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Abstract
Learning the representations of a knowledge graph
has attracted significant research interest in the
field of intelligent Web. By regarding each rela-
tion as one translation from head entity to tail en-
tity, translation-based methods including TransE,
TransH and TransR are simple, effective and
achieving the state-of-the-art performance. How-
ever, they still suffer the following issues: (i) low
performance when modeling 1-to-N, N-to-1 and N-
to-N relations. (ii) limited performance due to the
structure sparseness of the knowledge graph. In
this paper, we propose a novel knowledge graph
representation learning method by taking advan-
tage of the rich context information in a text corpus.
The rich textual context information is incorporated
to expand the semantic structure of the knowledge
graph and each relation is enabled to own different
representations for different head and tail entities to
better handle 1-to-N, N-to-1 and N-to-N relations.
Experiments on multiple benchmark datasets show
that our proposed method successfully addresses
the above issues and significantly outperforms the
state-of-the-art methods.

1 Introduction
Knowledge graphs aim at semantically representing the
world’s truth in the form of machine-readable graphs com-
posed of subject-property-object triple facts. Taking the (h,
r, t) (short for (head entity, relation, tail entity)) triples as in-
put, representation learning for knowledge graph represents
each entity h (or t) as one low-dimensional vector h (or t) by
defining relation-dependent scoring function f

r

(h, t) to mea-
sure the correctness of the triple in the embedding space. The
learned representations make the knowledge graph essentially
computable, and have been proved to be helpful for knowl-
edge graph completion, documentation classification and in-
formation extraction [Socher et al., 2013; Bordes et al., 2013;
Wang et al., 2014b; Lin et al., 2015b].

Among current knowledge graph representation learning
methods, the translation-based methods have achieved the
state-of-the-art performance, by regarding each relation as
one translation from head entity to tail entity. Inspired

by [Mikolov et al., 2013], TransE [Bordes et al., 2013] learns
the entity and relation embeddings to satisfy r ⇡ t � h

when (h, r, t) holds. TransE is simple, efficient and effec-
tive, but has issues when modeling 1-to-N, N-to-1 and N-
to-N relations. To address the issue, TransH [Wang et al.,
2014b] and TransR [Lin et al., 2015b] are proposed to enable
an entity to have different representations for different rela-
tions by preliminarily generating the relation-specific entity
embeddings with mathematical transformations, which are
hyperplane projection for TransH and space projection for
TransR. Better results are reported in [Wang et al., 2014b;
Lin et al., 2015b]. However, the performance when pre-
dicting the entity where multiple entities could be correct
is still unsatisfactory, with the average Hits@10 to be about
50% [Lin et al., 2015b].

On the other hand, by learning the embeddings directly
from the graph structure, the performance is limited by the
structure sparseness of the knowledge graph, which is quite
common especially in the domain-specific and non-English
situations [Wang et al., 2013]. As we will present in detail in
Section 4.2, the performance of TransE is highly influenced
by the density of the knowledge graph, with the mean rank of
link prediction task to be 102.7 for FB3K, 81.9 for FB6K and
79.5 for FB9K on the same testing dataset.

In order to solve the above problems, which are low
performance on 1-to-N, N-to-1 and N-to-N relations and
structure sparseness of knowledge graph, we propose a
novel knowledge graph representation learning method by
taking advantage of the rich context information in a text cor-
pus. Inspired by the idea of distant supervision [Mintz et al.,
2009], we find that the textual context information of entities
is helpful to model the semantic relationships in the knowl-
edge graph. As shown in Figure 1, the textual contexts (sets of
words here) reveal that “Avatar” should be a film and “James
Cameron” should be a director. And the common set of entity
contexts indicates the relationship between the entities should
be “direct”.

