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Abstract

Although the light field has been recently recog-
nized helpful in saliency detection, it is not com-
prehensively explored yet. In this work, we pro-
pose a new saliency detection model with light field
data. The idea behind the proposed model orig-
inates from the following observations. (1) Peo-
ple can distinguish regions at different depth levels
via adjusting the focus of eyes. Similarly, a light
field image can generate a set of focal slices focus-
ing at different depth levels, which suggests that a
background can be weighted by selecting the cor-
responding slice. We show that background priors
encoded by light field focusness have advantages
in eliminating background distraction and enhanc-
ing the saliency by weighting the light field con-
trast. (2) Regions at closer depth ranges tend to be
salient, while far in the distance mostly belong to
the backgrounds. We show that foreground objects
can be easily separated from similar or cluttered
backgrounds by exploiting their light field depth.
Extensive evaluations on the recently introduced
Light Field Saliency Dataset (LFSD) [Li et al.,
2014], including studies of different light field cues
and comparisons with Li et al.’s method (the only
reported light field saliency detection approach to
our knowledge) and the 2D/3D state-of-the-art ap-
proaches extended with light field depth/focusness
information, show that the investigated light field
properties are complementary with each other and
lead to improvements on 2D/3D models, and our
approach produces superior results in comparison
with the state-of-the-art.

1 Introduction
Saliency detection, aiming at identifying the most salient re-
gions or objects that most attract the viewers’ visual atten-
tion in a scene, has become a popular area in computer vi-
sion. It plays an important role in recognition [Rutishauser
et al., 2004; Han and Vasconcelos, 2014], image segmenta-
tion [Goferman et al., 2012], and visual tracking [Mahadevan
and Vasconcelos, 2012].

Depending on how data are used, saliency detection can
be classified into three main categories: 2D, 3D and light
field saliency. The most common approach is to apply 2D
salient cues such as intensity and color in contrast-based data-
driven bottom-up saliency frameworks [Itti and Koch, 2001;
Cheng et al., 2011; Perazzi et al., 2012; Jiang et al., 2013]
owing to the observation that human vision is either partic-
ularly sensitive to high-contrast stimuli [Reynolds and Des-
imone, 2003], or incorporated with object/background pri-
ors in context-dependent top-down mechanisms [Wei et al.,
2012; Yang et al., 2013; Zhu et al., 2014]. A comprehensive
study on existing 2D saliency detection approaches is con-
ducted by Borji et al. [2012]. Although these 2D models are
based on visual attention mechanisms especially rooted in an
early visual process in primary visual cortex (area V1) [Koch
and Ullman, 1985; Itti and Koch, 2001; Li, 2002], most meth-
ods ignore important aspects of eye movements such as atten-
tion shifting across depth planes [Jansen et al., 2009].

With the availability of commercial 3D cameras such as
Kinect [Zhang, 2012], another approach to saliency detection
involves the saliency computation of RGBD images [Zhang
et al., 2010; Lang et al., 2012; Desingh et al., 2013; Cip-
tadi et al., 2013; Peng et al., 2014; Ju et al., 2014]. In these
methods, depth, as one of the feature dimensions, is more di-
rectly bound to objects thus beneficial for saliency analysis.
However, most current methods require high-quality depth
maps and ignore the relations between depth and appearance
cues [Peng et al., 2014].

In recent years, the light field has opened up a new research
area with the development of digital photography. Using con-
sumer light field cameras such as Lytro [Ng et al., 2005] and
Raytrix [Lumsdaine and Georgiev, 2009], we can simulta-
neously capture the total amount of light intensity and the
direction of each ray from incoming light in a single expo-
sure. Therefore, a light field can be represented as a 4D
function of light rays in terms of their (2D spatial) posi-
tions and (2D angular) directions [Adelson and Wang, 1992;
Gortler et al., 1996]. These information items can be con-
verted into various interesting 2D images (e.g., focal slices,
depth maps and all-focus images) through rendering and re-
focusing techniques [Ng et al., 2005; Tao et al., 2013]. For
example, a light field image can generate a set of focal slices
focusing at different depth levels [Ng et al., 2005] (see Fig-
ure 1(a) and 1(b) for examples), which suggests that one can
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Figure 1: Focal stack, all-focus image and depth map ob-
tained from a Lytro camera. (a) and (b) are two slices that
focus at different depth levels (left is focused on the first min-
ion and right is focused on the second minion); (c) all-focus
image; (d) depth map.

