
flow vector w(p) = (u(p),v(p)) which preserves both the
discontinuous motion field and the spatially coherent infor-
mation for every pixel. The energy we optimize is a weighted
sum of three terms: a data term, a small displacement term
and a smoothness term as shown in Formula 5:

E(w) =Y min(|¢(p) — ¢ (p+w(p))|1, 1)

+) " alu(p) + v(p)))
P 5)

+ Y [min(Blu(p) — u(q))|,d)

+ min(Blv(p) — v(g)), d)]

where ¢ and d are constant threshold values, and ¢ is the spa-
tial neighborhood of a pixel. Our data term ensures matching
by constraining the 1(p) along with the flow vector w(p).
The small displacement term ensures that the flow vectors are
as small as possible, while the smoothness term encourages
similarity between the flow vectors of adjacent pixels. We
minimize this objective function using loopy belief propaga-
tion to find the optimal correspondence of each pixel. Finally,
the estimated flow w is used to transfer known saliency anno-
tations from the retrieved example to the input image.
Importantly, because the SF image is constructed using
low-level saliency concepts, the transferred result may be
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sensitive to background clutters. To filter out these clut-
ters and other errors, we adopt the method of [Wang er al.,
2015] which utilizes high-level objectness to further refine
our transferred mask. The refined map, also known as the
initial map in this paper, integrates both low-level concepts
and high-level objectness. However, at this point, the initial
map is still inaccurate and fuzzy (see Figure 2). Therefore,
we present a coarse-to-fine saliency optimization framework
to generate the clean and high-quality saliency map in the fol-
lowing section.

2.5 Coarse-to-fine Saliency Optimization

To address issues of inaccuracy and uncertainty in the initially
generated map, we design a coarse-to-fine saliency optimiza-
tion framework. Basically, we model salient object detection
as an optimization problem for saliency values at multiple
spatial extents, ranging from coarse-grid to fine-grid cells.
Using multi-level grid sizes, the image is divided into rect-
angular grid cells, where each grid cell is represented by the
mean color of the pixels belonging to and the finest cells are
only one pixel in width. Then, we represent the image with
a graph, and each grid cell with a node. Edges connect all
neighboring nodes of the same level.

We start by computing the more accurate saliency map
at the coarsest layer by integrating the transferred mask and
the initial map, which provide foreground/background color
information and objectness information, respectively. In a
similar manner to [Cheng et al., 2015], based on the scaled
transferred mask, the foreground probability of node ¢ in the

graph is computed as f; = % where f(¢1,1)

and f(¢o, 1) represent the probability of a node ¢, belonging
respectively to the foreground model ¢, and the background
model ¢g. f(¢1,7) and f(¢o, ) are computed by using Gaus-
sian Mixture Models (GMMs). Then, the cost function for
generating saliency map S is given as follows:

B(S) =Y uIS: - i)

+Z<P(fi|51:*1|+bi|5i*OD (6)
+ Y wi (1S = S,
i,j €€
where S; € [0, 1]. This function contains an initial saliency
map term, a foreground/background term and a smoothness
term. The initial map term serves as a constraint that en-
sures that the final saliency value S; is similar to the initial
saliency value C;. The foreground/background term encour-
ages a node with a high foreground probability to be 1 and
vice versa. f; and b; denote the foreground and background
probability, respectively, where f; + b; = 1. The smooth-
ness term encourages adjacent nodes with similar color to
dis;ﬁzgi,j))

be labeled the same. w;; = exp(— represents the

weight between two neighboring nodes, where dist(i, j) de-
notes the Euclidean distance between their average colors in
the CIELab color space.

Before proceeding to the next layer, the computed saliency
map is used to update the transferred mask M using the cost
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Figure 4: Quantitative comparison of saliency maps generated by different methods on six well-used benchmarks. (a)
Precision™, Recall® and FZ{J (the higher the FZ{J score, the better); (b) MAE (the lower the score, the better). Our method
consistently outperforms other state-of-the-art approaches on these popular benchmark datasets.

function displayed in Formula 7: five databases contain more challenging images. ECSSD in-
cludes 1,000 semantically meaningful, but structurally com-
E(M) = Z IM; =S| + Z wij (|Mi — M;l), (7y  Plex images. SEDI and SED2 contain salient objects in a
i ijee range of sizes and locations. SOD and iCoSeg, the most chal-
lenging of the datasets, include images containing multiple
where M;= 0 or 1. The first term encourages nodes with  salient objects of various sizes at different locations.

a high saliency value to be the. foreground, whil;: th@ sec- Methods of Comparison. The proposed STR is qualita-
ond term encourages coherence in nearby nodes with similar ey and quantitatively compared with several state-of-the-
color. The updated mask then becpmes the input for the next  , 1ethods and rec ently published approaches. We first con-
layer S0 as to 'prov1de more precise foreground/background e the Top 6 salient object detection models ranked by the
color m'forman.on. ) ) ) ) recent survey [Borji ef al., 2015], including DRFI [Huaizu et