In this paper, we propose a novel text-enhanced knowledge
embedding (TEKE) method for knowledge graph representa-
tion learning. Given the knowledge graph to be represented
and a text corpus, we firstly semantically annotate the entities
in the corpus and construct a co-occurrence network com-
posed of entities and words to bridge the knowledge graph
and text information together. Based on the co-occurrence
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Figure 1: Simple Illustration of Text-enhanced Method.

network we define the textual contexts for entities and rela-
tions, and incorporate the contexts to the knowledge graph
structure. Finally a normal translation-based optimization
procedure is utilized to learn the embeddings of the entities
and relations. The key points of the proposed method are as
follows:

• We represent each relation’s textual contexts in (h, r, t)

as the common of h and t’s contexts, which enables
each relation to own different representations for differ-
ent head and tail entities to better handle 1-to-N, N-to-1
and N-to-N relations.

• We incorporate the textual contexts to each entity and
relation, which greatly expands the semantic structure
of the knowledge graph.

Different TEKE methods based on the optimization targets
of TransE, TransH and TransR are implemented and exten-
sive experiments have been conducted on link prediction and
triple classification with benchmark datasets including Word-
Net and Freebase. Experiments show that our method can
effectively deal with the problems of low performance on 1-
to-N, N-to-1 and N-to-N relations and structure sparseness of
knowledge graph. In summary, the contributions of this paper
are as follows:

1. We propose a novel text-enhanced knowledge embed-
ding method. The incorporation of textual contexts
greatly expands the graph structure and successfully
handles the problem of knowledge graph sparseness.

2. We enable each relation to own different representations
for different head and tail entities, which is proved to be
helpful to handle the low performance on 1-to-N, N-to-1
and N-to-N relations.

3. We evaluate our TEKE method on different benchmark
datasets and experiments demonstrate that TEKE suc-
cessfully solves the above problems and significantly
outperforms state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2
we formally define the problem of text-enhanced knowledge
embedding and Section 3 reveals our proposed approach in
detail. Section 4 presents the evaluation results and we out-
line some related work in Section 5. Finally we conclude our
work in Section 6.

2 Problem Formulation
In this section, we formally define the problem of text-
enhanced knowledge embedding. Here, we first define the
input knowledge graph and the text corpus.

A knowledge graph KG is a directed graph whose nodes
are entities and edges correspond to the subject-property-
object triple facts. Each edge of the form (head entity, re-
lation, tail entity) indicates that there exists a relationship of
name relation from the head entity to the tail entity, and can
be formally represented as (h, r, t), where h, t 2 E are enti-
ties and r 2 R is the relation. E and R denote the sets of
entities and relations respectively.

A text corpus (denoted as D) is a set of text docu-
ments and can be represented as a sequence of words D =

hw1...wi

...w

m

i, where w

i

denotes the word and m is the
length of the word sequence. In our task, it is preferable that
the text corpus should cover as many entities in KG as pos-
sible, and the easily accessible Wikipedia pages would be a
great choice.

Text-enhanced Knowledge Embedding. Given a KG and
a text corpus D, the text-enhanced knowledge embedding is
to learn the entity embeddings h, t 2 Rk for each triple
(h, r, t) by utilizing the rich text information in D to deal
with low performance on 1-to-N, N-to-1, N-to-N relations
and knowledge graph sparseness. In our setting, we also learn
the relation embeddings r 2 Rk following the translation-
based methods [Bordes et al., 2013; Wang et al., 2014b;
Lin et al., 2015b]. k is the dimension of the learned embed-
dings (vectors).

3 The Proposed Approach
Given KG and D, we are to learn the entity and relation
embeddings h, r, t. As shown in Figure 2, our proposed
TEKE contains four key components: (1) Entity Annota-
tion: given the text corpus D, we first semantically annotate
the entities in KG by using an entity linking tool automati-
cally. (2) Textual Context Embedding: based on the entity-
annotated text corpus, we construct a co-occurrence network
between entities and words to bridge the KG and text cor-
pus. And then the pointwise and pairwise textual context
embeddings are learned. (3) Entity/Relation Representa-
tion Modeling: we formally formulate the text-enhanced en-
tity/relation embeddings by incorporating the textual context
embeddings. (4) Representation Training: finally we pro-
pose to use a translation-based optimization method to train
the entity/relation embeddings. In the following parts, we will
describe each component in detail.