determine background regions by selecting the slice focused
on the background. Then the corresponding focusness maps
can be computed to separate in-focus and our-of-focus re-
gions so as to identify salient regions. An all-focus image
(Figure 1(c)), containing a series of images captured at dif-
ferent focal planes, provides the sharpest pixels and can be
approximately recovered by depth invariant blurs from the fo-
cal stack images [Nagahara et al., 2008] or the depth of field
(DOF)-dependent rendering algorithm [Zhang et al., 2014].
In addition, the depth of each ray of light recorded in the sen-
sor can be estimated by measuring pixels in the focus [Tao et
al., 2013], as shown in Figure 1(d). Regions at closer depth
ranges tend to be salient, while far in the distance mostly be-
long to backgrounds.

Li et al. [2014] pioneered the idea of light field for re-
solving traditionally challenging problems in saliency detec-
tion. They proposed a new saliency detection method tai-
lored for light field by combining foreground and background
cues generated from focal slices. In addition, they collected
the first challenging dataset of 100 light fields using Lytro
camera, i.e., the Light Field Saliency Dataset (LFSD). They
demonstrated that the light field can greatly improve the accu-
racy of saliency detection within challenging scenarios. Al-
though their work aims to explore the role of light field in
saliency detection by using focusness to facilitate the saliency
estimation, it is still at the initial stage of exploration and has
some limitations: (1) the focusness and objectness are cal-
culated to select foreground saliency candidates, which in-
evitably ignores the explicit use of depth data associated with
salient regions/objects, and (2) the performance of existing
2D/3D saliency detection approaches and their extended ver-
sions with light field cues on the LFSD dataset is not well
explored.

In this paper, we make an attempt to address saliency de-
tection by the use of light field properties in the following
aspects: (1) we generate focusness maps from focal slices at
different depth levels via invariant blurs [Shi et al., 2014] and
introduce a light field depth cue into saliency contrast compu-
tation within a L2-norm metric, (2) to facilitate the saliency
estimation, we compute the background prior on the focus-
ness map of a selected focal slice and incorporate it with
the location prior, (3) we extend the 2D/3D state-of-the-art
saliency detection approaches with our proposed light field
depth contrast and focusness-based background priors, and

show the effectiveness and superiority of light field proper-
ties, and (4) comparing with [Li et al., 2014], our approach
increases the performance by 4%–7% on the LFSD dataset in
terms of different quantitative measurements.

2 Related Work
2.1 2D Saliency
Results from many existing visual saliency approaches [Itti
and Koch, 2001; Cheng et al., 2011; Perazzi et al., 2012;
Jiang et al., 2013] indicate that the contrast is the most in-
fluential factor in the bottom-up visual saliency. For exam-
ples, Itti et al. [1998] proposed a saliency model that com-
putes the local contrast from color, intensity and orienta-
tion. Cheng et al. [2011] defined the contrast by comput-
ing dissimilarities among color histogram bins of all image
regions. To take global spatial relationships into account,
Perazzi et al. [2012] considered saliency estimation as two
Gaussian filters performing on region uniqueness and spa-
tial distribution respectively. Other global methods such as
appearance reconstruction [Li et al., 2013] and fully con-
nected MRF [Jia and Han, 2013] are recently proposed to uni-
formly identify salient objects. Recently, background priors
are incorporated into proposed methods to reduce the distrac-
tion of salient regions from backgrounds [Yang et al., 2013;
Wei et al., 2012; Zhu et al., 2014]. Such approaches are
generally based on some specific assumptions that all the
image patches heavily connected to backgrounds and im-
age boundaries belong to backgrounds [Yang et al., 2013;
Zhu et al., 2014], are very large and homogeneous [Wei et
al., 2012]. Additionally, Jiang et al. [2013] showed that the
focus blur in 2D images can improve fixation predictions.
Despite many recent improvements, the generations of accu-
rate saliency maps are still very difficult in some challenging
scenes, such as cluttered backgrounds, textured objects, and
similar colors between salient objects and their surroundings,
etc (see Figure 7 for some examples).

