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Abstract

In this extended abstract we introduce the Ar-
cade Learning Environment (ALE): both a chal-
lenge problem and a platform and methodology
for evaluating the development of general, domain-
independent Al technology. ALE provides an in-
terface to hundreds of Atari 2600 game environ-
ments, each one different, interesting, and de-
signed to be a challenge for human players. ALE
presents significant research challenges for rein-
forcement learning, model learning, model-based
planning, imitation learning, transfer learning, and
intrinsic motivation. Most importantly, it provides
a rigorous testbed for evaluating and comparing
approaches to these problems. We illustrate the
promise of ALE by presenting a benchmark set of
domain-independent agents designed using well-
established Al techniques for both reinforcement
learning and planning. In doing so, we also pro-
pose an evaluation methodology made possible by
ALE, reporting empirical results on over 55 differ-
ent games. We conclude with a brief update on the
latest ALE developments. All of the software, in-
cluding the benchmark agents, is publicly available.

1

A longstanding goal of artificial intelligence is the develop-
ment of algorithms capable of general competency in a vari-
ety of tasks and domains without the need for domain-specific
tailoring. To this end, different theoretical frameworks have
been proposed to formalize the notion of “big” artificial intel-
ligence [Russell, 1997; Hutter, 2005; Legg, 2008]. The grow-
ing interest in competitions such as the General Game Playing
competition [Genesereth et al., 2005], Reinforcement Learn-
ing competition [Whiteson et al., 2010], and the International
Planning competition [Coles et al., 2012] also clearly reflects
a desire for practical general competency.

Designing generally competent agents raises the question
of how to best evaluate them. Empirically evaluating general
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competency on a handful of parametrized benchmark prob-
lems is, by definition, flawed. Such an evaluation is prone to
method overfitting [Whiteson et al., 2011] and discounts the
amount of expert effort necessary to transfer the algorithm
to new domains. Ideally, the algorithm should be compared
across domains that are (i) varied enough to claim generality,
(ii) each interesting enough to be representative of settings
that might be faced in practice, and (iii) each created by an
independent party to be free of experimenter’s bias.

In this article, we introduce the Arcade Learning Envi-
ronment (ALE): a new challenge problem, platform, and ex-
perimental methodology for empirically assessing agents de-
signed for general competency. ALE is a software framework
for interfacing with emulated Atari 2600 game environments.
While general competency remains the long-term goal for
artificial intelligence, ALE proposes an achievable stepping
stone: techniques for general competency across the gamut
of Atari 2600 games. We believe this represents a goal that
is attainable in a short time-frame yet formidable enough to
require new technological breakthroughs.

2 Arcade Learning Environment

We begin by describing our main contribution, the Arcade
Learning Environment (ALE). ALE is a software framework
designed to facilitate the development of agents that play ar-
bitrary Atari 2600 games.

2.1 The Atari 2600

The Atari 2600 is a home video game console developed
in 1977 and sold for over a decade [Montfort and Bogost,
2009]. Tt popularized the use of general purpose CPUs in
game console hardware, with game code distributed through
cartridges. Over 500 original games were released for the
console; nearly all arcade games of the time — including PAC-
MAN and SPACE INVADERS — were ported to the console.
Despite the number and variety of games developed for the
Atari 2600, its hardware is relatively simple. It has a 1.19Mhz
CPU and can be emulated much faster than real-time on mod-
ern hardware. The cartridge ROM (typically 2—4kB) holds
the game code, while the console RAM itself only holds 128
bytes (1024 bits). A single game screen is 160 pixels wide
and 210 pixels high, with a 128-colour palette; 18 “actions”
can be input to the game via a digital joystick: three posi-
tions of the joystick for each axis, plus a single button. The
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Figure 1: Screenshot of PITFALL!.

Atari 2600 hardware limits the possible complexity of games,
which we believe strikes the perfect balance: a challeng-
ing platform offering conceivable near-term advancements in
learning, modelling, and planning.