3.1 Entity Annotation
Given the text corpus D = hw1...wi

...w

m

i, we first use an
entity linking tool to automatically label the entities in KG,
and get an entity-annotated text corpus D0

= hx1...xi

...x

m

0i,
where x

i

corresponds to a word w 2 D or an entity e 2 E .
We notice that the length m

0 of D0 is less than the length m

of D because multiple adjacent words could be labeled as one
entity.

A general entity linking tool is suitable for this step, e.g.
AIDA [Yosef et al., 2011], TAGME [Ferragina and Scaiella,
2010] and Wikify! [Mihalcea and Csomai, 2007]. As we will
see in the experiments, we use quite a simple strategy for en-
tity annotation on the Wikipedia text corpus.

1294



Figure 2: Text-enhanced Knowledge Embedding Framework.

3.2 Textual Context Embedding
In order to bridge the knowledge and text information to-
gether, we construct a co-occurrence network G = (X ,Y)

based on the entity-annotated text corpus D0. x
i

2 X denotes
the node of the network and corresponds to a word or an en-
tity. y

ij

2 Y represents the co-occurrence frequency between
x

i

and x

j

. The co-occurrence window is set to be 5.
The constructed network G allows us to bridge the enti-

ties and words together to utilize the rich text information for
representation learning on the knowledge graph. As shown in
Figure 1, the neighboring information is helpful to enrich the
entity information in the knowledge graph, and we formally
define the pointwise textual context of a given node x

i

as its
neighbors:

n(x

i

) = {x
j

|y
ij

> ✓} (1)

where ✓ is the threshold and the neighboring nodes whose
co-occurrence frequencies are lower than ✓ are filtered.
For example, n(Avatar) = {film,movie, directed} and
n(James Cameron) = {director}. Considering that the
common neighbors of two nodes could indicate the relation-
ship between them, we define the pairwise textual context of
two nodes as their common neighbors:

n(x

i

, x

j

) = {x
k

|x
k

2 n(x

i

) \ n(x

j

)} (2)

E.g. n(Avatar,James Cameron) = {direct}. On the
other hand, we train a word2vec model [Mikolov et al., 2013]
on the entity-annotated text corpus D0 by treating each entity
as an ordinary word. Thus we get the node representation x 2
Rk for each node x in G, because the co-occurrence network
is directly generated from D0. Based on these representations,
we define the pointwise textual context embedding of x

i

as
the weighted average of the vectors of the nodes in n(x

i

):

n(x

i

) =

1P
xj2n(xi)

y

ij

X

xj2n(xi)

y

ij

x

j

(3)

If n(x
i

) is empty, we set n(x
i

) to be 0. Similarly, we define
the pairwise textual context embedding of x

i

and x

j

as the
weighted average of the vectors of the nodes in n(x

i

, x

j

):

n(x

i

, x

j

) =

1

Z

X

xk2n(xi,xj)

min(y

ik

, y

jk

)x

k

(4)

where the weight of each common neighbor x

k

is
set to be the minimum of y

ik

and y

jk

, and Z =P
xk2n(xi,xj)

min(y

ik

, y

jk

) is the sum of all weights. If
n(x

i

, x

j

) is empty, we set n(x
i

, x

j

) to be 0.