2.2 3D Saliency
Besides 2D information, several studies have exploited the
depth cue in saliency analysis [Zhang et al., 2010; Lang et al.,
2012; Desingh et al., 2013; Peng et al., 2014; Ciptadi et al.,
2013; Ju et al., 2014]. Specifically, Zhang et al. [2010] de-
signed a stereoscopic visual attention algorithm for 3D video
based on multiple perceptual stimuli. Desingh et al. [2013]
fused appearance and depth cues by using non-linear sup-
port vector regression. Ciptadi et al. [2013] demonstrated
the effectiveness of 3D layout and shape features from depth
images for calculating more informative saliency map. Ju
et al. [2014] proposed a depth saliency method based on
anisotropic center-surround difference, and used depth and
location priors to refine the saliency map. Recently, a large-
scale RGBD salient object detection benchmark is built up
with unified evaluation metrics and a multi-stage saliency es-
timation algorithm is proposed to combine depth and appear-
ance cues [Peng et al., 2014]. The above approaches demon-
strate the effectiveness of the depth in saliency detection,
while their performance is highly dependent on the quality
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Figure 2: Pipeline of our proposed approach for light field
saliency detection.

of depth estimation. All these methods may fail when salient
objects cannot be distinguished at the depth level.

2.3 Light Field Saliency
To the best of our knowledge, Li et al.’s work [2014] is
the first saliency detection method by using light field data
that shows that light field can greatly improve the accu-
racy of saliency detection. They used focusness priors to
extract background information and computed the contrast-
based saliency between background and non-background re-
gions. In addition, the objectness is computed as the weight
for combining contrast-/focusness-based saliency candidates
to generate the final saliency map.

3 Approach
Figure 2 shows the pipeline of our approach, and the details
are described in the following sections.

3.1 Light Field Contrast-based Saliency
We build the contrast-based saliency based on the light field
depth and color from the all-focus image. We employ Simple
Linear Iterative Clustering (SLIC) algorithm [Achanta et al.,
2012] to segment an all-focus image into a set of nearly reg-
ular super-pixels, which can preserve edge consistency and
yield compact super-pixels. We define the contrast saliency
S(pi) for super-pixel pi as:

S(pi) =

N∑
j=1

Wpos(pi)||Ufea(pi)− Ufea(pj)|| (1)

Wpos(pi, pj) = exp(−
||U∗

pos(pi)− U∗
pos(pj)||2

2σ2
w

) (2)

where N is the total number of super-pixels and we found
that 300 super-pixels are enough to obtain high performance
for saliency detection. Ufea(pi) and Ufea(pj) are average
feature (depth or color) values of super-pixels pi and pj .
Wpos(pi, pj) is the spatial weight factor for controlling the

pair-wise distance of super-pixels, that is, closer regions or
similar colors would have higher contribution to the saliency.
||U∗

pos(pi)− U∗
pos(pj)|| defines the L2-norm distance of nor-

malized average coordinates between pairs of super-pixels pi
and pj and measures spatial relationships of super-pixels, σw
is specified as 0.67 throughout our experiments.

Based on the above definitions, we denote the depth-
induced contrast saliency from the light field as SD(pi),
which is useful for separating the salient foreground from the
similar or cluttered background (e.g., the 1st example in Fig-
ure 4(c)). However, saliency detection with the depth con-
trast may fail when the background is close to the foreground
object or the salient object is placed in the background, as
shown in the 2nd example of Figure 4(c). We solve this issue
by considering the color contrast as a complementary prior.
Therefore, we compute the color contrast saliency SC(pi) in
CIE LAB color space on the all-focus image.

Then, we combine the depth saliency and color saliency as:
S∗(pi) = α× SC(pi) + β × SD(pi) (3)

where α and β are two weight parameters for leveraging
depth and color cues with β = 1 − α. We empirically set
them as α = 0.3 and β = 0.7.

3.2 Background Priors Encoded by Focusness
Similar with [Li et al., 2014], we select the background slice
Ibg through analyzing focusness distributions of different fo-
cal slices Ik, k = 1, ...,K. More specifically, we compute the
focusness map Fk for each focal slice using focusness detec-
tion technique [Shi et al., 2014].