2.2 Interface

ALE is built on top of Stella', an open-source Atari 2600 em-
ulator. It allows the user to interface with the Atari 2600 by
receiving joystick motions, sending screen and/or RAM in-
formation, and emulating the platform. ALE also provides
a game-handling layer which transforms each game into a
standard reinforcement learning problem by identifying the
accumulated score and whether the game has ended. The ac-
tion space consists of the 18 discrete actions defined by the
joystick controller. When running in real-time, the simulator
generates 60 frames per second, and at full speed emulates
up to 6000 frames per second. The reward at each time-step
is defined on a game by game basis, typically by taking the
difference in score or points between frames. An episode be-
gins on the first frame after a reset command is issued, and
terminates when the game ends or after a predefined number
of frames®. The user therefore has access to several dozen
games through a single common interface, and adding sup-
port for new games is relatively straightforward.

ALE further provides the functionality to save and restore
the state of the emulator. When issued a save-state command,
ALE saves all the relevant data about the current game, in-
cluding the contents of the RAM, registers, and address coun-
ters. The restore-state command similarly resets the game to
a previously saved state. This allows the use of ALE as a
generative model to study topics such as planning and model-
based reinforcement learning.

2.3 Source Code

ALE is released as free, open-source software under the terms
of the GNU General Public License. The latest version of the
source code is publicly available at:

http://arcadelearningenvironment.org

The source code for the agents used in the benchmark ex-
periments below is also available on the publication page for
this article on the same website. While ALE itself is written

"http://stella.sourceforge.net
’The latter is to prevent situations such as in TENNIS, where a
degenerate agent can choose to play indefinitely by refusing to serve.
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in C++, a variety of interfaces are available that allow users
to interact with ALE in the programming language of their
choice. Support for new games is easily added by implement-
ing a derived class representing the game’s particular reward
and termination functions.

3 Benchmark Results

Planning and reinforcement learning are two different Al
problem formulations that can naturally be investigated
within the ALE framework. The purpose of the empirical re-
sults presented in this paper is twofold: first, to established a
point of comparison with more advanced approaches; second,
to illustrate our proposed methodology for empirical valida-
tion with ALE.

3.1 Reinforcement Learning

In our experiments we used SARSA()), a model-free re-
inforcement learning technique, in combination with linear
function approximation and e-greedy exploration [see Sutton
and Barto, 1998, for details]. We compared the following
feature generation methods:

Basic. A binary encoding of the presence of colours within
the Atari 2600 screen.

BASS. The Basic method augmented with pairwise feature
combinations. A restricted colour space (3-bit) is used to min-
imize the size of the resulting feature set.

DISCO. A heuristic object detection pipeline trained on of-
fline data.

LSH. A method encoding the Atari 2600 screen into a small
set of binary features via Locally Sensitive Hashing [Gionis
et al., 1999].

RAM. An encoding of the Atari 2600’s 1024 bits of mem-
ory together with pairwise combinations.

Evaluation Methodology

Agents were designed using five training games and further
evaluated on 50 testing games. The training games were also
used for finding suitable parameter values for the SARSA()\)
algorithm and the feature generation methods. The testing
games were chosen semi-randomly from 381 games listed on
Wikipedia when ALE was first developed.

Evaluation was performed by dividing gameplay into
episodes, as described in Section 2.2, with the maximum
episode length set to 5 minutes of real-time play (18,000
frames). Each method was evaluated over 30 trials, with
each trial composed of 5,000 training episodes followed by
500 evaluation episodes during which no learning took place.
The agent’s performance was measured as the average score
achieved during this evaluation period.

Results

Table 1 shows illustrative results from two training games
(ASTERIX and SEAQUEST) and three test games. For pur-
poses of comparison, we also provide performance measures
for three baseline agents: Random, Constant, and e-Constant,
chosen for the simplicity of their associated policies. For the
results in Table 1 we also provide the performance of a be-
ginner human player averaged over five episodes. Of note,



[ [ Basic [ BASS [ DISCO |

LSH [ RAM [ Random | Const. | e-Const. [ Human |

ASTERIX 862 860 755 987 943 288 650 338 620
SEAQUEST 579 665 422 509 594 108 160 451 156
BOXING -3 16 12 10 44 -1 -25 -10 -2
H.E.R.O. | 6,053 | 6,459 2,720 | 3,836 | 3,281 712 0 148 6,087
ZAXXON | 1,392 | 2,069 70 | 3,365 304 0 0 2 820

Table 1: Reinforcement learning results for selected games.

learning agents perform statistically significantly better than
baseline agents on 40 games out of 55.