3.3 Entity/Relation Representation Modeling
Entity/Relation representation modeling is at the heart of
TEKE. Based on the co-occurrence network G and the learned
textual representations, entity/relation representation model
is to incorporate the textual context information to the repre-
sentation learning on knowledge graph. Our representation
model is based on the traditional translation-based methods
and can be implemented on different optimization targets.
Taking TransE [Bordes et al., 2013] as an example, the text-
enhanced entity representations bh andbt are defined as the lin-
ear transformation of pointwise textual context embeddings of
h and t.

b
h = n(h)A+ h (5)

b
t = n(t)A+ t (6)

where A is a k ⇥ k matrix and can be viewed as the weight
of the textual contexts. h, t could be viewed as the biased
vectors. Similarly, the text-enhanced relation representation br
is defined as the linear transformation of the pairwise textual
context embedding of h and t.

b
r = n(h, t)B+ r (7)

where B is a k ⇥ k weighting matrix and r could be viewed
as the biased vector. The score function is defined as

f(h, r, t) = kbh+

b
r� b

tk22 (8)

By incorporating the textual context embeddings n(h),
n(t) and n(h, t), TEKE is better to handle the problem of
knowledge graph sparseness. On the other hand, given differ-
ent pairs of head and tail entities for one particular relation,
n(h, t) owns different representations, which allows the rela-
tion to have different representations while holding b

h+

b
r

⇠
=

b
t.

Such a property improves the performance on representing 1-
to-N, N-to-1 and N-to-N relations.

In practice, we enforce constraints on the norms of the em-
beddings h, r, t and the weighting matrices, i.e. 8h, r, t, we
have khk2  1, krk2  1, kn(h)Ak2  1, ktk2  1,
kn(t)Ak2  1, kn(h, t)Bk2  1, kbhk2  1, kbrk2  1

and kbtk2  1.
On the other hand, our entity/relation representation model

can be easily extended to other knowledge graph represen-
tation learning methods. Following TransH [Wang et al.,
2014b] and TransR [Lin et al., 2015b], we can further enable
an entity to have distinct distributed representations when in-
volved in different relations. Following the idea of TransH,
the entity embeddings b

h and b
t are first projected to the hy-

perplane of w
r

, denoted as b
h? and b

t?. And we can model
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the entity representation as b
h? =

b
h � w

>
r

b
hw

r

and b
t? =

b
t�w

>
r

b
tw

r

, with the score function f?(h, r, t) = kbh?+

b
r�

b
t?k22. Similarly following the idea of TransR, the entity em-
beddings bh andbt are first projected to another vector space by
the projection matrix M

r

, denoted as b
h

r

and b
t

r

, and we can
model the entity representation as bh

r

=

b
hM

r

andbt
r

=

b
tM

r

,
with the score function f

r

(h, r, t) = kbh
r

+

b
r� b

t

r

k22.

3.4 Representation Training
We define the training objective as the following margin-
based score function

L =

X

(h,r,t)2S

X

(h0
,r,t

0)2S0

max(0, f(h, r, t) + � � f(h

0
, r, t

0
))

where max(·, ·) aims to get the maximum of two inputs, � is
the margin, S is the set of correct triples and S 0 is the set of
incorrect triples.

Existing knowledge graphs only contain correct triples.
It is routine to construct incorrect triples (h

0
, r, t

0
) 2 S 0

by corrupting correct triples (h, r, t) 2 S with probability-
based entity replacement. We follow the strategies used
in [Wang et al., 2014b; Lin et al., 2015b] which are denoted
as “unif” and “bern”. The learning process is carried out
using stochastic gradient descent (SGD). To avoid overfitting,
we initialize the entity/relation embeddings with TransE’s re-
sults, and initialize all matrices as identity matrices.

4 Experiments and Analysis
4.1 Experimental Setup and Datasets
For the knowledge graphs to be represented, we employ sev-
eral datasets commonly used in previous methods, which are
generated from WordNet [Miller, 1995] and Freebase [Bol-
lacker et al., 2008]. WordNet is a large lexical database
of English with each entity as a synset which is consist-
ing of several words and corresponds to a distinct word
sense. Freebase is a large knowledge graph of general world
facts. Following [Bordes et al., 2013; Wang et al., 2014b;
Lin et al., 2015b; Socher et al., 2013], we adopt four bench-
mark datasets for evaluation, which are WN18 and WN11
generated from WordNet, FB15K and FB13 generated from
Freebase. The detailed statistics of the datasets are shown in
Table 1.