We compute the background likelihood score Bk for each
slice Ik along Fk(x) and Fk(y) by U-shaped filtering, and
choose the slice with the highest Bk as the background slice
Ibg ,

Fbg = argmax
k=1,...,K

Bk(Fk, u) (4)

where u = 1√
1+( xη )

2
+ 1√

1+(
(w−x)
η )2

is the 1D band-pass

filtering function along the x axis, and η = 28 controls the
bandwidth.

To enhance the saliency contrast, we compute the back-
ground probability Pbbg on the focusness map Fbg through:

Pbbg(pi) = 1− exp(−Ubg(pi)
2

2σ2
bg

· ||C − U∗
pos(pi)||2) (5)

where σbg = 1, Ubg(pi) is the average value of super-pixel
pi on the focusness map Fbg . ||C − U∗

pos(pi)|| measures the
spatial information of super-pixels related to the image cen-
ter C, here, U∗

pos(pi) defines normalized average coordinates
of super-pixel pi. Therefore, regions that belong to the back-
ground have higher background probability Pbbg on the fo-
cusness map.

3.3 Background Weighted Saliency Computation
We incorporate the background probability into the contrast
saliency as follows:

Slf (pi) =

N∑
j=1

S∗(pi) · Pbbg(pj) (6)
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It can be seen that the saliency value of a foreground region
is increased by multiplying a high Pbbg from background re-
gions. On the contrary, the saliency value of background re-
gions is reduced by multiplying a smallPbbg from foreground
regions.

In order to obtain cleaner foreground objects, we applied
saliency optimization algorithm [Zhu et al., 2014] onto the
above saliency map (Eq. 6). We found that the addition of
this optimization procedure consistently increases the perfor-
mance of the proposed approach by about 2% for MAE, 5%
for F-measure, and 6% for AUC.

4 Experiments
We conduct extensive experiments to demonstrate the effec-
tiveness and superiority of our proposed approach.

4.1 Experimental Setup
Dataset
Light Field Saliency Dataset (LFSD)1 is the only reported
dataset captured by Lytro camera for saliency analysis, which
contains 100 light fields acquired in 60 indoor and 40 out-
door scenes. The light field data of a scene are composed of 5
types of image data – the raw light field data, a focal slice, an
all-focus image derived from the focal stack, a rough depth
map, and the corresponding 2D binary ground truth (GT).

Evaluation Measures
We use standard precision recall (PR) and receiver operating
characteristic (ROC) curves for evaluations. When comput-
ing the overall quality on the whole dataset, we consider three
metrics for determining the accuracy of saliency detection: F-
measure, area under curve (AUC), and mean absolute error
(MAE).

Given a saliency map, a PR curve is obtained by generat-
ing binary masks with a threshold t ∈ [0, 255] and compar-
ing these masks against the GT to obtain precision and recall
rates. The PR curves are then averaged over the dataset. We
compute F-measure as Fβ = (1+β2)·P ·R

β2·P+R , and set β2 = 0.3

to highlight precision [Achanta et al., 2009]. The ROC
curve can also be generated based on true and false posi-
tives obtained during the calculation of PR curve. MAE mea-
sures the average per-pixel difference between the binary GT
and the saliency map, which is found complementary to PR
curves [Perazzi et al., 2012; Cheng et al., 2013].

4.2 Results
Evaluating the Different Light Field Properties
To assess the different light field properties in the proposed
approach, we show comparisons of the accuracy using dif-
ferent model components. Here we focus on different light
field properties themselves regardless of saliency optimiza-
tion [Zhu et al., 2014], .

Figure 3 shows PR and ROC curves of saliency detection.
It can be seen that light field properties complement each
other and none of them alone suffices to achieve good re-
sults. When linearly combining the depth and color contrast

1http://www.eecis.udel.edu/∼nianyi/LFSD.htm
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Figure 3: Quantitative measurements of various light field
properties on LFSD datasets. (a) PR curves; (b) ROC curves.

Model F-measure AUC MAE

Color 0.5923 0.7089 0.2367
Color+Bg 0.6390 0.7708 0.2157

Depth 0.5587 0.7354 0.2421
Depth+Bg 0.7297 0.8676 0.1708

Color+Depth 0.6422 0.7904 0.2255
Color+Depth+Bg 0.7749 0.8982 0.1605

Table 1: Comparisons of F-measure, ROC and MAE from
different light field properties (bold: best; underline: second
best).

saliency, our approach outperforms the versions with individ-
ual ones, suggesting its ability to leverage diversified light
field cues. Furthermore, the performance is significantly im-
proved by computing the background probability from the
focusness which is additional light field support of our ap-
proach.