Our comprehensive empirical results (found in the full pa-
per) show that, while even simple learning schemes perform
well in Atari 2600 games, much more work remains to be
done. Different methods perform well on different games,
and no single method performs best on all games. Some
games, such as MONTEZUMA’S REVENGE, are particularly
challenging and require high-level planning far beyond what
current domain-independent methods achieve.

Our results also highlight the value of ALE as an experi-
mental methodology. As an example, the DISCO object de-
tection approach performs reasonably well on the training set,
but suffers a dramatic reduction in performance when applied
to the testing set. In turn, this suggests the method is less
robust than the other methods we studied.

3.2 Planning

The Arcade Learning Environment can naturally be used to
study planning techniques by using the emulator itself as a
generative model. Initially it may seem that allowing the
agent to plan into the future with a perfect model trivial-
izes the problem. However, this is not the case: the size of
state space in Atari 2600 games prohibits exhaustive search.
Eighteen different actions are available at every frame; at
60 frames per second, looking ahead one second requires
1850 ~ 107® simulation steps. Furthermore, rewards are of-
ten sparsely distributed, which causes significant horizon ef-
fects in many planning algorithms. In this paper we investi-
gate two planning methods:

Breadth-first search. This approach builds a search tree in
a uniform, breadth-first fashion until a node limit is reached.

UCT. UCT [Kocsis and Szepesvari, 2006] uses the UCB
bandit algorithm to favour more promising branches in its ex-
ploration. UCT is known to perform well in many settings
[Browne et al., 2012].

Results

We matched the experimental setup of Section 3.1 and used
the training games to determine the length of the planning
horizon as well as the constant controlling the amount of ex-
ploration at internal nodes of the UCT tree. We evaluated
both planning methods using 10 episodes per game. Table
2 provides a comparison of our two planning methods for a
selected subset of games. For reference purposes, we also
include the performance of the best learning agent and the
best baseline policy (from Table 1). Together, our two search
methods performed better than both learning and baseline
agents on 49 out of 55 games. In most cases, UCT performs

[ | Full Tree | UCT [ Best Learner |
ASTERIX 2,136 | 290,700 987
SEAQUEST 288 5,132 665
BOXING 100 100 44
H.E.R.O. 1324 12,860 6,459
ZAXXON 0 22,610 3,365

Table 2: Planning results for selected games.

significantly better than breadth-first search. Note, however,
that these results are not altogether comparable: while the
learning agents all play in real-time, the planning agents typ-
ically required 15 seconds per action: effectively three min-
utes of search effort per second of game play.

4 Evaluation Metrics for General Atari 2600
Agents

Applying algorithms to a large set of games as we did in Sec-
tions 3.1 and 3.2 presents difficulties when interpreting the
results. While the agent’s goal in all games is to maximize
its score, scores for different games cannot be easily com-
pared. Each game uses its own scale for scores, and different
game mechanics make some games harder to learn than oth-
ers. The challenges associated with comparing general agents
has been previously highlighted by Whiteson et al. [2011].
Although we can always report comprehensive performance
tables, as we do in the full paper, some more compact sum-
mary statistics are also desirable. We now introduce simple
techniques to compare agents across a diverse set of domains
such as our test set of Atari 2600 games.

4.1 Normalizing Scores

To compare agents across different games, we normalize each
score according to a score range [ag, by| specific to game g,
with ag < by. If 54 is the score achieved by an agent on game
g, then its normalized score is

Sg — Og

Zg = .
g
by — ag

In this paper we consider three normalization schemes:

Normalization to a single reference. Here we define b, to
be the score achieved by the random player on game g, and
setag = 0.