Table 1: Statistics of the data sets.
Dataset #R #E #Triples(Train/Valid/Test)
WN18 18 40,943 141,442 5,000 5,000
FB15K 1,345 14,951 483,142 50,000 59,071
WN11 11 38,696 112,581 2,609 10,544
FB13 13 75,043 316,232 5,908 23,733

The text corpus is generated from the English Wikipedia
dump archived in August 2015. We remove the documents
of those entities whose titles contain one of the following
strings: wikipedia, wikiprojects, lists, mediawiki, template,
user, portal, categories, articles, pages, and by, and get
4,919,463 documents in total. As mentioned in Section 3,

to incorporate the text information we need to first anno-
tate the entities in the knowledge graphs. For FB15K and
FB13, we just focus on the Wikipedia inner links and au-
tomatically annotate the links as the Freebase entities if the
linked Wikipedia entities have the same titles as the Free-
base entities, otherwise as the lexical words. For WN18 and
WN11, we ignore the Wikipedia links and annotate the words
as the WordNet entities if the words belong to the WordNet
synsets. Further, we remove the stop words and the words
occurring less than 5 times, and apply word stemming on
the entity-annotated texts. We train the skip-gram word2vec
model [Mikolov et al., 2013] on the entity-annotated texts.
Table 2 shows the detailed statistics of the entity-annotated
text corpuses for each benchmark knowledge graph, includ-
ing the number of annotated entities and the number of dis-
tinct word stems.

Table 2: Statistics of entity-annotated Wikipedia corpuses.
KG #Entities #Annotated Entities #Word Stems

WN18 40,943 32,249 1,529,251
FB15K 14,951 14,405 744,983
WN11 38,696 30,937 1,526,467
FB13 75,043 69,208 706,484

We implement different TEKE methods based on differ-
ent translation-based model, which are TransE, TransH and
TransR (see Section 3.3). For simplicity, we denote our
text-enhanced methods as TEKE E, TEKE H and TEKE R
accordingly. Following [Bordes et al., 2013; Wang et al.,
2014b; Lin et al., 2015b], we empirically evaluate TEKE
methods on two tasks: link prediction and triple classifica-
tion. Especially, we will testify TEKE’s capability to handle
low performance on 1-to-N, N-to-1 and N-to-N relations and
knowledge graph sparseness in the task of link prediction.

4.2 Link Prediction
Link prediction is to predict the missing entity h or t for
a relation fact triple (h, r, t). For each missing entity, this
task is to give a ranking list of candidate entities from
the knowledge graph, rather than just giving the best an-
swer. Following [Bordes et al., 2013; Wang et al., 2014b;
Lin et al., 2015b], we conduct our experiments using the
datasets WN18 and FB15K.

Evaluation protocol. For each testing triple (h, r, t), we
replace the head/tail entity by every entity in the knowledge
graph, and rank these entities in descending order of the
scores calculated by score function f (or f?, f

r

). Based on
the entity ranking lists, we use two evaluation metrics by ag-
gregating over all testing triple: (1) the averaged rank of cor-
rect entities (denoted as Mean Rank); (2) the proportion of
ranks no larger than 10 (denoted as Hits@10). Notice that
a corrupted triple may also exist in the knowledge graphs,
such a prediction should be considered as correct. However,
the above evaluations do not deal with the issue and may un-
derestimate the results. To eliminate this factor, we filter out
those corrupted triples which appear in either training, valida-
tion or testing sets before getting the ranking lists. We name
the first evaluation setting as “Raw” and the second one as
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Table 3: Experimental Results on Link Prediction.
Datasets WN18 FB15K

Metric Mean Rank Hits@10 (%) Mean Rank Hits@10 (%)
Raw Filter Raw Filter Raw Filter Raw Filter