Table 1 shows F-measure, ROC and MAE results for com-
parisons. There is a consistent improvement in performance
for all the metrics, which further validates the effectiveness
of our approach for light field saliency detection.

Figure 4 visually compares the performance of different
light field properties. We observe that each of cues has
its unique advantage to saliency detection in different ways.
Depth cue is exploited to detect foreground salient objects.
However, it may fail when the depth contrast is low or salient
object is placed in the background, e.g., the 2nd example. In
this example, the color cue from the all-focus image can be
used to distinguish salient and non-salient colors in the en-
tire scene. Further, the focusness at different depth levels
is beneficial for efficient foreground and background separa-
tion. The 3rd and 4th examples show that background priors
encoded by light field focusness are helpful to eliminate the
background distraction and enhance salient foreground ob-
jects.

Extending 2D Saliency Models with Light Field
Depth-induced Saliency
To validate the benefit of light field depth, we extend 8 state-
of-the-art 2D saliency approaches by fusing 2D saliency maps
with light field depth contrast saliency maps into final ones
through the standard pixel-wise summation. These methods
include Tavakoli [Tavakoli et al., 2011], CNTX [Goferman
et al., 2012], GS [Wei et al., 2012], SF [Perazzi et al., 2012],
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Figure 4: Visual comparisons of saliency estimation from dif-
ferent light field properties. (a) all-focus image; (b) depth
map; (c) color; (d) color+bg; (e) depth; (f) depth+bg; (g)
color+depth; (h) color+depth+background; (i) GT.
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Figure 5: Quantitative results of our approach, state-of-the-
art 2D approaches and their depth-extended versions. (a) PR
curves; (b) ROC curves.

TD [Scharfenberger et al., 2013], CovSal [Erdem and Erdem,
2013], GBMR [Yang et al., 2013], and wCtr* [Zhu et al.,
2014]. We set the models all with default parameters in their
original implementations.

Figure 5 presents the PR and ROC curves of our results.
The comparisons of F-measure, ROC and MAE are given
in Table 2. Here the postfix ‘ D’ denotes depth-extended
saliency methods. We can see that our approach is superior
to all the state-of-the-art 2D models even combined with the
light field depth-induced saliency. The accuracy from all the
2D saliency methods are improved by incorporating the light
field depth saliency by about 1–5% and 3–6% for F-measure
and MAE, respectively. It is worth to note that we obtain the
significant improvement for CNTX by 10% in the AUC met-
ric.

Figure 6(c)–6(j) show qualitative comparisons of all the
2D saliency methods (Top) and their depth-extended ver-
sions (Bottom) for two examples. It is obvious that most
approaches fail when the object has the similar appearance
as the background or the background is cluttered. However,
the inclusion of the light field depth contrast helps to capture
homogeneous color elements and subtle textures within the
object so as to identify foreground salient objects.

We also visually compare our approach (Figure 7(n)) with
all the depth-extended approaches (Figure 7(c)–7(j)). Bene-
fiting from the combination of color and depth contrast with
background priors, our approach still efficiently works when

Model F-measure AUC MAE

CNTX 0.3643 0.6700 0.3574
CNTX D 0.4123 0.7718 0.3514
CovSal 0.6335 0.8599 0.2417