Normalization to a baseline set. We define b, to be the
maximum of the set of scores Sy := {s,4,;} achieved by our
baseline policies, and take a4 := min S,,.
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Figure 2: Aggregate normalized scores for the five reinforce-
ment learning agents.
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Figure 3: Score distribution over all games.

Inter-algorithm normalization. Identical to normalization
to a baseline set, except that S is the set of scores achieved
by the algorithms under comparison. By definition, the nor-
malized scores are in the range [0, 1] and are easily compared.
However, this approach has no objective interpretation, since
scores depend on the choice of algorithms.

4.2 Aggregating Scores

Once normalized scores are obtained for each game, the next
step is to produce a measure that reflects how well each agent
performs across the set of games. In this paper we discuss
how average and median normalized scores are difficult to
interpret (Figure 2). We then propose the score distribution
as a natural generalization of the median score.

The score distribution shows the fraction of games on
which an algorithm achieves a certain normalized score or
better. It is essentially a quantile plot or inverse empirical
CDF (Figure 3). Using the baseline score distribution, we
can easily determine the proportion of games for which meth-
ods perform better than the baseline policies (scores above 1).
The inter-algorithm score distribution, on the other hand, ef-
fectively conveys the relative performance of each method.

An alternate evaluation metric is to perform paired tests
over the raw scores. For each game, we performed a two-
tailed Welsh’s ¢-test with 99% confidence intervals on the
agents’ scores. These tests, like other metrics, suggest that
DISCO performs worst and BASS, best.

5 New Developments: The Brute

The year following the original publication of this paper has
seen a number of exciting developments, not the least Mnih et
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al.’s work on combining neural networks with reinforcement
learning [Mnih et al., 2015]. We also discovered a simple
trajectory optimization algorithm, the Brute, which achieves
high scores on a surprising number of Atari 2600 games. As
the name implies, the Brute operates in a naive, seemingly
incredibly inefficient way. Yet its good performance suggests
improvements to ALE are needed to make it better suited to
the evaluation of generally competent agents.

The Brute is both a planning and a learning method, and
is tailored to deterministic, episodic environments. It is a
planning method in that it constructs a search tree from sim-
ulations; however, it is also a learning method as each of its
simulations is a full episode of interaction with the environ-
ment. Thus, the Brute does not require access to a generative
model. Each node of its search tree corresponds to an action-
observation sequence h. Save for some initial state aliasing,
the Atari 2600 is deterministic: as such, a single transition
suffices to learn R(h, a), the reward for taking action a from
node h, and T'(h, a), the transition function.

The Brute keeps track of the number of visits vy, to each
node h and acts according to a modified e-greedy policy :

—00 if T'(h, a) is unknown

Q(h,a) = { R(h,a) + max, Q(T(h,a),b) otherwise

w(h) = {

with terminal states always yielding a reward of 0, and € =
0.005. This kind of policy yields long, narrow search trees
with are particularly adapted to Atari 2600 games. For sim-
ilar amounts of training time, the Brute outperforms the best
learning method on 45 out of 55 games, and is better than the
best planning method on 11 games (Table 3 presents some
particularly striking examples). These results are particularly
significant since the Brute does not generalize to new situ-
ations, but simply optimizes a single trajectory. Unlike our
planning methods, the Brute also acts in real-time.

argmax, Q(h,a) wp.1—

e
log(vp+1)
M €
uniformly random  w.p. Tog(nT D)

[ | The Brute | Best Learner | Best Planner |
BEAM RIDER 3,084 996 6,625
Q*BERT 5,850 614 17,343
MONTEZUMA 2,500 10.7 0.0
PRIVATE EYE 14,891 1947 100
ROAD RUNNER 15,600 900 38,725

Table 3: Brute results for selected games.

The Brute’s good performance depends critically on the de-
terministic nature of ALE. However, this kind of trajectory
optimization seems detrimental to ALE’s purpose as an eval-
uation platform and methodology for general competency. As
a result, we are currently incorporating a stochastic control
element into ALE. We are also considering averaging perfor-
mance over multiple starting positions. We believe this new,
improved ALE will provide an even more interesting platform
for Al research.
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