TransE / TEKE E 263 / 140 251 / 127 75.4 / 80.0 89.2 / 93.8 243 / 233 125 / 79 34.9 / 43.5 47.1 / 67.6
TransH / TEKE H unif 318 / 142 303 / 128 75.4 / 79.7 86.7 / 93.6 211 / 228 84 / 75 42.5 / 44.9 58.5 / 70.4
TransH / TEKE H bern 401 / 127 388 / 114 73.0 / 80.3 82.3 / 92.9 212 / 212 87 / 108 45.7 / 51.2 64.4 /73.0
TransR / TEKE R unif 232 / 203 219 / 203 78.3 / 78.4 91.7 / 92.3 226 / 237 78 / 79 43.8 / 44.3 65.5 / 68.5
TransR / TEKE R bern 238 / 197 225 / 193 79.8 / 79.4 92.0 / 91.8 198 / 218 77 / 109 48.2 / 49.7 68.7 / 71.9

Table 4: Experimental Results on FB15K by Mapping Properties of Relations. (%)
Tasks Prediction Head (Hits@10) Prediction Tail (Hits@10)

Relation Category 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N
TransE/TEKE E 43.7 / 48.9 65.7 / 72.1 18.2 / 52.3 47.2 / 76.8 43.7 / 46.3 19.7 / 50.2 66.7 / 75.3 50.0 / 76.1

TransH/TEKE H unif 66.7 / 66.6 81.7 / 80.9 30.2 / 58.0 57.4 / 79.6 63.7 / 60.5 30.1 / 60.4 83.2 / 81.5 60.8 / 80.2
TransH/TEKE H bern 66.8 / 69.3 87.6 / 90.8 28.7 / 54.1 64.5 / 82.0 65.5 / 60.7 39.8 / 61.5 83.3 / 88.3 67.2 / 82.1
TransR/TEKE R unif 76.9 / 66.2 77.9 / 82.0 38.1 / 57.0 66.9 / 81.3 76.2 / 62.5 38.4 / 57.5 76.2 / 83.1 69.1 / 81.2
TransR/TEKE R bern 78.8 / 70.1 89.2 / 89.3 34.1 / 54.0 69.2 / 81.7 79.2 / 69.6 37.4 / 59.2 90.4 / 89.2 72.1 / 83.5

“Filter”. In both settings, a lower Mean Rank is better
while a higher Hits@10 is better.

Implementation. As the datasets are the same, we directly
compare our methods with the baselines reported in [Lin
et al., 2015b], where the translation-based methods includ-
ing TransE, TransH and TransR achieved the state-of-the-
art performance. We set the neighboring threshold ✓ on
the co-occurrence network to be 10, and select learning rate
� for SGD among {0.1, 0.01, 0.001}, the margin � among
{1, 2, 4}, the embedding dimension k among {20, 50, 100},
the batch size B among {120, 1440, 4800}. The best config-
uration is determined according to the mean rank in validation
set. We traverse all the training triples for 1,000 times.

Result analysis. The results are reported in Table 3. We
observe that: (1) On WN18, TEKE methods perform much
better than the baselines in terms of Mean Rank. One reason
may be that WordNet itself is a lexical database and the differ-
ence between WordNet and the text corpus is quite small. On
the other hand, no much improvement is observed on FB15K
in terms of Mean Rank. One reason is that the Mean Rank
is easily reduced by an obstinate triple with a low rank. An-
other reason is that our proposed methods aim to better han-
dle 1-to-N, N-to-1 and N-to-N relations, and thus tend to give
multiple entities a higher rank simultaneously, which results
in a lower rank for the target entity in the testing triple. (2)
On both WN18 and FB15K, TEKE methods outperform other
baselines significantly and consistently in terms of Hits@10,
which indicates the effectiveness of incorporating text in-
formation to knowledge graph representation learning. (3)
TransR performs slightly better than TransH, while TEKE H
performs slightly better than TEKE R. The reason could be
that TEKE R incorporates more parameters and it needs more
training rounds to convergence than TEKE H.