CovSal D 0.6373 0.8466 0.2850
Tavakoli 0.5498 0.8078 0.2551

Tavakoli D 0.5711 0.8276 0.2903
GS 0.5944 0.8443 0.2395

GS D 0.6217 0.8792 0.2843
GBMR 0.7461 0.8965 0.1822

GBMR D 0.7536 0.9072 0.2415
SF 0.4678 0.8301 0.2468

SF D 0.4704 0.8552 0.2903
TD 0.5766 0.7775 0.2623

TD D 0.5999 0.8490 0.2951
wCtr* 0.6996 0.8991 0.1878

wCtr* D 0.7382 0.9156 0.2475
DVS 0.2723 0.5354 0.3274

DVS Bg 0.2851 0.5509 0.2846
ACSD 0.7905 0.9467 0.1830

ACSD Bg 0.8025 0.8361 0.1668
LFS 0.7500 0.9272 0.2077
Ours 0.8186 0.9641 0.1363

Table 2: Comparisons of F-measure, AUC, and MAE from
our approach, state-of-the-art 2D/3D approaches and their
light field-extended methods (bold: best; underline: second
best).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 6: Visual comparisons of 10 state-of-the-art 2D/3D
saliency detection models and their light field-extended ver-
sions for two examples. (a) all-focus image (Top) and depth
map (Bottom); (b) GT (Top) and ours (Bottom); (c) CNTX;
(d) CovSal; (e) Tavakoli; (f) GS; (g) GBMR; (h)SF; (i)TD; (j)
wCtr*; (k) DVS; (l) ACSD.

the background is not distant enough or the salient object is
not distinct at the depth level.

Extending 3D Saliency Models with Light Field
Focusness-induced Background Priors
In order to show the role of light field focusness, we incor-
porate background priors (Eq. 5) computed from focusness
maps into 2 state-of-the-art 3D saliency models: DVS [Cip-
tadi et al., 2013] and ACSD [Ju et al., 2014].

Similarly, the quantitative results are shown in Figure 8 and
Table 2. The postfix ‘ Bg’ indicates the methods extended
with background priors from the light field focusness. Over-
all, the background prior encoded by the focusness cue im-
proves original 3D saliency detection, which can also be seen
in Figure 6(k) and (l) for visual comparisons. Apparently,
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Figure 7: Visual comparisons of our approach and 2D/3D
extended methods. (a) all-focus image; (b) depth map;
(c) CNTX D; (d) CovSal D; (e) Tavakoli D; (f) GS D; (g)
GBMR D; (h)SF D; (i) TD D; (j) wCtr* D; (k) DVS Bg; (l)
ACSD Bg; (m) LFS; (n) Ours; (o) GT.
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Figure 8: Quantitative results of our approach, LFS, state-of-
the-art 3D approaches and their focusness-extended versions.
(a) PR curves; (b) ROC curves.

DVS pays more attention on object contours while ignores
inner salient regions. ACSD is the second best approach in
our comparisons because they also consider the depth contrast
and location cue which is very beneficial for saliency detec-
tion. Additionally, Figure 7 visually shows that our approach
performs better than these extended approaches (Figure 7(k)
and (l)).

Comparison with the LFS Method
LFS [Li et al., 2014] is so far the only reported approach for
saliency detection on the light field data. As can be seen
from Figure 8, our approach achieves much better perfor-
mance than LFS at the higher precision rates in PR curves
and the lower false positive rates in ROC curves. Figure 7(m)
and (n) show the qualitative comparisons of LFS and our ap-
proach. Our method locates foreground objects more accu-
rately. This is mainly because the depth contrast saliency
provides us strong salient cue in cluttered background or the
background having the similar colors with the foreground.
Besides, background regions are falsely detected as salient
objects by LFS in some cases while ours not (see the 5th, 7th
and 11th examples). The possible reason could be that our ap-

proach makes an appropriate use of focal slices to introduce
the background probability on the focusness map, which is
beneficial for saliency detection when salient objects cannot
be distinguished at the depth level.

5 Conclusions
The light field camera allows one to capture the total amount
of light intensity and the direction of each ray from incom-
ing light in a single exposure simultaneously, which provides
not only intensity information, but also depth and focusness
information. These interesting properties of the light field
motivated us to investigate its capabilities for visual saliency.
In this paper, we proposed a new saliency detection approach
using light field focusness, depth and all-focus cues. Our ap-
proach produced state-of-the-art saliency maps on the LFSD
dataset. Through extensive evaluations, we showed that vari-
ous 2D approaches supported by our light field depth-induced
saliency improved their accuracy of saliency detection, and
by considering different focus areas from the light field, back-
grounds are easily separated from foregrounds, which is ben-
eficial for 3D saliency detection. Compared with [Li et al.,
2014], our approach achieved substantial gains in accuracy.
However, the depth reliefs of the light field are limited in the
current cameras. In future work, we are interested in making
use of light field depth and focusness to predict gaze shifts
in real 3D scenes and estimating more accurate depth maps
from light field cameras with large depth reliefs to improve
visual saliency applications.
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