The interactions described above keep iterating until after ;7 2013], RBD [Zhu et al., 2014], DSR [Li et al., 2013], MC
calculation of the finest layer is complete. The inaccuracy and [Jiang ef al., 2013], HDCT [Kim et al., 2014], and HS [Yan
uncertainty in the initial map are gradually reduced. Hence, et al., 2013]. In addition, we also include five leading meth-
the output of the finest layer is close to perfect. Finally, by  4g proposed in 2015: BSCA [Qin et al., 20151, BL [Tong et

eroding very small separate areas and using the guided filter al., 20151, TLLT [Gong et al., 20151, AH [Van Nguyen and
[He ez al., 2013] to smooth the edges of the object, we create  Sepulveda, 20151, and MB+ [Zhang et al., 2015al.

the final saliency map. Evaluation Metrics. Previous publications have typically

ranked models using metrics like Precision-Recall curve (PR
3 Experiments curve), Fg — measure, and Area Under the Curve (AUC).
However, as Margolin et al point out, these traditional met-
rics may not reliably evaluate the quality of a saliency map
due to certain flaws in interpolation, dependency and equal
importance [Margolin et al., 2014]. Therefore, a better mea-
sure [Margolin et al., 2014], which relies on weighted preci-
sion (Precision®), weighted recall (Recall™) and weighted
Fg —measure (Fg’), is adopted to evaluate the performance

of the algorithm in this paper. As in [Gong et al., 2015], we

Implementation. Input images are resized to be 400 x 300
pixels or 300 x 400 pixels beforehand to ensure that they can
be evenly divided by the grids (the coarsest grid is 10 x 10
pixels). We set « = 0.0005, 5 = 1, and d = 40 in Formula
5. We set u = 0.3 and ¢ = 0.5 in Formula 6. The reference
set includes 14 images carefully chosen from three publicly
available datasets. These parameters and references are fixed
in the following experiments. o T o9\ Precision® +Recall”
Datasets. To evaluate the proposed saliency transfer ap- set the parameter' p%in Fy :(1 +8 )_@2Precisionw+Recauw
proach (abbreviated to “STR”), standard benchmark datasets, to 0.3 to emphasize the precision. Additionally, we adopt the
MSRA1000 [Liu et al., 2011b], ECSSD [Yan et al., 2013], widely-used mean absolute error (MAE) [Perazzi et al., 2012]
SEDI [Alpert et al., 20121, SED2 [Alpert et al., 2012], SOD which provides a fair estimation of the dissimilarity between
[Movahedi and Elder, 2010] and iCoSeg [Batra er al., 2009], the.saliency map and ground truth for a more balanced com-
are used. MSRA1000, a relatively simple database, has been parison.
the most widely used dataset in previous works. The other Performance Comparison. In all cases, we use the
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Figure 5: Qualitative comparison of saliency maps. GT: ground truth.
Table 1: Comparison of running times.
Method | RBD HS HDCT MC DSR DRFI AH TLLT MB+ BSCA BL STR
Time(s) | 0.27 0.53 11.6 1.19 3.68 15.1 0.07 2.49 0.02 1.92 22.6 6.45
Code Matlab EXE Matlab Matlab Matlab Matlab C++ Matlab EXE Matlab Matlab Matlab

code or the saliency maps published by the authors of each
method. As shown in Figure 4, when detecting salient ob-
jects in all six datasets, our method achieves significantly
better Fy’ and MAE scores than all the other methods.
Specifically, on MSRA1000, ECSSD, SEDI1, SED2, SOD
and iCoSeg, it respectively improves by 9.17%, 25.16%,
18.05%, 6.15%, 18.80% and 14.40% according to Fg“
scores, and by 39.05%, 21.22%, 38.83%, 15%, 10.27 % and
18.58 % in terms of MAE score over the previous best results.
As displayed in Figure 5, our method generates cleaner, more
reliable and accurate saliency maps than the other methods
for a number of different challenges.

Computational Efficiency. The average running time of
each method is tested on a PC with an i5 2.50 GHz CPU and
8GB RAM and the results are listed in Table 1. Our STR
is implemented by using MATLAB with unoptimized codes.
The method presented in this study takes an average of 6.45
seconds to process an image using a single thread. Although
STR is not the fastest method, yet it achieves the best perfor-
mance (see Figure 4 and 5). We believe that a parallel imple-
mentation of our method will largely boost its computational
efficiency.

4 Conclusions

In order to address the salient object detection problem, we
present a novel method that involves the transfer of annota-
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tions from an example image to an input image. The trans-
ferred annotations are further refined by integrating high-level
objectness. A coarse-to-fine saliency optimization framework
is proposed to reliably and efficiently filter out clutters and
other errors. Overall, our method achieves satisfactory results
on all six challenging benchmarks. In the future, we plan to
integrate more cues when constructing SF descriptor and use
parallel computing to improve the efficiency of our method.
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