Capability to handle 1-to-N, N-to-1 and N-to-N rela-
tions. Table 4 shows separate evaluation results by mapping
properties of relations on FB15K. Following [Bordes et al.,
2013], we divide relations into four types: 1-to-1, 1-to-N,
N-to-1 and N-to-N, for which the proportions in FB15K are

24.2%, 22.9%, 28.9% and 24.0% respectively, based on the
measure used in [Wang et al., 2014b]. TEKE methods sig-
nificantly outperform the baselines when predicting the en-
tity where multiple entities could be correct, which means to
predict head entities in N-to-1 and N-to-N relations, and to
predict tail entities in 1-to-N and N-to-N relations. The aver-
aged improvement achieves about 20%, which indicates the
capability of our methods to handle low performance on the
1-to-N, N-to-1 and N-to-N relations. On the other side, TEKE
methods have not shown much advantage for predicting the
entity where only one entity is correct, which means to pre-
dict heads in 1-to-1 and 1-to-N relations, and to predict tails in
1-to-1 and N-to-1 relations. The reason is that our proposed
methods aim to better handle 1-to-N, N-to-1 and N-to-N re-
lations, and thus tend to give multiple entities a higher rank
simultaneously, which results in a lower rank for the target
entity. Nevertheless, as shown in Table 3, the overall perfor-
mance on all relations is still better than the baselines.

Capability to handle knowledge graph sparseness. As
mentioned in Section 1, we conduct a case study to reveal the
influence of KG structure sparseness and TEKE’s capability
to handle the problem. We randomly select 3,000 entities and
the associated triples from FB15K, and get the FB3K dataset
with 2,238 testing triples and 2,106 validation triples. Based
on FB3K, we further randomly select 3,000 entities and the
associated triples from FB15K and get the FB6K dataset, and
get FB9K dataset based on FB6K by using the same strategy.
Table 5 shows the detailed statistics of the datasets, where the
number of triples per entity (#T /#E) and the number of triples
per relation (#T /#R) reveal the graph densities.

Table 5: Datasets with different densities.
Dataset #E #R #T #T /#E #T /#R
FB3K 3,000 613 19,339 6.45 31.55
FB6K 6,000 913 75,347 12.56 82.53
FB9K 9,000 1,094 167,191 18.58 152.83

T represents the training triples.
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For a fair comparison, we evaluate Mean Rank on the same
testing dataset, i.e. ranking 3,000 entities for 2,238 triples
for all three datasets. As shown in Table 6, we observe
that TEKE E outperforms TransE on different graph sparse-
ness levels. As the graph density gets higher, both TransE
and TEKE E perform better (with a lower rank). Besides,
TEKE E achieves the highest improvement on the sparsest
FB3K dataset, and achieves comparable results on FB6K to
TransE on FB9K, which shows TEKE’s capability to deal
with the graph structure sparseness.

Table 6: Mean Rank Comparison.
Methods TransE / TEKE E
Metric Raw Filter
FB3K 102.7 94.9 41.7 34.8
FB6K 81.9 78.1 29.8 25.6
FB9K 79.5 77.0 27.6 24.7

4.3 Triple Classification
Triple classification is to judge whether a given triple (h, r, t)
is correct or not. It is a binary classification task which
has been widely explored in [Socher et al., 2013; Bordes et
al., 2013; Wang et al., 2014b; Lin et al., 2015b]. Follow-
ing [Socher et al., 2013], we conduct our experiments using
WN11 and FB13, which already contain negative triples ob-
tained by corrupting correct triples.

Evaluation protocol. For each triple (h, r, t), if the score
obtained by score function f (or f?, f

r

) is below a relation-
specific threshold �

r

, the triple will be classified as positive,
otherwise as negative. The threshold �

r

is optimized by max-
imizing classification accuracies on the validation set.

Implementation. As the datasets are the same, we directly
compare our methods with baselines reported in [Lin et al.,
2015b]. The parameter settings are the same as those in the
task of link prediction. The best configuration is determined
according to the accuracy in validation set. We traverse all
the training triples for 1000 times.

Result analysis. The results are reported in Table 7. We
observe that: (1) On both WN11 and FB13, TEKE E and
TEKE H consistently outperform the comparison methods,
especially on WN11. The reason may be that WordNet itself
is a lexical database and the difference between WordNet and
the text corpus is quite small. (2) TEKE R’s unif implemen-
tation on WN11 and bern implementation on FB13 perform
better than TransR, while the other implementations perform
a bit worse. The reason could be that TEKE R incorporates
more parameters and it needs more training rounds than 1,000
to convergence.

5 Related Work
Existing translation-based learning methods learn the entity
embeddings directly from the graph structure between enti-
ties. TransE [Bordes et al., 2013] treats the relations as trans-
lation operations from head entity to tail entity, and wants
r ⇡ t� h when (h, r, t) holds. TransE applies well to 1-to-1
relations but has issues for 1-to-N, N-to-1 and N-to-N rela-
tions. For example 8i 2 {0, ...,m}, (h, r, t

i

) 2 S , we will get

Table 7: Evaluation results of triple classification. (%)
Datasets WN11 FB13

TransE / TEKE E unif 75.9 / 84.1 70.9 / 75.1
TransE / TEKE E bern 75.9 / 84.5 81.5 / 82.1
TransH / TEKE H unif 77.7 / 84.3 76.5 / 77.4
TransH / TEKE H bern 78.8 / 84.8 83.3 / 84.2
TransR / TEKE R unif 85.5 / 85.2 74.7 / 77.1
TransR / TEKE R bern 85.9 / 86.1 82.5 / 81.6

the same representations for those different entities t0, ..., tm.
TransH [Wang et al., 2014b] and TransR [Lin et al., 2015b]
enable an entity to have different representations for differ-
ent relations by preliminarily generating the relation-specific
entity embeddings with mathematical transformations, which
are hyperplane projection for TransH and space projection for
TransR. PTransE is a multiple-step relation path-based repre-
sentation learning model proposed in [Lin et al., 2015a]. As
shown in Section 4.2, the performance on 1-to-N, N-to-1 and
N-to-N relations is still unsatisfactory. On the other side, by
directly learning the embeddings from the graph structure, the
performance is limited due to KG sparseness which is quite
common especially in the domain-specific and non-English
situations.

There are also several methods incorporating textual infor-
mation to improve representation learning of KG. [Socher et
al., 2013] proposes a neural tensor network method by repre-
senting an entity as the average of its word embeddings in en-
tity name, which allows the sharing of textual information lo-
cated in similar entity names. [Wang et al., 2014a] combines
entity embeddings with word embeddings into a joint contin-
uous vector space by alignment models using entity names or
Wikipedia anchors. Considering the entity names are usually
short and ambiguous, several methods are proposed to further
improve the performance by utilizing the entity descriptions.
[Zhong et al., 2015] extends the joint model of [Wang et al.,
2014a] and aligns knowledge and text embeddings by entity
descriptions. [Zhang et al., 2015] represents entities with en-
tity names or the average of word embeddings in descriptions.
[Xie et al., 2016] proposes a description-embodied knowl-
edge representation learning method which learns the entity
embedding by both modeling the corresponding fact triples
and the description. However, lots of entity descriptions are
not available in practical KGs.

Inspired by the idea of distant supervision, our TEKE
methods take a text corpus as input and attempt to incorporat-
ing deep contextual information to the KG. To the best of our
knowledge, TEKE is the first text-associated method to deal
with the problem of low performance on 1-to-N, N-to-1 and
N-to-N relations by enabling each relation to own different
representations for different head/tail entities.

6 Conclusion and Future Work
In this paper, we propose a novel representation learning
method named TEKE for KG. Our TEKE methods better han-
dle the problems of low performance on 1-to-N, N-to-1 and
N-to-N relations and KG sparseness. In our future work, we
will concentrate on further improving the performance on 1-
to-1 relations and try to incorporate the knowledge reasoning
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process into the representation learning.
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